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gest 72 degrees, which would relate the figure to the Golden Ratio (see

Figure 25), Dutch crystallographer C. H. MacGillavry concluded on

the basis of perspectival analysis that the angles are of 80 degrees. The

perplexing qualities of this solid are summarized beautifully in an arti-

cle by T. Lynch that appeared in 1982 in the Journal of the Warburg and

Courtauld Institutes. The author concludes: "As a representation of poly-

hedra was seen as one of the main problems of perspective geometry,

what better way could Durer prove his ability in this field, than to in-

clude in an engraving a shape that was so new and perhaps even unique,

and to leave the question of what it was, and where it came from, for

other geometricians to solve?"

With the exception of the influential work of Pacioli and the math-

ematical/artistic interpretations of the painters Leonardo and Durer, the

sixteenth century brought about no other surprising developments in

the story of the Golden Ratio. While a few mathematicians, including

the Italian Rafael Bombelli (1526-1572) and the Spanish Franciscus

Flussates Candalla (1502-1594) used the Golden Ratio in a variety of

problems involving the pentagon and the Platonic solids, the more

exciting applications had to await the very end of the century.

However, the works of Pacioli, Direr, and others revived the inter-

est in Platonism and Pythagoreanism. Suddenly the Renaissance intel-

lectuals saw a real opportunity to relate mathematics and rational logic

to the universe around them, in the spirit of the Platonic worldview.

Concepts like the "Divine Proportion" built, on one hand, a bridge be-
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tween mathematics and the workings of the cosmos and, on the other, a

relation among physics, theology, and metaphysics. The person who, in

his ideas and works, exemplifies more than any other this fascinating

blending of mathematics and mysticism is Johannes Kepler.

MYSTERIUM COSMOGRAPHICUM

Johannes Kepler is best remembered as an outstanding astronomer re-

sponsible (among other things) for the three laws of planetary motion

that bear his name. But Kepler was also a talented mathematician, a

speculative metaphysician, and a prolific author. Born at a time of great

political upheaval and religious chaos, Kepler's education, life, and

thinking were critically shaped by the events around him. Kepler was

born on December 27, 1571, in the Imperial Free City of Weil der

Stadt, Germany, in his grandfather Sebald's house. His father, Heinrich,

a mercenary soldier, was absent from home throughout most of Kepler's

childhood, and during his short visits he was (in Kepler's words): "a

wrongdoer, abrupt and quarrelsome." The father left home when Kepler

was about sixteen, never to be seen again. He is supposed to have par-

ticipated in a naval war for the Kingdom of Naples and to have died on

his way home. Consequently, Kepler was raised mostly by his mother,

Katharina, who worked in her father's inn. Katharina herself was a

rather strange and unpleasant woman, who gathered herbs and believed

in their magical healing powers. A series of events involving personal

grudges, unfortunate gossip, and greed eventually led to her arrest at

old age in 1620, and to an indictment of witchcraft. Such accusations

were not uncommon at that time--no fewer than thirty-eight women

were executed for witchcraft in Weil der Stadt in the years between

1615 and 1629. Kepler, who was already well known at the time of her

arrest, reacted to the news of his mother's trial "with unutterable

distress." He effectively took charge of her defense, enlisting the help of

the legal faculty at the University of Tubingen. The charges against

Katharina Kepler were eventually dismissed after a long ordeal, mainly

in light of her own testimony under the threat of great pain and torture.

This story conveys the atmosphere and the intellectual confusion that
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prevailed during the period of Kepler's scientific work. Kepler was born

into a society that experienced (only fifty years earlier) Martin Luther's

breaking with the Catholic church, proclaiming that humans' sole jus-

tification before God was faith. That society was also about to embark

on the bloody and insane conflict known as the Thirty Years' War. We

can only be astonished how, with this background and with the violent

ups and downs of his tumultuous life, Kepler was able to produce a dis-

covery that is regarded by many as the true birth of modern science.

Kepler started his studies at the higher seminary at Maulbronn and

then won a scholarship from the Duke of Wurttemberg to attend the

Lutheran seminary at the University of Tubingen in 1589. The two

topics that attracted him most, and which in his mind were closely re-

lated, were theology and mathematics. At that time astronomy was

considered a part of mathematics, and Kepler's teacher of astronomy

was the prominent astronomer Michael MIstlin (1550-1631), with

whom he continued to maintain contact even after leaving Tubingen.

In his formal lessons, Mastlin must have taught only the traditional

Ptolemaic or geocentric system, in which the Moon, Mercury, Venus,

the Sun, Mars, Jupiter, and Saturn all revolved around the stationary

Earth. Mastl in, however, was fully aware of Nicolaus Copernicus' helio-

centric system, which was published in 1543, and in private he did dis-

cuss the merits of such a system with his favorite student, Kepler. In the

Copernican system, six planets (including Earth, but not including the

Moon, which was no longer considered a planet but rather a "satellite")

revolved around the Sun. In the same way that from a moving car you

can observe only the relative motions of the other cars, in the Coperni-

can system, much of what appears to be the motion of the planets sim-

ply reflects the motion of Earth itself.

Kepler seems to have taken an immediate liking to the Copernican

system. The fundamental idea of this cosmology, that of a central Sun

surrounded by a sphere of the fixed stars with a space between the

sphere and the Sun, fit perfectly into his view of the cosmos. Being a

profoundly religious person, Kepler believed that the universe repre-

sents a reflection of its Creator. The unity of the Sun, the stars, and the

intervening space symbolized to him an equivalence to the Holy Trin-

ity of the Father, Son, and the Holy Spirit.
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While Kepler graduated with distinction from the faculty of arts

and was close to finishing his theological studies, something happened

to change his profession from that of a pastor to that of a mathematics

teacher. The Protestant seminary in Graz, Austria, asked the University

of Tubingen to recommend a replacement for one of their math teach-

ers who had passed away, and the university selected Kepler. In March

of 1594 Kepler therefore began, unwillingly, a month-long trip to

Graz, in the Austrian province of Styria.

Realizing that fate had forced upon him the career of a mathemati-

cian, Kepler became determined to fulfill what he regarded as his Chris-

tian duty—to understand God's creation, the universe. Accordingly, he

delved into the translations of the Elements and the works of the Alexan-

drian geometers Apollonius and Pappus. Accepting the general princi-

ple of the Copernican heliocentric system, he set out to search for

answers to the following two major questions: Why were there precisely

six planets? and What was it that determined that the planetary orbits

would be spaced as they are? These "why" and "what" questions were

entirely new in the astronomical vocabulary. Unlike the astronomers

before him, who satisfied themselves with simply recording the ob-

served positions of the planets, Kepler was seeking a theory that would

explain it all. He expressed this new approach to human inquiry beau-

tifully:

In all acquisition of knowledge it happens that, starting out from

those things which impinge on the senses, we are carried by the op-

eration of the mind to higher things which cannot be grasped by

any sharpness of the senses. The same thing happens also in the

business of astronomy, in which we first of all perceive with our eyes

the various positions of the planets at different times, and reasoning

then imposes itself on these observations and leads the mind to

recognition of the form of the universe.

But, wondered Kepler, what tool would God use to design His uni-

verse?

The first glimpse of what was to become his preposterously fantas-

tic explanation to these cosmic questions dawned on Kepler on July
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19, 1595, as he was trying to explain

the conjunctions of the outer planets,

Jupiter and Saturn (when the two bod-

ies have the same celestial coordinate).

Basically, he realized that if he in-

scribed an equilateral triangle within

a circle (with its vertices lying on the

circle) and another circle inside the

triangle (touching the midpoints of

the sides; Figure 58), then the ratio of

the radius of the larger circle to that

of the smaller one was about the same as the ratio of the sizes of Saturn's

orbit to Jupiter's orbit. Continuing with this line of thought, he de-

cided that to get to the orbit of Mars (the next planet closer to the Sun),

he would need to use the next geometrical figure—a square—inscribed

inside the small circle. Doing this, however, did not produce the right

size. Kepler did not give up, and being already along a path inspired by

the Platonic view, that "God ever geometrizes," it was only natural for

him to take the next geometrical step and try three-dimensional figures.

The latter exercise resulted in Kepler's first use of geometrical objects

related to the Golden Ratio.

Kepler gave the answer to the two questions that intrigued him in

his first treatise, known as Mysteritim Cosmographictim (The cosmic mys-

tery), which was published in 1597. The full title, given on the title

page of the book (Figure 59; although the publication date reads 1596,

the book was published the following year) reads: "A precursor to cos-

mographical dissertations, containing the cosmic mystery of the ad-

mirable proportions of the Celestial Spheres, and of the True and Proper

Causes of their Numbers, Sizes, and Periodic Motions of the Heavens,

Demonstrated by the Five Regular Geometric Solids."

Kepler's answer to the question of why there were six planets was

simple: because there are precisely five regular Platonic solids. Taken as

boundaries, the solids determine six spacings (with an outer spherical

boundary corresponding to the heaven of the fixed stars). Furthermore,

Kepler's model was designed so as to answer at the same time the ques-

tion of the sizes of the orbits as well. In his words:
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The Earth's sphere is the measure of all other orbits. Circumscribe a

dodecahedron around it. The sphere surrounding it will be that of

Mars. Circumscribe a tetrahedron around Mars. The sphere sur-

rounding it will be that of Jupiter. Circumscribe a cube around

Jupiter. The surrounding sphere will be that of Saturn. Now, in-

scribe an icosahedron inside the orbit of the Earth. The sphere in-

scribed in it will be that of Venus. Inscribe an octahedron inside
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Venus. The sphere inscribed in it will be that of Mercury. There you

have the basis for the number of the planets.

Figure 60 shows a schematic from Mysterium Cosmographictim, which il-

lustrates Kepler's cosmological model. Kepler explained at some length

why he made the particular associations between the Platonic solids and

the planets, on the basis of their geometrical, astrological, and meta-

physical attributes. He ordered the solids based on relationships to the

sphere, assuming that the differences between the sphere and the other

solids reflected the distinction between the creator and his creations.

Similarly, the cube is characterized by a single angle—the right angle.

To Kepler this symbolized the solitude associated with Saturn, and so

on. More generally, astrology was relevant to Kepler because "man is

the goal of the universe and of all creation," and the

metaphysical approach was justified by the fact that

"the mathematical things are the causes of the physi-

cal because God from the beginning of time carried

within himself in simple and divine abstraction the

mathematical objects as proto-

types for the materially planned

quantities."

Earth's position was chosen

so as to separate the solids that

can stand upright (i.e., cube,

tetrahedron, and dodecahedron),

from those that "float" (i.e., octa-

hedron and icosahedron).

The spacings of the planets

resulting from this model agreed

reasonably well for some planets

but were significantly discrepant

for others (although the discrep-

ancies were usually no more than 10 percent). Kepler, absolutely

convinced of the correctness of his model, attributed most of the incon-

sistencies to inaccuracies in the measured orbits. He sent copies of the

book to various astronomers for comments, including a copy to one of
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the foremost figures of the time, the Danish Tycho Brahe (1546-1601).

One copy even made it into the hands of the great Galileo Galilei

(1564-1642), who informed Kepler that he too believed in Copernicus'

model but lamented the fact that "among a vast number (for such is the

number of fools)" Copernicus "appeared fit to be ridiculed and hissed off

the stage."

Needless to say, Kepler's cosmological model, which was based on

the Platonic solids, was not only absolutely wrong, but it was crazy even

for Kepler's time. The discovery of the planets Uranus (next after Saturn

in terms of increasing distance from the Sun) in 1781 and Neptune

(next after Uranus) in 1846 put the final nails into the coffin of an al-

ready moribund idea. Nevertheless, the importance of this model in the

history of science cannot be overemphasized. As astronomer Owen Gin-

gerich has put it in his biographical article on Kepler: "Seldom in his-

tory has so wrong a book been so seminal in directing the future course

of science." Kepler took the Pythagorean idea of a cosmos that can be

explained by mathematics a huge step forward. He developed an actual

mathematical model for the universe, which on one hand was based on

existing observational measurements and on the other was falsifiable
by observations that could be made subsequently. These are precisely

the ingredients required by the "scientific method"—the organized ap-

proach to explaining observed facts with a model of nature. An ideal-

ized scientific method begins with the collection of facts, a model is

then proposed, and the model's predictions are tested through experi-

ments or further observations. This process is sometimes summed up by

the sequence: induction, deduction, verification. In fact, Kepler was

even given a chance to make a successful prediction on the basis of his

theory. In 1610, Galileo discovered with his telescope four new celestial

bodies in the Solar System. Had these proven to be planets, it would

have dealt a fatal blow to Kepler's theory already during his lifetime.

However, to Kepler's relief, the new bodies turned out to be satellites

(like our Moon) around Jupiter, not new planets revolving around the

Sun.

