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Good wine needs no bush, and a book on structure by Arthur Loeb 
can hardly be improved by a foreword. Yet it may be pointed out 
that this book has a simple fundamental quality of viewpoint and 
treatment that gives it an unusually widespread applicability. It is 
not just for mathematicians and crystallographers. 

The author and I, respectively a mathematician and a metal
lurgist, have often met as members of a group of people who call 
themselves the Philomorphs: biologists, artists, crystallographers, 
architects, sociologists and others-brought together by a common 
interest in the underlying patterns of interaction between things. 
Some awareness of structure lies immediately beneath the surface in 
virtually every field of abstract knowledge or purposeful activity, as 
well as in games, entertainment and the arts. In many fields the 
whole purpose is the finding of significant structure and the under
standing and control of structural change. Structural terminology 
appears, often unnoticed, in everyday conversation as well as in 
learned treatises, although in most cases the interest is not in the 
structure itself, but rather in the qu~lities or properties to which 
structural interactions give rise. 

Most considerations of structure in the past have overemphasized 
polyhedra, unit cells and symmetry. Arthur Loeb emphasizes va
lency, the number of connections pertaining to each structural 
feature. The concept of valency, originally simply a way of under
standing the fixed compositions of chemical compounds, is here used 
as a basic feature in more complicated structures. Valencies are 
combined with dimensionality, and the inescapable interlock is ex
ploited between the valence of points, lines, polygons and cells in 
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aggregates: this touches on the very nature of things. The concept of 
statistical symmetry which Loeb develops is particularly important, 
for it emphasizes the limitations in seemingly random aggregates and 
permits general statements of which the crystallographer's sym
metries are only special cases. 

The reductionist and holistic approaches to the world have been 
at war with each other since the times of the Greek philosophers and 
before. In nature, parts clearly do fit together into real structures, 
and the parts are affected by their environment. The problem is one 
of understanding. The mystery that remains lies largely in the nature 
of structural hierarchy, for the human mind can examine nature on 
many different scales sequentially but not simultaneously. Arthur 
Loeb's monograph is a fundamental one, but one can sense a devel
opment from the relations between his zero- and three-dimensional 
cells to the far more complex world of organisms and concepts. It is 
structure that makes the difference between a cornfield and a cake, 
between an aggregate of cells and a human being, between a random 
group of human beings and a society. We can perceive anything only 
when we perceive its structure, and we think by structural analogy 
and comparison. 

Several books have been published showing the beauty of form in 
nature. This one has the beauty of a work of art, but it grows out of 
rigorous mathematics and from the simplest of bases-dimensional
ity, extent and valency. Structure in the decorative arts depends on 
the same repetition and variation of space-filling relationships that 
are discussed here. The architect or builder uses them as he turns 
bricks into walls, walls to rooms, and rooms to bUildings. I myself as 
a metallurgist see its immediate applicability both to the symmetry 
of most alloy crystals and to the non-symmetrical space-filling aggre
gates of crystalline grains and other microconstituents. The 
prevalence of pentagons in nature is no mystery-it is inevitable in a 
random aggregate of undifferentiated cells of any kind, for it is 
simply a result of undirectional contiguity and economy of interface. 

Underlying all this is the Euler-Schlaefli relation, a statement of 
dimensional connectedness so fundamentally true that it is ines
capable and therefore explains nothing beyond existence. Here we 
move from this to a consideration of many types of special units, 
always within the general framework. It is good fundamental mathe
matics applicable to anything, but the viewpoint is such that it leads 
to the study of complexity without destroying individuality. 

CYRIL STANLEY SMITH 



"Anyone who has read this book will realize that the use of the term 
preface would imply the existence as well of a prevertex, a preedge, 
and a precell. In order not to enrich the English language unduly, I 
am making use of a pretext here." This is how I started the first edi
tion of Space Structures; of course I was beingfacetious, being well 
aware that the word Preface has its origin in the word Prefatio, and 
is not related to the word Face. 

The reason why I started with a pun is, however, to stress that 
this is a book about language. In a broad sense Design Science is the 
grammar of a language of images rather than of words. Modern com
munication techniques enable us to transmit and reconstitute images 
without the need of knowing a specific verbal sequential language 
such as the Morse code, or Hungarian. International traffic signs use 
international image symbols which are not specific to any particular 
verbal language. An image language differs from a verbal one in that 
the latter uses a linear string of symbols, whereas the former is 
multidimensional. 

The terms harmony and counterpoint are used by musicologists 
to describe quantitatively the interrelationships between structural 
components of a musical composition. The science of the structural 
analysis of a musical pattern has been practiced for centuries, and 
has reached a degree of sophistication and a range of use that has no 
equal in design science. It is my hope that our brethren in the tonal 
arts will consider my use of their favorite terms in the subtitle of this 
book a tribute and a gesture of admiration. 

Perception is a complex process. Our senses record; they are 
analogous to audio or video devices. We cannot, however, claim 
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that such devices perceive. Perception involves more than meets the 
eye: it involves processing and organization of recorded data. When 
we name an object, we actually name a concept: such words as 
octahedron, collage, tessellation, dome, each designate a wide vari
ety of objects sharing certain characteristics. When we devise ways 
of transforming an octahedron, or determine whether a given shape 
will tessellate the plane, we make use of these characteristics, which 
are aspects of the grammar of structure. 

The Design Science Collection concerns itself with this gram
mar. The basic parameters of structure such as symmetry, connectiv
ity, stability, shape, color, size, recur throughout these volumes. 
Their interactions are complex; together they generate such concepts 
as Fuller's and Snelson's tensegrity, Lois Swirnoff's modulation of 
surface through color, self reference in the work of M. C. Escher, or 
the synergetic stability of ganged unstable polyhedra. All of these 
occupy some of the professionals concerned with the complexity of 
the space in which we live, and which we shape. These professionals 
do not all speak the same language, and in planning this book I faced 
this dilemma: should I attempt to cover special applications of 
interest to certain specialists, or should I limit myself to topics of 
common interest? To put it in the language of logicians: should 
I address myself to the union or the intersection of these design 
science specialties? Such an intersection would be small at most, and 
a book addressing only those topics common to all relevant disci
plines would have limited appeal. 

Within our culture modern natural sciences and mathematics 
have become less accessible because of the specialized skills 
required to become conversant with them. Nevertheless, in piling 
discovery upon discovery, we do not usually follow the most direct 
path to a concept, and if we were to retrace our steps we might well 
recognize that not all the byways by which such a concept was 
developed historically, are actually prerequired for understanding the 
concept. Although such retracing requires time and effort, it will 
open up channels of communication that may enrich our culture. 

In Space Structures I have identified concepts basic to space 
structures, and expressed these in a common language. In doing so, I 
ran the risk of irritating the mathematician by explaining a summa
tion sign that might be unknown to the architect, and I might dis
cuss degrees of freedom for a dome structure in terms that a 
molecular spectroscopist considered her private domain. There 
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have been places where I felt that mathematical rigor had to be 
sacrificed when common sense and intuition left no doubt about the 
truth of an experimental result, and a rigorous proof would alienate 
too many readers. We are fortunate that mathematics exists to con
firm what we consider virtually certain, and Design Scientists should 
be able to accept such confirmation on faith from the mathematician 
without necessarily following each step. The Philomorphs, to whom 
this volume was originally dedicated, and who continue to conduct 
lively monthly meetings, have borne such interdisciplinary transla
tion with fortitude and courtesy, and have benefited from them. Thus 
I have come to take for granted a certain forbearance on the part of 
my widely varied audience. 

Space Structures was initially published in 1976. We owe 
thanks to the original publisher, Addison Wesley Publishing Com
pany, Inc. and to Lore Henlein, at the time of the original publica
tion in charge of its Advanced Book Program, for their assistance in 
reprinting the volume in the Design Science Collection. Since this 
original publication the author has been teaching Design Science in 
Harvard's Department of Visual and Environmental Studies in the 
Carpenter Center for the Visual Arts, a department devoted to turn
ing out students articulate in images, much as a language department 
teaches reading and expressing oneself in words. The book has been 
used continuously as a text in VES 176 (Synergetics, the Structure of 
Ordered Space), and Studio Arts 125b (Design Science Workshop, 
Three-dimensional) . 

In these courses I have worked to overcome visual illiteracy and 
mathematics anxiety, two serious and related problems. Visual illit
eracy affects our man-made environment and its relation to our natu
ral ecology. Mathematics anxiety deprives those afflicted of access 
to the grammar needed to express oneself spatially. The visual clut
ter of our built environment and the sterility of ultra-functionalist 
design reflect the intellectual poverty of our environmental design. 
Only a proper understanding of the constraints imposed by the prop
erties of our space and of the rich repertoire permitted within these 
constraints allow the achievement of a balanced disciplined freedom. 

It is a pleasure here to acknowledge the influence of my stu
dents, whose enthusiasm and whose questions helped shape this 
volume. A few have made contributions that are specifically 
acknowledged in appropriate places. Since the original publication 
my course assistants, Holly Alderman, William L. Hall, Jack Gray, 
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William Varney and P. Frances Randolph, the latter two former stu
dents as well, have rendered invaluable service in interpreting the 
material in this and the other volumes in the Design Science Collec
tion. Special thanks are due to William Hall and Jack Gray for 
organizing and documenting our Studio library and references. The 
bibliography appended to the present edition would not have been 
possible without their assistance. 

I hope that to some alumni of my courses this monograph repre
sents a recollection of what to me were valuable and enjoyable 
hours, and that it will give pleasure to future generations in develop
ing their visual literacy and improving their visual environment. 

ARTHUR L. LOEB 

Cambridge, Massachusetts, 
January 1991 



The subdivision of space and the quantitative expression of spatial 
order are a concern to all who deal with spatial patterns, whether 
with crystals whose interacting elements are but angstroms apart, or 
with cities extending over many kilometers. 

Space is not a passive vacuum, but has properties that impose 
powerful constraints on any structure that inhabits it. These con
straints are independent of specific interactive forces, hence geo
metrical in nature. This book deals with the nature of these 
geometrical constraints, as well as with quantitative means of ex
pressing them. 

A number of beautiful handbooks and review articles have 
appeared recently, enumerating and illustrating a wealth of poly
hedral structures, and rich in numerical data about these structures. 
A selection of these books and articles is listed in the bibliographical 
section at the end of this book. One aim of the present volume is to 
present fundamental principles underlying this variety of structures, 
to show their family relationships and how they may be transformed 
into one another-in short, to present a system relating them. We 
might speak therefore of the structure of structures. 

It is appropriate here to define structure. Let us assume that we 
know what an array is: simply a collection of entities. A pattern is 
an ordered array; the different entities in the array bear a well
defined relation to each other. The set of relationships between the 
entities in a pattern is called the structure of the pattern. 

The pattern does not need to be a visual one. It could be an 
organization, such as a corporation. The structure of the corporation 
expresses reporting relations, interactions between subsidiaries, finan-

xix 



xx INTRODUCTION 

cial accountability, etc. The structure of a polyhedron is expressed 
by its symmetries, by the numbers of vertices, edges, and faces it 
contains, by the numbers of edges and faces that meet at each vertex, 
etc. A study of structure therefore implies a study of relations. And 
when I speak of a structure of structures, I mean the set of relation
ships between different structures. 

We shall begin our study by interconnecting an array of ran
domly chosen points, and we shall discover that, at least statistically, 
there exists law and order even in such random systems. This 
starting point is thus at the opposite end of the scale from that in 
Color and Symmetry.! In a study of symmetry one deals with patterns 
in which many angles are exactly equal to each other and many 
distances exactly equal to each other. Here we shall, throughout 
most of the book, be totally unconcerned with exact distances and 
angles. Rather, we shall deal with numbers of interconnections, 
numbers of vertices, faces, edges. As we proceed, we shall follow a 
program of increasing order, arriving eventually at the most symmet
rical structures. 

Numbers rather than distances are our principal parameters. We 
tend to think of numbers as a linear array, related to each other by a 
single pair of relationships: "larger than" and "smaller than." We 
know, however, that imaginary numbers are not so simply related, 
and that the concept of imaginary numbers and variables has been 
invaluable in understanding, for instance, electrical communication 
systems. Throughout history, technical progress has paralleled the 
expansion of symbolic languages. The language of structure to be 
explored here deals with numbers as three-dimensional entities: we 
shall think of a number as a distribution in space of structural 
elements. 

'Arthur L. Loeb: Color and Symmetry (Wiley, New York, 1971). 
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We shall express structure in tenns of three kinds of parameters: 

1. Dimensionality 
2. Valency 
3. Extent 

Each of these requires some elaboration. Dimensionality refers 
to numbers of degrees of freedom. A point confined inside a cube 
may move in three mutually perpendicular independent directions; 
any other motion of the point is expressible as a combination of 
motions in these three directions. The point has three degrees of 
freedom within the cube. Therefore the space inside the cube is 
three-dimensional. A point confined to the surface of a cube has 
only two independent directions of motion-i.e., two degrees of 
freedom: the surface of the cube is two-dimenSional, even though 
not flat. Similarly, the space inside a sphere is three-dimensional, 
because a point confmed to the inside of the sphere has three degrees 
of freedom. The surface of the sphere, however, while not flat, is 
two-dimensional, because a point confined to the surface of a sphere 
has two degrees of freedom. On the surface of the planet Earth these 
two degrees of freedom are commonly expressed as longitude and 
latitude. On a perfect sphere the distance from its center to any 
point on its surface is the same. Earth is not a perfect sphere: the 
poles are closer to its center than is any other point, while every 

1 



2 SPACE STRUcrURES: THEIR HARMONY AND COUNTERPOINT 

point of the equator appears to be further from its center than any 
other point. Nevertheless, although the distance from the center of 
the Earth to any point on its surface varies with the latitude of that 
point, this distance is fixed for every given latittude, hence does not 
represent a third degree of freedom. In this discussion we have ig
nored the effect of altitude of mountains and depth of oceans. 
Nevertheless, what we have said holds true regardless of pimples or 
dimples on the surface: whenever we discuss a surface there are only 
two degrees of freedom. 

Surfaces may enclose a finite space, as in the case of the cube and 
sphere, or they may extend indefinitely, as would a plane. The clo
sure of the surface may occur in various ways: the sphere is one ex
ample. One might, as a second example, take a cylindrical surface, 
and bend the ends around until they meet to form a doughnut. The 
sphere is called singly connected, the doughnut doubly connected. 
The explanation is as follows: Imagine two points inside a sphere, 
connected by two rubber bands. If these rubber bands are allowed 
to contract, they will do so, and coincide along a line joining the 
points. On the other hand, imagine two points inside a doughnut, 
also connected by two rubber bands. One of these bands goes in one 
direction around the doughnut from one point to the other, whereas 
the other starts in the opposite direction, and eventually meets the 
other band at the second point (cf. Fig. 1-1). In this instance, shrink
ing the bands will not bring them into alignment, because the dough
nut hole keeps them apart. Hence, if a multiplicity of rubber bands 
can be used to connect two points inside a closed surface in such a 
way that shrinking the bands will not bring them into alignment, 
then the surface is multiply connected. The space between two con
centric spheres is singly connected, because two rubber bands con-

a 

FIGURE l-la and I-lh Singly (a) and doubly (b) connected surfaces 
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necting a pair of points can be brought into coincidence, even if not 
along a straight line connecting the points. 

3 

We shall confine ourselves to singly connected surfaces, not be
cause multiply connected surfaces are not interesting, but because 
there is a great deal to be said even within these confines, and be
cause the same principles to be discussed here may be extended to 
the more complex surfaces once they are understood for the simpler 
ones. 

A point confined to move along a curve has a single degree of 
freedom: it can move forward and backward only. These motions 
are not independent, because a forward motion can always be bal
anced by an appropriate backward motion. A curve is therefore 
one-dimensional. When two surfaces, which have dimensionality 
two, intersect, they do so along a curve, which has dimensionality 
one. Analogously, curves that intersect do so at a point, which has 
dimensionality zero, having no degree of freedom at all. 

In our three-dimensional space we have elements of dimension
ality 0, I, 2, and 3. Those of dimensionality 0 we call vertices, those 
of dimensionality I are called edges, those of dimensionality 2 faces, 
and those of dimensionality 3 cells. We just saw that curves intersect 
in points, having dimensionality O. These points are the vertices of 
our structures. Any portion of a curve that joins two vertices but 
does not itself contain a vertex except the two terminal ones is called 
an edge. An edge or set of edges that encircle a portion of a surface 
is said to enclose aface if that portion of the surface does not con
tain any edge in addition to the ones encircling it. Finally, a cell is a 
portion of space that is entirely enclosed by faces and edges, and 
does not internally contain any faces or edges. It must be empha
sized that edges need not be, and generally are not, straight lines, and 
that faces are not necessarily planes. 

Our structures are then systems of interconnected elements of 
dimensionalities 0, I, 2, and 3. We shall see that the numbers of each 
dimensionality may not all be fixed arbitrarily, but are interrelated. 
The structures that we are about to consider are discrete: each vertex 
is joined to a finite number of other vertices by a finite number of 
edges; each edge is joined to a finite number of other edges by a fi
nite number of faces. Each face separates exactly two cells, and each 
edge joins exactly two vertices. The number of elements of a given 
dimensionality that meet at an element of different dimensionality is 
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called a valency; valencies will be defined and discussed in greater 
detail in the next chapter. 

Having discussed the parameters dimensionality and valency, we 
are left with the parameters of extent. The parameters of extent are 
the most familiar. They are simply length, area, and volume for ele
ments of respective dimensionalities 1, 2, and 3. In my Contribu
tions to R. Buckminster Fuller's Synergetics, 1 I have pointed out 
that the commonly assumed relations between extent parameters of 
elements of different dimensionalities are special cases suitable in 
special frameworks only. Parameters of extent become important 
only toward the end of this book, where they will be (re)-examined 
accordingly. 

I R. Buckminster Fuller, with E. J. Applewhite and A. L. Loeb: Synergetics (Macmillan, 
New York, 1975), pp. 832-836. 
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Figure 2-1 represents the number zero. There is nothing: every point 
is equivalent to every other one. The significance of this figure is 
appreciated only by comparison with Fig. 2-2, which represents the 
number 1. The appearance of a single unique point at once estab
lishes a center of reference. The extension to Fig. 2-3, the number 2, 
is stupendous: instead of a single central point we have now two 
vertices, between which there can be a relation. This relation may be 
one of equivalence, or one of opposition or polarization. Whichever 
it is does not matter: important is that two are necessary to establish 
a relation, and that one was necessary for a center of reference . 

FIGURE 2-1 
The number zero 

• 

FIGURE 2-2 
The number 1 

FIGURE 2-3 
The number 2 

If we call the two entities representing the number 2 A and B, 
then the fact that A bears a relation to B implies that B also bears a 
relation to A. These two relations are not necessarily the same: the 
relation "A is married to B" implies "B is married to A," but "A is 
the son of B" implies "B is a parent of A." In the first instance the 
relation of A to B is identical to the relation of B to A .. in the second 

5 
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it is not. The relation "A is the wife of B" implies "B is the husband 
of A" as well as "A is married to B." Thus we see that, as long as 
there is a single relationship linking A and B, there may be many 
others. However, we can denote the existence of a relationship or 
relationships between two entities as a single edge joining two ver
tices, as was done in Fig. 2-3. This figure is sometimes called a graph, 
being a graphical representation of the structure of the number 2. If 
it is important to designate that the relation A ~B is not the same as 
the relation B~A (e.g., "A is the son of B"), an arrow may be placed 
along the edge in the graph. In this case we speak of a directed 
graph. If the relationship of A to B is the same as that of B to A 
(e.g., "A is married to B"), or if the exact nature of the relationship 
is immaterial, we have an undirected graph. We shall here be con
cerned with undirected graphs, in which vertices represent entities, 
and edges (the existence of) relations between them. 

Therefore, we see that the single edge connecting two vertices 
implies a highly complex set of relationships, a complex multi
dimensional system. This is the significance of the number 2: it is 
the minimal number of entities between which a system of relation
ships may exist. One might conceivably have a single entity or ver
tex, and an edge looping from that vertex back to itself. However, 
such self-relationships are rather trivial, and do not really enter into a 
structural,system, although they could be included without loss of 
generality. We shall not explicitly consider them here, though. 

Figure 2-4 introduces further new principles. It represents the 
number 3. Now each entity bears a (generally different) relationship 
to each of the other two entities. The graph shows clearly that there 
are three edges-i.e., three independent relations. Suppose that A is 
the father of C, and B is the mother of C. Implied are that C is a 
child of A, and C is a child of B; these relationships are not indepen
dent of the original supposition. However, the relation between A 
and B is not defined by the supposition: A may be married to B, but 
A and B may be divorced. The relation of A to B is therefore, if it 
exists at all, an independent relation. The structure of Fig 2-4 is a 
closed one, in which each of A, B, and C bears an independent rela
tionship to the other two. This closure relationship is represented in 
the graph by the face enclosed by the three edges (cf. "tree graphs" 
discussed below). 

I have discussed these types of relationships in some detail be
cause the representation of the numbers 2 and 3 in Figs. 2-3 and 2-4, 
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respectively, may at first glance have appeared trivial. The impor
tance of graph representations of structures becomes clear, however, 
when we proceed to Fig. 2-5, representing the number 4. Suppose 
that A is the father of C and D, and B is the mother of C. Without a 
graph it would be very difficult to evaluate the number of indepen
dent relations that might exist. A mayor may not be married to B; 
B mayor may not be the mother of D; C and D may be brother and 
sister, brothers, sisters, half-brother and half-sister, etc. However, we 

FIGURE 2-4 The number 3 FIGURE 2-5 The number 4 

see clearly that there are six independent relationships. The four 
vertices are connected by six edges. There are four different closed 
circuits around the four faces, and the four faces enclose a single 
cell. Or, putting the last statement slightly differently, the four faces 
interconnect so as to create a singly connected surface that divides 
the three-dimensional space into an enclosed cell and all the space 
outside it. Similarly, the closed circuit of Fig. 2-4 divides a two
dimensional surface into an enclosed face and all the surface outside 
it. This concept of dividing the surface in two by a closed circuit and 
space in two by means of a closed surface will shortly prove to be far 
from trivial. 