Present-day physical theories that aim at explaining the existence

of all the elementary (subatomic) particles and the basic interactions

among them rely on mathematical symmetries in a very similar fashion
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to Kepler's theory relying on the symmetry properties of the Platonic

solids to explain the number and properties of the planets. Kepler's

model had something else in common with today's fundamental theory

of the universe: Both theories are by their very nature reductionistic-

they attempt to explain many phenomena in terms of a few fundamen-

tal laws. For example, Kepler's model deduced both the number of

planets and the properties of their orbits from the Platonic solids. Sim-

ilarly, modern theories known as string theories use basic entities

(strings) which are extremely tiny (more than a billion billion times

smaller than the atomic nucleus) to deduce the properties of all the ele-

mentary particles. Like a violin string, the strings can vibrate and pro-

duce a variety of "tones," and all the known elementary particles simply

represent these different tones.

Kepler's continued interest in the Golden Ratio during his stay in

Graz produced another interesting result. In October 1597, he wrote to

Mastlin, his former professor, about the following theorem: "If on a line

which is divided in extreme and mean ratio one constructs a right an-

gled triangle, such that the right angle is on the perpendicular put at

the section point, then the smaller leg will equal the larger segment of

the divided line." Kepler's statement is represented by Figure 61. Line

AB is divided in a Golden Ratio by point C. Kepler constructs a right-

angled triangle ADB on AB as a hypotenuse, with the right angle D be-

ing on the perpendicular put at the Golden Section point C. He then

proves that BD (the shorter side of the right angle) is equal to AC (the

longer segment of the line divided in Golden Ratio). What makes this

particular triangle special (other than the use of the Golden Ratio) is

that in 1855 it was used by pyramidologist Friedrich ROber in one of

Figure 61 Figure 62
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the false theories explaining the appearance of the Golden Ratio in the

design of the pyramids. Riiber was not aware of Kepler's work, but he

used a similar construction to support his view that the "divine propor-

tion" played a crucial role in architecture.

Kepler's Mysterium Cosmographicum led to a meeting between him

and Tycho Brahe in Prague—at the time the seat of the Holy Roman

Emperor. The meeting took place on February 4, 1600, and was the

prelude to Kepler's moving to Prague as Tycho's assistant in October of

the same year (after being forced out of Catholic Graz because of his

Lutheran faith). When Brahe died on October 24, 1601, Kepler became

the Imperial Mathematician.

Tycho left a huge body of observations, in particular of the orbit of

Mars, and Kepler used these data to discover the first two laws of plan-

etary motions named after him. Kepler's First Law states that the orbits

of the known planets around the Sun are not exact circles but rather

ellipses, with the Sun at one focus (Figure 62; the elongation of the el-

lipse is greatly exaggerated). An ellipse has two points called foci, such

that the sum of the distances of any point on the ellipse from the two

foci is the same. Kepler's Second Law establishes that the planet moves

fastest when it is closest to the Sun (the point known as perihelion) and

slowest when it is farthest (aphelion), in such a way that the line join-

ing the planet to the Sun sweeps equal areas in equal time intervals

(Figure 62). The question of what causes Kepler's laws to hold true was

the outstanding unsolved problem of science for almost seventy years

after Kepler published the laws. It took the genius of Isaac Newton

(1642-1727) to deduce that the force holding the planets in their orbits

is gravity. Newton explained Kepler's laws by solving together the laws

that describe the motion of bodies with the law of universal gravitation.

He showed that elliptical orbits with varying speeds (as described by

Kepler's laws) represent one possible solution to these equations.

Kepler's heroic efforts in the calculations of Mars' orbit (many hun-

dreds of sheets of arithmetic and their interpretation; dubbed by him as

"my warfare with Mars") are considered by many researchers as signify-

ing the birth of modern science. In particular, at one point he found a

circular orbit that matched nearly all of Tycho's observations. In two

cases, however, this orbit predicted a position that differed from the ob-
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servations by about a quarter of the angular diameter of a full moon.

Kepler wrote about this event: "If I had believed that we could ignore

these eight minutes [of arc], I would have patched up my hypothesis in

Chapter 16 accordingly. Now, since it was not permissible to disregard,

those eight minutes alone pointed the path to a complete reformation

in astronomy."

Kepler's years in Prague were extremely productive in both astron-

omy and mathematics. In 1604, he discovered a "new" star, now known

as Kepler's Supernova. A supernova is a powerful stellar explosion, in

which a star nearing the end of its life ejects its outer layers at a speed

of ten thousand miles per second. In our own Milky Way galaxy, one

such explosion is expected to occur on the average every one hundred

years. Indeed, Tycho discovered a supernova in 1572 . (Tycho's Super-

nova), and Kepler discovered one in 1604. Since then, however, for un-

clear reasons, no other supernova has been discovered in the Milky Way

(although one exploded apparently unnoticed in the 1660s). As-

tronomers remark jokingly that maybe this paucity of supernovae sim-

ply reflects the fact that there have been no truly great astronomers

since Tycho and Kepler.

In June 2001, I visited the house in which Kepler lived in Prague,

at 4 Karlova Street. Today, this is a busy shopping street, and it is easy

to miss the rusty plaque above the number 4, which states that Kepler

lived there from 1605 to 1612. One of the shop owners just below Kep-

ler's apartment did not even know that one of the greatest astronomers

of all times had lived there. The rather sad-looking inner courtyard does

contain a small sculpture of the armillary sphere with Kepler's name

written across it, and another plaque is located near the mailboxes.

Kepler's apartment itself, however, is not marked in any special way and

is not open to the public, being occupied by one of the many families

who live in the residential upper floors.

Kepler's mathematical work produced a few more highlights in the

history of the Golden Ratio. In the text of a letter that he wrote in 1608

to a professor in Leipzig, we find that he discovered the relation be-

tween Fibonacci numbers and the Golden Ratio. He repeats the con-

tents of that discovery in an essay tracing the reason for the six-cornered

shape of snowflakes. Kepler writes:
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Of the two regular solids, the dodecahedron and the icosahedron .. .

both of these solids, and indeed the structure of the pentagon itself,

cannot be formed without the divine proportion as the geometers of

today call it. It is so arranged that the two lesser terms of a progres-

sive series together constitute the third, and the two last, when

added, make the immediately subsequent term and so on to infinity,

as the same proportion continues unbroken . . . the further we ad-

vance from the number one, the more perfect the example becomes.

Let the smallest numbers be 1 and 1 . . . add them, and the sum will

be 2; add to this the latter of the 1's, result 3; add 2 to this, and get

5; add 3, get 8; 5 to 8, 13; 8 to 13, 21. As 5 is to 8, so 8 is to 13, ap-

proximately, and as 8 to 13, so 13 is to 21, approximately.

In other words, Kepler discovered that the ratio of consecutive Fi-

bonacci numbers converges to the Golden Ratio. In fact, he also discov-

ered another interesting property of the Fibonacci numbers: that the

square of any term differs by 1 at most from the product of the two ad-

jacent terms in the sequence. For example, since the sequence is: 1, 1, 2,

3, 5, 8, 13, 21, 34, . . . , if we look at 3 2 = 9, it is only different by 1

from the product of the two terms that are adjacent to 3, 2 x 5 = 10.

Similarly, 13 2 = 169 is different by 1 from 8 x 21 = 168, and so on.

This particular property of Fibonacci numbers gives rise to a puz-

zling paradox first presented by the great creator of mathematical puz-

zles, Sam Loyd (1841-1911).

Consider the square of eight units on the side (area of 8 2 = 64) in

Figure 63. Now dissect it into four parts as indicated. The four pieces

can be reassembled (Figure 64) to form a rectangle of sides 13 and 5

3 5

Figure 63 Figure 64
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with an area of 65! Where did the extra square unit come from? The so-

lution to the paradox is in the fact that the pieces actually do not fit ex-

actly along the rectangle's long diagonal—there is a narrow space (a

long thin parallelogram hidden under the thick line marking the long

diagonal in Figure 64) with an area of one square unit. Of course, 8 is a

Fibonacci number, and its square (8 2 = 64) differs by 1 from the prod-

uct of its two adjacent Fibonacci numbers (13 x 5 = 65)—the property

discovered by Kepler.

You have probably noticed that Kepler refers to the Golden Ratio

as "the divine proportion as the geometers of today call it." The combi-

nation of rational elements with Christian beliefs characterizes all of

Kepler's endeavors. As a Christian natural philosopher, Kepler regarded

it as his duty to understand the universe together with the intentions of

its creator. Fusing his ideas on the Solar System with a strong affinity to

the number 5, which he adopted from the Pythagoreans, Kepler writes

about the Golden Ratio:

A peculiarity of this proportion lies in the fact that a similar pro-

portion can be constructed out of the larger part and the whole;

what was formerly the larger part now becomes the smaller, what

was formerly the whole now becomes the larger part, and the sum of

these two now has the ratio of the whole. This goes on indefinitely;

the divine proportion always remaining. I believe that this geomet-

rical proportion served as idea to the Creator when He introduced

the creation of likeness out of likeness, which also continues indefi-

nitely. I see the number five in almost all blossoms which lead the

way for a fruit, that is, for creation, and which exist, not for their

own sake, but for that of the fruit to follow. Almost all tree-

blossoms can be included here; I must perhaps exclude lemons and

oranges; although I have not seen their blossoms and am judging

from the fruit or berry only which are not divided into five, but

rather into seven, eleven, or nine cores. But in geometry, the num-

ber five, that is the pentagon, is constructed by means of the divine

proportion which I wish [to assume to be) the prototype for the cre-

ation. Furthermore, there exists between the movement of the Sun

(or, as I believe, the Earth) and that of Venus, which stands at the



154 MARIO LIVIO

top of generative capability the ratio of 8 to 13 which, as we shall

hear, comes very close to the divine proportion. Lastly, according to

Copernicus, the Earth-sphere is midway between the spheres Mars

and Venus. One obtains the proportion between them from the do-

decahedron and the icosahedron, which in geometry are both deriv-

atives of the divine proportion; it is on our Earth, however, that the

act of procreation takes place.

Now see how the image of man and woman stems from the di-

vine proportion. In my opinion, the propagation of plants and the

progenitive acts of animals are in the same ratio as the geometrical

proportion, or proportion represented by line segments, and the

arithmetic or numerically expressed proportion.

Simply put, Kepler truly believed that the Golden Ratio served as a

fundamental tool for God in creating the universe. The text also shows

that Kepler was aware of the appearance of the Golden Ratio and Fi-

bonacci numbers in the petal arrangements of flowers.

Kepler's relatively tranquil and professionally fruitful years in

Prague ended in 1611 with a series of disasters. First, his son Friedrich

died of smallpox, then his wife, Barbara, died of a contagious fever

brought along by the occupying Austrian troops. Finally, Emperor

Rudolph was deposed, abdicating the crown in favor of his brother

Matthias, who was not known for his tolerance of Protestants. Kepler

was therefore forced to leave for Linz in present-day Austria.

The crowning jewel of Kepler's work at Linz came in 1619, with

the publication of his second major work on cosmology, Harmonice

Mundi (Harmony of the world).

Recall that music and harmony represented to Pythagoras and the

Pythagoreans the first evidence that cosmic phenomena could be de-

scribed by mathematics. Only strings plucked at lengths with ratios

corresponding to simple numbers produced consonant tones. A ratio of

2:3 sounded the fifth, 3:4 a fourth, and so on. Similar harmonic spac-

ings of the planets were also thought to produce the "music of the

spheres." Kepler was very familiar with these concepts since he read

most of the book by Galileo's father, Vincenzo Galilei, Dialogue Concern-

ing Ancient and Modern Music, although he rejected some of Vincenzo's
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ideas. Since he also believed that he had a complete model for the Solar

System, Kepler was able to develop little "tunes" for the different plan-

ets (Figure 65).

Figure 65

As Kepler was convinced that "before the origin of things, geome-

try was coeternal with the Divine Mind," much of the Harmony of the

World is devoted to geometry. One aspect of this work that is particu-

larly important for the story of the Golden Ratio is Kepler's work on

tiling, or tessellation.

In general, the word "tiling" is used to describe a pattern or struc-

ture that comprises of one or more shapes of "tiles" that pave a plane ex-

actly, with no spaces, such as the arrangements in mosaics or floor tiles.

In Chapter 8 we shall see that some of the mathematical concepts pres-

ent in tiling are intimately related to

the Golden Ratio. While Kepler was

not aware of all the intricacies of the

mathematics of tiling, his interest in

the relationship between different geo-

metrical forms and his admiration for

the pentagon—the most direct mani-

festation of the "divine proportion"—

was sufficient to lead him to interesting

work on tiling. He was particularly

interested in the congruence (fitting

together) of geometrical shapes like

polygons and solids. Figure 66 shows
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an example from The Harmony of the World. This particular tiling pattern

is composed of four shapes, all related to the Golden Ratio: pentagons,

pentagrams, decagons, and double decagons. To Kepler, this is a mani-

festation of "harmony," since harmonia in Greek means "a fitting to-

gether."

Figure 67

Interestingly, two other men who played significant roles in the his-

tory of the Golden Ratio before Kepler (and whose work was described

in previous chapters) also showed interest in tiling—the tenth-century

mathematician Abu'l-Wafa and the painter Albrecht Durer . Both of

them presented designs containing figures with fivefold symmetry. (An

example of Durer's work is shown in Figure 67.)

The fifth book of Harmony of the World contains Kepler's most sig-

nificant result in astronomy—Kepler's Third Law of planetary motion.

This represents the culmination of all of his agonizing over the sizes of

the orbits of the planets and their periods of revolution around the Sun.

Twenty-five years of work have been condensed into one incredibly sim-

ple law: The ratio of the period squared to the semimajor axis cubed is

the same for all the planets (the semimajor axis is half the long axis of

the ellipse; Figure 62). Kepler discovered this seminal law, which

served as the basis for Newton's formulation of the law of universal

gravitation, only when Harmony of the World was already in press. Un-

able to control his exhilaration he announced: "I have stolen the golden

vessels of the Egyptians to build a tabernacle for my God from them,

far away from the borders of Egypt." The essence of the law follows nat-

urally from the law of gravity: The force is stronger the closer the planet
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is to the Sun, so inner planets

must move faster to avoid

falling toward the Sun.

In 1626, Kepler moved

to Ulm and completed the

Rudolphine Tables, the most

extensive and accurate astro-

nomical tables produced un-

til that time. While I was

visiting the University of Vi-

enna in June 2001, my hosts

showed me in the observa-

tory's library a first edition

of the tables (147 copies are

known to exist today). The

frontispiece of the book (Fig-

ure 68), a symbolic repre-

sentation of the history of

astronomy, contains at the

lower left corner what may

be Kepler's only self-portrait

(Figure 69). It shows Kepler

working by candlelight, un-

der a banner listing his im-

portant publications.

Kepler died at noon on

November 15, 1630, and

was buried in Regensburg.

Befitting his turbulent life,

wars have totally destroyed

his tomb, without a trace.

Luckily, a sketch of the

gravestone made by a friend

survived, and it contains

Kepler's epitaph:
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I used to measure the heavens,

Now the Earth's shadows I measure

My mind was in the heavens,

Now the shadow of my body rests here.

Today, Kepler's originality and productivity are almost incomprehensi-

ble. We should realize that this was a man who endured unimaginable

personal hardships, including the loss of three of his children in less

than six months during 1617 and 1618. The English poet John Donne

(1572-1631) perhaps described him best when he said that Kepler

"hath received it into his care, that no new thing should be done in

heaven without his knowledge."



7

PAINTERS AND POETS

HAVE EQUAL LICENSE

Painting isn't an aesthetic operation; it's a form of magic designed

as a mediator between this strange hostile world and us.

-PABLO PICASSO (1881-1973)

The Renaissance produced a significant change in direction in the his-

tory of the Golden Ratio. No longer was this concept confined to math-

ematics. Now the Golden Ratio found its way into explanations of

natural phenomena and into the arts.

We have already encountered claims that the architectural design of

various structures from antiquity, such as the Great Pyramid and the

Parthenon, had been based on the Golden Ratio. A closer examination

of these claims revealed, however, that in most cases they could not be

substantiated. The introduction of the notion of the existence of a "Di-

vine Proportion" and the general recognition of the importance of

mathematics for perspective made it more conceivable that some artists

would start using scientifically based methods in general and the

Golden Ratio in particular in their works. Contemporary painter and

draftsman David Hockney argues in his book Secret Knowledge (2001),

for example, that starting with around 1430, artists began secretly us-

ing cameralike devices, including lenses, concave mirrors, and the cam-

era obscura, to help them create realistic-looking paintings. But did
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artists really use the Golden Ratio? And if they did, was the Golden Ra-

tio's application restricted to the visual arts or did it penetrate into

other areas of artistic endeavor?

THE ARTIST'S SECRET GEOMETRY?

Many of the assertions concerning the employment of the Golden Ratio

in painting are directly associated with the presumed aesthetic proper-

ties of the Golden Rectangle. I shall discuss the reality (or falsehood) of

such a canon for aesthetics later in the chapter. For the moment, how-

ever, I shall concentrate on the much simpler question: Did any pre-

and Renaissance painters actually base their artistic composition on the

Golden Rectangle? Our attempt to answer this question takes us back

to the thirteenth century.

The "Ognissanti Madonna" (also known as "Madonna in Glory,"

Figure 70; currently in the Uffizi Gallery in Florence) is one of the

Figure 70 Figure 71
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greatest panel paintings by the famous Italian painter and architect

Giotto di Bondone (1267-1337). Executed between 1306 and 1310,

the painting shows a half-smiling, enthroned Virgin caressing the knee

of the Child. The Madonna and Child are surrounded by angels and

saints arranged in some sort of perspectival "hierarchy." Many books

and articles on the Golden Ratio repeat the statement that both the

painting as a whole and the central figures can be inscribed precisely in

Golden Rectangles (Figure 71).

A similar claim is made about two other paintings with the same

general subject: the "Madonna Rucellai" (painted in 1285) by the great

Sienese painter Duccio di Buoninsegna, known as Duccio (ca.

1255-1319), and the "Santa Trinita Madonna" by the Florentine painter

Cenni di Pepo, known as Cimabue (ca. 1240-1302). As fate would have

it, currently the three paintings happen to be hanging in the same room

in the Uffizi Gallery in Florence. The dimensions of the "Ognissanti,"

"Rucellai," and "Santa Trinita" Madonnas give height to width ratios of

1.59, 1.55, and 1.73, respectively. While all three numbers are not too

far from the Golden Ratio, two of them are actually closer to the simple

ratio of 1.6 rather than to the irrational number 4. This fact could indi-

cate (if anything) that the artists followed the Vitruvian suggestion for a

simple proportion, one that is the ratio of two whole numbers, rather

than the Golden Ratio. The inner rectangle in the "Ognissanti

Madonna" (Figure 71) leaves us with an equally ambiguous impression.

Not only are the boundaries of the rectangle drawn usually (e.g., in

Trudi Hammel Garland's charming hook Fascinating Fibonaccis) with

rather thick lines, making any measurement rather uncertain, but, in

fact, the upper horizontal side is placed somewhat arbitrarily.

Remembering the dangers of having to rely on measured dimen-

sions alone, we may wonder if there exist any other reasons to suspect

that these three artists might have desired to include the Golden Ratio

in their paintings. The answer to this question appears to be negative,

unless they were driven toward this ratio by some unconscious aesthetic

preference (a possibility that will be discussed later in the chapter). Re-

call that the three Madonnas were painted more than two centuries be-

fore the publication of The Divine Proportion brought the ratio to wider

attention.
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The French painter and author Charles Bouleau expresses a differ-

ent view in his 1963 book The Painter's Secret Geometry. Without refer-

ring to Giotto, Duccio, or Cimabue specifically, Bouleau argues that

Pacioli's book represented an end to an era rather than its beginning.

He asserts that The Divine Proportion merely "reveals the thinking of

long centuries of oral tradition" during which the Golden Ratio "was

considered as the expression of perfect beauty." If this were truly the

case, then Cimabue, Duccio, and Giotto indeed might have decided to

use this accepted standard for perfection. Unfortunately, I find no evi-

dence to support Bouleau's statement. Quite to the contrary; the docu-

mented history of the Golden Ratio is inconsistent with the idea that

this proportion was particularly revered by artists in the centuries pre-

ceding the publication date of Pacioli's book. Furthermore, all the seri-

ous studies of the works of the three artists by art experts (e.g., Giotto by

Francesca Flores D'Arcais; Cimabtie by Luciano Bellosi) give absolutely

no indication whatsoever that these painters might have used the

Golden Ratio—the latter claim appears only in the writings of Golden

Number enthusiasts and is based solely on the dubious evidence of

measured dimensions.

Another name that invariably turns up in almost every claim of

the appearance of the Golden Ratio in art is that of Leonardo da Vinci.

Some authors even attribute the invention of the name "the Divine

Proportion" to Leonardo. The discussion usually concentrates on five

works by the Italian master: the unfinished canvas of "St. Jerome," the

two versions of "Madonna of the Rocks," the drawing of "a head of

an old man," and the famous "Mona Lisa." I am going to ignore the

"Mona Lisa" here for two reasons: It has been the subject of so many

volumes of contradicting scholarly and popular speculations that it

would be virtually impossible to reach any unambiguous conclusions;

and the Golden Ratio is supposed to be found in the dimensions of a

rectangle around Mona Lisa's face. In the absence of any clear (and doc-

umented) indication of where precisely such a rectangle should be

drawn, this idea represents just another opportunity for number jug-

gling. I shall return, however, to the more general topic of proportions

in faces in Leonardo's paintings, when I shall discuss the drawing "a

head of an old man."
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Figure 72 Figure 73

The case of the two versions of "Madonna of the Rocks" (one in the

Louvre in Paris, Figure 72, and the other in the National Gallery in

London, Figure 73) is not particularly convincing. The ratio of the

height to width of the painting thought to have been executed earlier

(Figure 72) is about 1.64 and of the later one 1.58, both reasonably

close to .21) but also close to the simple ratio of 1.6.

The dating and authenticity of the two "Madonna of the Rocks"

also put an interesting twist on the claims about the presence of the

Golden Ratio. Experts who studied the two paintings concluded that,

without a doubt, the Louvre version was done entirely by Leonardo's

hand, while the execution of the National Gallery version might have

been a collaborative effort and is still the source of some debate. The

Louvre version is thought to be one of the first works that Leonardo pro-

duced in Milan, probably between 1483 and 1486. The National

Gallery painting, on the other hand, usually is assumed to have been

completed around 1506. The reason that these dates may be of some

significance is that Leonardo met Pacioli for the first time in 1496, in

the Court of Milan. The seventy-first chapter of the Divina (the end of
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the first portion of the book) was, in Pacioli's words: "Finished this day

of December 14, at Milan in our still cloister the year 1497." The first

version (and the one with no doubts about authenticity) of the

"Madonna of the Rocks" was therefore completed about ten years before

Leonardo had the opportunity to hear directly from the horse's mouth

about the "divine proportion." The claim that Leonardo used the

Golden Ratio in "Madonna of the Rocks" therefore amounts to believ-

ing that the artist adopted this proportion even before he started his

collaboration with Pacioli. White this is not impossible, there is no ev-

idence to support such an interpretation.

Either version of "Madonna of the Rocks" represents one of

Leonardo's most accomplished masterpieces. Perhaps in no other paint-

ing did he apply better his poetic formula: "every opaque body is sur-

rounded and clothed on its surface by shadows and light." The figures

in the paintings literally open themselves to the emotional participa-

tion of the spectator. To claim that these paintings derive any part of

their strength from the mere ratio of their dimensions trivializes

Leonardo's genius unnecessarily. Let us not fool ourselves; the feeling of

awe we experience when facing "Madonna of the Rocks" has very little

to do with whether the dimensions of the paintings are in a Golden

Ratio.

A similar uncertainty exists with respect to the unfinished "St.

Jerome" (Figure 74; currently in the Vatican museum). Not only is the

painting dated to 1483, long before Pacioli's move to Milan, but the

claim made in some books (e.g., in David Bergamini and the editors of

Life Magazine's Mathematics) that "a Golden Rectangle fits so neatly

around St. Jerome" requires quite a bit of wishful thinking. In fact, the

sides of the rectangle miss the body (especially on the left side) and head

entirely, while the arm extends well beyond the rectangle's side.

The last example for a possible use of the Golden Ratio by Leonardo

is the drawing of "a head of an old man" (Figure 75; the drawing is cur-

rently in the Galleria dell'Accademia in Venice). The profile and dia-

gram of proportions were drawn in pen some time around 1490. Two

studies of horsemen in red chalk, which are associated with Leonardo's

"Battle of Anghiari," were added to the same page around 1503-1504.
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While the overlying grid leaves very little doubt that Leonardo was

indeed interested in various proportions in the face, it is very difficult

to draw any definitive conclusions from this study. The rectangle in

the middle left, for example, is approximately a Golden Rectangle, but

the lines are drawn so roughly that we cannot be sure. Nevertheless, this

drawing probably comes the closest to a demonstration that Leonardo

used rectangles to determine dimensions in his paintings and that

he might have even considered the application of the Golden Ratio to

his art.

Leonardo's interest in proportions in the face may have another in-

Figure 74 Figure 75

teresting manifestation. In an article that appeared in 1995 in the Sci-
entific American, art historian and computer graphics artist Lillian

Schwarz presented an interesting speculation. Schwarz claimed that in

the absence of his model for the "Mona Lisa," Leonardo used his own fa-

cial features to complete the painting. Schwarz's suggestion was based

on a computer-aided comparison between various dimensions in Mona

Lisa's face and the respective dimensions in a red chalk drawing that is

considered by many (but not all) to be Leonardo's only self-portrait.
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However, as other art analysts have pointed out, the similarity in the

proportions may simply reflect the fact that Leonardo used the same for-

mulae of proportion (which may or may not have included the Golden

Ratio) in the two portraits. In fact, Schwarz herself notes that even in

his grotesques—a collection of bizarre faces with highly exaggerated

chins, noses, mouths, and foreheads—Leonardo used the same propor-

tions in the face as in the "head of an old man."