Figure 2-6 shows a graph in which one entity is related to several 
others, but the relation between these others among themselves is 
left dangling. Such a graph is called a tree graph. We exclude tree 
graphs from consideration: in our structures all circuits are closed, 
and all faces join into closed, singly connected surfaces. This means 
that at least two edges join at every vertex, and at least two faces 
meet at every edge. (Closure postulate) 
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FIGURE 2-6 A tree graph 

What does this manifesto do to our Figs. 2-3 and 2-4? It ex
cludes them from consideration unless we look at them in a very 
special manner. We tend to think of the page on which they are 
printed as flat and infinitely extended. However, this image is at 
variance with our resolution to have all surfaces singly connected. 
We must therefore imagine these figures as printed on a very large 
sphere: the two points are then joined by two edges which together 
gird the sphere-one very short, the other very long (but their extents 
do not concern us here!}. This closed circuit made by the two edges 
then divides the sphere surface into two faces. Analogously, the 
triangular circuit of Fig. 2-4 divides the huge sphere into two faces
one small, the other large. Analogously also, this sphere divides 
space into two cells: inside and outside. The reason for this apparent 
artifice will become obvious when we consider more complex struc
tures, making constant use of the closure hypothesis. When the gen
eral results derived from this hypothesis are applied to the rather 
more trivial structures having two or three vertices, there would be 
apparent contradictions unless these simple structures are examined 
from the same point of view. If we had not been raised solely on 
Euclidean principles, the artifices would not appear to be so artifi
cial. 
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More palatable, however, is another way of looking at the closure 
hypothesis. In three-dimensional space a triangle such as that shown 
in Fig. 2-4 would have two faces: a front face and a back face. Since 
faces do not need to be flat, this front-and-back combination of faces 
can actually enclose a lens-like cell. This configuration, having two 
faces, is called a dihedron. Since the faces both have three vertices, 
we call it a trigonal (or triangular) dihedron. 

Figure 2-3 definitely requires modification in order to conform 
to our closure hypothesis, for both of its vertices are "dangling." 
Closure requires at least two edges terminating at each vertex. Hence 
Fig. 2-7 represents the simplest closed two-vertex structure we shall 
study. The admission of curved edges and faces makes this a very 
acceptable pattern: there are two faces (front and back), each having 
two vertices and two edges. It is therefore called a digonal dihedron. 
The dihedra are usually overlooked because only planar-faced poly
hedra are considered, but in our more general structure theory they 
are important and should not be omitted in any exhaustive enumera
tion. We shall see later on that, when transformations of polyhedra 
are considered, these dihedra give rise to some very familiar poly
hedra. 

< ::::> 
FIGURE 2-7 Digonal dihedron 

I stated earlier that our structures are systems of interconnected 
elements of different dimensionality. A number of edges meet at 
each vertex: we shall call this number r, and call it the valency of the 
vertex toward edges. Analogously, a number of faces come together 
at a vertex: we shall call this number the valency of the vertex 
toward faces, and call it p. 

Anyone who has observed a soap froth may have noticed that 
invariably four edges and six faces meet at a vertex: the vertex valen
cies are 4 toward edges, and 6 toward faces. When eight cubes are 
stacked so that all eight share a common vertex, that central vertex 
has an edge valency of 6 and a face valency of 12. Moreover, the fact 
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that eight cubes meet at that vertex is expressed in terms of the cell 
valency (or valency toward cells) of that vertex, which would be 8. 
In general, the number of cells meeting at a vertex is called the cell 
valency (or valency toward cells) of that vertex, q. 

In tum, every edge joins a number of vertices, faces, and cells. 
Every edge joins exactly two vertices: the vertex valency of an edge 
is always 2. On a two-dimensional surface every edge joins exactly 
two faces, but generally (e.g., in the soap froth or the stacked cubes) 
the face valency of edges is larger, and will be denoted by the symbol 
s. We have now the means of expressing the fact that a graph, pat
tern, or structure is two-dimensional in quantitative terms: every one 
of its edges has a face valency s = 2. 

The number of cells meeting at an edge is exactly the same as the 
number of faces meeting at that edge, for every cell lies between two 
of the faces, and every face between two of the cells: they alternate. 
Hence the cell valency of edges is also s. 

Analogously, a face has equal numbers of vertices and edges: we 
denote the vertex valency and edge valency of a face by n. Two cells 
meet at every face: the cell valency of all faces equals 2. In this con
nection it is well to remember that a closed surface divides space into 
two cells: the enclosed space and the outside space. The faces on a 
closed surface (e.g., a cube) in this sense have indeed a cell valency of 
2. 

Finally, each cell has a number of vertices, edges, and faces: we 
call the vertex, edge, and face valencies of a cell, respectively, m, I, 
and k. These valency definitions are summarized in Table 2-1. 

TABLE 2-1 
Valencies in Three-Dimensional Structures 

Element Vertex valency Edge valency Face valency Cell valency 

Vertex r p q 

Edge 2 s s 

Face n n 2 

Cell m k 
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In 1752 Leonhard Euler formulated a relationship between the num
bers of elements of different dimensionality in a structure, which was 
generalized very elegantly by Schlaefli exactly one hundred years 
later. Schlaefli put his relationship in the following form: 

j. . 
~ (_1)1 N· = 1 + (-I)' 

i=O 1 
(3-1) 

In this concise symbolic expression Ni represents the number of 
elements of dimensionality i: No would be the number of vertices, 
N 1 the number of edges, N2 the number of faces, N 3 the number of 
cells. Schlaefli went on to corresponding four-, five-, etc., dim en-

j 

sional elements. The sign ~ indicates that he sums these elements, 
i=O 

starting with the zero-dimensional elements, going through to the 
j-dimensional elements for a j-dimensional structure. To understand 
the symbol (-I)i, remember that when (-1) is squared it equals + 1, 
that (_1)4 also equals +1, but that (-1)3 = (_1)5 = (-1). Generally, 
(-I)i = + 1 for even values of i, and (-I)i = -1 for odd values of i. 
The right-hand side of equation (3-1) then equals zero for odd
dimensional structures, 2 for even-dimensional spaces. 

We shall limit ourselves to dimensionalities not exceeding 3. To 
avoid subscripts and to use a more mnemonic code, we shall define 
the following symbols: 

11 
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v == No = number of vertices 

E == N 1 = number of edges 

F == N2 = number of faces 

C == N 3 = number of cells 

For a three-dimensional structure j = 3 in equation (3-1), so that 

V-E+F-C=O (3-2) 

We have seen that a two-dimensional structure that is singly con
nected and closed divides space into two cells, so that C = 2 for these 
structures; hence 

V-E+F=2 (3-3) 

This same expression would be obtained from equation (3-1) by set
ting j = 2. Such harmonious concordance is possible only if we do 
take the point of view that a closed, singly connected surface divides 
space into two cells (inside and outside the enclosure), and justifies 
the time and effort expended in the previous chapter on this point. 
A proof by mathematical induction of equation (3-2) consists of two 
parts: 

1. Show that it holds for a particular value of V 
2. Show that, if it holds for a structure having V vertices, it will 

also hold for a structure having (V + 1) vertices. 

Figure 3-1 represents a tetrahedron: it has four vertices, six 
edges, and four faces, and divides space into two cells, having a two
dimensional surface. Hence V - E + F - C = 4 - 6 + 4 - 2 = 0, so 
that part 1 of the proof is completed. 

Next let us suppose that we have a three-dimensional structure 
made up of tetrahedral cells only (Fig. 3-2). For our proof by 
mathematical induction we need to show that, if equation (3-2) 
holds, addition of one vertex will affect the numbers of vertices, 
edges, faces, and cells in such a way that equation (3-2) also holds 
for the new numbers. 

Let us add on to our structure exemplified by Fig. 3-2 one tetra
hedral cell that shares a face with a cell on the surface of the original 
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FIGURE 3-1 Tetrahedron: V=4, 
E=6,F=4,C=2 FIGURE 3-2 

Three-dimensional 
figure having tetra
hedral cells 

structure. If we indicate the parameters of the new structure by 
primes: 

V'= V+ I 

E' = E + 3 

F'=F+3 

Therefore 

because a single vertex was added on. 

because this vertex must be joined to three 
of the original vertices. 

because the new cell brings in three new 
faces, fusing its fourth one with the original 
structure. 

v' - E' + F' - c' = (V - E + F - C) 

+ (1 - 3 + 3 - 1) = 0 

Thus we have shown that any structure made up of tetrahedral cells 
obeys equation (3-2). 

We shall next generalize to a single polyhedron that has triangu
lar faces. Such a polyhedron might be inscribed on a spherical sur
face, since we have allowed our elements to be curved. We shall 
prove later on that the number of vertices chosen for such a poly
hedron is not arbitrary, but is restricted to certain numbers. To 
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determine this restriction, however, we need to ascertain that equa
tion (3-2) is indeed valid for any polyhedron that has triangular 
faces. 

To do so, we again add tetrahedral cells onto an original tetra
hedron, but this time we destroy the face where they are joined. 
Instead of a structure made up of tetrahedral cells, we then create a 
singly connected polyhedron having a triangulated surface. The 
reasoning by mathematical induction is the same as before, but the 
parameters of a new structure are now 

V'= V+ 

E' =E + 
F' =F + 

C' = C = 

I 

3 

2 

2 

as before 

as before 

because three new faces replace the original 
one. 

because throughout the growth of the 
structure it divides space into the two cells, 
inside and outside. 

Since for the original structure (V - E + F - C) = 0, we find 
again for the new structure (the polyhedron): V' - E' + F' - C' = 0, 
q.e.d. 

In particular, for a singly connected polyhedron C = 2, so that 
for such structures 

V-E+F=2 (3-3) 

Generalizing further, we shall abandon the requirement that the 
polyhedron be triangulated. Suppose that we had a polyhedron hav
ing all but one of its faces triangulated. That exceptional face has 
edge and vertex valency n. We can choose an additional vertex in or 
outside that face, and connect it by means of n new edges to the n 
vertices of the original face. The parameters change as follows as a 
result of this transformation: 

V'=V+I 

E' = E + n 

F'=F+n-1 because the original face is replaced 
by n new ones. 
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C'=C=2 

:. V' - E' + F' = V - E + F 

so that equation (3-3) is shown to be valid for both the old and the 
new structure. Since we have shown that triangulating a polygonal 
face of a polyhedron does not affect the expression (V - E + F), any 
polyhedron can be transfonned into a triangulated one without alter
ing (V - E + F), so that equation (3-3) is valid for any polyhedron. 

Finally, we shall show that a structure having any collection of 
polyhedral cells obeys equation (3-2). To do so, we must realize that 
any polyhedron can be subdivided into tetrahedral cells by choosing 
an additional vertex inside the polyhedron, connecting it by m edges 
to the m vertices of the polyhedron. If, to begin with, we consider a 
structure that has all except one cell tetrahedral, that exceptional cell 
has respective vertex, edge, and face valencies equal to m, I, and k 
(cf. Table 2-1). Since this exceptional cell is a polyhedron, equation 
(3-3) applies to it: 

m-l+k=2 (3-4) 

Subidviding this exceptional cell into tetrahedral cells has the 
following effect on the parameters of the structure (we indicate a 
change in a parameter by the prefIx bo): 

boV = 1 

boE = m 

boF = I 

boC = k - I 

because m edges join the new vertex to the 
original ones. 

because every original edge of the sub
divided cell is joined to the new vertex by 
a new face. 

because the original polyhedral cell is re
placed by as many new cells as there were 
original faces. 

This transfonnation therefore causes the following change in 
(V-E+F-C): 

bo(V - E + F - C) = 1 - m + I - k + 1 
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From equation (3-4) it follows that b.(V - E + F - C) = o. 
Since we have thus shown that subdividing polyhedral cells into 

tetrahedral cells does not affect (V - E + F - C), and since equation 
(3-3) was proved for structures having tetrahedral cells, we have now 
proved this equation as well for structures having any polyhedral 
cells. * In addition, we impose an important restriction on three of 
the valencies listed in Table 2-1, in the fonn of equation (3-4). 

An analogous restriction applies to vertex valencies. Let us con
sider a vertex having respective edge, face, and cell valencies, r, p, and 
q (cf. Table 2-1). Imagine a sphere around this vertex. The r edges 
emanating from the vertex will intersect with this sphere at r points, 
which we shall make the vertices of a polyhedron inscribed on the 
sphere. The p faces emanating from the vertex then generate p edges 
for the polyhedron inscribed on the sphere, and the q cells corre
spond to q faces on the sphere. Equation (3-3) applies to the poly
hedron on the sphere: 

r-p+q=2 (3-5) 

Thus, of the eight parameters (valencies) listed in Table 2-1, only 
six are independent, the remaining two being determined by equa
tions (3-4) and (3-5). 

*Strictly speaking, the proof applies to triangulated polyhedral cells, since the single poly
hedral cell surrounded by tetrahedral cells is necessarily triangulated. However, since we 
have already shown (V - E + F) to be invariant to triangulation of a single polyhedron, an 
analogous argument applies to the assembly of polyhedral cells whose interfaces would, in 
this proof, still be triangulated. 
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We have seen that a spatial structure or graph may be described by 
the numbers of elements of different dimensionality that constitute 
it, and by the valencies of these elements toward each other. We 
have seen, furthermore, that the numbers of elements of different 
dimensionality are interrelated by the Euler-Schlaefli relation (equa
tions 3-1 and 3-2), and that the valencies are restricted by two rela
tions derived from the Euler-Schlaefli relation (equations 3-4 and 
3-5). 

In the program outlined in the Introduction we shall proceed 
from the more general structures to the more specialized ones. Ini
tially, we shall deal with structures in which all elements have their 
own individual valencies, and later on we find the implications of 
letting the elements become equivalent to each other. Such 
equivalence is described by the symmetry properties of a structure: 
a structure in which no elements are equivalent to each other is 
called unsymmetrical. 

Remarkably, we find in the present chapter that even in totally 
unsymmetrical structures the values of the valencies, when averaged 
over corresponding vertices, edges, or faces, are subject to some 
fundamental constraints. In symmetrical structures these average 
values of valencies become the valencies, and the constraints become 
symmetry relations. For this reason we sometimes refer to the 
statistical relations between valencies as statistical symmetry. 

To relate the valencies to each other, we shall find relations be
tween the numbers of vertices, edges, faces, and cells on the one 

17 
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hand, and their valencies toward each other on the other hand. The 
total number of edges in a structure can be found from the vertex 
valencies by summing the number of edges converging at every ver
tex over all vertices; it can also be found by summing the number of 
edges surrounding every face over all faces, or by summing the num
ber of edges of each cell over all cells. 

If we designate as Vr the number of vertices whose edge valency 
is r, then summing over all valencies of the vertices produces the ex
pression 

because two edges terminate at bivalent vertices, of which there are 
V2 , three edges terminate at trivalent vertices, of which there are V3 , 

four edges terminate at each of the V4 tetravalent vertices, etc. 
The summation is written in shorthand as follows: 

2V2 + 3V3 + 4V4 + ... = ~ rVr 
r=2 

Since each edge terminates at two vertices, it is counted twice in 
this summation; hence 

2£ = f rVr 
r=2 

Also, the total number of vertices equals the sum of all vertices 
having each valency: 

co 

V = ~ V 
r=2 r 

(4-1) 

(4-2) 

We can defme the average edge valency of the vertices as follows: 

co 

r = 
~ rVr 

r=2 

V 
(4-3) 

Hence (from equations 4-1 and 4-3) 

rV = 2£ (4-4) 

If we count edges by summing over faces, the situation is some
what more complicated, for generally s faces meet at an s-valent edge 
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(cf. Table 2-1). The total number of links from faces to edges is 

where Fn is the number of faces having edge valency n. Analo
gously, the number of links from edges to faces equals 

19 

where Es is the number of edges having face valency s. The number 
of edge-to-face links must equal the number of face-to-edge links: 

00 00 

~ sEs = ~ nFn 
s=2 n=2 

If we define average valencies as follows: 

00 

~ sEs 
s=2 

s = 
E 

then 

"SE = nF 

and 

00 

~ nFn 
n=2 

n =--=--
F 

(4-5) 

(4-6) 

Analogously, if Cz equals the number of cells having edge valency 
I, then 

00 00 

~ sE = ~ ICI 
s=2 s 1=2 

(Remember that the face valency and cell valency of edges are equal 
to each other; both are denoted by s. Cf. Table 2-1.) 

Defining 

00 

~ ICI 

I = 1=2 

C 

we obtain 

"SE =7c (4-7) 



20 SPACE STRUcrURES: THEIR HARMONY AND COUNTERPOINT 

We can continue analogously with vertex-face linkages .. Equat
ing the number of vertex-to-face links to the number of face-to
vertex links, we obtain 

.. .. 
P~-2P Vp = ~ nFn 

n=2 

Defming 

.. 
and 

~ nFn 
n=2 

n =--=--
F 

we then obtain 

jjV = "iiF 

Vertex-celllinkages give, analogously, 

and 

.. .. 
~ qVq = ~ mCm 

q=2 q=2 

qV = mC 

.. 
~ mCm 

_ q=2 
m C 

Finally, the face-celllinkage gives 

.. 
2F = ~ kCk 

k=2 

for every face is a boundary between exactly two cells. 
If we defme 

.. 
~ kCk 

k = _k_=--::2C::---

then 

2F = kC 

(4-8) 

(4-9) 

(4-10) 
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These equations are an implicit result of the assumption that 
there be no "dangling" vertices, edges, or faces, but that our struc
tures be continuous and closed, having all valencies at least equal to 
2. We can therefore call these equations our continuity equations. 
For convenience we summarize them as follows: 

fV=2E (4-4); sE=nF (4-6); 2F=kc (4-10) 

pV = nF (4-8); sE = IC (4-7) 

qV= mC (4-9) 

Here the first line relates elements whose dimensionalities differ by a 
single unit, the second relates elements whose dimensionalities differ 
by two units, the third relates elements whose dimensionalities differ 
by three units. There is a curious structure in this set of equations: 

sE occurs in both (4-6) and (4-7) 

nF occurs in both (4-6) and (4-8) 

Equations (4-6), (4-7), and (4-8) are thus linked as follows: 

pV = sE = nF = IC 

From these, we express V, F, and C in terms of E: 

V = (s/fJ)E; F = (s/n)E; C = (s/i)E 

Substitution of these expressions into equations (3-2) follow by 
division of both sides of the resulting equation by sE yields 

1 1 1 I 
=--=+=-==0 
P s n I 

(4-11) 

Equation (4-11) is very fundamental in structure theory; it inter
relates average values of one of the valencies for each dimensionality. 
It followed from three of the six continuity equations. The remain
ing three continuity equations can be combined with the "linked 
set" as follows: 

rV = 2E (4-4) 
pV = sE 

.1- -/.. '5.' = p s (4-12) 
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2F = iCc (4-10) 
HF = IC 

ijV = mC (4-9) 
pV = IC 

1 - -:. 2. k = Ijn ( 4-13) 

:. Pili = 11m (4-14) 

To these four statistical relationships between valencies should be 
added the following restrictions derived previously for every vertex 
and every cell: 

m-Z+k=2 

r-p+q=2 

(3-4) 

(3-5) 

When the expressions for q and m from equations (3-5) and (3-4) 
are substituted into equation (4-14), and in tum r and k are elimi
nated by means of equations (4-12) and (4-13), equation (4-11) re
sults. The latter equation, while an elegant and useful summarizer, is 
thus not independent of the others: there are eight valencies, and 
only five independent relationships. Thus three constraints need to 
be imposed to fix all valencies. 

TABLE 4-1 
Interrelationships Between Average Valancies 

1-1+1-1=0 
jJ s fi r ( 4-11) 

I - -r -r = p s 
2 

(4-12) 

1. K = Tin 
2 

(4-13) 

pll[ = Tim (4-14) 

m-Z+k=2 (3-4) 

r-p+q=2 (3-5) 
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We shall first apply the equations derived in the previous chapter to 
two-dimensional nets. We have noted previously that two-dimen
sional structures are characterized by the fact that all edges have a 
face valency s = 2. According to equation (4-12) this implies for 
two-dimensional structures r = p; hence from equation (3-5), q = 2. 
Equation (4-11) then becomes 

I I I I 
-+-=-+~ r n 2 I 

Two-dimensional structures divide space into two cells: C = 2. 
From equation (4-7), then, 1= E, so that 

I I I I -+-=-+r n 2 E 
(5-1) 

There is a fundamental difference between the structures of 
equation (5-1) for two-dimensional structures and of equation (4-11) 
for three-dimensional structures. The former contains, in addition to 
valencies, the total number of edges, E; the latter is a relation be
tween valencies only. In discussing two-dimensional structures, we 
shall therefore always need to specify the total number of edges. 
Instead of eight parameters related by five independent relationships, 
in three dimensions, we find in two dimensions three parameters-f, 
n, and E-and a single relationship between them. 

23 
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In Fig. 5-1 we find an irregular structure having a variety of 
valencies. Such structures are frequently found on metallic surfaces, 
or on cracked ceramic surfaces (e.g., teacups!). We shall, as an illus
tration, apply equation (5-1) to the structure shown in Fig. 5-1. To 
do so properly, we remember that we postulated a closed structure
i.e., no "dangling" edges; we imagined the structure inscribed on a 
very large sphere. Therefore, in averaging over all faces, we must re
member that the "outside" is a face, which in this case has six edges. 

FIGURE 5-1 An irregular two-dimensional structure. Vertex valencies of 
faces are indicated by Roman numerals, edge valencies of 
vertices by Arabic numerals. 

Hence 

r=8X3+1X4 
9 

28 
9 

Ii = 3X3+2X4+IX5+1X6 
7 

.!+!=!+_l 
.. f n 2 14 

=~ 
7 
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:. E = 14 (checks with figure) 

This computation is comparatively simple, because we have taken 
the "closed-system" point of view. Ordinarily this is not done; the 
"outside" six-edged face is not taken into account. The average 
value of n is then defined as follows: 

-, _ 'f,'nFn 
n - 'f,'F 

n 

where the symbol 'f,' indicates summation excluding the "outside." 
In terms of our definitions: 

'f,'F = 'f,F - 1 = F - 1 n n 
n 

where Ee equals the number of circumferential edges (in our example 
Ee = 6). Hence equation (4-6) becomes: 

= fi''f,'Fn + Ee = ii'(F - 1) + Ee 

:. F = 1 + 2E -, Ee 
n 

Then equation (5-1) assumes the form 

! + 1 - (£e/2E) = 1.. + _1 
f n' 2 2£ 

(5-1 ') 

When equations (5-1) and (5-1') are compared, (5-1) is simpler 
and more elegant, hence more apt to be "fundamental." Yet they 
express the same concept, differing only in a definition of nand n'. 
From a practical point of view, however, the superiority of equation 
(5-1) is illustrated when the values of Fig. 5-1 are substituted into 
equation (5-1'): 

ii' = 3X3+2X4+1X5 
6 
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298 + 1 - (6/2E) X 3 = ! + _1 
11 2 2E 

Eventually, of course, this expression also yieldsE = 14, but it is 
obvious that the arithmetic for this "open" system is much more 
laborious than that for our closed system. Since practical problems 
usually involve systems larger than that of Fig. 5-1, metallurgists are 
well advised to use equation (5-1) rather than (5-1 '), remembering to 
take into account in the definition of n the "outside" face. 

From equation (5-1) (and also from 5-1 ') it is seen that for very 
large systems E becomes very large, and equations (5-1) and (5-1 ') 
approach 

(5-2) 

Even for the example of Fig. 5-1 the tenn dependent on E consti
tutes only 12.5% of the right-hand side of equation (5-1). It is there
fore understandable that the simplicity of equation (5-2) would 
appeal to those working with large irregular systems, in which the 
value of E is large, but also rather irrelevant. 