If there exist serious doubts regarding whether Leonardo himself,

who was not only a personal friend of Pacioli but also the illustrator for

the Divina, used the Golden Ratio in his paintings, does this mean that

no other artist ever used it? Definitely not. With the surge of Golden

Ratio academic literature toward the end of the nineteenth century, the

artists also started to take notice. Before we discuss artists who did use

the Golden Ratio, however, another myth still needs to be dispelled.

In spite of many existing claims to the contrary, the French pointil-

list Georges Seurat (1859-1891) probably did not use the Golden Ra-

tio in his paintings. Seurat was interested in color vision and color

combination, and he used the pointillist (multidotted) technique to ap-

proximate as best as he could the scintillating, vibratory quality of

light. He was also concerned late in life with the problem of expressing

specific emotions through pictorial means. In a letter he wrote in 1890,

Seurat describes succinctly some of his views:

Art is harmony. Harmony is the analogy of contradictions and of

similars, in tone, shade, line, judged by the dominant of those and

under the influence of a play of light in arrangements that are gay,

light, sad. Contradictions are . . . , with respect to line, those that

form a right angle. . . . Gay lines are lines above the horizontal; .. .

calm is the horizontal; sadness lines in the downward direction.

Seurat used these ideas explicitly in "The Parade of a Circus" (some-

times called "The Side Show"; Figure 7.6; currently in The Metropoli-

tan Museum of Art, New York). Note in particular the right angle

formed by the balustrade and the vertical line to the right of the mid-

dle of the painting. The entire composition is based on principles that

Seurat adopted from art theorist David Sutter's book La philosophie des
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Beatix-Arts appliquee a la peinture (The philosophy of the fine arts applied

to painting; 1870). Sutter wrote: "when the dominant is horizontal, a

succession of vertical objects can be placed on it because this series will

concur with the horizontal line."

Figure 76

Golden Ratio aficionados often present analyses of "The Parade" (as

well as other paintings, such as "The Circus") to "prove" the use of (I).

Even in the beautiful book Mathematics, by Bergamini' and the editors of

Life Magazine, we find: "La Parade, painted in the characteristic multi-

dotted style of the French impressionist Georges Seurat, contains nu-

merous examples of Golden proportions." The book goes even further

with a quote (attributed to "one art expert") that Seurat "attacked every

canvas by the Golden Section." Unfortunately, these statements are

unfounded. This myth was propagated by the Romanian born prelate

and author Matila Ghyka (1881-1965), who was also the "art expert"

quoted by Bergamini. Ghyka published two influential books, Esthe-

tique des proportions dans la nature et dans les arts (Aesthetics of proportions

in nature and in the arts; 1927) and Le Nombre d'Or: Rites et rythmes py-

tagoriciens dans le developpement de la civilisation occidentale (The golden

number, Pythagorean rites and rhythms in the development of Western
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civilization; 1931). Both books are composed of semimystical interpre-

tations of mathematics. Alongside correct descriptions of the mathe-

matical properties of the Golden Ratio, the books contain a collection

of inaccurate anecdotal materials on the occurrence of the Golden Ratio

in the arts (e.g., the Parthenon, Egyptian temples, etc.). The books have

been almost inexplicably influential.

Concerning "The Parade" specifically, while it is true that the hori-

zontal is cut in proportions close to the Golden Ratio (in fact, the simple

ratio eight-fifths), the vertical is not. An analysis of the entire composi-

tion of this and other paintings by Seurat, as well as paintings by the

Symbolist painter Pierre Puvis de Chavannes (1824-1898), led even a

Golden Ratio advocate like painter and author Charles Bouleau to con-

clude that "I do not think we can, without straining the evidence to re-

gard his lPuvis de Chavannes'sl compositions as based on the Golden

Ratio. The same applies to Seurat." A detailed analysis in 1980 by Roger

Herz-Fischler of all of Seurat's writings, sketches, and paintings reached

the same conclusion. Furthermore, the mathematician, philosopher, and

art critic Charles Henry (1859-1926) stated firmly in 1890 that the

Golden Ratio was "perfectly ignored by contemporary artists."

Who, then, did use the Golden Ratio either in actual paintings or in

the theory of painting? The first prominent artist and art theorist to em-

ploy the ratio was probably Paul Serusier (1864-1927). Serusier was

born in Paris, and after studying philosophy he entered the famous art

school Academie Julian. A meeting with the painters Paul Gaugin and

Emile Bernard converted him to their expressive use of color and sym-

bolist views. Together with the post-Impressionist painters Pierre Bon-

nard, Edouard Vuillard, Maurice Denis, and others he founded the group

called the Nabis, from the Hebrew word meaning "prophets." The name

was inspired by the group's half-serious, half-burlesque pose regarding

their new style as a species of religious illumination. The composer

Claude Debussy was also associated with the group. Serusier probably

heard about the Golden Ratio for the first time during one of his visits

(between 1896 and 1903) to his friend the Dutch painter Jan Verkade

(1868-1946). Verkade was a novice in the Benedictine monastery of

Beuron, in South Germany. There groups of monk-painters were execut-

ing rather dull religious compositions based on "sacred measures," fol-
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lowing a theory of Father Didier Lenz. According to Father Lenz's the-

ory, the great art works of antiquity (e.g., Noah's Ark, Egyptian works,

etc.) were all based on simple geometrical entities such as the circle,

equilateral triangle, and hexagon. Serusier found the charm of this the-

ory captivating, and he wrote to Verkade: "as you can imagine, [I) have

talked a great deal about your measures." The painter Maurice Denis

(1870-1943) wrote biographical notes on Serusier, from which we learn

that those "measures" employed by Father Lenz included the Golden Ra-

tio. Even though Serusier admits that his initial studies of the mathe-

matics of Beuron were "not all plain sailing," the Golden Ratio and the

story of its potential association with the Great Pyramid and Greek art-

works made it also into Serusier's important art theory book L'ABC de la

Peinture (The ABC of painting).

While Serusier's interest in the Golden Ratio appears to have been

more philosophical than practical, he did make use of this proportion in

some of his works, mainly to "verify, and occasionally to check, his in-

ventions of shapes and his composition."

Following Serusier, the concept of the Golden Ratio propagated into

other artistic circles, especially that of the Cubists. The name "Cubism"

was coined by art critic Louis Vauxcelles (who, by the way, had also been

responsible for "Expressionism" and "Fauvism") after viewing an exhibi-

tion of Georges Braque's work in 1908. The movement was inaugurated

by Picasso's painting "Les Demoiselles d'Avignon" and Braque's "Nude."

In revolt against the passionate use of color and form in Expressionism,

Picasso and Braque developed an austere, almost monochrome style that

deliberately rejected any subject matter that was likely to evoke emo-

tional associations. Objects like musical instruments and even human

figures were dissected into faceted geometrical planes, which were then

combined in shifting perspectives. This analysis of solid forms for the

purpose of revealing structure was quite amenable to the use of geomet-

rical concepts like the Golden Ratio. In fact, some of the early Cubists,

such as Jacques Villon and his brothers Marcel and Raymond Duchamp-

Villon, together with Albert Gleizes and Francis Picabia, organized

in Paris in October 1912 an entire exhibition entitled "Section d'Or"

("The Golden Section"). In spite of the highly suggestive name, none of

the paintings that was exhibited actually included the Golden Section
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as a basis for its composition. Rather,

the organizers chose the name simply

to project their general interest in ques-

tions that related art to science and

philosophy. Nevertheless, some Cubists,

like the Spanish-born painter Juan Gris

(1887-1927) and the Lithuanian-born

sculptor Jacques (Chaim Jacob) Lipchitz

(1891-1973) did use the Golden Ratio

in some of their later works. Lipchitz

wrote: "At the time, I was very inter-

ested in theories of mathematical pro-

portions, like the other cubists, and I

tried to apply them to my sculptures.

We all had a great curiosity for that idea

of a golden rule or Golden Section, a sys-

tem which was reputed to lay under the

art and architecture of ancient Greece."

Lipchitz helped Juan Gris in the con-

struction of the sculpture "Arlequin" (currently in the Philadelphia Mu-

seum of Art; Figure 77), in which the two artists used Kepler's triangle

(which is based on the Golden Ratio; see Figure 61) for the production

of the desired proportions.

Another artist who used the Golden Ratio in the early 1920s was

the Italian painter Gino Severini (1883-1966). Severini attempted in

his work to reconcile the somewhat conflicting aims of Futurism and

Cubism. Futurism represented an effort by a group of Italian intellectu-

als from literary arts, the visual arts, theater, music, and cinema to bring

about a cultural rejuvenation in Italy. In Severini's words: "We choose

to concentrate our attention on things in motion, because our modern

sensibility is particularly qualified to grasp the idea of speed." The first

painters' Futurist manifesto was signed in 1910, and it strongly urged

the young Italian artists to "profoundly despise all forms of imitation."

While still a Futurist himself, Severini found in Cubism a "notion

of measure" that fit his ambition of "making, by means of painting,

an object with the same perfection of craftsmanship as a cabinet
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maker making furniture." This

striving for geometrical perfection

led Severini to use the Golden Sec-

tion in his preparatory drawings for

several paintings (e.g., "Maternity,"

currently in a private collection in

Rome; Figure 78).

Russian Cubist painter Maria

Vorobeva, known as Marevna, pro-

vides an interesting instance of the

role of the Golden Ratio in Cubist

art. Marevna's 1974 book, Lift with
the Painters of La Rtiche, is a fascinat-

ing account of the lives and works

of her personal friends—a group

that included the painters Picasso,

Modigliani, Soutine, Rivera (with

whom she had a daughter), and others in Paris of the 1920s. Although

Marevna does not give any specific examples and some of her historical

comments are inaccurate, the text implies that Picasso, Rivera, and Gris

had used the Golden Ratio as "another way of dividing planes, which is

more complex and attracts experienced and inquisitive minds."

Another art theorist who had great interest in the Golden Ratio at

the beginning of the twentieth century was the American Jay Ham-

bidge (1867-1924). In a series of articles and books, Hambidge defined

two types of symmetry in classical and modern art. One, which he

called "static symmetry," was based on regular figures like the square

and equilateral triangle, and was supposed to produce lifeless art. The

other, which he dubbed "dynamic symmetry," had the Golden Ratio

and the logarithmic spiral in leading roles. Hambidge's basic thesis was

that the use of "dynamic symmetry" in design leads to vibrant and mov-

ing art. Few today take his ideas seriously.

One of the strongest advocates for the application of the Golden

Ratio to art and architecture was the famous Swiss-French architect and

painter Le Corbusier (Charles-Edouard Jeanneret, 1887-1965).

Jeanneret was born in La Chaux-de-Fonds, Switzerland, where he
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studied art and engraving. His father worked in the watch business

as an enameler, while his mother was a pianist and music teacher who

encouraged her son toward a musician's dexterity as well as more

abstract pursuits. He began his studies of architecture in 1905 and

eventually became one of the most influential figures in modern archi-

tecture. In the winter of 1916-1917, Jeanneret moved to Paris, where

he met Amedee Ozenfant, who was well connected in the Parisian haut

monde of artists and intellectuals. Through Ozenfant, Jeanneret met

with the Cubists and was forced to grapple with their inheritance. In

particular, he absorbed an interest in proportional systems and their role

in aesthetics from Juan Gris. In the autumn of 1918, Jeanneret and

Ozenfant exhibited together at the Galerie Thomas. More precisely, two

canvases by Jeanneret were hung alongside many more paintings by

Ozenfant. They called themselves "Purists," and entitled their catalog

Apres le Cubisme (After cubism). Purism invoked Piero della Francesca

and the Platonic aesthetic theory in its assertion that "the work of art

must not be accidental, exceptional, impressionistic, inorganic, protes-

tatory, picturesque, but on the contrary, generalized, static, expressive

of the invariant."

Jeanneret did not take the name "Le Corbusier" (co-opted from an-

cestors on his mother's side called Lecorbesier) until he was thirty-three,

well installed in Paris, and confident of his future path. It was as if he

wanted basically to repress his faltering first efforts and stimulate the

myth that his architectural genius bloomed suddenly into full maturity.