Cyril S. Smith 1 has stated that under certain conditions it is even 
possible to use equation (5-2) for a bounded net-namely, if proper 
fractional corrections are made for circumferential effects. No 
fonnal procedure is given for making these corrections, but for the 
particular examples given, common sense appears to be a good guide, 
and equation (5-2) works out empirically. 

We should be able to sunnise what Cyril Stanley Smith's "com
mon-sense" corrections amount to fonnally by starting with equa
tion (5-1), and defining: 

I 
]J 

1 1 
E 

From equation (4-4) by substitution: 

_ 1 V-2 
p -'-V 

1 In Hierarchical Systems, L. L. Whyte, A. G. Wilson, and D. Wilson, eds. (American 
Elsevier, New York, 1969), p. 71. 
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l5 = fV 
V-2 

'1:,rVr 
r 

V-2 

27 

(5-3) 

Comparing equations (4-3) and (5-3), we discover that equation (5-2) 
will work as well as (5-1) if, in the averaging procedure to find r, we 
simply deduct 2 from the total number of vertices. It would appear, 
then, that in making his common-sense fractional corrections for 
circumferential elements, Cyril Smith would have dropped in effect 
exactly two vertices. 

Although we are only surmising, and could not prove, how Smith 
made his corrections, one explanation appears very plausible. If we 
straighten out all curved edges, the process is easier to follow; no 
radical alteration is introduced in doing so. An internal vertex in a 
plane is surrounded by r angles, which add up to 3600 • If the vertex 
does not lie in a plane, but on a sphere, or at the intersection of r 
non-coplanar faces, the sum of the angles would be less than 3600 • 

If V vertices lie in a plane, then the sum of all angles around all V 
vertices would be V X 3600 • However, for a closed structure either 
all V vertices are coplanar, but the structure folds back along a cir
cumference to form a "back face," or the V vertices lie on a curved 
closed surface (e.g., a sphere or a polyhedron). The former case is 
the one considered by Cyril Smith, and exemplified in Fig. 5-1; for 
either case it has been shown2 that the sum of all angles around all 
vertices falls exactly short of V X 3600 by 7200

; i.e., this sum is 
actually (V - 2) X 3600 • It is not surprising, therefore, that C. S. 
Smith would, in allowing for the fractional loss of vertices along the 
circumference, have lost in toto exactly two vertices. 

2Cf. R. Buckminster Fuller, with E. J. Applewhite and Arthur L. Loeb: Synergetics 
(Macmillan New York, 1975), pp. 342-343,826. 
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In Chapter I we discussed the dimensionality of vertices, edges, 
faces, and cells. A vertex has dimensionality zero; on surfaces 
(dimensionality two) a vertex can move with two degrees of free
dom, whereas on a curve (dimensionality one) it can move with 
only a single degree of freedom. In three-dimensional space a vertex 
has three degrees of freedom: three quantities are needed to specify 
its location. 

A system of two vertices in a three-dimensional space needs twice 
three quantities to specify its configuration. These six quantities 
could be the separate three per vertex. However, one might, for ex
ample, choose a point at the center of a straight edge joining the two 
vertices. This point would require three coordinates to specify its 
location. The distance from this central point to the two vertices 
would be a fourth parameter necessary to specify the configuration, 
and two angles would specify the orientation of the straight edge
e.g., the elevation out of the horizontal plane, and the direction of 
the projection of the edge on the horizontal plane. In either descrip
tion six quantities are required to specify the configuration: it has six 
degrees of freedom. If, however, we are interested only in the rela
tion of the vertices with respect to each other, then only their dis
tances from each other would be relevant, leaving the other five 
parameters irrelevant. The second description would be preferable 
for such a case. 

A structure having three vertices would have nine degrees of free
dom. Three quantities could specify the location of a point coplanar 

29 
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with and equidistant from the three vertices. Two more parameters 
would suffice to indicate the orientation of the plane in space-e.g., 
by specifying the direction of a line perpendicular to the plane that 
contains the three vertices. Three parameters would give the dis
tances between the vertices, and the ninth parameter would indicate 
the orientation of the triangle so specified around the line perpen
dicular to the plane of the vertices. Of these nine parameters only 
the three distances between the vertices are needed to relate the 
three vertices to each other, the remaining six relating the configura
tion to its surroundings. The three distances are called internal de
grees of freedom, the remaining six external degrees of freedom. 

Four vertices have twelve degrees of freedom in three-dimen
sional space. Of these, three specify a point equidistant from these 
four vertices. If an axis is chosen through that equidistant point and 
one of the vertices, the orientation of this axis requires two angles, 
and the orientation of the entire configuration around this axis one 
additional angle. These six are the external degrees of freedom. The 
remaining six, internal, degrees of freedom are the six distances be
tween the four vertices. 

In general, a structure having V vertices will have 3 V degrees of 
freedom, of which six are external-e.g., the location of a center, the 
orientation of an axis, and the Oljentation around that axis. The re
maining (3 V - 6) degrees of freedom are internal; they give us the 
maximum number of relations (edges) that may be independently 
specified between the V vertices. 

A system of V vertices may have many more than (3 V - 6) pos
sible interrelationships. Each vertex may be connected to (V - 1) 
other vertices; this would result in V( V-I) connections emanating 
from all vertices. However, each connection emanating from a ver
tex also terminates at a vertex, so that we have in effect YzV(V - 1) 
possible connections, of which only (3 V - 6) may be independently 
assigned. When (3 V - 6) < Y2 V( V-I), the system has more possible 
connections than could be independently specified; when (3 V - 6) = 
Y2V(V - 1), all connections can be independently specified, and when 
(3 V - 6) > Y2 V( V-I), the system is not specified even when all its 
connections are. 

We might exemplify these statements more concretely by saying 
that a structure having V vertices will be rigid only if (3 V - 6) ~ 
Yz V( V - I) and all vertices are joined by rigid rods. However, only if 
(3 V - 6) = Y2 V( V-I) will it be possible to choose the length of all 
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Y2V(V - 1) independently: for no structure is it possible to choose 
more than (3 V - 6) of the Y2 V( V - I) rod lengths independently. 

Let us solve the critical equation (3 V - 6) = Y2 V( V - 1): 

1 
- V(7 - V) = 6 
2 

Since Y2 V> ° and 6 > 0, we require (7 - V) ~ 0, hence V ~ 7. 
Inspection shows that only two value of V satisfy this condition: 
V= 3 and V= 4. 

31 

In three-dimensional space there are, therefore, only two rigid 
structures in which all distances may be independently specified (in 
particular all equal to each other)-namely, the triangle and the 
tetrahedron. For instance, when V = 5, one might arrange the 
vertices in a triangular bipyramid (Fig. 6-1) or a square pyramid (Fig. 
6-2), but in no case could all ten connections be made equal in 
length: for the bipyramid nine edges could at most be equal to each 
other, with the two trivalent vertices at different distances from each 
other, whereas in the square pyramid vertices along the square base 
would be at two different distances from each other (along an edge 
and diagonally across). 

FIGURE 6·1 Triangular bipyramid FIGURE 6·2 Square pyramid 
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The triangular bipyramid has nine edges and nine degrees of free
dom: when all nine edges are specified (rigid rods), the structure is 
specified (rigid). The square pyramid has only eight edges, but also 
has nine degrees of freedom, hence will not be rigid unless one of the 
basal diagonals is also specified (rigid). 

It will be important to discover under which conditions a poly
hedron would be rigid. From equation (4-4) we know that TV = 2E. 
We also know that all degrees of freedom are removed when 
E = 3 V - 6 Hence a necessary condition is 

fV = 6V - 12 

. I V =----
f 6(V- 2) 

f = 6 - Q 
V 

Moreover, from equation (5-1), with E = 3 V - 6: 

:. 'ii = 3 

(6-1) 

Since a polyhedron would not have digonal faces (n = 2), this 
means that n = 3. Thus we have proved that triangulation is neces
sary for making a polyhedron rigid. This type of analysis provides a 
means for designing stable configurations: a structure will not be 
rigid unless, of its %N(N - 1) possible connections, (3N - 6) are rigid. 

For V = 5 we considered the triangular bipyramid, and the square 
pyramid and noted that the latter needs at least a rigid diagonal to 
stabilize its base. Both structures then have only triangular faces. 
The valencies of the vertices of the triangular bipyramid are as 
follows: 

r = 3 for both polar vertices 

r = 4 for the three equatorial vertices 

For the stabilized pyramid: 

r = 4 for the "top" or apex of the pyramid 
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r = 4 for the two base vertices joined by the diagonal 

r = 3 for the remaining two vertices. 

Both structures thus have six triangular faces, two trivalent and three 
quadrivalent vertices. In both, the two trivalent vertices are joined 
only to quadrivalent ones. Thus, apart from actual lengths of con
nections, the two are entirely equivalent. Their average valencies are 
ii = n = 3, f= (18/5), in agreement with equation (6-1). 

For V = 6, equation (6-1) gives r = 4; the simplest triangulated 
polyhedron here is the octahedron, having all vertex valencies r = 4. 

For V = 7, equation (6-1) yields f= (30/7). The simplest figure 
corresponding to these numbers is a pentagonal bipyramid. The two 
polar vertices are pentavalent; along the equator are five vertices hav
ing valency 4, each being joined to two other equatorial vertices and 
to the two polar ones (Fig. 6-3). 

FIGURE 6-3 Top half of pentagonal bipyramid, showing one polar, and 
five equatorial vertices 

We can readily see that any bipyramid obeys equation (6-1). If 
the equator is a j-gon, V = (j + 2). The two polar vertices are j
valent, while the j equatorial vertices are 4-valent: 
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r = j X 4 + 2 X j = 6j 
j+2 j+2 

From equation (6-1): 

6j = 6 - Q . . V . + 2 d 
j + 2 V'·· = J ,q.e. . 

For V = 8, r = 4V2. There are many different structures obeying this 
condition. There is the hexagonal bipyramid. There are also struc
tures that can be considered hexahedra (e.g., a cube) whose faces are 
reinforced (triangulated) by means of a diagonal connection. The 
structure exemplified in Fig. 6-4 has two 3-valent and six 5-valent 
vertices 

r=2X3+6X5 
8 

_ 1 
- 4-

2 

In Fig. 6-5 there are four each of 3-valent and 6-valent vertices: in 
either case;: = 4V2. 

FIGURE 64 Eight 
vertices, six 5-fold, two 3-
fold, r= 4-1/2 

FIGURE 6-S Eight vertices, four 6-
fold, four 3-fold, r = 4-1·/2 

It is clear that there are numerous possible triangulated struc
tures. What is important is, however, that, regardless of how they 
are interconnected, V vertices require exactly (3 V - 6) interconnec
tions to be stabilized. Stable structures are not necessarily triangu-
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lated polyhedra, for there are numerous internal struts that will 
stabilize a structure without making it a triangulated polyhedron. 
However, triangulated polyhedra have now been proved to be stable. 

Because we have already observed that for any value of V there is 
a stable bipyramid, and because we have also found a multiplicity of 
different structures having any given combination of values of V, E, 
and r, we shall skip over the structures having V = 9, 10, and 11: the 
principles are all stated, and nothing of additional interest appears to 
be found in these structures. With V = 12 we arrive at a very inter
esting set of structures, however. From equation (6-1), r = 5 when 
V = 12. The structure having r = r = 5, V = 12, is the icosahedron, 
which has F = 20, E = 30 (Fig. 6-6). It is also seen from equation 
(6-1) that the maximum value of r is 6, which can occur only when 
V is infinite. Hence the icosahedron is the largest structure of finite 
extent in which all faces are triangulated and all vertices have the 
same valency. If we wish to build a triangulated polyhedron having 
more than twelve vertices, we must have 5 < r ~ 6, with r = 6 result
ing in an infinitely extended structure. Accordingly, one would use a 
combination of 5-valent and 6-valent vertices; this is just what R. 
Buckminster Fuller has done in designing his geodesic domes. We 

FIGURE 6-6 Icosahedron 
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can find exactly how many 5-valent vertices are needed for a com
plete polyhedron (the dome, of course, uses only part of the poly
hedron). From equation (6-1): 

where Vs and V6 are, respectively, the numbers of 5- and 6-valent 
vertices. Also 

r = 5Vs + 6V6 
Vs + V6 

by definition 

Equating these two expressions for r; and multiplying both sides of 
the equation by (Vs + V6), we find 

6(Vs + V6) - 12 = 5Vs + 6V6 

:. Vs = 12 

We conclude that, regardless of the number of 6-valent vertices, 
there must be exactly twelve 5-valent vertices. 

This phenomenon-that in a polyhedron having two different 
vertex valencies, one of the valencies must be present in a fixed 
number-is sufficiently remarkable that it warrants a more general 
investigation. Let us consider, instead of triangular faces, more gen
eral n-gonal faces: the polyhedron has all faces equivalent. There are 
Va vertices having valency ra' and Vb vertices having valency rb. 
Setting s = 2 in equation (4-6), we find, from equations (4-4) and 
(4-6), 

Moreover, since V = E + 2 - F, equation (4-6) yields 

Va + Vb = 2 + (~n - 1) F 

Solving equations (6-2) and (6-3) simultaneously, we obtain 

2rb + [( ~ n - l)rb - nJ F 

(6-2) 

(6-3) 

(6-4) 
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For instance, for the geodesic dome example just considered, 
'a = 5, 'b = 6, and n = 3. 

V - 12 + (3 - 3)F . 
5 - 1 ' 

10 + (-!)F 
V - 2 

6 - -1 
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(6-5) 

(6-6) 

It is seen, therefore, that Vs equals 12, regardless of the value of F, 
in accordance with our previous finding. Additionally, since Vb has 
to be nonnegative, F ~ 20, the equal sign referring to the icosa
hedron, for which Vb = O. 

We can generalize, choosing'b >, a' from equations (6-4) and 
(6-5), that Va will be independent of F, and a function only of'a 
and'b if 

2n 
'b = n - 2 

in which case 

V = 2'b 
a 'b - 'a 

In this instance, also,'a <'b < n2~ 2 ,so that 

F ~ -4'a 
(n - 2)'a - 2n 

Conversely, Vb is independent of F if 

, = 2n 
a n - 2 

in which case 

V 2'a b = -'a - 'b 
<0 

(6-7) 

(6-8) 

(6-9) 
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Since Vb < 0 is absurd, it is not possible to make Vb independent of 
F. However, for every value of n there is a value of rb, given by 
equation (6-7), for which Va is fixed at a value given by equation 
(6-8), and for which inequality (6-9) provides a minimal value of F. 

As we shall, further on, exhaustively enumerate all polyhedra in 
which either all vertices or all faces are equivalent, or both, this is not 
the place to enumerate all possible combinations of nand rb that 
would meet conditions (6-7), (6-8), and (6-9). However, for those 
particularly interested in the phenomenon of exactly twelve 5-valent 
vertices, and its generalization, but unwilling to consider the broader 
topic of the exhaustive enumeration, those relations will prove 
useful. 

For instance, for n = 4, rb = 4; this combination leaves only a 
possible ra = 3, hence Va = 8, and F ~ 6. The simplest structure hav
ing this restriction is the cube or, more generally, the hexahedron, 
but also interesting is the structure having F = 12, Vb = 6, the 
rhombohedral dodecahedron, which, of course, has also eight 
3-valent vertices as well as the six 4-valent ones. What links the cube 
and the rhombohedral dodecahedron is our knowledge that a poly
hedron having quadrilateral faces necessarily has exactly eight 
3-valent vertices, regardless of how many 4-valent vertices (none for 
the cube, six for the dodecahedron) there are. 

Summarizing, then, we find that a structure that has V vertices 
and E edges, has (3 V - E - 6) degrees of freedom; when E < 3 V - 6 
the structure cannot possibly be rigid; when E = 3 V - 6 it can be 
rigid if the edges are properly applied. The maximum value of E 
equals Y2 V(V - I); when E > 3 V - 6, only (3 V - 6) of the edges can 
have their lengths independently specified. 
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We have taken a special point of view of structure, namely as a sys
tem of interlinked elements of different dimensionalities. The 
valencies describe these linkages. In general, in three dimensions, 
eight valencies are variable, and two (the vertex valency of every 
edge, and the cell valency of every face) are necessarily equal to 2. 

There are certain relationships between diverse patterns or 
structures whose understanding enables us to transform one into the 
other. That is to say that, in addition to relationships within struc
tures, we can consider relationships among structures, and the result
ing transformations of structures. We have thus created a hierarchy 
of structure, whose description we might call the structure of 
structures. 

The principal transformations to be considered here are: taking 
a dual, truncation, and stellation. We shall show that each of these 
involves the replacement of all or part of the elements of a given 
dimensionality by elements of a different dimensionality. Such 
replacement may occur only if the expression (V - E + F - C) re
mains unchanged, and the linkages are conserved. In two-dimen
sional structures, the face valency of edges equals the vertex valency 
of the edges-i.e., 2. In such structures it is very convenient to inter
change vertices and faces, for every face-face connection through an 
edge then becomes a vertex-vertex connection through an edge, and 
the sum (V + F) in the expression (V - E + F - C) remains un-

39 
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altered. Two structures that are related by the fact that to every 
face in one there corresponds a vertex in the other, and vice versa, 
are called each other's duals. 

In three dimensions the valency of faces toward cells equals 2, 
as does the valency of edges toward vertices. Here a duality relation 
could be defined between structures in which every face and every 
cell in one corresponds to an edge-and-vertex combination in the 
other. A transformation of faces/cells into edges/vertices would 
change the sign of the expression (V - E + F - C), but since this ex
pression is actually equal to zero, it remains in fact unchanged. Such 
generalized multidimensional dualities are being investigated by John 
Robinson . 

Since in two dimensions V - E + F = 2, and duals have the same 
value of the sum (V + F), duals necessarily have the same numbers of 
edges. Examples of dual pairs of polyhedra are listed in Table 7-1, 
and illustrated in Figs. 7-1 through 7-9. 

TABLE 7-1 
Examples of Dual Polyhedra 

Polyhedron Pair V F E fl/ustrated in Fig. 

Cube ~ 8 ~ } 12 r-1 
Octahedron 6 7-2 

Truncated octahedron~ 24 14 } 36 r-3 
Stella ted cube 14 24 7-4 

Tetrahedron ~ 
Tetrahedron 

4 4 6 7-5 

Truncated tetrahedrOn~ 12 
182 } 18 r-6 

Stella ted tetrahedron 8 7-7 

Cuboctahedron } 12 14 } 24 r-8 
• Rhombohedral dodeca- 14 12 7-9 

hedron 

Two remarkable observations can be drawn from Table 7-1. In 
the first place, the tetrahedron has the same number of vertices and 
faces, hence is its own dual. It is therefore listed as a pair. The 
second observation is that, if two polyhedra are each other's duals, 
then a stellation of one is dual to a truncation of the other. For the 
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FIGURE 7·1 Cube FIGURE 7·2 Octahedron 

FIGURE 7·3 Truncated Octahedron FIGURE 7·4 Stellated Cube 
shown inside a cube as 
frame of reference 

FIGURE 7·5 Tetrahedron 

41 
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FIGURE 7-6 Truncated Tetrahedron FIGURE 7-7 Stellated Tetrahedron 

FIGURE 7-9 

FIGURE 7·8 Cuboctahedron Rhombohedral Dodecahedron 

time being, we shall leave this observation as an experimental phe
nomenon, and return to it when we study the stellation/truncation 
transformations more generally. 

There is, accordingly, a symmetry in our structure of structures: 
to every structure that is not its own dual there corresponds a dual 
structure distinct from the first one. Any theorem that applies to a 
given structure can be transformed into a theorem applying to its dual. 
For instance, equations (6-4) and (6-5) give expressions for the num· 
bers of vertices of respective edge valencies rQ and 'b in a polyhedron 
whose faces are all n·gons. These equations can be transformed into 
equations applying to polyhedra all of whose vertices have valency r, 
but whose faces are nQ·gons and nb·gons: 
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2nb + [ (i r - l)nb - r JV 
Fa = 

nb - na 
(7-1) 

2na +[(i r - l)na - rJv 
Fb = 

na - nb 
(7-2) 

By an argument analogous to the one used in the previous chapter we 
conclude that Fa is independent of V if 

. 2r 
I.e., nb = r - 2 

For example, if r = 3, nb = 6, and 

F = 12 
a 6 - n a 

(7-3) 

(7-4) 

This means that for a polyhedron having r = 3 for all vertices an arbi
trary number of hexagons combines with exactly twelve pentagons 
(Fa =12 when na = 5), or with exactly six quadrilaterals (Fa = 6 
when na = 4), or with exactly four triangular faces (Fa = 4 when 
na = 3). An example of the twelve pentagons combining with hexa
gons is a soccer ball: every one of these can be seen to have exactly a 
dozen black pentagonal patches as well as (usually but not neces
sarily) twenty white hexagonal ones. The six quadrilateral faces 
combining with hexagons tum up in the truncated octahedron (Fig. 
7-3), the four triangular ones in the truncated tetrahedron (Fig. 7-6). 

If r = 4, then Fa is independent of V if (cf. equation 7-3) nb = 4; 
then (cf. equation 7-1): 

F = 8 
a 4 - n a 

, 

Hence we can have any number of quadrilaterals combining with 
exactly eight triangles; an example is the cuboctahedron (Fig. 7-8). 

We shall return to equations (6-4), (6-5), (7-1), and (7-2) when 
we explore more exhaustively the possible combinations of valencies 
in two-dimensional (infinite as well as finite, polyhedral) structures. 



8 

We have, throughout the previous chapters, repeated ad nauseam two 
principles: (1) Polyhedral surfaces are two-dimensional, and (2) we 
are not committed to definite distances and angles, but only to num
bers of elements, their dimensionalities, and their valencies. Given 
these two principles one concludes that every polyhedron may be 
distorted such that it can be laid out flat on a surface so that no 
edges cross. This is done by choosing one particular face, extending 
it such that it becomes the frame within which the remainder of 
faces, edges, and vertices are contained. Visually this amounts to 
holding one face quite close to the eyes, looking at the structure 
through that face, and drawing the projection of the structure as 
seen in this exaggerated perspective. (Note that per-spective actually 
means "as seen through"!) Such a perspective projection of a poly
hedron is called a Schlegel diagram. For our discussion Schlegel 
diagrams are important because they do not just represent our struc
tures: they are our structures. Although we find it convenient to 
compare a structure having eight 3-valent vertices, six 4-valent faces, 
and twelve edges to the cube, so familiar to us, it can be equally well 
represented by the Schlegel diagram of Fig. 8-1, which has exactly 
the same elements and valencies as does the cube. The advantage of 
the Schlegel diagram is that all its elements and connections are ex
plicitly visible, with no hidden elements. The fact that the face 
represented by the circumference of the Schlegel diagram must be 

45 
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counted explicitly as a face certainly need not be belabored in the 
context of this treatise (cf. Chapter 5). 