Originally, Le Corbusier expressed rather skeptical, and even nega-

tive, views of the application of the Golden Ratio to art, warning

against the "replacement of the mysticism of the sensibility by the

Golden Section." In fact, a thorough analysis of Le Corbusier's architec-

tural designs and "Purist" paintings by Roger Herz-Fischler shows that

prior to 1927, Le Corbusier never used the Golden Ratio. This situation

changed dramatically following the publication of Matila Ghyka's in-

fluential book Aesthetics of Proportions in Nattire and in the Arts, and his

Golden Number, Pythagorean Rites and Rhythms (1931) only enhanced the

mystical aspects of (4) even further. Le Corbusier's fascination with Aes-

thetics and with the Golden Ratio had two origins. On one hand, it was

a consequence of his interest in basic forms and structures underlying
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natural phenomena. On the other, coming from a family that encour-

aged musical education, Le Corbusier could appreciate the Pythagorean

craving for a harmony achieved by number ratios. He wrote: "More

than these thirty years past, the sap of mathematics has flown through

the veins of my work, both as an architect and painter; for music is

always present within me." Le Corbusier's search for a standardized pro-

portion culminated in the introduction of a new proportional system

called the "Modulor."

The Modulor was supposed to

provide "a harmonic measure to

the human scale, universally ap-

plicable to architecture and me-

chanics." The latter quote is in

fact no more than a rephrasing

of Protagoras' famous saying from

the fifth-century i.C. "Man is the

measure of all things." Accord-

ingly, in the spirit of the Vitru-

vian man (Figure 53) and the

general philosophical commit-

ment to discover a proportion sys-

tem equivalent to that of natural

creation, the Modulor was based on human proportions (Figure 79).

A six-foot (about 183-centimeter) man, somewhat resembling the

familiar logo of the "Michelin man," with his arm upraised (to a height

of 226 cm; 7'5"), was inserted into a square (Figure 80). The ratio of the

height of the man (183 cm; 6') to the height of his navel (at the mid-

point of 113 cm; 3' 8.5") was taken to be precisely in a Golden Ratio.

The total height (from the feet to the raised arm) was also divided in a

Golden Ratio (into 140 cm and 86 cm) at the level of the wrist of a

downward-hanging arm. The two ratios (113/70) and (140/86) were

further subdivided into smaller dimensions according to the Fibonacci

series (each number being equal to the sum of the preceding two; Fig-

ure 81). In the final version of the Modulor (Figures 79 and 81), two

scales of interspiraling Fibonacci dimensions were therefore introduced

(the "red and the blue series").
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Figure 80

Figure 81

Le Corbusier suggested that the Modulor would give harmonious

proportions to everything, from the sizes of cabinets and door handles,

to buildings and urban spaces. In a world with an increasing need for

mass production, the Modulor was supposed to provide the model for
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standardization. Le Corbusier's two books, Le Modulor (published in

1948) and Modulor II (1955), received very serious scholarly attention

from architectural circles, and they continue to feature in any discussion

of proportion. Le Corbusier was very proud of the fact that he had the

opportunity to present the Modulor even to Albert Einstein, in a meet-

ing at Princeton in 1946. In describing that event he says: "I expressed

myself badly, I explained `Modulor' badly, I got bogged down in the

morass of 'cause and effect.' " Nevertheless, he received a letter from

Einstein, in which the great man said this of the Modulor: "It is a scale

of proportions which makes the bad difficult and the good easy."

Le Corbusier translated his theory of the Modulor into practice in

many of his projects. For example, in his notes for the impressive urban

layout of Chandigarh, India, which included four major government

buildings—a Parliament, a High Court, and two museums—we find:

"But, of course, the Modulor came in at the moment of partitioning the

window area. . . . In the general section of the building which involves

providing shelter from the sun for the offices and courts, the Modulor

will bring textural unity in all places. In the design of the frontages, the

Modulor (texturique) will apply its red and blue series within the spaces

already furnished by the frames."

Figure 82
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Le Corbusier was certainly not the last artist to be interested in the

Golden Ratio, but most of those after him were fascinated more by the

mathematical-philosophical-historical attributes of the ratio than by its

presumed aesthetic properties. For example, the British abstract artist

Anthony Hill used a Fibonacci series of dimensions in his 1960 "Con-

structional Relief" (Figure 82). Similarly, the contemporary Israeli

painter and sculptor Igael Tumarkin has deliberately included the for-

mula for the value of 4. (4) = (1 + 'N)/2) in one of his paintings.

An artist who transformed the Fibonacci sequence into an impor-

tant ingredient of his art is the Italian Mario Merz. Merz was born in

Milan in 1925, and in 1967 he joined the art movement labeled Arte

Povera (Poor Art), which also included the artists Michelangelo Pisto-

letto, Luciano Fabro, and Jannis Kounellis. The name of the movement

(coined by the critic Germano Celant) was derived from the desire of its

members to use simple, everyday life materials, in a protest against

what they regarded as a dehumanized, consumer-driven society. Merz

started to use the Fibonacci sequence in 1970, in a series of "concep-

tual" works that include the numbers in the sequence or various spirals.

Merz's desire to utilize Fibonacci numbers was based on the fact that the

sequence underlies so many growth patterns of natural life. In a work

from 1987 entitled "Onda d'urto" (Shock wave), he has a long row of

stacks of newspapers, with the Fibonacci numbers glowing in blue neon

lights above the stacks. The work "Fibonacci Naples" (from 1970) con-

sists of ten photographs of factory workers, building in Fibonacci num-

bers from a solitary person to a group of fifty-five (the tenth Fibonacci

number).

False claims about artists allegedly using the Golden Ratio con-

tinue to spring up almost like mushrooms after the rain. One of these

claims deserves some special attention, since it is repeated endlessly.

The Dutch painter Piet Mondrian (1872-1944) is best known for

his geometric, nonobjective style, which he called "neoplasticism." In

particular, much of his art is characterized by compositions involving

only vertical and horizontal lines, rectangles, and squares, and employ-

ing only primary colors (and sometimes black or grays) against a

white background, as in "Broadway Boogie-Woogie" (Figure 83; in



The Museum of Modern Art,

New York). Curved lines,

three-dimensionality, and re-

alistic representation were

entirely eliminated from his

work.

Not surprisingly, per-

haps, Mondrian's geometrical

compositions attracted quite

a bit of Golden Numberist

speculation. In Mathematics,

David Bergamini admits that

Mondrian himself "was vague

about the design of his

paintings," but nevertheless claims that the linear abstraction "Place de

la Concorde" incorporates overlapping Golden Rectangles. Charles

Bouleau was much bolder in The Painter's Secret Geometry, asserting that

"the French painters never dared to go as far into pure geometry and the

strict use of the golden section as did the cold and pitiless Dutchman

Piet Mondrian." Bouleau further states that in "Broadway Boogie-Woo-

gie," "the horizontals and verticals which make up this picture are

nearly all in the golden ratio." With so many lines to choose from in

this painting, it should come as no surprise that quite a few can be

found at approximately the right separations. Having spent quite some

time reading the more serious analyses of Mondrian's work and not hav-

ing found any mention of the Golden Ratio there, I became quite in-

trigued by the question: Did Mondrian really use the Golden Ratio in

his compositions or not? As a last resort I decided to turn to the real ex-

pert—Yves-Alain Bois of Harvard University, who coauthored the book

Mondrian that accompanied the large retrospective exhibit of the artist's

work in 1999. Bois's answer was quite categorical: "As far as I know,

Mondrian never used a system of proportion (if one excepts the modu-

lar grids he painted in 1918-1919, but there the system is deduced

from the format of the paintings themselves: they are divided in 8 x 8

units)." Bois added: "I also vaguely remember a remark by Mondrian
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mocking arithmetic computations with regard to his work." He con-

cluded: "I think that the Golden Section is a complete red herring with

regard to Mondrian."

All of this intricate history does leave us with a puzzling question.

Short of intellectual curiosity, for what reason would so many artists

even consider employing the Golden Ratio in their works? Does this ra-

tio, as manifested for example in the Golden Rectangle, truly contain

some intrinsic, aesthetically superior qualities? The attempts to answer

this question alone resulted in a multitude of psychological experi-

ments and a vast literature.

THE SENSES DELIGHT IN THINGS DULY PROPORTIONED

With the words in the title of this section, Italian scholastic philosopher

St. Thomas Aquinas (ca. 1225-1274) attempted to capture a funda-

mental relationship between beauty and mathematics. Humans seem to

react with a sense of pleasure to "forms" that possess certain symmetries

or obey certain geometrical rules.

In our examination of the potential aesthetic value of the Golden

Ratio, we will concentrate on the aesthetics of very simple, nonrepre-

sentational forms and lines, not on complex visual materials and works

of art. Furthermore, in most of the psychological experiments I shall de-

scribe, the term "beautiful" was actually shunned. Rather, words like

"pleasing" or "attractive" have been used. This avoids the need for a def-

inition of "beautiful" and builds on the fact that most people have a

pretty good idea of what they like, even if they cannot quite explain

why.

Numerous authors have claimed that the Golden Rectangle is the

most aesthetically pleasing of all rectangles. The more modern interest

in this question was largely initiated by a series of rather crankish pub-

lications by the German researcher Adolph Zeising, which started in

1854 with Netie Lehre von den Proportionen des menschlichen Korpers (The

latest theory of proportions in the human body) and culminated in the

publication (after Zeising's death) of a massive book, Der Goldne Schnitt

(The golden section), in 1884. In these works, Zeising combined his
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own interpretation of Pythagorean and Vitruvian ideas to argue that

"the partition of the human body, the structure of many animals which

are characterized by well-developed building, the fundamental types of

many forms of plants, . . . the harmonics of the most satisfying musical

accords, and the proportionality of the most beautiful works in archi-

tecture and sculpture" are all based on the Golden Ratio. To him, there-

fore, the Golden Ratio offered the key to the understanding of all

proportions in "the most refined forms of nature and art."

One of the founders of modern psychology, Gustav Theodor Fech-

ner (1801-1887), took it upon himself to verify Zeising's pet theory.

Fechner is considered a pioneer of experimental aesthetics. In one of his

early experiments, he conducted a public opinion poll in which he

asked all the visitors to the Dresden Gallery to compare the beauty of

two nearly identical Madonna paintings (the "Darmstadt Madonna"

and the "Dresden Madonna") that were exhibited together. Both paint-

ings were attributed to the German painter Hans Holbein the Younger

(1497-1543), but there was a suspicion that the "Dresden Madonna"

was actually a later copy. That particular experiment resulted in a total

failure—out of 11,842 visitors, only 113 answered the questionnaire,

and even those were mostly art critics or people who had formed previ-

ous judgments.

Fechner's first experiments with rectangles were performed in the

1860s, and the results were published in the 1870s and eventually

summarized in his 1876 book, Vorschule der Aesthetik (Introduction to

aesthetics). He rebelled against a top-down approach to aesthetics,

which starts with the formulation of abstract principles of beauty, and

rather advocated the development of experimental aesthetics from the

bottom up. The experiment was quite simple: Ten rectangles were

placed in front of a subject who was asked to select the most pleasing

one and the least pleasing one. The rectangles varied in their length-to-

width ratios from a square (a ratio of 1.00) to an elongated rectangle (a

ratio of 2.5). Three of the rectangles were more elongated than the

Golden Rectangle, and six were closer to a square. According to Fech-

ner's own description of the experimental setting, subjects often waited

and wavered, rejecting one rectangle after another. Meanwhile the ex-

perimenter would explain that they should carefully select the most



180 MARIO LIVIO

pleasing, harmonic, and elegant rectangle. In Fechner's experiment, 76

percent of all choices centered on the three rectangles having the ratios

1.75, 1.62, and 1.50, with the peak at the Golden Rectangle (1.62). All

other rectangles received less than 10 percent of the choices each.

Fechner's motivation for studying the subject was not free of preju-

dice. He himself admitted that the inspiration for the research came to

him when he "saw the vision of a unified world of thought, spirit and

matter, linked together by the mystery of numbers." While nobody ac-

cuses Fechner of altering the results, some speculate that he may have

subconsciously produced circumstances that would favor his desired

outcome. In fact, Fechner's unpublished papers reveal that he conducted

similar experiments with ellipses, and having failed to discover any

preference for the Golden Ratio, he did not publish the results.

Fechner further measured the dimensions of thousands of printed

books, picture frames in galleries, windows, and other rectangularly

shaped objects. His results were quite interesting, and often amusing.

For example, he found that German playing cards tended to be some-

what more elongated than the Golden Rectangle, while French playing

cards were less so. On the other hand, he found the average height-to-

width ratio of forty novels from the public library to be near 03.. Paint-

ings (the area inside the frame) were actually found to be "significantly

shorter" than a Golden Rectangle. Fechner made the following (politi-

cally incorrect by today's standards) observation about window shapes:

"Only the window shapes of the houses of peasants seem often to be

square, which is consistent with the fact that people with a lower level

of education prefer this form more than people with a higher educa-

tion." Fechner further claimed that the point at which the transverse

piece crosses the upright post in graveyard crosses divides the post, on

the average, in a Golden Ratio.

Many researchers repeated similar experiments over the twentieth

century, with varying results. Overly eager Golden Ratio enthusiasts

usually report only those experiments that seem to support the idea of

an aesthetic preference for the Golden Rectangle. However, more care-

ful researchers point out the very crude nature and methodological de-

fects of many of these experiments. Some found that the results

depended, for example, on whether the rectangles were positioned with
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their long side horizontally or vertically, on the size and color of the

rectangles, on the age of the subjects, on cultural differences, and espe-

cially on the experimental method used. In an article published in

1965, American psychologists L. A. Stone and L. G. Collins suggested

that the preference for the Golden Rectangle indicated by some of the

experiments was related to the area of the human visual field. These re-

searchers found that an "average rectangle" of rectangles drawn within

and around the binocular visual field of a variety of subjects has a

length-to-width ratio of about 1.5, not too far from the Golden Ratio.

Subsequent experiments, however, did not confirm Stone and Collins's

speculation. In an experiment conducted in 1966 by H. R. Schiffman of

Rutgers University, subjects were asked to "draw the most aesthetically

pleasing rectangle" that they could on a sheet of paper. After comple-

tion, they were instructed to orient the figure either horizontally or ver-

tically (with respect to the long side) in the most pleasing position.

While Schiffman found an overwhelming preference for a horizontal

orientation, consistent with the shape of the visual field, the average ra-

tio of length to width was about 1.9—far from both the Golden Ratio

and the visual field's "average rectangle."

The psychologist Michael Godkewitsch of the University of

Toronto cast even greater doubts about the notion of the Golden Rect-

angle being the most pleasing rectangle. Godkewitsch first pointed out

the important fact that average group preferences may not reflect at all

the most preferred rectangle for each individual. Often something that

is most preferred on the average is not chosen first by anyone. For ex-

ample, the brand of chocolate that everybody rates second best may on

the average be ranked as the best, but nobody will ever buy it! Conse-

quently, first choices provide a more meaningful measure of preference

than mean preference rankings. Godkewitsch further noted that if pref-

erence for the Golden Ratio is indeed universal and genuine, then it

should receive the largest number of first choices, irrespective of which

other rectangles the subjects are presented with.

Godkewitsch published in 1974 the results of a study that involved

twenty-seven rectangles with length-to-width ratios in three ranges. In

one range the Golden Rectangle was next to the most elongated rectan-

gle, in one it was in the middle, and in the third it was next to the
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shortest rectangle. The results of the experiment showed, according to

Godkewitsch, that the preference for the Golden Rectangle was an arti-

fact of its position in the range of rectangles being presented and of the

fact that mean preference rankings (rather than first choices) were used

in the earlier experiments. Godkewitsch concluded that "the basic

question whether there is or is not, in the Western world, a reliable ver-

bally expressed aesthetic preference for a particular ratio between length

and width of rectangular shapes can probably be answered negatively.

Aesthetic theory has hardly any rationale left to regard the Golden Sec-

tion as a decisive factor in formal visual beauty."

Not all agree with Godkewitsch's conclusions. British psychologist

Chris McManus published in 1980 the results of a careful study that

used the method of paired comparisons, whereby a judgment is made

for each pair of rectangles. This method is considered to be superior to

other experimental techniques, since there is good evidence that rank-

ing tends to be a process of successive paired comparisons. McManus

concluded that "there is moderately good evidence for the phenomenon

which Fechner championed, even though Fechner's own method for its

demonstration is, at best, highly suspect owing to methodological arti-

facts." McManus admitted, however, that "whether the Golden Section

per se is important, as opposed to similar ratios (e.g. 1.5, 1.6 or even

1.75), is very unclear."
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You can test yourself (or your friends) on the question of which

rectangle you prefer best. Figure 84 shows a collection of forty-eight

rectangles, all having the same height, but with their widths ranging

from 0.4 to 2.5 times their height. University of Maine mathematician

George Markowsky used this collection in his own informal experi-

ments. Did you pick the Golden Rectangle as your first choice? (It is the

fifth from the left in the fourth row.)

GOLDEN MUSIC

Every string quartet and symphony orchestra today still uses Pythago-

ras' discovery of whole-number relationships among the different musi-

cal tones. Furthermore, in the ancient Greek curriculum and up to

medieval times, music was considered a part of mathematics, and mu-

sicians concentrated their efforts on the understanding of the mathe-

matical basis of tones. The concept of the "music of the spheres"

represented a glorious synthesis of music and mathematics, and in the

imaginations of philosophers and musicians, it wove the entire cosmos

into one grand design that could be perceived only by the gifted few. In

the words of the great Roman orator and philosopher Cicero (ca.

106-43 i.C.): "The ears of mortals are filled with this sound, but they

are unable to hear it. . . . You might as well try to stare directly at the

Sun, whose rays are much too strong for your eyes." Only in the twelfth

century did music break away from adherence to mathematical pre-

scriptions and formulae. However, even as late as the eighteenth cen-

tury, the German rationalist philosopher Gottfried Wilhelm Leibnitz

(1646-1716) wrote: "Music is a secret arithmetical exercise and the per-

son who indulges in it does not realize that he is manipulating num-

bers." Around the same time, the great German composer Johann

Sebastian Bach (1685-1750) had a fascination for the kinds of games

that can be played with musical notes and numbers. For example, he en-

crypted his signature in some of his compositions via musical codes. In

the old German musical notation, B stood for B-flat and H stood for

B-natural, so Bach could spell out his name in musical notes: B-flat, A,

C, B-natural. Another encryption Bach used was based on Gematria.
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Taking A = 1, B = 2, C = 3, and so on, B-A-C-H = 14 and

J-S-B-A-C-H = 41 (because I and J were the same letter in the German

alphabet of Bach's time). In his entertaining book Bachanalia (1994),

mathematician and Bach enthusiast Eric Altschuler gives numerous ex-

amples for the appearances of 14s (encoded BACH) and 41s (encoded

JSBACH) in Bach's music that he believes were put there deliberately

by Bach. For example, in the first fugue, the C Major Fugue, Book One

of Bach's Well Tempered Clavier, the subject has fourteen notes. Also, of

the twenty-four entries, twenty-two run all the way to completion and

a twenty-third runs almost all the way to completion. Only one entry—

the fourteenth—doesn't run anywhere near completion. Altschuler

speculates that Bach's obsession with encrypting his signature into his

compositions is similar to artists incorporating their own portraits into

their paintings or Alfred Hitchcock making a cameo appearance in each

of his movies.

Given this historical relationship between music and numbers, it is

only natural to wonder whether the Golden Ratio (and Fibonacci num-

bers) played any role either in the development of musical instruments

or in the composition of music.

The violin is an instrument in which the Golden Ratio does feature

frequently. Typically, the violin soundbox contains twelve or more arcs

of curvature (which make the violin's curves) on each side. The flat arc

at the base often is centered at the Golden Section point up the center

line.

Some of the best-known

violins were made by Anto-

nio Stradivari (1644-1737)

of Cremona, Italy. Original

drawings (Figure 85) show

that Stradivari took special

care to place the "eyes" of the

f-holes geometrically, at po-

sitions determined by the

Golden Ratio. Few (if any)

believe that it is the applica-

tion of the Golden Ratio that
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gives a Stradivarius violin its superior quality. More often such elements

as varnish, sealer, wood, and general craftsmanship are cited as the po-

tential "secret" ingredient. Many experts agree that the popularity of

eighteenth-century violins in general stems from their adaptability for

use in large concert halls. Most of these experts will also tell you that

there is no "secret" in Stradivarius violins—these are simply inimitable

works of art, the sum of all the parts that make up their superb crafts-

manship.

Another musical instrument often mentioned in relation to Fi-

bonacci numbers is the piano. The octave on a piano keyboard consists

of thirteen keys, eight white keys and five black keys (Figure 86). The

five black keys themselves form one group of two keys and another of

three keys. The numbers 2, 3, 5, 8, and 13 happen all to be consecutive

Fibonacci numbers. The primacy of the C major scale, for example, is

partly due to the fact that it is being played on the piano's white keys.

However, the relationship between the

piano keyboard and Fibonacci numbers

is very probably a red herring. First,

note that the chromatic scale (from C to

B in the figure), which is fundamental

to western music, is really composed of

twelve, not thirteen, semitones. The

same note, C, is played twice in the oc-

tave, to indicate the completion of the

cycle. Second, and more important, the

arrangement of the keys in two rows, with the sharp and flats being

grouped in twos and threes in the upper row, dates back to the early fif-

teenth century, long before the publication of Pacioli's book and even

longer before any serious understanding of Fibonacci numbers.

In the same way that Golden Numberists claim that the Golden

Ratio has special aesthetic qualities in the visual arts, they also attrib-

ute to it particularly pleasing effects in music. For example, books on

the Golden Ratio are quick to point out that many consider the major

sixth and the minor sixth to be the most pleasing of musical intervals

and that these intervals are related to the Golden Ratio. A pure musical

tone is characterized by a fixed frequency (measured in the number of
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vibrations per second) and a fixed amplitude (which determines the in-

stantaneous loudness). The standard tone used for tuning is A, which

vibrates at 440 vibrations per second. A major sixth can be obtained

from a combination of A with C, the latter note being produced by a

frequency of about 264 vibrations per second. The ratio of the two fre-

quencies 440/264 reduces to 5/3, the ratio of two Fibonacci numbers. A

minor sixth can be obtained from a high C (528 vibrations per second)

and an E (330 vibrations per second). The ratio in this case, 528/330,

reduces to 8/5, which is also a ratio of two Fibonacci numbers and al-

ready very close to the Golden Ratio. (The ratios of successive Fibonacci

numbers approach the Golden Ratio.) However, as in painting, note

that in this case, too, the concept of a "most pleasing musical interval"

is rather ambiguous.

Fixed-note instruments like the piano are tuned according to the

"tempered scale" popularized by Bach, in which each semitone has an

equal frequency ratio to the next semitone, making it easy to play in any

key. The ratio of two adjacent frequencies in a well-tempered instru-

ment is 2 112 (the twelfth root of two). How was this number derived? Its

origins actually can be traced to ancient Greece. Recall that an octave is

obtained by dividing a string into two equal parts (a frequency ratio of

2:1), and a fifth is produced by a frequency ratio of 3:2 (basically using

two-thir& of a string). One of the questions that intrigued the

Pythagoreans was whether by repeating the procedure for creating the

fifth (applying the 3/2 frequency ratio consecutively) one could gener-

ate an integer number of octaves. In mathematical terms, this means

asking: Are there any two integers n and m such that (3/2)" is equal to

2"? As it turns out, while no two integers satisfy this equality precisely,

n = 12 and m = 7 come pretty close, because of the coincidence that 2112

is nearly equal to 3 119 (the nineteenth root of 3). The twelve frequencies

of the octave are therefore all approximate powers of the basic frequency

ratio 2 1/12 . Incidentally, you may be amused to note that the ratio of

19/12 is equal to 1.58, not too far from (I).

Another way in which the Golden Ratio could, in principle, con-

tribute to the satisfaction from a piece of music is through the concept

of proportional balance. The situation here is somewhat trickier, how-

ever, than in the visual arts. A clumsily proportioned painting will in-
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stantly stick out in an exhibit like a sore thumb. In music, on the other

hand, we have to hear the entire piece before making a judgment. Nev-

ertheless, there is no question that experienced composers design the

framework of their music in such a way that not only are the different

parts in perfect balance with each other, but also each part in itself pro-

vides a fitting container for its musical argument.

We have seen many examples where Golden Ratio enthusiasts have

scrutinized the proportions of numerous works in the visual arts to dis-

cover potential applications of 4. These aficionados have subjected

many musical compositions to the same type of treatment. The results

are very similar—alongside a few genuine utilizations of the Golden

Ratio as a proportional system, there are many probable misconcep-

tions.

Paul Larson of Temple University claimed in 1978 that he discov-

ered the Golden Ratio in the earliest notated western music—the

"Kyrie" chants from the collection of Gregorian chants known as Liber

Usualis. The thirty Kyrie chants in the collection span a period of more

than six hundred years, starting from the tenth century. Larson stated

that he found a significant "event" (e.g., the beginning or ending of a

musical phrase) at the Golden Ratio separation of 105 of the 146 sec-

tions of the Kyries he had analyzed. However, in the absence of any sup-

porting historical justification or convincing rationale for the use of the

Golden Ratio in these chants, I am afraid that this is no more than an-

other exercise in number juggling.

In general, counting notes and pulses often reveals various numeri-

cal correlations between different sections of a musical work, and the

analyst faces an understandable temptation to conclude that the com-

poser introduced the numerical relationships. Yet, without a firmly

documented basis (which is lacking in many cases), such assertions re-

main dubious.

In 1995, mathematician John F. Putz of Alma College in Michigan

examined the question of whether Mozart (1756-1791) had used the

Golden Ratio in the twenty-nine movements from his piano sonatas

that consist of two distinct sections. Generally, these sonatas consist of

two parts: the Exposition, in which the musical theme is first intro-

duced, and the Development and Recapitulation, in which the main
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theme is further developed and revisited. Since musical pieces are di-

vided into equal units of time called measures (or bars), Putz examined

the ratios of the numbers of measures in the two sections of the sonatas.

Mozart, who "talked of nothing, thought of nothing but figures" dur-

ing his school days (according to his sister's testimony), is probably one

of the better candidates for the use of mathematics in his compositions.