In Figs. 8-1 ff. we show Schlegel diagrams equivalent to some of 
the polyhedra discussed in previous chapters. Because of the very 
fine illustrations of polyhedra in such books as Wenninger's,l Wil
liams's,2 and Critchlow's3 and the above-mentioned visibility of all 
elements in the Schlegel diagrams, we shall principally make use of 
the latter illustrations rather than attempt to duplicate the three
dimensional views in the books referred to. 

In the previous chapter we discussed the notion of duality. It 
would be nice at times to compare Schlegel diagrams of pairs of dual 
structures; Figs. 8-1 and 8-2 do not make the duality of the cube and 
the octahedron obvious. The problem is that the face that frames 
the entire Schlegel diagram will, in the transformation to the dual, 
produce a vertex that either lies behind the dual structure, or needs 
to represent the infinity of the unbounded surface in the original 
structure, depending on whether the original structure was inter
preted as a (collapsed) polyhedron or as a finite tessellation on an 
infinite surface. 

FIGURE 8-1 Schlegel diagram FIGURE 8-2 
of a cube r = 3, n = 4 

Schlegel diagram of an 
octahedron r=4, n=3 

This problem can be interpreted slightly differently by compar
ing the Schlegel diagram to a polar map of the globe. Imagine a 

1 Magnus J. Wenninger: Polyhedron Models (Cambridge University Press, 1971). 

2 Robert Williams: Natural Structure (Endaemon Press, Mooroark, California, 1972). 

3 Keith Critchlow: Order in Space: A Design Source Book (Viking Press, New York, 1970). 
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plane tangent to the earth at the North Pole. By the use of distor
tion the whole surface of the earth may then be laid out on this 
tangent plane: the North Pole would be at the center, with the 
meridians radiating out, and the parallel circles centered on the 
North Pole. Regions of the earth farthest from the North Pole 
would be stretched enormously, but the set of radial lines and cir
cles would amount to a Schlegel diagram of the sphere tessellation 
delineated by meridians and parallels. However, it would be quite 
impossible on this polar map to indicate the South Pole: it would be 
at infinity. We can, however, indicate its existence by putting an 
arrow at each of the meridians, indicating that all meridians termi
nate at a single vertex, the South Pole. 

We propose here a similar device to define a dual Schlegel dia
gram, in which the vertex that in the dual structure corresponds to 
the "framing" face in the original is indicated by an arrow on each 
edge converging on that particular vertex. As examples, we derive 
from Figs. 8-1, 8-2, and 8-3 the dual Schlegel diagrams for the octa
hedron, cube, and tetrahedron in Figs. 8-6, 8-7, and 8-8. 

FIGURE 8-3 Schlegel diagram of a 
tetrahedron r:3, n=3 

1'"2. --- r2,. 

y 
I 

FIGURE 8-4 Triangular bipyramid 
ra=3, rb=4, n=3 

(For an application of Schlegel-like mappings of regular and semi
regular solids, cf. Athelstan Spilhaus: "Geo-Art: Tectonics and Pla
tonic Solids," Transactions of the American Geophysical Union, 56 
No.2, 1975, pp. 52-57.) 
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FIGURE 8-5 Schlegel diagram of 
a rhombohedral dodecahedron 
ra=3, rb=4, n=4 

~ duality 

".-----
I' , 
I \, 

-- .... -~ , . 
" . I 

• 

• 
I 

• , 1 
"\ _ ....... -4. 

Dual of the cube: the arrows 
indicate convergence of edges 
to the invisible sixth vertex. 

FIGURE 8-6 

Schlegel Diagram of the cube, 
with five vertices of its dual 
shown. The sixth vertex is 
not visible here. 

--

Dual Schlegel Diagram of the 
octahedron 
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FIGURE 8-7 

~ dwlity 

,' . . , , . " , , , , , . , , " 

Schlegel Diagram of the octa
hedron, showing seven of the 
eight vertices of its dual 

Dual Schlegel Diagram of the 
cube 
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FIGURE 8-8 
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~ duality 

Schlegel Diagram of the tetra
hedron showing three of the 
four vertices of its dual 

Dual Schlegel Diagram of the 
tetrahedron 



In Chapter 5 we discussed statistical symmetry, the fact that the 
average values of the valencies of structures obey some very rigid 
restrictions. The present chapter is the very antithesis of Chapter 5, 
for here we examine structures in which all elements of anyone 
dimensionality have identical sets of valencies. Here the average 
values become the values of the valencies. The basic equations (4-11) 
through (4-14), and (3-4) and (3-5) are then 

1 - r = pis 
2 

1 
- k = lin 
2 

plq = 11m 

m-l+k=2 

r-p+q=2 

First we consider two-dimensional structures: s = 2, p = r, q = 2. 

·l+l=l+l .. r n 2 I 

(9-1) 

(9-2) 

(9-3) 

(9-4) 

(3-4) 

(3-5) 

(9-5) 
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For r = 2, n = I; hence from equation (9-3), k = 2; from equation 
(3-4), m = I; and from equation (9-4), p = q = 2. The corresponding 
structure is a polygon having 1 edges and Z vertices, and two faces 
(top and bottom), as shown in Fig. 9-1. Each vertex has a valency 2 
toward edges, faces, and cells, and the cell is lens-like, having a top 
and bottom face, 1 edges, and I vertices. Having two faces, it is called 
a dihedron. 

For r = 3, 

61 
n=Z+6 ' 

1 = 6n 
6 - n 

Since n must be an integer, the minimal value of 1 is 3. 
For r = 3, Z = 3, we find from the above-listed equations: n = 2, 

k = 1 = 3, m = 2. The corresponding structure (Fig. 9-2) has two ver
tices that are joined to each other by three edges and three faces. 
Such a structure has physical reality only because we admit curved 
edges and faces; since it follows organically from our basic equations, 
it is important and should not be overlooked. The faces are digons 
(n = 2). The structure of Fig. 9-2 is called a digonal trihedron. We 
shall see when we discuss truncations and stellations that such struc
tures playa fundamental role. 

FIGURE 9-1 Structure 
having 7=2, s=2: b=gonal 
dihedron 

1': ~ E ....... --"'71": 3 

FIGURE 9-2 Structure having 7=3, s=2: 
digonal trihedron 

The next integral value of n occurs when 1 = 6: 1 = 6, n = 3, k = 4, 
m = 4. The corresponding structure is the (triangular) tetrahedron 
(Fig. 9-3). 

Next for r = 3, we have 1 = 12, n = 4, k = 6, m = 8. The corre
sponding structure is the hexahedron, of which the cube is a particu
lar example (Fig. 9-4). The next integral value of n occurs when Z = 
30, n = 5, k = 12, m = 20. The corresponding structure is the 
pentagonal dodecahedron (Fig. 9-5). Finally, the value n - 6 is not 
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r\ / 1':~ 

t:\ f, l 

f:' 1\ ~ 
~ \. 

FIGURE 9-3 Tetrahedron (trigonal) FIGURE 9-4 Cube 

FIGURE 9-5 
Pentagonal dodecahedron 

reached until I = 00. The resulting structure extends indefinitely and 
is illustrated by an infinitely extended tessellation of a plane (Fig. 
9-6). This exhausts all regular structures having s == 2, r == 3. 

FIGURE 9-6 Hexagonal tessellation 
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Next we tum to s = 2, r = 4. From equation (9-5) we have 

41 n = ~c---::-
I + 4 

I = 4n 
4-n 

The only possible values of n are n = 2, 3, or 4. The digonal struc
ture, n = 2, has I = 4, k = 4, m = 2: it is a digonal tetrahedron (Fig. 
9-7). The value n = 3 gives I = 12, k = 8, m = 6: the octahedron (Fig. 
9-8). Finally, n = 4 occurs when 1= 00: this structure is a square or 
quadrilateral tessellation (Fig. 9-9). 

FIGURE 9-7 
Digonal tetrahedron 

For r = 5, 

101 

FIGURE 9-8 
Octahedron 

n = 31 + 10 ' 
IOn 

1 = -::-10-=--------::3:-n-

I 
FIGURE 9-9 
Quadrilateral tessellation 

Again there is a digonal structure: n = 2, 1= 5, k = 5, m = 2, which 
does not need explicit illustration: it must be clear by now that (cf. 
equation 9-5) when n = 2 there exists a whole family of digonal poly
hedra having m = 2, 1= k. However, there is no possibility of an in
finite tessellation, for I = 00 does not yield an integral value of n. 
Thus no infinite tessellation with equivalent 5-valent vertices and 
mutually equivalent faces is possible, regardless of the exact shape of 
the face. This observation is very important, for it has been shown 1 

that fivefold symmetry cannot exist in a periodically repeating planar 
pattern. However, it is apparent that, for instance in much Islamic 
ornament, there have been attempts to distort pentagonal faces to 
conform to the symmetry constraints. We have shown here that 

1 Cf., for instance, Arthur L. Loeb: Color and Symmetry (Wiley, New York, 1971), p. 33, 
theorem 10. 
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there is a connectivity restriction on the number 5 in an infinitely 
extended tessellation as well as the symmetry restriction. 
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Besides the digonal pentahedron there is only a single other regu
lar two-dimensional structure having r = 5-namely, the one having 
n = 3, 1 = 30, k = 20, m = 12: the icosahedron (Fig. 9-10). 

FIGURE 9-10 The Icosahedron 

Finally, there is a single structure having r = 6 besides the ubi
quitous digonal one. When r = 6 in equation (9-5), 

1 = 3n 
3 - n 

The value n = 2 yields the digonal hexahedron, and n = 3 yields a 
tessellation by triangles (Fig. 9-11). Thus we exhaust the enumera
tion of regular two-dimensional structures, which are listed in Table 
9-1. In this table there are three entries having r = n: the digonal di
hedron (n = r = 2), the (trigonal) tetrahedron (n = r = 3), and the 
square tessellation (n = r = 4). These entries represent the three self
duals among regular two-dimensional structures. All other structures 
represented in Table 9-1 are paired duals: interchanging the values of 
rand n for any entry locates its dual in the table. The digonal poly
hedra are the duals of the polygonal dihedra (two-sided polygons), 
and only these allow any integral value of r, respectively n. 

The rows n = 3, 4, and 6 and the columns r = 3, 4, and 6 in Table 
9-1 tenninate with a tessellation of infinite extent. The row n = 5 
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FIGURE 9-11 Triangular te eUation 

TABLE 9-1 
Regular Two-Dimensional Structures 

, • 
2 3 4 5 6 ... . r . .. 

2 Digonal Digonal Digonal Digonal Digonal Digonal 
dihedron trihedron tetra- penta- hexahedron r-hedron 

hedron hedron 

3 Triangular (Triangular) Octa- Icosa- Triangular 
dihedron tetrahedron hedron hedron tessellation 

4 Quadri- Hexahe- Square 
lateral dron tessellation 
dihedron 

Pentagonal Pentagonal 
dihedron dodecahe-

dron 

6 Hexagonal Hexagonal 
dihedron tessellation 

n n-gonal 
dihedron 
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and the column r = 5 end, respectively, in the dodecahedron and 
icosahedron, as no infinite tessellations are possible for these values. 

Next we consider regular structures having s = 3. These are three
dimensional, and, since the cells must themselves be regular, we are 
limited to those cells just found to constitute the regular two-dimen
sional structures (cf. Table 9-1 ). 

From equation (9-2), makings = 3: r = (2h)p. Hence from 
equation (3-5), 

1 
q = 2 + -p 

3 
(9-6) 

Consider first the digonal polyhedra. These all have n = 2, hence 
(equation 9-3) k = 1, and (equation 3-4) m = 2. Therefore (equation 
9-4), p = Yuq, and hence (equation 9-6) 

12 
q=6-1' 

61 
P=6-1' 

41 r = -::---::-
6 - 1 

These expressions limit 1 to values less than or equal to 6. When 
1 = 2: p = 3, q = 3, r = 2. These values are exemplified by a sphere 
having vertices at north and south poles, which is bisected by a plane 
containing two meridians (the two edges). There are three cells: the 
two hemispheres, and the "outside world." Three faces meet at 
either edge: the two hemispherical surfaces and the partition. 

For 1 = 3 (s still equals 3, of course), q = 4, P = 6, r = 4. This 
structure is exemplified by a sphere or pod (Fig. 9-12) subdivided 

a View along central 
edge: three cells 
meet along this edge 

View normal to 
central edge 

FIGURE 9-12 Structure havings=3, r=4, 1=3, m=2, k=3, n=2 
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into three equivalent cells by three meridians and a north-south 
axis. At each pole four edges meet (r = 4); at each edge three cells 
meet: for the meridians these are the "outside world" and two in
ternal cells, and for the north-south axis there are three internal 
cells (s = 3). At each pole also, four cells meet (q = 4), of which one 
is the "outside world," and six faces meet (p - 6), of which three are 
portions of the spherical surface, and three are internal partitions. 
Figure 9-12a could be considered here to be a cross section of such a 
structure perpendicular to the north-south axis, where the edges of 
Fig. 9-12a are now the traces of the faces on the cross section. 

For I = 4, s = 3: q = 6, p = 12, r = 8. This structure has again two 
poles, and internal partitions whose cross sections are illustrated by 
Fig. 9-4. If we recall that Figs. 9-3 and 9-4 are actually Schlegel dia
grams of a tetrahedron and a cube, respectively, then we may look at 
the present structures as Schlegel diagrams in three dimensions of 
four-dimensional regular structures. Just as Fig. 9-4 represents a 
cube in perspective distortion, so the cells of the present structures, 
which in three dimensions could not be made geometrically congru
ent, can be considered perspective distortions of what are in four 
dimensions mutually congruent cells. 

For I = 5, q = 12, p = 30, r = 20 Again this is a "pod"-like struc
ture, with internal faces whose cross section looks like Fig. 9-5, a 
sort of four-dimensional hyperpentagonal dodecahedron, a three
dimensional structure in a four-dimensional space, analogous to the 
two-dimensional polyhedron in three-dimensional space. 

Finally, for I = 6, q = 00, p = 00, r = 00. The structure still has a 
north and a south pole which are the vertices for every cell, but from 
these vertices infinitely many edges, faces, and cells, of generally 
finite size each, emanate, yielding in cross section the infinite 
hexagonal tessellation of Fig. 9-6. This exhausts the regular struc
tures having s = 3 and digonal polyhedra as cells. 

Consulting Table 9-1, we consider next the regular three-dimen
sional structures having as cells the polygonal dihedra in the column 
r = 2. These cells are characterized by the parameters n = I = m, and 
k = 2. Therefore (since s = 3 still), from equation (9-4), p = q; and 
from equation (9-2), r = 2 p13. Substitution in equation (3-5) yields 
p = 3, q = 3, r = 2. These parameters correspond to an l-gon having 
front and back faces {"lens-like"} "floating" on an infinitely ex
tended third face, or to a lens-like l-gon having a front, middle, and 
back face. Whenever n = I, equation (9-1) demands p = s: for any 
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value of s there will be this type of internal face joining the external 
polygon. These cases are fairly trivial; we need not further consider 
the polygonal dihedral cells for additional values of s. 

We are then left with a finite set of regular cells. For the (tri
angular) tetrahedron, k = 4, 1= 6, m = 4, n = 3. Therefore, from 
equation (9-4), p = 3/2 q; from equation (9-2), r = q; and from equa
tion (3-5), p = 2q - 2. Therefore q = r = 4, p = 6. The corresponding 
structure is a tetrahedron subdivided into four cells, each a tetra
hedron, which share a vertex at the center of the original tetrahedron 
(Fig. 9-13). For the cube, k = 6, 1= 12, m = 8. Hence 

P = ~2 q,. r = -32 p = q,. :. q = 4, p = 6, r = 4 

These vertex parameters correspond to the structure illustrated in 
Fig. 9-14, a Schlegel diagram in three dimensions of a hypercube. 

FIGURE 9-13 Hypertetrahedron FIGURE 9-14 Hypercube 

It should be noted in Figs. 9-13 and 9-14 that the outside surface 
of the structure is equivalent to each of the cells: in Fig. 9-13 the 
outside surface is a tetrahedron, in Fig. 9-14 a cube. Although this 
observation is remarkable, it should not be surprising, for we have 
always considered the outside world as a cell equivalent to the in
ternal cells, so that all faces, "internal" as well as "external," should 
be interfaces between cells. Therefore the so-called outside world 
should have valencies identical to those of the so-called internal cells. 
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When a wire frame constituting the edges of one of our regular 
polyhedra is dipped in a soap solution, one of the configurations dis
cussed here is apt to develop, with internal cells reflecting the outside 
shape. Soap films invariably occur in configurations having s = 3, [ 
q = 4, r = 4, p = 6, these being the simplest (smallest) three-dimen
sional configurations. 

For the octahedron, k = 8, 1= 12, m = 6. Hence q = 6, r = 8, 
p = 12. This structure corresponds to a hyperoctahedron; this and 
similar regular structures in four-dimensional space are discussed by 
Coxeter. 2 A model of a hyperoctahedron having 24 vertices, 96 
edges, 96 faces, and 24 cells, constructed by Mabel Liang and Tad 
Paul, is shown in Fig. 9-15. Since the number of vertices equals the 
number of cells, and the number of edges equals the number of faces, 
this structure is self-dual. 

FIGURE 9·15 Hyperoctahedron (Model by Mabel Liang and Tad Paul; photo-
graph by C. Todd Stuart) 

2H. S. M. Coxeter :lntroduction to Geometry (Wiley, New York, 1961), Section 22.3. 
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It is obvious that, given a set of cell parameters, k, I, m, and n, 
one can use equations (3-5), (9-4), and (9-2) to find the vertex, or 
connection parameters p, q, r, and s. [Remember that equation (9-1) 
is not independent of the others.] There is thus one free parameter, 
for instance s. For every value of s and for every type of cell (i.e., set 
of values k, I, m, and n) one may go through a process analogous to 
that which we traversed for s = 3. For instance, s = 4 yields an inter
esting and significant structure for the cubic cell: k = 6, 1= 12, 
m = 8, n = 4; hence p = 12, q = 8, r = 6. These values corresponds to 
an infinite array of stacked cubes, superficially analogous to a tessel
lation. There is, however, a fundamental distinction between two
and three-dimensional systems. The solutions of equations (9-5) ff. 
are all enumerated in Table 9-1, a finite set of two-dimensional regu
lar structures, terminating in the tessellations when I = 00. Equation 
(9-1), on the other hand, does not contain any parameter explicitly 
expressing the number of vertices, edges, faces, or cells: it is homo
geneous in the valencies. In three dimensions the number of valen
cies exceeds the number of constraining equations by three. Thus 
the three-dimensional structures differ fundamentally from the two
dimensional ones: the former have much greater freedom of choice, 
and are not exhaustively enumerable in a manner analogous to that 
used for two-dimensional structures. 

Accordingly, we shall exhaustively enumerate all two-dimen
sional semiregular structures, which may serve as cells in three
dimensional structures. Once these cells are found, the continuity 
equations (4-12), (4-13), and (4-14), together with equations (3-4) 
and (3-5), will then give all possible connection valencies p, q, r, and 
s for any given set of all valencies k, I, m, and n. By the duality argu
ment (Chapter 7) one may analogously start with a given set of con
nection valencies and find the corresponding constraints on cells that 
may be so connected. 

To this purpose equation (4-11) may be put in parametric form: 

1 = 7 p (4-11a) 

I 1 
T -7 (4-11b) 

The former equation deals only with connection valencies and f. the 



62 SPACE STRUCTURES: THEIR HARMONY AND COUNTERPOINT 

latter with cell parameters and f When equations (4-11) and (4-13) 
are substituted: 

p = ll(r - 2) 
2 

- 1 -
I = - I(k - 2) 

2 

(9-6) 

(9-7) 

Here the valencies of any cell permit us to find I from equation (9-7), 
and, using the resulting value of f. to relate p to r by equation (9-6). 
Conversely, one may find I for a given connection from equation 
(9-6), and subsequently test any cell for such connectivity with the 
aid of equation (9-7). 

The problem of finding (topologically) regular three-dimensional 
structures should not be confused with the related one of finding 
mutually congruent cells that together fill all of space (Chapter 17). 
These space-filling cells need not be regular polyhedra; neither are 
their vertices mutually equivalent. The cube only appears to be 
capable of functioning as a cell for a space filling as well as regular 
structure. 
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In Chapter 7 we discussed duality relations, in which elements of 
different dimensionalities are interchanged, subject to the constraints 
of the Euler-Schlaefli relation. In particular, we discussed in Chapter 
7 the interchange of vertices and faces. 

In the present chapter we replace edges by faces ("edge trunca
tion") and by vertices ("edge stellation"). The former transforma
tion is illustrated in Fig. 10-1: it is observed that, as a result of edge 
truncation, there are new faces not only in the place of old edges 
but also in the place of the old vertices. This edge truncation process 
is a very general one: special cases to be considered are those for 
which the new edges marked a, b, and c in Fig. 10-1 vanish in various 
combinations. In particular, let us consider a regular structure, in 
which every edge is truncated equivalently. If the new edges labeled 
c vanish, then the original r-valent vertices are replaced by r-valent 
faces, while the original n-valent faces remain n-valent. The resulting 
structures are discussed in detail in Chapter 12, an exhaustive 
enumeration of all semiregular structures. If, in addition to the c 
edges, the ones marked a vanish as well, then the original n-valent 
faces turn into n-valent vertices at which the new edges marked b 
converge, each b edge replacing an original edge. The result is the 
dual of the original structure: duality is thus seen to follow as a 
special case of edge truncation. (The structures resulting when c 

63 



64 SPACE STRUCTURES: THEIR HARMONY AND COUNTERPOINT 

o.:Q 

FIGURE 10-1 Edge truncation 

Edge 
Truncation 

edges but not a edges vanish will be shown to be combinations of 
superimposed dual pairs.) 

Figure 10-2 shows edge stellation. Here a vertex is introduced on 
an edge, from which new edges emerge, converging toward new ver
tices. Since the directions of these new edges may be chosen at will, 
it is possible, as a special case, to choose them such that the faces 
adjoining an original vertex coalesce into a single face, so that again 
the dual is produced as a special case. 