In fact, several previous articles had claimed that Mozart's piano sonatas

do reflect the Golden Ratio. Putz's first results appeared to be very

promising. In the Sonata No. 1 in C Major, for example, the first move-

ment consists of sixty-two measures in the Development and Recapitu-

lation and thirty-eight in the Exposition. The ratio 62/38 = 1.63 is

quite close to the Golden Ratio. However, a thorough examination of

all the data basically convinced Putz that Mozart did not use the Golden

Ratio in his sonatas, nor is it clear why the simple matter of measures

would give a pleasing effect. It therefore appears that while many be-

lieve that Mozart's music is truly "divine," the "Divine Proportion" is

not a part of it.

A famous composer who might have used the Golden Ratio quite

extensively was the Hungarian Bela Bartok (1881-1945). A virtuoso

pianist and folklorist, Bartok blended elements from other composers

that he admired (including Strauss, Liszt, and Debussy) with folk mu-

sic, to create his highly personal music. He once said that "the melodic

world of my string quartets does not differ essentially from that of folk

songs." The rhythmical vitality of his music, combined with a well-

calculated formal symmetry, united to make him one of the most orig-

inal twentieth-century composers.

The Hungarian musicologist Ernä Lendvai investigated Bartok's

music painstakingly and published many books and articles on the sub-

ject. Lendvai testifies that "from stylistic analyses of Bart6k's music I

have been able to conclude that the chief feature of his chromatic tech-

nique is obedience to the laws of Golden Section in every movement."

According to Lendvai, Bartok's management of the rhythm of the

composition provides an excellent example of his use of the Golden Ra-

tio. By analyzing the fugue movement of Bartok's Mtisic for Strings, Per-

cussion and Celesta, for example, Lendvai shows that the eighty-nine

measures of the movement are divided into two parts, one with fifty-five
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measures and the other with thirty-four measures, by the pyramid peak

(in terms of loudness) of the movement. Further divisions are marked

by the placement and removal of the sordini (the mutes for the instru-

ments) and by other textural changes (Figure 87). All the numbers

of measures are Fibonacci numbers, with the ratios between major

parts (e.g., 55/34) being close to the Golden Ratio. Similarly, in Sonata

for Two Pianos and Percussion, the various themes develop in Fi-

bonacci/Golden Ratio order in terms of the numbers of semitones (Fig-

ure 88).
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Some musicologists do not accept Lendvai's analyses. Lendvai him-

self admits that Bartok said nothing or very little about his own com-

positions, stating: "Let my music speak for itself; I lay no claim to any

explanation of my works." The fact that Bartok did not leave any

sketches to indicate that he derived rhythms or scales numerically

makes any analysis suggestive at best. Also, Lendvai actually dodges the

question of whether Bartok used the Golden Ratio consciously. Hun-

garian musicologist Laszlo Somfai totally discounts the notion that

Bartok used the Golden Ratio, in his 1996 book Bela Bartok: Composi-

tion, Concepts and Atitograph Sotirces. On the basis of a thorough analysis

(which took three decades) of some 3,600 pages, Somfai concludes that

Bartok composed without any preconceived musical theories. Other

musicologists, including Ruth Tatlow and Paul Griffiths, also refer to

Lendvai's study as "dubious."

In the interesting book Debtissy in Proportion, Roy Howat of Cam-

bridge University argues that the French composer Claude Debussy

(1862-1918), whose harmonic innovations had a profound influence on

generations of composers, used the Golden Ratio in many of his com-

positions. For example, in the solo piano piece Reflets  dans l'eau, (Reflec-

tions in the water), a part of the series Images, the first rondo reprise

occurs after bar 34, which is at the Golden Ratio point between the be-

ginning of the piece and the onset of the climactic section after bar 55.

Both 34 and 55 are, of course, Fibonacci numbers, and the ratio 34/21

is a good approximation for the Golden Ratio. The same structure is

mirrored in the second part, which is divided in a 24/15 ratio (equal to
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the ratio of the two Fibonacci numbers 8/5, again close to the Golden

Ratio; Figure 89). Howat finds similar divisions in the three symphonic

sketches La Mer (The sea), in the piano pieceJardins sous la Pluie (Gar-

dens under the rain), and other works.

I must admit that given the history of La Mer, I find it somewhat

difficult to believe that Debussy used any mathematical design in the

composition of this particular piece. He started La Mer in 1903, and in

a letter he wrote to his friend Andre Messager he says: "You may not

know that I was destined for a sailor's life and that it was only quite by

chance that fate led me in another direction. But I have always retained

a passionate love for her [the sea]." By the time the composition of La

Mer was finished, in 1905, Debussy's whole life had been literally

turned upside down. He had left his first wife, "Lily" (real name Rosalie

Texier), for the alluring Emma Bardac; Lily attempted suicide; and both

she and Bardac brought court actions against the composer. If you

listen to La Mer—perhaps Debussy's most personal and passionate

work—you can literally hear not only a musical portrait of the sea,

probably inspired by the work of the English painter Joseph Mallord

William Turner, but also an expression of the tumultuous period in the

composer's life.

Since Debussy didn't say much about his compositional technique,

we must maintain a clear distinction between what may be a forced in-

terpretation imposed on the composition and the composer's real and

conscious intention (which remains unknown). To support his analysis,

Howat relies primarily on two pieces of circumstantial evidence: De-

bussy's close association with some of the symbolist painters who are

known to have been interested in the Golden Ratio, and a letter De-

bussy wrote in August 1903 to his publisher, Jacque Durand. In that

letter, which accompanied the corrected proofs of Jardins sous la Pltiie,

Debussy talks about a bar missing in the composition and explains:

"However, it's necessary, as regards number; the divine number." The

implication here is that not only was Debussy constructing his har-

monic structure with numbers in general but that the "divine number"

(assumed to refer to the Golden Ratio) played an important role.

Howat also suggests that Debussy was influenced by the writings of
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the mathematician and art critic Charles Henry, who had great interest

in the numerical relationships inherent in melody, harmony, and

rhythm. Henry's publications on aesthetics, such as the Introduction d

une esthetiqtie scientifiqtie (Introduction to a scientific aesthetic; 1885),

gave a prominent role to the Golden Ratio.

We shall probably never know with certainty whether this great

pillar of French modernism truly intended to use the Golden Ratio to

control formal proportions. One of his very few piano students, Made-

moiselle Worms de Romilly, wrote once that he "always regretted not

having worked at painting instead of music." Debussy's highly original

musical aesthetic may have been aided, to a small degree, by the appli-

cation of the Golden Ratio, but this was certainly not the main source

of his creativity.

Just as a curiosity, the names of Debussy and Bartok are related

through an amusing anecdote. During a visit of the young Hungarian

composer to Paris, the great piano teacher Isidore Philipp offered to in-

troduce Bartok to the composer Camille Saint-Saens, at the time a great

celebrity. Bartok declined. Philipp then offered him to meet with the

great organist and composer Charles-Marie Widor. Again Bartok de-

clined. "Well," said Philipp, "if you won't meet Saint-Saens and Widor,

who is there that you would like to know?" "Debussy," replied Bartok.

"But he is a horrid man," said Philipp. "He hates everybody and will

certainly be rude to you. Do you want to be insulted by Debussy?"

"Yes," Bartok replied with no hesitation.

The introduction of recording technologies and computer music in

the twentieth century accelerated precise numerical measurements and

thereby encouraged number-based music. The Austrian composer Al-

ban Berg (1885-1935), for example, constructed his Kammerkonzert

entirely around the number 3: There are units of thirty bars, on three

themes, with three basic "colors" (piano, violin, wind). The French

composer Olivier Messiaen (1908-1992), who was largely driven by a

deep Catholic faith and a love for nature, also used numbers consciously

(e.g., to determine the number of movements) in rhythmic construc-

tions. Nevertheless, when asked specifically in 1978 about the Golden

Ratio, he disclaimed use of it.
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The colorful composer, mathematician, and teacher Joseph Schil-

linger (1895-1943) exemplified by his own personality and teachings

the Platonic view of the relationship between mathematics and music.

After studying at the St. Petersburg Conservatory and teaching and

composing at the Kharkov and Leningrad State academies, he settled in

the United States in 1928, where he became a professor of both mathe-

matics and music at various institutions, including Columbia Univer-

sity and New York University. The famous composer and pianist

George Gershwin, the clarinetist and bandleader Benny Goodman, and

the dance-band leader Glenn Miller were all among Schillinger's stu-

dents. Schillinger was a great believer in the mathematical basis for

music, and he developed a System of Musical Composition. In particu-

lar, in some pieces, successive notes in the melody followed Fibonacci

intervals when counted in units of half-steps (Figure 90). To Schillinger,

these Fibonacci leaps of the notes conveyed the same sense of harmony

as the phyllotactic ratios of the leaves on a stem convey to the botan-

ist. Schillinger found "music" in the most unusual places. In Joseph

Schillinger: A Memoir, the biographical book written by his widow

Frances, the author tells the story of a party riding in a car during a rain

shower. Schillinger noted: "The splashing rain has its rhythm and the

windshield wipers their rhythmic pattern. That's unconscious art." One

of Schillinger's attempts to demonstrate that music can be based en-

tirely on mathematical formulation was particularly amusing. He basi-

cally copied the fluctuations of a stock market curve as they appeared in

the New York Times on graph paper and, by translating the ups and

downs into proportional musical intervals, showed that he could obtain

a composition somewhat similar to those of the great Johann Sebastian

Bach.
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The conclusion from this brief tour of the world of music is that

claims about certain composers having used the Golden Ratio in their

music usually leap too swiftly from numbers generated by simple

counting (of bars, notes, etc.) to interpretation. Nevertheless, there is no

doubt that the twentieth century in particular produced a renewed in-

terest in the use of numbers in music. As a part of this Pythagorean re-

vival, the Golden Ratio also started to feature more prominently in the

works of several composers.

The Viennese music critic Eduard Hanslick (1825-1904) expressed

the relationship between music and mathematics magnificently in the

book The Beatitiful in Mtisic:

The "music" of nature and the music of man belong to two distinct

categories. The translation from the former to the latter passes

through the science of mathematics. An important and pregnant

proposition. Still, we should be wrong were we to construe it in the

sense that man framed his musical system according to calculations

purposely made, the system having arisen through the unconscious

application of pre-existent conceptions of quantity and proportion,

through subtle processes of measuring and counting; but the laws

by which the latter are governed were demonstrated only subse-

quently by science.

PYTHAGORAS PLANNED IT

With the words in the heading, the famous Irish poet William Butler

Yeats (1865-1939) starts his poem "The Statues." Yeats, who once

stated that "the very essence of genius, of whatever kind, is precision,"

examines in the poem the relation between numbers and passion. The

first stanza of the poem goes like this:

Pythagoras planned it. Why did the people stare?

His numbers, though they moved or seemed to move

In marble or in bronze, lacked character.

But boys and girls, pale from the imagined love
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Of solitary beds, knew what they were,

That passion could bring character enough,

And pressed at midnight in some public place

Live lips upon a plummet-measured face.

Yeats emphasizes beautifully the fact that while the calculated propor-

tions of Greek sculptures may seem cold to some, the young and pas-

sionate regarded these forms as the embodiment of the objects of their

love.

At first glance, nothing seems more remote from mathematics than

poetry. We think that the blossoming of a poem out of the poet's sheer

imagination should be as boundless as the blossoming of a red rose. Yet

recall that the growth of the rose's petals actually occurs in a well-

orchestrated pattern based on the Golden Ratio. Could poetry be con-

structed on this basis, as well?

There are at least two ways, in principle, in which the Golden Ra-

tio and Fibonacci numbers could be linked to poetry. First, there can be

poems about the Golden Ratio or the Fibonacci numbers themselves

(e.g., "Constantly Mean" by Paul Bruckman; presented in Chapter 4) or

about geometrical shapes or phenomena that are closely related to the

Golden Ratio. Second, there can be poems in which the Golden Ratio

or Fibonacci numbers are somehow utilized in constructing the form,

pattern, or rhythm.

Examples of the first type are provided by a humorous poem by

J. A. Lindon, by Johann Wolfgang von Goethe's dramatic poem "Faust,"

and by Oliver Wendell Holmes's poem "The Chambered Nautilus."

Martin Gardner used Lindon's short poem to open the chapter on

Fibonacci in his book Mathematical Circus. Referring to the recursive re-

lation which defines the Fibonacci sequence, the poem reads:

Each wife of Fibonacci,

Eating nothing that wasn't starchy,

Weighed as much as the two before her,

His fifth was some signora!

Similarly, two lines from a poem by Katherine O'Brien read:
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Fibonacci couldn't sleep—

Counted rabbits instead of sheep.