For both edge truncation and edge stellation we observe that 
each original edge gives rise, in the most general case, to four new 
edges, which degenerate into a single new one in the special case of 
forming a dual. An r-valent vertex in the original structure produces 
in general 2r edges: in the case of truncation it produces a 2r-valent 
face, whereas in the case of stellation it produces a 2r-valent vertex. 
Conversely, an n-valent face of the original structure is turned by 
edge truncation into a 2n-valent face, whereas edge stellation turns it 
into a 2n-valent vertex. Note, furthermore, that edge truncation 
generally produces trivalent vertices, while edge stellation produces 
triangular faces. 
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FIGURE 10-2 Edge stellation 

Edge 
Stellation 

65 

If we truncate the edges of a regular structure having V vertices, 
E edges, and F faces, we can find the parameters of the resulting 
structures as follows. Figure 10-1 illustrates that each original edge 
yields four new vertices, also two edges of the type labeled a and 2r 
edges of the types labeled band c. Furthermore, each vertex, edge, 
and face of the original structure yields a face in the truncated struc
ture. Therefore, if VEt, EEt, and FEt are the numbers of vertices, 
edges, and faces, respectively, of the truncated structure: 

VEt = 4E; E Et = 2E + 2r V; F Et = F + E + V 

From equation (4-4): 2rV = 4E. From equation (4-6) and the 
fact that for two-dimensional structures (tessellations or polyhedra) 

s = 2: F = ~ E. Hence 
n 

E Et = 6E and F Et = (~ + I + ~)E 
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From equation (9-5): ~ + ~ = I + E~ . 
n r 

:. F Et = 2(E + I) 

Summarizing, we find the following relations between the num
ber of elements of the general edge-truncated structures and the 
number of edges of the original regular structure: 

(l0-I) 

(l0-2) 

FEt = 2(E + 1) (I 0-3) 

Table 10-1 lists these parameters for the generally truncated forms 
derived from regular polyhedra.(Figs. 10-3, 10-4, and 10-5). It is 

FIGURE 10.3 Schlegel diagram of 
the edge-truncated tetrahedron (equiv
alent to truncated octahedron) 

FIGURE 10-4 Schlegel diagram of 
the edge-truncated octahedron or 
cube (great rhombicuboctahedron) 

observed that the five regular polyhedra yield three truncated forms, 
because dual regular pairs yield the same generally truncated form: 
the octahedron/cube pair yields a solid having eight hexagonal, 
twelve quadrilateral, and six octagonal faces (Fig. 10-4, the great 
rhombicuboctahedron), and the icosahedron/dodecahedron pair 
yields a solid having twenty hexagonal, thirty quadrilateral, and 
twelve decagonal faces (Fig. 10-5, the great rhombicosidodecahe
dron). 
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FIGURE 10-5 Schlegel diagram of the edge-truncated icosahedron or dodeca-
hedron (great rhombicosidodecahedron) 

These truncated structures all have mutually equivalent trivalent 
vertices, but three different types of faces. They are called semiregu
lar solids. Such solids have mutually equivalent vertices but not 
faces, or mutually equivalent faces but not vertices. Some consider 
only those having equivalent vertices or those having equivalent faces 
semiregular. However, the symmetry of the structure of structures 
makes such a bias irrational; either will here be called semiregular. 

Besides the so-called Platonic solids (tetrahedron, octahedron, 
cube, icosahedron, and pentagonal dodecahedron), we found (cf. 
Table 9-1) the following regular two-dimensional structures: the 
digonal polyhedra, having n = 2; the polygonal dihedra, having r = 2; 
and the tessellations, having I = 00. The digonal polyhedra have two 
r-fold vertices, and E = r. When these are truncated, prisms are 
formed, whose structural parameters are (cf. equations 10-1, 10-2, 
10-3) 

EEt =,6r, FEt = 2(r + 1) 

Of the faces, two are r-gons, and the remaining 2r faces are 
quadrilateral. Edge truncation of the polygonal dihedra similarly 
produces prisms, as was to be expected, for we have seen above that 
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dual regular structures produce the same semiregular structure by 
edge truncation (Fig. 10-6). In particular, the digonal dihedron 
yields a hexahedron (cube): when r = 2, VEt = 8, EEt = 12, FEt = 6. 

Finally, edge truncations of the three regular tessellations yield 
the two semiregular tessellations shown in Figs. 10-7 and 10-8. The 
triangular and hexagonal tessellations, being each other's duals, yield 
the same truncated structure, and the square tessellation, being self
dual, yields a single structure by itself. 

FIGURE 10-6 Prism resulting from 
the edge truncation of a diagonal tri
hedron and of a trigonal dihedron FIGURE 10-7 Edge-truncated tri-

angular or hexagonal tessellation 

FIGURE 10-8 Edge-truncated square tessellation 
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(These edge-truncated structures have a special significance for 
the crystallographer: their vertices represent "general positions." 
The number 48, equaling the number of vertices of an edge
truncated cube or octahedron, also equals the multiplicity of the 
most general point or lattice complex in the primitive cubic system, 
illustrated in Fig. 10-9. It is significant, however, that the crystallo
graphic point complexes derive from symmetry considerations, 
whereas our results derive ultimately from Euler's topological law, 
and therefore are not limited to cubic symmetry. The structures 
about to be discussed are analogously related to more special point 
complexes.) 

iyz 

zyi 
FIGURE 10-9 Edge-truncated cube or octahedron, showing the coordinates 
of a general point complex in the crystallographic cubic lattice 

In Fig. 10-1 we labeled the newly created edges resulting from 
general edge truncation a, b, and c. We noted that when the edges 
labeled a and c all vanish, so that only the b edges remain, the dual 
of the original structure is formed. 

We shall now investigate other special combinations of a, b, and 
c. When the c edges vanish, we find a group of structures which will 
be discussed in Chapter 12. When the b edges vanish, the edges of the 
the original structure are partially intact, and the vertices of the origi
nal structure are replaced by faces of the same edge valency. On the 
other hand, when the a edges vanish, the edges of the dual of the 
original structure are preserved, and instead of the vertices of the 
dual structure there are faces of equal edge valencies. Accordingly, 
we call these special cases of the general edge truncation vertex trun-
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cations: when b = 0, the original structure is vertex-truncated, where
as when a = 0, it is the dual of the original structure that is vertex
truncated. 

The concept of vertex truncation is a relatively familiar one; that 
of the general edge truncation is not. It is interesting, however, that 
the formation of the dual as well as the vertex truncations of both 
dual structures are special cases of edge truncation. These relation
ships are particularly important in the field of computer graphics, 
where whole families of regular and semiregular structures can be 
generated by means of the relations derived here. 

When both band c vanish, the original structure remains un
altered. When both a and b vanish, every edge of the original struc
ture has vanished: both the original structure and its dual have had 
their vertices truncated, with the result that every original edge is 
replaced by a quadrivalent vertex! We call this type of truncation 
degenerate truncation, because the two trivalent vertices which ap
pear on each edge when vertices are truncated here degenerate into a 
single quadrivalent vertex. The special truncations are summarized in 
Fig. 10-10. 

Vertex truncation of a regular structure yields the following 
parameters, which are denoted V Vt, E Vt, and F Vt: 

V Vt = 2E; E Vt = E + r V; F Vt = F + V 

From equation (4-4) again: rV = 2E, hence Ev = 3E. Furthermore 

F Vt = F + ~ E = (~ + ~) E = E + 2 
r n r 

Accordingly: 

VVt = 2E (10-4) 

EVt = 3E (10-5) 

FVt = E + 2 (10-6) 

Since dual structures have equal numbers of edges, these expressions 
hold for any regular structure as well as for its dual. However, the 
two structures resulting from vertex truncations of duals, unlike the 
results of edge truncations, are not identical. If a regular structure 
having r-valent vertices and n-valent faces is vertex-truncated, the 
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I 

I 

" 

--scvertex truncation 
of 

dual , 

FIGURE 10-10 Summary of special truncations 

I 

, 

result is a structure having r-valent as well as 2n-valent faces, whereas 
its dual would give 2r-valent as well as n-valent faces. For instance, 
the truncated cube has eight triangular as well as six octagonal faces, 
whereas the truncated octahedron has eight hexagonal as well as six 
square faces. Table 10-2 lists the results of vertex truncation of regu
lar polyhedra. (Note again that truncation of the icosahedron yields 
exactly the twelve permitted pentagons combined with hexagons; cf. 
Chapter 6.) 
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Vertex truncation of the digonal r-hedron yields a prism having 
two r-gonal and r quadrilateral faces, that of the n-gonal dihedron a 
structure illustrated in Fig. 10-11, resembling a lens having facets cut 
along its circumference. Figures 10-12, 10-13, and 10-14 represent 
the vertex-truncated tessellations, Figures 10-15 through 10-19 the 
vertex-truncated Platonic solids. (Note that the truncation of the 
triangular tessellation results in a hexagonal tessellation, which is 
topologically regular.) 

Degenerate truncation yields a family of structures whose 
quadrivalent vertices correspond to the edges of the parent struc
tures: their parameters are indicated by Vdt. Edt. and Fdt : 

Vdt = E; Edt = rV; Fdt = F + V 

FIGURE 10-11 Vertex
truncated r-gonal dihedron 

FIGURE 10-13 Vertex-
truncated square tessellation (octagon
square tessellation) 

FIGURE 10-12 Vertex-truncated tri-
angular tessellation (hexagonal tessella
tion) 

FIGURE 10-14 Vertex-
truncated hexagonal tessellation 
(dodecagon-triangle tessellation) 
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FIGURE 10-IS Vertex- FIGURE 10-16 Vertex-
truncated tetrahedron truncated octahedron 

FIGURE 10-17 Vertex- FIGURE 10-18 Vertex-
truncated cube truncated pentagonal dodecahedron 

FIGURE 10-19 Vertex-truncated icosahedron 
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These expressions reduce, as before, to 

Vdt = E (10-7) 

Edt = 2E (10-8) 

Fdt = E + 2 (I 0-9) 

Table 10-3 accordingly summarizes the degenerate truncations of 
the regular solids; note that dual structures yield the same degenerate 

FIGURE 10-20 
Degenerate truncation of triangular or 
hexagonal tessellations FIGURE 10-21 Cuboctahedron 

digonal 
face 

FIGURE 10-23 Degenerate trunca-
&o:::::=-___________ .:::=:::w tion of a polygonal dihedron or di-

FIGURE 10-22 Icosidodecahedron gonal polyhedron 
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truncated solid. Note, further, that the result of degenerate trunca
tion of the tetrahedron is regular-namely, the octahedron. 

Degenerate truncation of the square tessellation yields a square 
tessellation in turn, having its vertices on the edges of the parent 
structure. Degenerate truncation of the triangular and hexagonal 
tessellation is illustrated in Fig. 10-20. The cuboctahedron is shown 
in Fig. 10-21, and the icosidodecahedron in Fig. 10-22. Degenerate 
truncation of a digonal r-hedron or an r-gonal dihedron yields a 
"scalloped lens" (Fig. 10-23). 



11 

A comparison of Figs. 10-1 and 10-2 demonstrates the following re
lationship between general truncation and general stellation: 

1. Edge truncation replaces every edge by four edges and a new 
face; edge stellation replaces every edge by four edges and a 
new vertex. 

2. Edge truncation replaces every r-valent vertex by a 2r-valent 
face, every n-valent face by a 2n-valent face. Edge stellation 
replaces every n-valent face by a 2n-valent vertex, every r
valent vertex by a 2r-valent vertex. 

3. Edge truncation produces a structure having trivalent vertices 
only; edge stellation produces a structure having triangular 
faces only. 

These observations lead to the conclusion that if, of a dual pair of 
of structures, we truncate one and stellate the other, or vice versa, we 
produce a new pair of duals. 

In Fig. 10-2 we labeled edges that form part of the original edges 
a. Those joining new vertices to each other are labeled (3, and those 
joining an original vertex to one replacing an original face, 'Y. In the 
absence of (3-edges the original edges remain: faces are replaced by 
vertices having the same edge valency. This special stellation is called 
face stellation. 

79 
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In the absence of both a- and ~-edges every r-valent vertex is 
replaced by an r-valent face, and every n-valent face by an n-valent 
vertex, so that a dual results. When there are -y-edges, but no a-edges, 
this dual is stellated. In the absence of -y-edges only, special stellated 
structures result. (Cf. Chapter 12). 

Finally, when -y-edges are the only ones present, all original edges 
are replaced by quadrilateral faces, and n-valent vertices replace the 
original faces. This instance is called degenerate stellation. These 
various stellations are illustrated in Fig. 11-1. 

~ty 

.' 

FIGURE 11-1 Special stellations 

~
face stellation 

of the 

dual 

stellation \ 

face 
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If we denote the parameters of the general edge-stellated struc
tures by V Es, E Es' and F Es' they are related to the parameters of the 
regular structures, V, E, and F, as follows: 

V Es = V + E + F; E Es = 2E + 2nF; 

FEs = 4E 

From equation (4-6), F = l E; from equation (4-4), V = l E; and 
n r 

from equation (9-5), ( ~ + ~)E = E + 2. 

:. V Es = 2(E + I) 01-1) 

(I 1-2) 

(I 1-3) 

Comparison with equations (10-1), (10-2), and (10-3) illustrates the 
duality of truncation and stellation. 

Table 11-1 lists the results of stellating regular solids. The stel
lated structures have mutually equivalent triangular faces, and ver
tices of two different types. Figures 11-2, 11-3, and 11-4 are the 
dual Schlegel diagrams (cf. Chapter 8) of these stella ted structures. 

Figures 11-5 and 11-6 illustrate edge-stellated tessellations. A 
digonal polyhedron and a polygonal dihedron both yield bipyramids 

FIGURE 11-2 Edge-stellated tetra-
hedron (dual Schlegel diagram) 

FIGURE 11-3 Edge-stellated 
octahedron or cube (dual Schlegel 
diagram) 
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FIGURE 11-4 
Edge-stellated icosahedron 
or pentagonal dodecahedron 
(dual Schlegel diagram) 

FIGURE 11-5 Edge-stellated triangular or hexa
gonal tessellation 

(Fig. 11-7): a digonal r-hedron yields a 2r-gonal bipyramid, while an 
n-gonal dihedron yields a 2n-gonal bipyramid. 

For face stellation the resulting parameters V Fs. E Fs. and F Fs are 

V Fs = V + F; E Fs = E + nF; F Fs = 2E 

Hence, using equations (4-4), (4-6), and (9-5), we obtain 

VFs = E + 2 01-4) 

(11-5) 

01-6) 

The parameters of the face-stellated regular solids are listed in 
Table 11-2. Comparison of Table 11-2 with Table 10-2 confirms that 
when, of a dual pair of regular solids, either one is truncated, the 
other stellated, a new pair of duals results. These structures are illus
trated in Figs. 11-8 through 11-12. The face-stellated tessellations 
are shown in Figs. 11-13 and 11-14; the face-stellated hexagonal tes
sellation is, in fact, a regular triangular tessellation. 
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FIGURE 11-6 Edge-stellated quad-
rilateral tessellation 

FIGURE 11-8 Face-stellated 
(tri-kis) tetrahedron (dual Schlegel 
diagram) 

FIGURE 11-10 

FIGURE 11-7 Bipyramid (dual 
Schlegel diagram) resulting from a 
digonal tetrahedron or quadrilateral 
dihedron by edge-stellation 

FIGURE 11-9 Face-stellated 
(trikis) octahedron (dual Schlegel 
diagram) 

Face-stellated (tetrakis hexahedron) cube (dual Schlegel diagram) 
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FIGURE 11-11 Face-stellated 
icosahedron (triakis icosahedron or 
hexecontahedron) (dual Schlegel 
diagram) 

FIGURE 11-12 Face-stellated 
pentagonal dodecahedron (pentakis 
dodecahedron) (dual Schlegel diagram) 

FIGURE 11-14 Face-stellated 
square tessellation 

FIGURE 11-13 Face-stellated tri-
angular tessellation 

FIGURE 11-15 Face-stellated 
digonal polyhedron 
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Face stellation of an n-gonal dihedron yields an n-gonal bipyra
mid; face stellation of a digonal r-hedron yields a structure illustrated 
in Fig. 11-15, the dual of Fig. 10-12. 

Degenerate stellation replaces every edge by a quadrilateral face, 
every face by a vertex, and preserves every original vertex. The 
parameters of degenerately stellated structures are 

Vds = E + 2 (I 1-7) 

Eds = 2E (I 1-8) 

Fds = E (I 1-9) 

The degenerately stellated regular solids are listed in Table 11-3; 
the name "rhombohedral triacontahedron" is entirely analogous to 
"rhombohedral dodecahedron," triaconta being Greek for 30. For 
the face-stellated forms the Greek suffix kis is often used; this indi
cates multiplication: triakis means "three times." A pentakis do
decahedron has five times twelve-i.e., sixty-faces, but is dis
tinguished from other hexacontahedra (hexaconta = 60) by the 
identification of five faces for each original pentagonal face of the 
dodecahedron. 

Comparison of Tables 10-3 and 11-3 confirms that octahedron 
and cube are indeed duals (truncation and stellation of the self-dual 
tetrahedron, respectively), and that the cuboctahedron and rhom
bohedral dodecahedron are also a dual pair (cf. Table 7-1). A 

FIGURE 11-16 
Rhombohedral triacontahedron 
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Schlegel diagram of the rhombohedral dodecahedron is shown in Fig. 
8-5; it is itself shown in Fig. 7-9. The rhombohedral triacontahedron, 
which is the dual of the icosidodecahedron, is shown in Fig. 11-16. 

Degenerate stellation of an n-gonal dihedron yields a structure 
which has two polar, n-val€mt: vertices, which are joined by n quadri
lateral faces; there are in total (n + 2) vertices, 2n edges, and the n 
faces. The same structure is generated by degenerate stellation of a 
digonal polyhedron (Fig. 11-17). Degenerate stellation of the square 
tessellation yields a square tessellation; that of the triangular or 
hexagonal tessellation is shown in Fig. 11-18. 

FIGURE 11-17 Degenerately stellated digonal polyhedron or polygonal 
dihedron 

FIGURE 11-18 Degenerately stellated triangular or hexagonal tessellations 

Table 11-4 summarizes the duality, truncation, and stellation 
relations between the regular and semiregular structures discussed. 
Radiating out from the center of this table are lines having at their 
opposite terminals dual pairs of structures: an edge-stellated cube is 
the dual of an edge-truncated octahedron, a rhombohedral dodeca
hedron the dual of a cuboctahedron, etc. 
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TABLE 11-4: Summary of duality, truncation and stellation relationships. 



12 

S~£~ 

11k~~ 
T~,.~~ 

In the preceding two chapters we generated semiregular structures by 
truncations and stellations of the regular structures found in Chapter 
9. However, we shall find presently that we have by no means ex
hausted all possible semiregular structures in two dimensions. As we 
have found the means of determining the permitted connectivities to 
join the two-dimensional cells (polyhedra) into three-dimensional 
structures, it is important to ascertain that we are aware of all pos
sible cells. To this purpose, we shall find all possible solutions of 
equation (9-5): 

+ ii 
= ! I 

2 + T (9-5) 

It will be noted that this equation is symmetrical in rand ii; that is to 
say, the equation is invariant to an interchange ofT and n. Therefore 
to every structure that satisfies equation (9-5) there corresponds its 
dual which also satisfies that equation. (Remember that, in order to 
preserve this symmetry in our structure of structures, a two-dimen
sional structure, in which either all faces or all vertices are equivalent, 
is called semiregular. ) 

91 
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Figure 12-1 demonstrates that we must further refine our defini
tion of equivalence of faces, respectively vertices. In this structure 
all vertices are trivalent; from equation (9-5) it follows that, if it ex
tends infinitely, n = 6. Nevertheless, all vertices cannot be called 
equivalent: the combinations of polygons meeting at different ver
tices are not the same, even though these vertices are all trivalent. 
We shall require not only that two vertices, in order to be equivalent, 
have equal edge valencies, but that their environments be equivalent 
as well-i.e., that the structural elements adjacent to them have also 
the same valencies and occur in the same sequence, either clockwise 
or counterclockwise. The same requirement of equivalence applies 
to edges, faces, and cells. Formally, we can give a recursive defini
tion of equivalence: two elements are equivalent if, and only if, they 
are adjacent to an equivalent set of elements arranged in identical or 
reverse order. This definition of topological equivalence is analogous 
to the definition of symmetry equivalence. I 

FIGURE 12·1 
r=3, n=6. Roman numerals indicate 
value of n for each polygonal face. 
Locally, the number of edges per face 
may exceed or be below the value 6, 
but for an infinite net the average 
must be exactly 6. 

Stover2 has exhaustively enumerated regular and semiregular tes
sellations, assuming mutually congruent faces. Since in our own pro
gram we are not assuming congruencies, we shall here pursue the 

ICf. Arthur L. Loeb: Color and Symmetry (Wiley, New York, 1971), pp. 5 and 6. 

2 Donald Stover: Mosaics (Houghton Mifflin, Boston, 1966). 
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more general approach. This generalization is especially important in 
dealing with stella ted structures, where we do not care whether the 
structure is convex or concave. 

We shall explicitly discuss these structures having mutually 
equivalent faces, deriving from them their duals, which have mu
tually equivalent vertices. 

Suppose that our structure has mutually equivalent faces, each of 
which has edge valency n. Suppose further that, of the n vertices of 
each face, n1 have valency rl, n2 have valency r2, ... , ni have valen
cy rio 

Since each rrvalent vertex is shared by ri faces, 

~ (n./r.) r· 
. I I I 

r = -=' :-----;---
~ (n./r.) 
. 1 I 
1 

:.!.. = !..~~ r n i ri 

= n 
-=~:-:("'--n .-./ r~. ) 

. I I 
1 

(12-0 

When all vertices are equivalent, we deal with a regular structure, 
which has already been discussed. If there are two distinct vertex 
valencies, equation (9-5) gives 

(12-2) 

Hence 

(12-3) 

(12-4) 

[These equations are analogous to equations (6-4) and (6-5).] 

We shall assume that r2 > r1 : this is not a limiting assumption, 
but simply assigns subscripts. If r1 = 2, all other vertices have to be 
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mutually equivalent; the resulting structures would be regular ones 
with additional divalent vertices on each of the edges. Such struc
tures would be trivially semiregular, and will be ignored here. Hence 
'I ~ 3, and r> 3. From equation (9-5), 

61 
n < 1 + 6 

For an infinitely extended tessellation 1 = 00; then n = 6 only if 
r = 3, a pair of values corresponding to the regular hexagonal tessella
tion of the plane. Hence for the semiregular tessellations and poly
hedra n < 6. The last inequality may also be usefully inverted: 

I>~ 
6-n 

Moreover, for semiregular structures nl > 0 and n2 > 0; from 
equations (12-3) and (12-4): 

'I < (I + 2 ) < '2 
21 n - 1 

n 

Using these inequalities, we can systematically find all possible 
combinations of , 1 and '2 for each of the possible values n = 2, 3, 4, 
and 5. It is not possible to have a digonal structure in which the two 
vertices of each face have different valencies; hence n 1 =1= 2. 

First, there are two different combinations of possible values of 
nl and n2 (n l = 1, n2 = 2; and nl = 2, n2 = 1) when n = 3. Figure 
12-2 shows triangular faces of a semiregular structure whose vertex 
valencies are 'a and 'b' If two vertices of every face have valencies 
'a' and the third vertex is 'b-valent, then every 'a-valent vertex is 
surrounded by a polygon whose vertices are alternatively 'a-valent 
and 'b-valent. Therefore 'a must necessarily be even, and hence, 
when n 1 = 1, '2 is even, whereas when n2 = 1, 'I is even. The pos
sible combinations of parameters are listed in Table 12-1; each cor
responds to a semiregular, face-stellated structure discussed in the 
previous pair of chapters. Especially interesting is the relation I = 3'2 
for the case nl = 2, n = 1, 'I = 4, which in one sweep generates all 
bipyramids, the trigonal bipyramid in particular corresponding to the 
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TABLE 12-1 
Possible Values for n I, n2, rl, r2, and I 

for Triangulated Structures Having Two Different Vertex Valencies 

n, n2 rl r2 Structure 

2 3 4 9 Triangular bipyramid (face-stella ted tri-
angle) 

6 18 Triakis (face-stellated) tetrahedron 

8 36 Triakis (face-stellated) octahedron 

10 90 Triakis (face-stellated) icosahedron (Fig. 
II-II) 

12 00 Face-stellated triangular tessellation (Fig. 
11-13) 

4 6 36 Tetrakis hexahedron (face-stellated cube) 
(Fig. 11-10) 

8 00 Face-stellated square tessellation (Fig. 
11-14) 

5 6 90 Pentakis (face-stellated) dodecahedron 
(Fig. 11-12) 

2 4 I = 3r2 Bipyramids (face-stellated dihedral poly-
gons) 

FIGURE 12-2 Structure having triangular 
faces and two possible vertex valencies 

first entry in Table 12-1. (Since it, of all bipyramids, has a polar 
valency less than that of the equatorial vertices, it made its appear
ance separately. The square bipyramid is a regular structure: the 
octahedron.) 

Thus we exhaust the structures having mutually equivalent tri
angular faces and two kinds of vertices. Structures having only tri
angular faces are called deltahedra. An enumeration of all possible 
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equilateral deltahedra has been given by Freudenthal and van der 
Waerden. 3 ,4 This enumeration differs from the present one in that 
faces do not need to be mutually equivalent, but we, on the other 
hand, do not require the faces to be equilateral. It should be noted 
that the values tabulated in Table 12-1 were found by ·solving equa
tion (12-2) without the restriction of mutual equivalence of the 
faces, but the interpretation as stellated regular structures does im
plicitly use that assumption. We shall return to the deltahedra when 
we consider more than two different valencies of vertices. 

For quadrilateral faces n = 4; there are three possible combi
nations of n 1 and n2 : (1, 3), (2, 2), and (3,1). The permitted solu
tions of equation (12-2) for each of these combinations are listed 
in Table 12-2. The fIrst structure listed is a new one, having twenty
four faces (it is an icositetrahedron), which could be generated either 
from the cube or from the octahedron by replacing each face by a 
vertex, and joining the new vertices to each other across the inter
vening edges. This is the special type of stellation corresponding to 
'Y = 0 in Fig. 10-2. It could also be considered as the superposition of 
two dual structures (cube and octahedron), causing new vertices to 
appear where their edges intersect. Such structures actually have 

TABLE 12-2 
Possible Values for n 1, n2,'l,'2, and 1 

for Quadrilateral Structures Having Two Different Vertex Types 

n1 n2 '1 '2 Corresponding st,ucture 

3 3 4 48 Trapezoidal icositetrahedron (Figs. 12-3 
and 12-4) 

2 2 3 4 24 Rhombohedral dodecahedron (Figs. 7-9 
and 8-5) 

5 60 Degenerate stellated icosahedron/pentag-
onal dodecahedron (Fig. 11-16) 
(rhombohedral triacontahedron) 

6 00 Degenerate stellated triangular/hexagonal 
tessellation 

3 3 1 
r2 = -I 

4 

3H. Freudenthal and B. L. van der Waerden: "Over een bewering van Euclides" (Simon 
Stevin, 25, 115-121). 

4 M. Walter: On Constructing Deltahedra, to be published. 
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three different sets of vertices: those of the original pair of duals, as 
well as the new quadrivalent ones at the edge intersections. The fact 
that one of this type of structure turns up when two vertex valencies 
are considered is caused by the tetravalency of the original octahe
dron vertices. Again, this is an illustration of the fact that nothing in 
the solution of equation (12-2) uses the assumption of equivalency 
of equi-valent faces or vertices (note that equivalent =1= equi-valent!). 
Williamss points out that the icositetrahedron of Fig. 12-3 may be 
transformed into another by slicing it into two halves, twisting these 
halves with respect to each other before reattaching them. Both 
icositetrahedral forms are shown as dual Schlegel diagrams in Fig. 
12-4. It is observed that the first form has six tetravalent vertices 
that are joined only to other tetravalent vertices, the remaining 
twelve being joined to two trivalent and two tetravalent vertices. In 

FIGURE 12-3 Icositetrahedron 

the second structure two tetravalent vertices are joined to four other 
tetravalent vertices each, the remaining sixteen having a single tri
valent and three tetravalent vertices. 

For n 1 = n2 = 2 we find the results of degenerate stellation of 
the respective pairs octahedron/cube (i.e., the rhombohedral dodeca
hedron), icosahedron/dodecahedron (i.e., the rhombohedral triaconta
hedron), and the triangular/hexagonal tessellations. 

5 Robert Williams: Natural Structure (Eudaemon Press, Moorpark, California, 1972). 
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.. 

1 

1 

FIGURE 12-4 Dual Schlegel diagrams of two icositetrahedral forms 

For nl = 3, n2 = 1 the sole solution is'2 = Y41, which corresponds 
to a significant family of structures not yet encountered here, called 
trapezohedra. They are illustrated in Fig. 12-5 in a Mercator projec
tion as well as in a dual Schlegel diagram. They can be described as 
having a staggered polygon as equator, having 2'2 edges. Alternate 
vertices of the equatorial polygon are joined to each of the two '2-
valent polar vertices;'2 may have any finite or infinite integral value; 
I must be an integral multiple of 4. 

The possible solutions of equation (12-2) for n = 5 are listed in 
Table 12-3. Two of the corresponding structures are tessellations. 
The one having both trivalent and tetravalent vertices may appear in 
two forms, depending on whether two tetravalent vertices are adja
cent to each other, or separated by a trivalent vertex. Both forms are 
illustrated in Fig. 12-6. 

.. 
FIGURE 12-5 Trapezohedron (a) Mercator projection (b) Dual Schlegel 
diagram 
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TABLE 12-3 
Possible Values for n 1, n2, rl, r2, and 1 

for Pentagonal Structures Having Two Different Vertex Types 

nl n2 rl r2 Corresponding structure 

3 2 3 4 00 Pentagonal semiregular tessellation (Fig. 
12-6) 

4 3 4 60 Pentagonal icositetrahedron (Fig. 12-8) 

4 3 5 150 Pentagonal hexecontahedron (Fig. 12-9) 

4 3 6 00 Skew pentagonal semiregular tessellation 
(Fig. 12-7) 

FIGURE 12-6 Two tessallations having nl =3, n2 =2, r1 =3, r2 =4 

The other tessellation is shown in Fig. 12-7. It is a new structure 
for us, and it has the following peculiarity. The trivalent vertices are 
of two different types, namely those joined to other trivalent ones 
only, and those that have one hexavalent and two trivalent neighbors. 
If we go around a pentagonal face in clockwise direction, then the 
valencies of its vertices are 63333. If we denote the single trivalent 
vertex joined to other trivalent vertices only by a prime, we have two 
possibilities: 633'33 and 6333'3. The latter combination corresponds 
to Fig. 12-7, the former to a mirror image of Fig. 12-7. This struc
ture therefore exists in two enantiomorphic manifestations: we call 
such a structure skew. 

The remaining two sets of parameters correspond to skew deriva
tives, respectively, of the cube (octahedron) and of the pentagonal 
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FIGURE 12-7 Tessellation having nl =4, n2=1,'1 =3, '2=6 

dodecahedron (icosahedron). Since they have, respectively, twenty
four and sixty faces, they are called icositetrahedron and hexaconta
hedron; they are illustrated in Figs. 12-8 and 12-9. Both have, in 
each pentagonal face, a single trivalent vertex connected to trivalent 
vertices only, from which they derive their skew nature. They both 
exist in enantiomorphic manifestations. 

FIGURE 12-8 FIGURE 12-9 
Pentagonal icositetrahedron Pentagonal hexacontahedron 
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These structures exhaust the possibilities for exactly two differ
ent vertex valencies. For th,ee different vertex valencies equation 
(9-5) becomes 

(12-5) 

For triangular faces n1 = n2 = n3 = 1. If we consider a triangular 
face whose vertex valencies are 'a. 'b. and 'c. then every 'a-valent 
vertex is surrounded by 'a triangles which constitute a stellated 'a
gon whose vertices have, alternately, the valencies'b and, c' There
fore 'a' and by an analogous argument'b and 'c' must be even. Thus 
'1. '2, and'3 in equation 02-5) must be even when n = 3. For the 
case'1 = 4, we find from equation 02-5) 

=l+~ < _1 
'3 4 f '2 '2 

:. '2 
8f 

< 1 + 12 ~ 8 

Thus, if'1 = 4,'2 could be either 6 or 8. However, if f = 00 and 
'2 = 8, then'3 = 8 = '2, which violates'2 =1='3, and hence re-
duces this case to one already considered (two different vertex valen
cies instead of th,ee). Therefore we are reduced to just three 
possible triangular structures, listed in Table 124, which are all edge
stella ted forms. 

4 

TABLE 12-4 
Triangulated Structures Having Three Different Vertex Valencies 

6 8 72 

10 180 

12 00 

Structure 

Edge-stellated cube/octahedron 
(hexakis octahedron or octakis hexa
hedron) (Fig. 11-3) 

Edge-stellated dodecahedron/icosahedron 
(hexakis icosahedron or decakis dodeca
hedron) (Fig. 11-4) 

Edge-stellated hexagonal/triangular tessel
lation (Fig. 11-5) 
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For quadrilaterally faced structures equation (12-5) becomes 

~+~+~=l+±-
'1 '2'3 I 

The inequalitY'1 <'2 <'3 then becomes, by solving for'3 in terms 
Of'l and'2, 

The extreme members of these inequalities yield: 

(1 + i)'1 < n1 + n2 + n3 = 4; 

hence'l = 3, and 

The extreme values of this inequality yield I> 12; the upper 
limit of the right-hand side of this inequality is 3(4 - n1 )/(3 - n 1 ). 

The value of nl is eithe, 1 0,2; when n 1 = 1,'2 is limited to 4, 
whereas when n 1 = 2,'2 may equal either 4 or 5. 

For n1 = 1: 

~+~=~+i 
4 '3 3 1 

There are now two possibilities: n2 = 1, n3 = 2, or n2 = 2, n3 = 1. 
The former combination limits'3 to values less than 5; since it must 
exceed '2 , this is not possible. Therefore, if n 1 = 1, then n2 = 2, 
n3 = 1, and hence 

61 
'3 = I + 24' 

These expressions limit'3 and 1 to two possibilities: '3 = 5, 1= 120, 
and'3 = 6, 1=00. 
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FIGURE 12·10 Three mutually 
equivalent faces joined at a trivalent 
vertex 

Figure 12-10 shows three mutually equivalent quadrilateral faces 
meeting at a trivalent vertex; the equivalence of the faces requires 
that 'a = 'c = 'e' and 'b = 'd = 't. The ftrst of these two sets of 
equalities implies that 'b =:/= 3, for if 'b = 3, then there are only two 
different vertex valencies on each face. However, if 'b =:/= 3, and 
nl = 2, then 'a = 'c = 3: but this again prevents the possibility of 
three separate valencies. Therefore n 1 *" 2, since its consequences 
are all inadmissible. We therefore conclude that there are only two 
possible quadrilaterally faced semiregular structures having three dif
ferent vertex valencies, as listed in Table 12-5. Both of these are an 
analogous to the superimposed duals illustrated in Fig. 12-3 generat
ing the icositetrahedron (deriving from Fig. 10-2 by letting 'Y vanish). 
We had already noted there that its quadrilateral faces have th,ee dif
ferent types of vertices, even though two of these types both have 

2 

TABLE 12·5 
The Two QuadriIateraUy Faced Semiregular Structures 

Having Three Distinct Vertex Valencies 

Structure 

3 4 5 120 Trapezoidal hexecontahedron 

6 00 Superimposed hexagonal/triangular 
tessellation 
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valency 4. The number of faces of this icositetrahedron equals the 
smallest number into which the numbers of faces of its component 
cube (six faces) and octahedron (eight faces) are divisible. It is not 
surprising, therefore, that the icosahedron (twenty faces) and 
dodecahedron (twelve faces) would generate a quadrilateral hexa
contahedron (sixty faces). Both structures listed in Table 12-5 are 
illustrated, one in Fig. 12-11, the other in Fig. 12-12 . 

FIGURE 12-11 Trapezoidal hexe-
contahedron 

. FIGURE 12-12 Tessellation 
resulting from the superposition of a 
triangular and hexagonal net 

It is interesting to consider the results of superimposing the regu
lar duals analogously. The digonal polyhedra and polygonal dihedra 
generate bipyramids having a divalent vertex on each equatorial edge; 
since we explicitly declared such structures as trivial derivatives of 
other structures, they were not generated separately in this chapter. 
Superposition of two tetrahedra produces a structure having eigh t 
trivalent vertices and six quadrivalent vertices-Le., our old friend, 
the rhombohedral dodecahedron, already generated. Two square 
tessellations superimpose to yield a square tessellation. 

For pentagonal structures having three different vertex valencies 
equation (12-5) becomes: 

The minimal value of the right-hand side of this equation is 3/2. The 
maximal value of the left-hand side occurs when n 1 = 3, n2 = n3 = I, 
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r1 = 3, r2 = 4, r3 = 5; the left side then equals 29/20, just short of 
the minimal value of the right-hand side. Therefore it is impossible 
to have pentagonal structures having more than two different ver
tices: tenns n4/r4 and ns /rs would further diminish the left-hand 
side of equation (12-5). 

With four different valencies one might have quadrilateral faces; 
equation (9-5) then becomes 

I + =I+i 
I 

The maximum value of the left-hand side of this equation is 57/60, 
just short of the minimal value of I for the right-hand side. We see, 
therefore, that we have thus exhausted all possible semiregular struc
tures having mutually equivalent faces. 

Summarizing, we have found in this exhaustive enumeration of 
semiregular structures: 

I. All edge-stella ted, face-stellated, and degenerate stellated 
regular structures found in Chapter II. 

2. The trapezohedra (Fig. 12-5). 
3. The dual superpositions (Figs. 12-3,124,12-11, and 12-12), 

corresponding to the special stellations for which 'Y vanishes 
in Fig. 10-2. 

4. A pair of pentagonal tessellations having rl = 3, r2 = 4 (Fig. 
12-6). 

5. The skew structures (Figs. 12-7, 12-8, 12-9). 

At the beginning of this chapter we said that, once the structures 
having mutually equivalent faces are found, their duals follow, to 
complete the enumeration of all semiregular structures. In Chapter 
lOwe found the duals of the stellated structures-namely, the trun
cated ones. The duals of trapezohedra are antiprisms, structures 
having two polygonal faces joined by triangular faces (Fig. 12-13); 
all vertices are tetravalent. 

The specially stellated fonns having 'Y = 0 were interpreted as 
superimposed dual pairs. The duals of these fonns correspond to 
special truncations, having c = 0 in Fig. 10-1. The resulting struc
tures have faces corresponding to the faces of both generating dual 
pairs, as well as quadrilateral faces corresponding to the edges of the 
generating pair. The duals of the icositetrahedra of Figs. 12-3 and 
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FIGURE 12-13 Pentagonal antiprism 

12-4 have eight triangular faces, corresponding to the eight octa
hedral faces, six quadrilateral faces, corresponding to the faces of the 
cube, and twelve additional quadrilateral faces corresponding to the 
cube/octahedron edges. The Schlegel diagrams of both forms are 
shown in Fig. 12-14; the dotted line denotes the plane along which 
the two halves would be severed prior to twisting the two halves in 
order to transform one structure into the other. This form is known 
as the small rhombicuboctahedron. 

(a) Small rhombicubocatahedron (b) Twist small rhombicuboctahedron 
FIGURE 12-14 Dual of icositetrahedral structure 

Analogously, the trapezoidal hexecontahedron will have a dual 
having twenty (icosahedral) triangular faces, twelve (dodecahedral) 
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pentagonal faces, and thirty quadrilateral faces corresponding to the 
edges of the generating duals; there are sixty quadriva1ent vertices 
(Fig. 12-15). Similarly, the tessellation of Fig. 12-12 has a dual, 
shown in Fig. 12-16, and the two tessellations of Fig. 12-6 have as 
duals the tessellations shown in Fig. 12-1 7. 

FIGURE 12-1S Dual of the trape-
zoidal hexecontahedron: the small 
rhom bicosidodecahedron 

FIGURE 12-16 Tessellation having 
quadrivalent vertices, triangular, quad
rilateral, and hexagonal faces 

FIGURE 12-17 Tessellations having pentavalent vertices, quadrilateral and 
triangular faces 
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The skew structures of Figs. 12-7, 12-8, and 12-9 also have duals, 
illustrated in Figs. 12-18,12-19, and 12-20, respectively. These duals 
are called snub polyhedra; they exist in enantiomorphic manifesta
tions. 

n-C~ 
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" \. r\ \. 
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~ r\.4 , 
I\l 

~ ~ ~ • ~ N \. 
~ ':\j ,. ~ ., \. ." J 

\. ~ 'V 

f\L ) 
\. ~ )kt 
~ \. l ~V ....... 

FIGURE 12-18 Snub tessella-
tion of triangles and hexagons, 
having pentavalent vertices 

FIGURE 12-19 Snub cube 

FIGURE 12-20 Snub dodecahedron 



12. ENUMERATION OF SEMIREGULAR 1WO-DIMENSIONAL STRUCTURES 109 

Thus we conclude the exhaustive enumeration and classification 
of semiregular structures; we have shown that, except for the skew 
forms and their duals, the snub forms, and for the single special 
pentagonal tessellation and its dual, they can be systematically 
related to the regular structures by the general truncations demon
strated in Figs. 10-1 and 10-2. 
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With the enumeration of all regular and semiregular cells and the 
rules for combining them into three-dimensional structures, we have 
completed the discussion of connectivities, and are ready to take 
actual distances into account. 

Consider an assembly of discrete points-for instance, all the 
churches of a given denomination, all elementary schools, or all sub
way stations in a city. It might be useful to subdivide the city into 
parishes, school districts, or subway districts in such a way that 
everyone living in a given district lives closer to the church, school, 
or subway station in his own district than to any other church, 
school, or subway station. The parish or district so defined is called 
a Dirichlet Domain; the church, school, or subway station is called 
its center. 

Generally, a Dirichlet Domain of a particular member of a set of 
discrete points is defined as that region which contains all locations 
closer to that particular point than to all other points of the set. We 
shall first consider Dirichlet Domains for points not regularly spaced, 
and then apply the discussion to regularly spaced arrays of points. 

1 Chapters 13 and 14 are adapted from a contribution to a Festschrift dedicated to Rudolf 
Arnheim on his seventieth birthday, 1974. 
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The construction of Dirichlet Domains depends on finding the 
locus of all points equidistant from two given points. This locus is 
the perpendicular bisector of the line joining the points (Fig. 13-1). 
This bisector divides the plane into two regions; within either region 
every location is closer to the particular one of the pair of points 
which that region contains than to the other point. 

In Fig. 13-2 there are three points, A, B, and C; the line segments 
AB, BC, and CA must all be perpendicularly bisected in order to 
divide space into the appropriate three domains. The bisector of AB 
is labeled ab, that of BC is labeled be, that of CA is labeled ea. All 
points on ab are equidistant from A and B, those on be are equidis
tant from Band C. The point of intersection of ab and be is there
fore equidistant from A, B, and C, hence lies on ea as well. This 
point, the intersection of all three bisectors, is called 0; it is the 
center of the circle passing through A, B, lmd C. Since A and Bare 
equidistant from ab, the angles which the lines OA and OB make 
with ab are equal; we shall call this angle 'Y. The angles a and ~ in 
Fig. 13-2 are defined analogously; a + ~ + 'Y = 180°. 

All locations 
closer to 
A than 
toB. 

All locations 
closer to B 
than toA. 

FIGURE 13-1 Dirichlet Domains 
of a pair of points 

FIGURE 13-2 Dirichlet Domains of 
three points 

My students raised the following question: Suppose that an an
cient map of church parishes were found; would it be possible to dis
cover whether these parishes were indeed laid out as Dirichlet 
Domains, and, if so, would it be possible to compute the location of 
the original parish churches? The answer to this question can be 
found in Fig. 13-2. If the point 0 is considered as the meeting point 
of three parishes, then the angles between ab, be, and ea can be 
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measured on the map; we shall call these angles a (between ea and 
ab), b (between ab and be), and e (between be and ea). The un
known angles are now ex, ~, and "Y; these indicate the directions in 
which to travel into each parish toward the supposed location of the 
parish church. From Fig. 13-2, 

ex + ~ = e 

~+"Y=a 

ex +"Y=b 

Since a + b + e = 3600 : 

ex = 1800 - a; ~ = 1800 
- b; "Y = 1800 - e 

By applying these expressions to each corner of every parish, 
lines can be drawn from these corners toward the potential location 
of the parish church. If these lines do indeed intersect in a single 
point for each parish, then every parish has the shape of a Dirichlet 
Domain, and one might initiate a "dig" at the points of congruence! 

If it is desired to divide a plane into Dirichlet Domains belonging 
to four points, there is generally no single point, equidistant from all 
four points, where the four domains could all meet. Only in the ex
ceptional case where the four given points happen to lie on a com
mon circle would the four domains meet at a single point. In Fig. 
13-3 six lines are drawn, perpendicularly bisecting each of the six 
connections between the four points A, B, C, and D. These six bi
sectors generally intersect each other in four different points; each of 
these four points is equidistant from a particular set of three out of 
the four original points A, B, C, and D, and is labeled accordingly 
with three lower-case characters. In Fig. 13-3 the lines ab and be 
constitute part of the domain boundaries around point B. However, 
their intersection, the point abc, is closer to D than to B; the bisector 
bd passes between B and abc. 

The point abc, as a matter of fact, lies inside the domain of D! 
In general, the Dirichlet Domain of any point is bounded by the 
innermost track that can be constituted out of bisector lines sur
rounding the point. Note that, analogously, the point aed, equidis
tant from A, C, and D, lies inside the domain of B, to which it is 
closest. However, the points abd and bed do represent meeting 
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FIGURE 13-3 Dirichlet Domains of four points 

points of the domains of the three points from which they are equi
distant. 

The concept of the Dirichlet Domain can be used to define near
est neighbors in a set of discrete points: nearest-neighbor points are 
those points only whose Dirichlet Domains share a boundary. In 
Fig. 13-3 the points Band D are nearest neighbors, whereas A and C 
are not. Of course, A and B, Band C, C and D, and D and A are also 
nearest-neighbor pairs. 

Bici Pettit has used these principles to draw school districts in 
Cambridge, Massachusetts (Fig. 13-4). With a single exception three 
domains meet each other at each vertex. In one exceptional instance 
there is a quadruple meeting point. This quadruple point, being 
equidistant from four schools, lies at the center of a circle which 
happens to pass through four schools simultaneously. 
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The infmitely extended plane may be subdivided into mutually con
gruent regions. We have already found restrictions on the valencies 
of the faces and vertices of such tessellations; if we wish all vertices 
to have identical valencies, and also require all faces to have identical 
valencies, we are limited to triangular, quadrilateral, and hexagonal 
faces, and respective vertex valencies of 6,4, and 3. The further 
requirement that these faces be mutually congruent may impose 
additional restrictions, which we shall now investigate. It is easy to 
see that equilateral (equal edge length) faces having all angles equal 
to each other will satisfy the condition of fIlling the plane. However, 
this condition is more restrictive than necessary for congruency. 

The plane can be fIlled with mutually congruent parallelograms, 
whose edge lengths need not all be the same, and whose angles are 
generally not all equal to each other. This does not imply, though, 
that parallelograms are Dirichlet Domains. By definition, Dirichlet 
Domains are plane fIllers: any location within a Domain must lie 
closest to some Domain center than to all others, hence every point 
in the plane must belong to one Domain or the other. Although 
Dirichlet Domains are plane fillers, however, not all plane fillers are 

117 
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necessarily Dirichlet Domains. We shall therefore ftrst examine some 
of the requirements that make polygons plane fIllers, and next find 
the requirements that, in addition, make such polygons Dirichlet Do
mains. 

The plane may be fIlled by mutually congruent parallelograms of 
any size or shape whatever. Every parallelogram may be divided 
diagonally into two triangles. Therefore, every triangle is a plane 
ftller, for it can always be combined with its replica into a parallelo
gram which is in turn replicated to fill the plane. It is not so easy to 
see that any quadrilateral, not necessarily a parallelogram or square, 
is a plane filler. In Fig. 14-1 we show an arbitrary quadrilateral to
gether with its replica rotated 1800 about a point at the center of 
one of its edges. If points are chosen on the centers of edges of all 
quadrilaterals so generated, an inftnite array of quadrilaterals results 
which covers the plane without leaving any gaps or overlaps (Fig. 
14-2). Thus we have demonstrated that any quadrilateral is a plane 
ftller. Figure 14-3 demonstrates, moreover, that the quadrilateral 
need not be convex. 

l"'-" , .......... , .......... 
I . 

I , , 

FIGURE 14-1 
A quadrilateral 

-" 
I 

I 
I 

FIGURE 14-2 
Quadrilateral plane filling 

Since pairs of adjacent quadrilaterals in Fig. 14-2 together consti
tute a hexagon, arbitrary except for the requirement that its six 
edges constitute three parallel pairs of opposite edges of equal length, 
it is seen that such hexagons are also plane ftllers. 
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FIGURE 14-3 Quadrilateral plane filling: the quadrilateral does not need to 
be convex! 

We shall now explore the additional constraints imposed by the 
requirement that the faces of the tessellations be Dirichlet Domains. 
From the construction of Dirichlet Domains demonstrated in 
Chapter 13 it follows that every Domain must contain a center such 
that every edge perpendicularly bisects a line joining centers in mu
tually adjacent Domains. For a general triangular tessellation the 
Domain centers may be chosen equidistant from the vertices of the 
corresponding Domain-Le., at the intersection of the perpendicular 
bisectors of its edges (Fig. 144). In adjacent domains congruency of 
the triangles ensures equidistance of the centers from the common 
boundary; therefore the edges perpendicularly bisect a line joining 
adjacent Domain centers. Thus any triangle satisfies the requirement 

FIGURE 14-4 Adjacent triangular Dirichlet Domains 
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of a Dirichlet Domain, as long as the perpendicular bisectors of its 
edges intersect inside the triangle-in other words, as long as none of 
its angles exceeds 90°. We saw in Chapter 9 that a triangular tessella
tion requires 6-valent vertices, hence six triangular Dirichlet Domains 
must meet at each vertex. 

The centers of an array of triangular Dirichlet Domains consti
tute vertices of a structure dual to that of the Domains (Fig. 14-5). 
Since the edges of the dual structures mutually perpendicularly bi
sect each other, the hexagonal faces defined by the centers of the 
triangular Domains also satisfy the requirements of Dirichlet Do
mains. Therefore these dual triangular and hexagonal structures bear 
the remarkable relationship to each other that the Domain centers of 
one constitute the vertices of the other, and vice versa. We observe 
that the triangular faces can be quite generally chosen, the only re
striction being that the angles may not exceed 90°; the hexagonal 
faces necessarily have pairs of parallel edges of equal length, and their 
vertices must lie on a common circle whose center is the Domain 
center. 

FIGURE 14·5 
A triangular array of Dirichlet Domains, and its dual structure, a hexagonal array 
of Dirichlet Domains 

Finally, we shall consider whether any quadrilateral can be used 
as a Dirichlet Domain. Figure 14-6 shows a pair of mutually con
gruent Dirichlet Domains, PQRS and TUSR, in plane-filling juxta-
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position, their centers being A and B, respectively. We recall (cf. 
Fig. 14-1) that these two domains are related by a 1800 rotation 
about a point at the center of line segment RS, The line AB there
fore bisects RS. From the definition of Dirichlet Domains we al
ready know that RS perpendicularly bisects AB. Since, therefore, 
AB bisects RS, and also is perpendicular to RS, AB and RS are 
shown to be each other's perpendicular bisectors. By repeating 
analogous arguments for each of the other domain boundaries, we 
prove that A must lie at the intersection of the perpendicular bisec
tors of its edges. The requirement that a quadrilateral be a Dirichlet 
Domain is therefore that its vertices lie on a common circle . 

..... - ...... 

• .. 
FIGURE 14-6 
Quadrilateral Dirichlet Domains and their duals: A is the domain center for 
PQRS, while R is the domain center for ABeD 

Again we note that the centers of a quadrilateral array of Dirich
let Domains (A, B, C, and D in Fig. 14-6) themselves constitute the 
vertices of a dual quadrilateral array, whose faces also satisfy the 
requirements for a Dirichlet Domain. We have thus shown that a 
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polygon must satisfy the following requirements in order to be a 
Dirichlet Domain: 

1. Its vertices must lie on a common circle. 
2. Its edge valency is limited to values n = 3, 4, or 6. 
3. If it is hexagonal, pairs of opposite edges must be parallel and 

equal in length. 

Furthermore, we have shown that a tessellation of the plane into 
Dirichlet Domains has a dual tessellation whose vertices constitute 
the centers of the original Domains, and whose faces are Dirichlet 
Domains having as centers the vertices of the original Domains. 



A 15 

A lattice is an array of points each of which has identical environ
ment in identical orientation. The points of a lattice are related to 
each other by a translation: by moving the entire lattice parallel to 
itself through an appropriate distance it can be brought into coinci
dence with itself (cf. Fig. 15-1). It follows that a lattice is infinite in 
extent. The points of any planar lattice may constitute the centers 
of hexagonal Dirichlet Domains; we saw in the previous chapter that 
such Domains necessarily have paired equal and parallel opposite 
edges (Fig. 15-2). Each lattice point therefore generally shares 
Dirichlet Domains with six other lattice points, hence has six near 
neighbors. 

\ 
FIGURE 15-1 
A lattice (the arrows denote dis
placements possible for the entire 
lattice to be brought into coinci
dence with itself) 

A 

FIGURE 15-2 Lattice and its Dirichlet 
Domains (cf. Fig. 14-5) 

123 



124 SPACE STRUcrURES: THEIR HARMONY AND COUNTERPOINT 

The vertices of the hexagonal Dirichlet Domains do not together 
constitute a single lattice; they do have identical environments, but 
the orientation of the environment of half of the vertices is opposite 
to that of the other half. These vertices therefore belong to two 
distinct lattices, labeled A and B in Fig. 15-2. Points whose environ
ments are identical except possibly for orientation are said to con
stitute a lattice complex. The points marked A and B in Fig. 15-2 
together constitute a lattice complex. 1 

We showed in the previous chapter that Dirichlet Domains occur 
in dual pairs, the centers of one set constituting the vertices of the 
other set. This is also the case in Fig. 15-2: the points A and B con
stitute the centers of triangular Dirichlet Domains whose vertices 
constitute the original lattice. The triangles of this lattice were 
chosen arbitrarily. If they had been equilateral, their dual Dirichlet 
Domains would have been regular hexagons-i.e., hexagons whose 
edges have constant lengths and whose angles are all 1200 • 

If the lattice is specialized in that one of the angles of its triangles 
equals 900 , then the points A and B coincide on the triangles' hy
potenuses (Fig. 15-3). The Dirichlet Domains of such a rectangular 
lattice are rectangles (the shortest sides AB of the hexagonal domain 
in Fig. 15-2 having vanished), so that each lattice point now has four 
instead of six nearest neighbors. The dual pairs of Dirichlet Domains 
are, for this special case, all mutually congruent rectangles. 

, • • • • 

• • • • • 

• • • • • 

• • • • • 

• • • • • 

• • • • • 
FIGURE IS-3 Rectangular lattice, rectangular Dirichlet Domains 

J Cf. W. Fischer, H. Burzlaff, E. Hellner, and J. D. H. Donnay: Space Groups and Lattice 
Complexes (U.S. Department of Commerce, 1973). 
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If the triangle, in addition to having a right angle, is also isosceles, 
the Dirichlet Domains all become squares. We may distinguish be
tween Dirichlet Domains whose shape is regular (equilateral triangle, 
square, or 1200 equilateral hexagon), and those whose Dirichlet 
Domains are not. The difference between these classes is that the 
regular Domains have a uniquely fixed shape (only their scale is arbi
trary), whereas the irregular domains have at least one variable-e.g., 
the ratio of two edge lengths or an angle, which can be set arbitrarily. 

In three dimensions one may analogously define Dirichlet Do
mains appropriate to various lattices. Here the Domains are cells in 
space; by definition these cells must fill all of space, and, since their 
centers constitute a lattice, they must be mutually congruent. A cell 
whose replicas together may fill all of space is called a space filler. 
Space fillers are not necessarily regular polyhedra: the cube is the 
only regular space filler. The structure generated by filling space 
with cubes is also regular: all edges have s = 4, and all vertices have a 
valence of 6 toward edges, 12 toward faces, and 8 toward cells. In 
the next chapter we shall find other space fillers and the lattices with 
which they are associated. 
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In the previous chapter we defined a space fIller as a cell whose repli
cas together can fIll all of space without having any voids between 
them. We saw that all Dirichlet Domains are space fillers, but that 
not all space fillers are necessarily Dirichlet Domains. 

In the plane we found a triangle, a quadrilateral and a hexagon 
having paired parallel edges of equal length which may serve as 
Dirichlet Domains. We found three lattice complexes whose 
Domains have uniquely determined shapes without arbitrary 
parameters: a triangular lattice (hexagonal Domains), a square lattice 
(square Domains), and a hexagonal lattice complex (triangular 
Domains). Since several directions in such lattices and complexes 
are equivalent, they are called isometric. 

There are three isometric three-dimensional lattices, which derive 
their names from the directions of the shortest vectors that bring 
them into coincidence with themselves (Fig. 16-1). In the primitive 
cubic lattice there are six such vectors, three mutually perpendicular 
pairs, directed along the edges of stacked space-filling cubes. In the 
body-centered lattice there are eight such vectors, directed toward 
the centers of eight cubes meeting at any lattice point. The body
centered lattice can be thought of as constituting both the vertices 
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Primitive 

FIGURE 16-1 Translation vectors in primitive, body-centered, and face
centered lattices 

and centers of stacked space-filling cubes; it is well to remember, 
however, that all these vertices are mutually equivalent, and that it 
is purely arbitrary which are considered vertices, and which cell 
centers. 

In the face-centered lattice the shortest vectors that bring the lat
tice into coincidence with itself are directed from a vertex of stacked 
space-filling cubes to each of the centers of the twelve cube faces 
meeting at any vertex. Again, it should not be forgotten that alllat
tice points are equivalent, and that the reference to the cell and face 
centers of a set of stacked cubes is a purely artificial one, brought 
about by the crystallographers' preoccupation with the cube. We 
have seen that the cube, unlike the octahedron and tetrahedron, is 
not a stable configuration, hence not likely to be a natural building 
block. The face-centered lattice could equally well be described by 
the twelve vertices emanating from the center of a cube to the cen
ters of each of its twelve edges; this description is entirely equivalent 
to the one given above, and would give rise to the name edge-cen
tered rather than face-centered lattice. Much more fundamental 
is the relationship between each lattice and its associated Dirichlet 
Domain, which we shall now explore. 

The Dirichlet Domain of a primitive cubic lattice is itself a cube. 
The vertices of the stacked cubes constitute a primitive cubic lattice 
dual to that constituted by the centers of the cubic cells: we have 
seen that a structure consisting of stacked cubic cells filling all of 
space is self-dual (Chapter 9). 
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When a lattice-point in the body-centered cubic lattice is joined 
to eight neighbors in the directions of the four body diagonals of the 
cube, and the joining lines are perpendicularly bisected, the bisecting 
planes together constitute an octahedron centered on that lattice 
point. However, the vertices of such an octahedron lie closer to six 
other lattice points than to the central one; therefore the octahedron 
fails as a Dirichlet Domain (Fig. 16-2). Recalling that the Dirichlet 
Domain is the innermost region enclosed by perpendicular bisectors 
of edges joining all neighbors, we bisect perpendicularly also the six 
edges in the primitive cubic lattice (along the direction of cube 
edges). These bisector planes truncate the octahedron previously 
obtained: the Dirichlet Domain of the body-centered cubic lattice is 
a truncated octahedron whose edges all have equal edge length, 
whose six quadrilateral faces are squares, and whose eight hexagonal 
faces are regular. Such a truncated octahedron, being a Dirichlet 
Domain, is accordingly a space filler. It is a semiregular polyhedron: 
all vertices are equivalent. Notable also is that in the space-fIlling 

FIGURE 16·2a The hexagon lies in 
a plane perpendicularly bisecting a line 
joining points A and B of a body-cen
tered cubic lattice. Thus one octant of 
the Dirichlet Domain is formed. 

FIGURE 16·2b When a point in a 
body-centered cubic lattice is joined to 
eight other points located at cubic ver· 
tices around the central point, eight 
octants like Fig. 16·2a are joined to 
form a cuboctahedron. 

FIGURE 16·2 Construction of a Dirichlet Domain of the body-centered 
cubic lattice. 
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structure made up of truncated octahedron all edges are mutually 
equivalent. Their valency s equals 3. Whereas in an individual trun
cated octahedron there are two distinct kinds of edges-namely, 
those joining a square to a hexagon and those joining two hexagons 
together-the three-dimensional structure is constituted such that 
each edge joins two hexagonal faces and one square one. Thus, in 
the truncated-octahedron space fIlling all cells are mutually equiva
lent, as are all vertices and all edges, but there are two kinds of faces. 

From the equations derived in Chapter 4 we can find the valen
cies describing truncated-octahedron space filling. For the truncated 
octahedron k = 14, 1= 36, m = 24. Hence, from equation (4-13): 
Ii = 5117. From equation (4-14): p/q = 3/2. From equation (4-11): 
p = 6, hence q = 4; and, from equation (3-5): r = 4. Thus we see that 
all vertices have the lowest valencies possible in a three-dimensional 
structure; this type of space fIlling and the body-centered cubic 
lattice constituted by the centers of the cell therefore are very com
mon. l The vertices of the space-filling structure are mutually equiva
lent, but their environments are in different orientations. They do 
not constitute a lattice, but a lattice complex whose importance has 
been stressed by Hellner et al. 2 The body-centered cubic lattice, 
when each lattice point is joined to its fourteen near neighbors by 
edges perpendicular te its fourteen Domain faces, is dual to the 
above-mentioned lattice complex in the sense of three-dimensional 
duality discussed in Chapter 7. 

When a lattice point in the face-centered lattice is joined to its 
twelve nearest neighbors in the face centers, and the joining edges are 
bisected, a Dirichlet Domain results in the form of a rhombohedral 
dodecahedron, having k = 12, m = 14, I = 24, n = 4. This dodeca
hedron is, accordingly, a space filler, whose centers constitute the 
face-centered cubic lattice. All faces are mutually equivalent, as are 
all edges, which have s = 3. From equation (4-11), P = 8; from equa
tion (4-12), f= 51h ; and from equation (4-14): lj = 42h. The do
decahedral space-fIlling structure has two types of vertices, corre
sponding to the 4-va1ent and 3-valent vertices of the dodecahedral 
cell. We recall that the rhombohedral dodecahedron is the degen
erately stellated form of the cube and the octahedron. Accordingly, 
we can visualize the dodecahedral space-fIlling structure in relation to 

1 Cf. Cyril S. Smith: in Hierarchical Structures, L. L. Whyte, A. G. Wilson, and D. Wilson, 
eds. (American Elsevier, New York, 1969). 

2Cf. W. Fischer, H. Burzlaff, E. Hellner, and J. D. H. Donnay: Space Groups and Lattice 
Complexes (U.S. Department of Commerce, 1973). 
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the cubic one as follows. Every cubic cell is surrounded by six ad
joining adjacent cells. Each of these six cells may be subdivided into 
six pyramids, each having as base a cube face, as apex the center of 
the cubic cell. 3 By subdividing half of the cubic cells in a cubic 
space-mling structure into six pyramids, and adding these pyramids 
to the adjacent intact cubic cells, we stellate the latter into dodeca
hedral cells, creating the dodecahedral space-mling structure (Fig. 
16-3). The volume of each cell exactly equals twice that in the cubic 
space-filling structure. The dodecahedral structure has vertices at the 

FIGURE 16-3 Cubic stellation to dodecahedron 

centers of the former cubic cells; for these vertices, accordingly, 
r = 8, q = 6, p = 12. Remembering that the rhombohedral dodeca
hedron is also a stella ted form of the octahedron, we can consider 
the rhombohedral dodecahedral cell as made up of an octahedron 
with eight triangular pyramids added to its faces to accomplish the 
stellation. Four of such pyramids, when joined at their apex, consti
tute a regular tetrahedron. Accordingly, those vertices corresponding 
to the 3-valent vertices of the rhombohedral dodecahedral cell could 
also be considered as the centers of tetrahedral cells in combined 
octahedron/tetrahedron packing. Accordingly, these vertices have, 

3Cf. "Coupler," in R. Buckminster Fuller, with E. J. Applewhite and A. L. Loeb: Syner
getia (Macmillan, New York, 1975), pp. 541-549. 
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in dodecahedral space filling, r = 4, q = 4, p = 6. In a dodecahedral 
space-filling structure we have accordingly cubically coordinated 
vertices having r = 8, q = 6, p = 12, and tetrahedrally coordinated 
vertices having r = 4, q = 4, p = 6. To arrive at the average values 
computed above to be r = 5113, q = 4213 , p = 8, we conclude that the 
tetrahedrally coordinated vertices must be twice as numerous as the 
cubically coordinated ones. 

We have thus established a connection between the lattices so 
familiar to the crystallographer and the space-filling polyhedra. The 
significance of the vertices of these polyhedra in systematic crystal
lography has been pointed out by the author.4 

Other polyhedra significant in space structures are the coordina
tion polyhedra: these describe the configuration made by nearest 
neighbors around a central lattice point. A coordination polyhedron 
is defined as a polyhedron whose center is a lattice (complex) point, 
and whose vertices are the centers of Dirichlet Domains sharing a 
face with the Domain of the given lattice (complex) point. In a 
primitive cubic lattice the Dirichlet Domain is a cube, which shares 
six faces with adjacent Domains. Accordingly, the coordination 
polyhedron in a primitive cubic lattice has six vertices: it is an octa
hedron. 

In a body-centered cubic lattice the Dirichlet Domain is a trun
cated octahedron: there are fourteen nearest neighbors, of which six 
share a square face, eight a hexagonal face with the central cell. The 
coordination polyhedron is, accordingly, a rhombohedral dodeca
hedron, which thus functions as coordination polyhedron in the 
body-centered cubic lattice as well as a Dirichlet Domain in the face
centered cubic lattice. 

The face-centered cubic lattice has a twelve-faced Dirichlet Do
main. Its coordination polyhedron is the cuboctahedron, which has 
twelve vertices. It should be noted that in the primitive and in the 
face-centered cubic lattice the Dirichlet Domain and coordination 
polyhedron are each other's duals, but in the body-centered lattice 
they are not. It is therefore not generally true that Dirichlet Domain 
and coordination polyhedron are dually related. 

The possibility of fIlling spaces with a combination of octahedral 
and tetrahedral cells was alluded to above. For a further discussion 
of such mixed space filling, cf. A. L. Loeb, "Contributions to R. 
Buckminster Fuller's Synergetics," pp. 836-855 (Macmillan, 1975). 

4 A. L. Loeb: J. Solid State Chern. 1, 237-267 (1970). 
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The primitive, body-centered, and face-centered lattices are the only 
isometric ones in three dimensions: their Dirichlet Domains-respec
tively, the cube, truncated octahedron, and rhombohedral dodeca
hedron-fill space; all three have the maximum symmetry. There are, 
in addition, interesting lattice complexes whose Dirichlet Domains 
also, of course, fill space. Since the environments of lattice-complex 
points are identical, but not necessarily oriented parallel, their 
Dirichlet Domains will combine in various orientations to fill space, 
and have lower symmetry than those of lattice points. 

First consider the so-called J-complex. Again it derives its name 
from the crystallographers' preoccupation with the cube as a frame 
of reference: the points of a J-complex occupy the centers of faces 
(but not the vertices) of space-filling stacked cubes, thus assuming 
the familiar jackstone configuration (Fig. 17-1). 

In this case the reference to stacked cubes provides a real con
venience. If each of the cubes is divided into six pyramids meeting at 
the cube center, each having as base a square face of the cube, then 
each of the points of the J-complex lies in the base of one of these 
pyramids. Each point of the J-complex thus finds itself at the center 
of a square bipyramid, which happens to be its Dirichlet Domain. 

133 
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This Domain is an octahedron, but not a regular one; it is, however, a 
space filler. The geometry of this space-filling octahedron is quite 
interesting, and merits some special attention. Whereas the regular 
octahedron has three equally long body diagonals, the space-filling 
octahedron has one body diagonal shorter than the other two. Re
calling that the space-filling octahedron consists of two square pyra
mids, each constituting one-sixth of a cube, we see that the length of 
its shortest body diagonal equals the edge length of the cube from 
which it was generated, which also equals the length of those edges 
of the space-filling octahedron that are perpendicular to this shortest 
diagonal. If we call this length unity, and realize that the other two 

/ • / , 
i 
, 

I' 
• \/ 

-I - --- __ -L _____ . 

,'J .1 , 
j -

/ 
, 

/ • 
FIGURE 17-1 Points of the I-lattice complex related to the cube 

body diagonals of this space-filling octahedron are the face diagonals 
of the generating cube, we find for the ratio of the lengths of the 
body diagonals of the space-filling octahedron the value I ..;- y'f. The 
four edges perpendicular to the shortest diagonal have length unity; 
the other eight, being half of the body diagonals of the generating 
cube, have length liz J3. To fill space with these octahedra they 
have to be stacked in three different orientations, with their shortest 
body diagonals mutually perpendicular. Recalling the construction 
of the rhombohedral dodecahedron by degenerate stellation of the 
cube, we realize that six space-filling octahedra, meeting at one end 
of this short diagonal, together form a rhombohedral dodecahedron, 
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each rhombic face containing two triangular faces of the octahe
dron. l 

The angles of these space-filling polyhedra are also of interest. 
The rhombohedral dodecahedron has acute angles at its 4-valent 
vertices, and obtuse ones at its 3-valent vertices. Since the three 
edges meeting at a 3-valent vertex are not coplanar, but make equal 
angles with each other, each obtuse angle is less than 1200 , but 
greater than 900 • The acute angle is the smaller angle between two 
body diagonals of the cube. Since the acute and obtuse angles in 
each rhombic face of the dodecahedron must add up to 1800 , these 
angles in fact are the smaller and larger angles between body diag
onals of the cube. In Fig. 17-2 we show a diagonal cross section of 
the cube, including the intersection of its body diagonals. If we 
call the smaller angle between these 5, it follows that 

:. cos 5 = I - 2 sin2 (~ 5) = ~ 

FIGURE 17-2 Diagonal cross-section of the cube showing the intersection of 
two body diagonals 

I Cf. "Coupler," in R. Buckminster Fuller, with E. J. Applewhite and A. L. Loeb: Syner
getics (Macmillan, New York, 1975), pp. 541ff. 
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The angle ~ equals, in fact, a bit less than 71 0, but it is more impor
tant to recall it as the angle whose cosine equals one-third. The 
angles of the rhombohedral dodecahedron are therefore those whose 
cosines equal + 1/3 and - 1/3; the angles of the space-filling octahe
dron at each end of the short diagonal also have their cosine equal to 
1/3. (Of course, the angles of the regular octahedron have their co
sine equal to 112.) 

It is recalled that degenerate stellation of the tetrahedron yields a 
hexahedron-i.e., in the regular case a cube. This relation of the 
tetrahedron to the cube is shown in Fig. 17-3; the center of this 
tetrahedron coincides with that of the cube. It has been shown that 
the tetrahedron occupies exactly one-third of the volume of the cube 
in which it is inscribed. 2 From this juxtaposition of cube and tetra
hedron one sees that the directions of lines joining the center of a 
tetrahedron to its vertices are the same as those of the body diagonal 
of the cube. The angle sub tended by its vertices at the center of a 
regular tetrahedron is therefore also the one whose cosine equals 
- 1/3. When lines joining the vertices of a regular tetrahedron to its 
center are extended until they meet the faces of the tetrahedron, 
they meet these faces perpendicularly. The angle between the faces 
themselves is therefore the angle ~, whose cosine equals + 1/3. This 
angle, besides 90° and 60°, occurs and re-occurs in space structures. 
Because of the unfortunate choice of the unit of angle, it does not 
have a nice round value, with the result that it is not as familiar as 

FIGURE 17-3 Tetrahedron inscribed in a cube 
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the other two. This lack of familiarity has been a handicap to the 
designer; it is hoped that this discussion illuminates some properties 
of this important angle. 

The proof that the inscribed tetrahedron occupies one-third of 
the volume of the cube depended on the realization that the four 
portions of the cube outside this tetrahedron are octants of the octa
hedron. 2 Regular octahedra and tetrahedra of equal edge length to
gether fill space in numerical ratio I + 2; since a cube is a space filler 
and consists of a tetrahedron plus a half-octahedron, this ratio is evi
dent. Analogously, the rhombohedral dodecahedron is a degenerate 
stellated octahedron, consisting of an octahedron with eight triangu
lar pyramids stuck on its faces; four of such pyramids together con
stitute a regular tetrahedron. Thus again the ratio of one octahedron 
to two tetrahedra prevails, because the rhombohedral dodecahedron 
fills space, and consists of one octahedron plus eight quarter-tetra
hedra. 

Since regular octahedra and tetrahedra combine to fill space, and 
since a space-filling, non-regular octahedron has also been found, one 
naturally wonders if a non-regular space-filling tetrahedron also 
exists. That the answer is affirmative can be seen by dividing the 
space-filling octahedron into four mutually congruent tetrahedra 
which join along the short diagonal of the octahedron. The short 
diagonal of the space-filling octahedron and an edge perpendicular to 
it constitute two edges of equal length of the space-filling tetrahe
dron. The remaining four edges of the tetrahedron are also of equal 
length, but 1h..j3 times as long as (in other words, shorter than) the 
first two. The angles are, again, ~ and (900 - 1/2 ~). 

The irregular octahedron does not, by filling space, form a regu
lar structure, for there are two types of vertices. Those at the ends 
of the short body-diagonal will, in the space-filling structure, have 
valencies r = 8, p = 12, q = 6. Those at the corners of the square 
equators have: r = 14, P = 24, q = 12. Since there are equal numbers 
of each type of vertex (the crystallographer would call this the caesium 
chloride structure, in which each vertex is surrounded by eight ver
tices of the other type, at the corners of a cube), r = 11, P = 18, 
q = 9. The cell valencies are n = 3, m = 6, I = 12, k = 8, and hence 
s = 36/11. In the space filling structure the edges converging at the 

2 A. L. Loeb, "Contributions to R. B. Fuller's Synergetics" (Macmillan, New York, 1975), 
pp. 832-836. 
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vertices having r = 8 have s = 3; the others have s = 4. Therefore the 
two types of edges occur in the ratio of 8 of the former to 3 of the 
latter. 

Finally, a lattice complex of special interest is the D-complex, 
which derives its name from the diamond structure. This structure is 
characterized by the fact that each of its points is surrounded by 
four nearest neighbors in directions making equal angles with each 
other. To visualize its Dirichlet Domain, consider a truncated tetra
hedron: it has four hexagonal and four triangular faces (cf. Chapter 
10), and in this case all its edges are equal in length. This polyhedron 
is not a space fIller, hence by itself does not constitute a Dirichlet 
Domain. It combines with tetrahedra of equal edge length to fill 
space, the tetrahedra sharing their faces with the triangular faces of 
the truncated tetrahedron. 3 Another way of looking at this space
filling mode is to have truncated tetrahedra stacked with their hexag
onal faces in contact; their centers constitute the D-Iattice complex, 
but there are tetrahedron-shaped interstices between them. We have 
seen that a regular tetrahedron may be subdivided into four triangu
lar pyramids whose apices are at the center of the tetrahedron. If we 
allocate a quarter of each tetrahedral interstice to each of the four 
truncated tetrahedra between which the interstice is located, we in 
fact stellate the triangular faces of the truncated tetrahedra to make 
them into Dirichlet Domains.4 

3 A. L. Loeb, "Contributions to R. B. Fuller's Synergetics" (Macmillan, New York, 1975), 
pp. 842,843. 

4Cf. A. L. Loeb,1. Solid State Chern. 1, 237-267 (1970); R. Buckminster Fuller, with E. J. 
Applewhite and A. L. Loeb: op. cit., p. 874. 
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In the previous chapters we discussed isometric lattices and their 
space-filling Dirichlet Domains. When these lattices are distorted by 
stretching the translation vectors differently in different directions, 
the Domains could be proportionately distorted, and still be space 
fIllers. The Domains of the lattices would still be mutually congru
ent. However, the Domains of the lattice complexes would be 
stretched or compressed differently if originally they had been dif
ferentlyoriented. For instance, the space-fIlling octahedron has to 
be oriented in three different directions to fIll space. If the spacing 
of the points of the J-complex, being at the centers of the octahe
dra, is altered differently in different directions, then some octahedra 
will be squashed or stretched along their polar axis, while others have 
their equators deformed instead. 

More important, however, these space-fIlling Domains will no 
longer be Dirichlet Domains of the corresponding lattices, because 
their faces are no longer perpendicular to the edges joining lattice 
points. 

We shall here examine what happens to the Dirichlet Domains of 
the isometric lattices when they are distorted differently in three 
mutually perpendicular directions, thus becoming orthorhombic. 
These lattices have two arbitrary parameters: the ratios of lattice 

139 
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spacings in the mutually perpendicular directions. The principal 
reason for our present interest in these particular lattices (the ortho
rhombic system does have additional lattices) is the transformation 
which the Dirichlet Domains experience as the arbitrary parameters 
are varied. 

First, let us consider a primitive orthorhombic lattice in a Carte
sian coordinate system so that there is a lattice point at the origin 
(0,0,0), and the nearest six lattice points are at (±2a, 0, 0), 
(0, ±2b, 0) and (0, 0, ±2e), where a ~ b < e. Twelve additional 
nearby lattice points occur at (±2a, ±2b, 0), (±2a, 0, ±2e), and 
(0, ±2b, ±2e); these mayor may not affect the shape of the Dirichlet 
Domain. Planes equidistant from the origin and from its nearest 
neighbors have the equations x = ta, y = ±b, and z = ±e. They con
stitute a rectangular prism. The additional twelve points will con
tribute to the Dirichlet Domain if the bisector planes of straight lines 
joining each to the origin penetrate inside said prism. The coordi
nates of any point (x, y, z) equidistant from the origin and from 
(20, 2b, 0) obey the equation 

That is, 

This plane just touches, but does not penetrate, the rectangular 
prism, so that lattice point (20, 2b, 0) does not directly affect the 
Dirichlet Domain. By a similar argument all other points besides 
(±2a, 0,0), (0, ±2b, 0) and (0,0, ±2e) are eliminated: the inner poly
hedron formed by the perpendicular bisector planes is the above
mentioned rectangular prism, which transforms to a square prism 
when a = b, and to a cube when a = b = e. 

The body-centered orthorhombic lattice has fourteen near lattice 
points at (0, 0, 0), (±2a, 0,0), (0, ±2b, 0), (0, 0, ±2e), and 
(ta, ±b, ±e). It is recalled from the isometric system that, certainly 
when a = b = e, the planes perpendicularly bisecting the edges joining 
(0,0,0) to (ta, ta, ta) do penetrate and are penetrated by the bisec
tor planes x = ±a, Y = ±a, and z = ±a. Accordingly, we would expect 
that all fourteen lattice points listed above would figure in the con
stitution of the Dirichlet Domain. 
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Because of the equivalence of all eight octants meeting at the 
origin, we need only be concerned with a single octant, from which 
the entire Domain can be generated by mirror reflection in the coor
dinate planes. We shall therefore consider the perpendicular bisec
tors of the edges joining (0, 0, 0) to (a, b, c), to (2a, 0, 0), to 
(0, 2b, 0), and to (0, 0, 2c). The equation of the first of these planes 
is 

ax + by + cz = 1.. (a 2 + b2 + c2 ) 
2 

Table 18-1 lists the intersections of this plane with the coordinate 
axes and with the edges of the prism whose faces are x = a, y = b, 
z = c, and the coordinate planes. All these twelve points of inter
section are potential vertices of a Dirichlet Domain, but their candi
dacy for that function must be eliminated if anyone of the following 
conditions exists for its coordinates: 

x < 0, y < 0, z < 0, x > a, y > b, z > c 

Of the twelve points listed in Table 18-1, four are definitely 
eliminated. Two are always possible. The remaining six depend on 
the critical value of c2 with respect to a2 + b2 • If c2 < a2 + b2 , two 
of the six are eliminated, leaving a total of six vertices (Fig. 18-1); if 

y 

~x=a2-b2+c2 

( _""iZ2 + b2 + c2 2a 
y - 2b 

¥x 

FIGURE 18·1 Dirichlet Domain vertices when c2 < a2 + b2 
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c2 > a2 + b2 , four of the six are eliminated, leaving a total of four 
vertices (Fig. 18-2). In the critical case c2 = a2 + b2 the six of the 
latter eventuality merge into the four of the former (Fig. 18-3). We 

y 

x ~ _____ ---'''' 

FIGURE 18-2 Dirichlet Domain vertices when c2 > a2 + b2 

x ~--------~ 

a2 
z=c 

FIGURE 18-3 Dirichlet Domain vertices when c2 = a2 + b2 
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conclude that for the range c2 < a2 + b2 , which includes the 
cube as a special case, the Dirichlet Domain of the body-centered 
orthorhombic domain is a truncated octahedron. For the range 
c2 > a2 + b2 the Dirichlet Domain has eight rhombic faces (one in 
each octant), and four hexagonal ones, all four parallel to the Z-axis. 
At the critical value c2 = a2 + b2 the number of nearest neighbors 
thus changes from fourteen to twelve; the two that vanish are the 
ones along the Z-axis, which become too distant when c increases. 

In the critical case when c2 = a2 + b2 , the Dirichlet Domain has 
twelve rhombic faces: it is a rhombohedral dodecahedron! If 
a2 = b2, we have a special orthorhombic lattice, called tetragonal. 
This lattice, with c2 = 2a2 , has as Dirichlet Domain just exactly the 
Dirichlet Domain found for the face-centered cubic lattice. 

To reconcile the fact that a tetragonal lattice having c2 = 2a2 is 
synonymous with a face-centered cubic lattice, it is advisable to 
rotate one through 45° with respect to the other around the Z-axis. 
The body-centered lattice points in the tetragonal lattice then be
come face-centered in the cubic one, and the base of the square 
prism in the tetragonal lattice becomes transformed into the base of 
the face-centered cube (Fig. 18-4). 
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FIGURE 18-4 Bases of body-centered tetragonal and face-centered cubic unit 
cells 

When c2 > a2 + b2 (Fig. 18-2), the Dirichlet Domain has twelve 
faces, but four of these are hexagonal. Such a Dirichlet Domain 
could be considered as a rhombohedral dodecahedron bisected in an 
equator, with a rectangular prism inserted at the bisector. Since the 
dodecahedron and the prism separately are space fillers, there is no 
problem about filling space with the combination. 
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The Dirichlet Domain for the face-centered orthorhombic lattice, 
whose lattice points are at (0, 0, 0), (2a, 0,0), (a, b, 0), (a, 0, c), 
(0, b, c), etc., is shown in Fig. 18-5. It is a truncated octahedron in a 
peculiar orientation: two quadrilateral faces are perpendicular to the 
X-axis, having edges parallel to the Y- or Z-axes. The other four 
quadrilateral faces are diagonally and perpendicularly bisected by the 
YZ-plane. 

z 

y 

FIGURE 18-5 Dirichlet Domain of face-centered orthorhombic lattice 

The vertices of the Domain are each equidistant from four of the 
lattice points. The vertex (lha, Ihb, Ihc) is equidistant from the 
three other vertices to which it is joined. Each face-centered ortho
rhombic lattice point has generally fourteen near neighbors. 

For the special tetragonal case (a = b), the Dirichlet Domain be
comes again the rhombododecahedron/prism combination having 
four hexagonal and eight quadrilateral (rhombic) faces (Fig. 18-6), 
and for a = b = c becomes the dodecahedron itself. 
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FIGURE 18-6 Dirichlet Domain of face-centered tetragonal lattice 

These-examples of orthorhombic and tetragonal lattices illustrate 
the importance of the truncated octahedron, the rhombohedral do
decahedron, and the dodecahedron/prism combination and their 
transformations into each other. 



(With technical assistance of 
C. Todd Stuart and 
photography by 
Bruce Anderson) 

In Synergetics (R. Buckminster Fuller, E. J. Applewhite, and A. L. 
Loeb, op. cit.) and in Chapter 6 of this volume we discussed the in
stability of the cube, and the stability of triangulated solids such as 
the octahedron and the tetrahedron. The importance of the rhombo
hedral dodecahedron was stressed in Chapters 16 and 17. 

The cube does have some significant properties of its own. It is 
the only one of the five Platonic solids that is also a space-filler. In a 
gravitational field that is constant in direction and magnitude, a cube 
may be placed such that each of its faces is either parallel or perpen
dicular to the lines of force. Both of these properties have contribu
ted to the use of the cube, or more generally, a rectangular 
hexahedron, as a dwelling unit. The advantage of a horizontal floor 
is undeniable, but the necessity for horizontal ceilings and vertical 
walls may be argued. Walls are not created for the purpose of hang
ing pictures: art, in point of fact, may have been forced into a two
dimensional framework by the existence of vertical walls. 
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The author has developed a number of devices for familiarizing 
his students in Design Science at Harvard with non-cubical fonns, 
and for relating these fonns to the familiar cube. Two of these 
models (constructed by Robert Stortz after a design by the author) 
transfonn two cubes into a single rhombohedral structure. In their 
various configurations these structures present interesting sculptural 
fonns. The transformations were photographed in various inter
mediate stages, showing the cube unfolding, and finally joining with 
a partner to generate a rhombohedral dodecahedron. There are two 
fundamentally different processes by which these transformations 
may be accomplished; both have been photographed. In addition to 
their pedagogical value, these two sequences appear to have an es
thetic significance of their own; for this reason we present them as a 
conclusion to "Space Structures: Their Harmony and Counterpoint." 

The cube may be subdivided into four mutually congruent por
tions, named oc-tets*. The first transformation photographed is 
based on this subdivision. We showed (cf. Table 11-3) that degen
erate stellation of a regular tetrahedron yields a cube. A cube thus 
may contain an inscribed tetrahedron (cf. Figure 17-3); the four 
polyhedra inside the cube but outside the inscribed tetrahedron 
constitute four octants of a regular octahedron. We subdivide the 
inscribed tetrahedron into four mutually congruent triangular pyra
mids, each having as base a face of the tetrahedron, and as apex the 
common center of the cube and the tetrahedron. The oc-tet is 
defined as the unsymmetrical triangular bipyramid formed by placing 
the octant of the octahedron with its triangular base in contact with 
the base of the quarter tetrahedron. The oc-tet thus has one apex 
where the edges meet perpendicularly, whereas at its second apex the 
edges meet at the angle (1800 - 8), whose cosine equals minus one
third (cf. p. 135-136). The cube thus may be subdivided into four 
oc-tets whose rectangular apices constitute four vertices of the cube, 
and whose obtuse apices meet at the cube center. Keeping this sub
division in mind, the photographic sequence proceeds as follows: 

*term devised independently by R. Buckminster Fuller (oc-tet truss) and by Janet Varon in 
a Freshman Seminar term paper (1975) 
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FIGURE 19-1 Two cubes. Each face is bisected by a diagonal: the six diag-
onals in each cube constitute the edges of the tetrahedron inscribed in the cube. 

FIGURE 19-2 An oc-tet emerges out of the cube. 
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FIGURE 19-3 The oc-tet is folded back along a face of the cube. 

FIGURE 19-4 A second oc-tet emerges and is folded back. 
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FIGURES 19-5, 19-6, 19-7, and 19-8 The resulting configuration (a design 
for a church?) is rotated to show different perspectives. 
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FIGURES 19-7, 19-8 (series cont. from p. 151) The resulting configuration is 
rotated to show different perspectives. 
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FIGURES 19-9 and 19-10 A third oc-tet is folded back along a face diagonal 
of the original cube. The original cube has now been turned inside out, so that 
the rectangular vertices of the oc-tets, which originally constituted cube vertices, 
now meet at a common point. The obtuse vertices of the oc-tets, which origi
nally met at the center of the cube, are now turned out. 
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FIGURE 19-11 Meanwhile, the second cube has experienced the same trans-
formation as has its twin. 

FIGURE 19-12 The two transformed cubes are brought into alignment. 
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FIGURES 19·13 and 19·14. The two transformed cubes are joined together to 
form a rhombohedral dodecahedron. The rhombohedral dodecahedron has 
twelve rhombic faces. One set of surface angles have a cosine equal to plus one
third (the angle 8), the other set are their supplements. 
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The second transformation sequence is based on subdividing the cube 
into six square pyramids, each having a face of the cube as its base, 
and the center of the cube as its apex. Two of such square pyramids, 
joined at their bases, constitute the space-filling octahedron discussed 
on pp. 133-137, the Dirichlet Domain of the J-complex. The four 
edges meeting at the apices, it is recalled, make angles and (1800 - l» 
with each other. The second transformation sequence unfolds as 
follows: 

~ .. 
FIGURE 19-15 Two cubes. One of the 
cubes is subdivided into six pyramids, the 
other is not. (The discs are magnets, 
which hold the pyramids together where 
this is desired.) 

FIGURE 19-16 The cubes are juxta-
posed with one face contiguous. 
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FIGURES 19·17. 19·18 and 
19·19 A pyramid is trans-
ferred from one cube to the 
other. 



158 SPACE STRUCTURES: THEIR HARMONY AND COUNTERPOINT 

FIGURES 19-20 and 19-21 A second pyramid is removed from the first cube 
and transferred to the second cube. 
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FIGURE 19.22 A third pyramid is unfolded from the 
fIrst cube, and left lying beside it. 

FIGURES 19·23 and 19·24 A fourth pyramid is trans-
ferred. Of the original fIrst cube only two pyramids remain. 
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-
FIGURES 19-25, 19-26 and 19-27 One of the remaining pyramids is annexed 
by the second cube. 



UNWRAPPING THE CUBE: A PHOTOGRAPIDC ESSAY 161 

FIGURES 19-28 and 19-29 The sixth pyramid is annexed, completing the 
formation of the rhombohedral dodecahedron. 
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FIGURE 19·30 Both transformations of the cube, although fundamentally 
different processes, result in the same final form. 

Note that of the face diagonals of the resulting rhombohedral do
decahedron the long ones constitute edges of an octahedron, the 
short ones the edges of a cube: the dodecahedron is a degenerate 
stellation of either the octahedron or the cube. 

Corollary: This photographic essay demonstrates the importance in 
space structures of the angle 8, whose cosine equals one-third. This 
angle is a surface angle of the rhombohedral dodecahedron as well as 
the angle of intersection between body diagonals of the cube and the 
angle subtended at the center of a regular tetrahedron by any pair of 
its vertices. These transformations demonstrate the reason for this 
"as well as." 



A great deal has been published since the first appearance of Space 
Structures. William L. Hall, Jack C. Gray and the author have main
tained a reading shelf and a file of reprints, which have been the 
major source of this appended bibliography on Design Science. As 
this bibliography transcends the boundaries of many disciplines, it 
has not been an easy task to keep abreast of developments. It has 
been the author's experience that a well-informed grapevine can be 
more effective than a computer search and therefore wishes to 
express his thanks to the many friends who sent in reprints and refer
ences. However, the author wishes to apologize for errors of com
mission and of omission which appear to be virtually inevitable. 
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