The German poet and dramatist Goethe (1743-1832) was certainly one

of the greatest masters of world literature. His all-embracing genius is

epitomized in Fatist—a symbolic description of the human striving for

knowledge and power. Faust, a learned German doctor, sells his soul to

the devil (personified by Mephistopheles) in exchange for knowledge,

youth, and magical power. When Mephistopheles finds that the penta-

gram's "Druidenfuss" ("Celtic wizard's foot") is drawn on Faust's thresh-

old, he cannot get out. The magical powers attributed to the pentagram

since the Pythagoreans (and which led to the definition of the Golden

Ratio) gained additional symbolic meaning in Christianity, since the

five vertices were assumed to stand for the letters in the name Jesus. As

such, the pentagram was taken to be a source of fear for the devil. The

text reads:

Mephistopheles: Let me admit; a tiny obstacle

Forbids my walking out of here:

It is the druid's foot upon your threshold.

Faust: The pentagram distresses you?

But tell me, then, you son of hell.

If this impedes you, how did you come in?

Mephistopheles: Observe! The lines are poorly drawn;

That one, the angle pointing outward,

Is, you see, a little open.

Mephistopheles therefore uses trickery—the fact that the pentagram

had a small opening in it—to get by. Clearly, Goethe had no intention

of referring to the mathematical concept of the Golden Ratio in Fatist,

and he included the pentagram only for its symbolic qualities. Goethe

expressed elsewhere his opinion on mathematics thus: "The mathemati-

cians are a sort of Frenchmen: when you talk to them, they immediately

translate it into their own language, and right away it is something

entirely different."

The American physician and author Oliver Wendell Holmes
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(1809-1894) published a few collections of witty and charming poems.

In "The Chambered Nautilus" he finds a moral in the self-similar

growth of the logarithmic spiral that characterizes the mollusk's shell:

Build thee more stately mansions, 0 my soul,

As the swift seasons roll!

Leave thy low-vaulted past!

Let each new temple, nobler than the last,

Shut thee from heaven with a dome more vast,

Till thou at length art free,

Leaving thine outgrown shell by life's unresting sea.

There are many examples of numerically based poetic structures. For ex-

ample, the Divine Comedy, the colossal literary classic by the Italian poet

Dante Alighieri (1265-1321), is divided into three parts, written in

units of three lines, and each of the parts has thirty-three cantos (except

for the first, which has thirty-four cantos, to bring the total to an even

one hundred).

Poetry is probably the place in which Fibonacci numbers made

their first appearance, even before Fibonacci's rabbits. One of the cate-

gories of meters in Sanskrit and Prakit poetry is known as matra-vrttas.

These are meters in which the number of morae (ordinary short sylla-

bles) remains constant and the number of letters is arbitrary. In 1985,

mathematician Parmanand Singh of Raj Narain College, India, pointed

out that Fibonacci numbers and the relation that defines them appeared

in the writings of three Indian authorities on matra-vrttas before A.D.

1202, the year in which Fibonacci's book was published. The first of

these authors on metric was Acarya Virahanka, who lived sometime be-

tween the sixth and eighth centuries. Although the rule he gives is

somewhat vague, he does mention mixing the variations of two earlier

meters to obtain the next one, just as each Fibonacci number is the sum

of the two preceding ones. The second author, Gop -ala, gives the rule

specifically in a manuscript written between 1133 and 1135. He ex-

plains that each meter is the sum of the two earlier meters and calcu-

lates the series of meters 1, 2, 3, 5, 8, 13, 21 . . . , which is precisely the

Fibonacci sequence. Finally, the great Jain writer Ac -arya Hemacandra,
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who lived in the twelfth century and enjoyed the patronage of two

kings, also stated clearly in a manuscript written around 1150 that

"sum of the last and the last but one numbers [of variations) is [that) of

the matra-vrtta coming next." However, these early poetic appearances

of Fibonacci numbers went apparently unnoticed by mathematicians.

In her educational book Fascinating Fibonaccis, author Trudi Ham-

mel Garland gives an example of a limerick in which the number of

lines (5), the number of beats in each line (2 or 3), and the total num-

ber of beats (13) are all Fibonacci numbers.

A fly and a flea in a flue (3 beats)

Were imprisoned, so what could they do? (3 beats)

Said the fly, "Let us flee!" (2 beats)

"Let us fly!" said the flea, (2 beats)

So they fled through a flaw in the flue. (3 beats)

We should not take the appearance of very few Fibonacci numbers as ev-

idence that the poet necessarily had these numbers or the Golden Ratio

in mind when constructing the structural pattern of the poem. Like

music, poetry is, and especially was, often intended to be heard, not just

read. Consequently, proportion and harmony that appeal to the ear are

an important structural element. This does not mean, however, that the

Golden Ratio or Fibonacci numbers are the only options in the poet's

arsenal.

George Eckel Duckworth, a professor of classics at Princeton Uni-

versity, made the most dramatic claim about the appearance of the

Golden Ratio in poetry. In his 1962 book Structtiral Patterns and Pro-

portions in Vergil's Aeneid, Duckworth states that "Vergil composed the

Aeneid on the basis of mathematical proportion; each book reveals, in

small units as well as in the main divisions, the famous numerical ratio

known variously as the Golden Section, the Divine Proportion, or the

Golden Mean ratio."

The Roman poet Vergil (70 i.C.-19 i.C.) grew up on a farm, and

many of his early pastoral poems deal with the charm of rural life. His

national epic the Aeneid, which details the adventures of the Trojan hero

Aeneas, is considered one of the greatest poetic works in history. In
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twelve books, Vergil follows Aeneas from his escape from Troy to

Carthage, through his love affair with Dido, to the establishment of

the Roman state. Vergil makes Aeneas the paragon of piety, devotion to

family, and loyalty to state.

Duckworth made detailed measurements of the lengths of passages

in the Aeneid and computed the ratios of these lengths. Specifically, he

measured the number of lines in passages characterized as major (and

denoted that number by M) and minor (and denoted the number by

m), and calculated the ratios of these numbers. The identification of

major and minor parts was based on content. For example, in many

passages the major or minor part is a speech and the other part (minor

or major respectively) is a narrative or a description. From this analysis

Duckworth concluded that the Aeneid contains "hundreds of Golden

Mean ratios." He also noted that an earlier analysis (from 1949) of an-

other Vergil work (Georgius I) gave for the ratio of the two parts (in

terms of numbers of lines), known as "Works" and "Days," a value very

close to (I).

Unfortunately, Roger Herz-Fischler 'has shown that Duckworth's

analysis probably is based on a mathematical misunderstanding. Since

this oversight is endemic to many of the "discoveries" of the Golden Ra-

tio, I will explain it here briefly.

Suppose you have any pair of positive values m and M, such that M

is larger than m. For example, M = 317 could be the number of pages in

the last book you read and m = 160 could be your weight in pounds. We

could represent these two numbers on a line (with proportional

lengths), as in Figure 91. The ratio of the shorter to the longer part is

equal to m/M = 160/317 = 0.504, while the ratio of the longer part to

the whole is M/(M + m) = 317/477 = 0.665. You will notice that the

value of M/(M + m) is closer to 14. = 0.618 than m/M. We can prove

mathematically that this is always the case. (Try it with the actual num-

ber of pages in your last book and your real weight.) From the definition

of the Golden Ratio, we know that when a line is divided in a Golden

Ratio, m/M = M/(M + in) precisely. Consequently, we may be tempted

to think that if we examine a series of ratios of numbers, such as the

lengths of passages, for the potential presence of the Golden Ratio, it

does not matter if we look at the ratio of the shorter to the longer or the
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longer to the whole. What I have just shown is that it definitely does

matter. A too-eager Golden Ratio enthusiast wishing to demonstrate a

Golden Ratio relationship between the weights of readers and the num-

bers of pages in the books they read may he able to do so by presenting

data in the form MI(M + m), which is biased toward 1/(1). This is pre-

cisely what happened to Duckworth. By making the unfortunate deci-

sion to use only the ratio M/(M + m) in his analysis, because he thought

that this was "slightly more accurate," he compressed and distorted the

data and made the analysis statistically invalid. In fact, Leonard A.

Curchin of the University of Ottawa and Roger Herz-Fischler repeated

in 1981 the analysis with Duckworth's data (but using the ratio m/M)

and showed that there is no evidence for the Golden Ratio in the Aeneid.

Rather, they concluded that "random scattering is indeed the case with

Vergil." Furthermore, Duckworth "endowed" Vergil with the knowl-

edge that the ratio of two consecutive Fibonacci numbers is a good ap-

proximation of the Golden Ratio. Curchin and Herz-Fischler, on the

other hand, demonstrated convincingly that even Hero of Alexandria,

who lived later than Vergil and was one of the distinguished mathe-

maticians of his time, did not know about this relation between the

Golden Ratio and Fibonacci numbers.

M=317 m = 160

Figure 91

Sadly, the statement about Vergil and (j) continues to feature in

most of the Golden Ratio literature, again demonstrating the power of

Golden Numberism.

All the attempts to disclose the (real or false) Golden Ratio in vari-

ous works of art, pieces of music, or poetry rely on the assumption that

a canon for ideal beauty exists and can be turned to practical account.

History has shown, however, that the artists who have produced works

of lasting value are precisely those who have broken away from such ac-

ademic precepts. In spite of the Golden Ratio's importance for many ar-

eas of mathematics, the sciences, and natural phenomena, we should, in

my humble opinion, give up its application as a fixed standard for aes-

thetics, either in the human form or as a touchstone for the fine arts.
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FROM THE TILES TO

THE HEAVENS

Understanding is, after all, what science is all about—and science

is a great deal more than mere mindless computation.

-ROGER PENROSE (1931-)

The tangled tale of the Golden Ratio has taken us from the sixth cen-

tury i.C. to contemporary times. Two intertwined trends thread these

twenty-six centuries of history. On one hand, the Pythagorean motto

"all is number" has materialized spectacularly, in the role that the

Golden Ratio plays in natural phenomena ranging from phyllotaxis to

the shape of galaxies. On the other, the Pythagorean obsession with the

symbolic meaning of the pentagon has metamorphosed into what I be-

lieve is the false notion that the Golden Ratio provides a universal

canon of ideal beauty. After all of this, you may wonder whether there

still is room left for any further exploration of this seemingly simple di-

vision of a line.

THE TILED ROAD TO QUASI-CRYSTALS

The Dutch painter Johannes Vermeer (1632-1675) is best known for

his fantastically alluring genre paintings, which typically show one or
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Figure 92 Figure 93

two figures engaged in some domestic task. In many of these paintings,

a window on the viewer's left softly lights the room, and the way the

light reflects off the tiled floor is purely magical. If you examine some

of these paintings closely, you will find that quite a few, such as "The

Concert," "A Lady Writing a Letter with Her Maid," "Love Letter"

(Figure 92; located in the Rijksmuseum, Amsterdam), and "The Art of

Painting" (Figure 93; located in the Kunsthistorisches Museum, Vi-

enna), have identical floor tiling patterns, composed of black and white

squares.

Figure 94

Squares, equilateral triangles, and hexagons are particularly easy to

tile with, if one wants to cover the entire plane and achieve a pattern

that repeats itself at regular intervals—known as periodic tiling (Figure
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94). Simple, undecorated square

tiles and the patterns they form

have a fourfold symmetry—when

rotated through a quarter of a cir-

cle (90 degrees), they remain the

same. Similarly, equilateral, tri-

angular tiles have a threefold

symmetry (they remain the same

when rotated by a third of a circle

or 120 degrees), and hexagonal

tiles have a sixfold symmetry

(they remain the same when ro-

tated by 60 degrees).

Periodic tilings also can be

generated with more complex

shapes. One of the most astound-

ing monuments of Islamic archi-

tecture, the citadel-palace Alhambra in Granada, Spain, contains

numerous examples of intricate tilings (Figure 95). Some of those

patterns inspired the famous Dutch graphic artist M. C. Escher

(1898-1972), who produced many imaginative examples of tilings

(e.g., Figure 96), to which he referred as "divisions of the plane."

The geometrical plane figure most directly related to the Golden

Ratio is, of course, the regular pentagon, which has a fivefold symmetry.

Pentagons, however, cannot be used to fill the plane entirely and form a

periodic tiling pattern. No matter how hard you try, unfilled gaps will

remain. Consequently, it has long been thought that no tiling pattern

with long-range order can

also exhibit a fivefold sym-

metry. However, in 1974,

Roger Penrose discovered

two basic sets of tiles that

can fit together to fill the

entire plane and exhibit

the "forbidden" five-fold

rotational symmetry. The



(a) (b)

Figure 98Figure 97

36° 36°

Figure 99

204 MARIO LIVIO

resulting patterns are not strictly periodic, even though they display a

long-range order.

The Penrose tilings have the Golden Ratio written all over them.

One pair of tiles that Penrose considered consists of two shapes known

as a "dart" and a "kite" (Figure 97; a and b, respectively). Note that the

two shapes are composed of the isosceles triangles that appear in the

pentagon (Figure 25). The triangle in which the ratio of side to base is

4) (Figure 97b) is the one known as a Golden Triangle, and the one in

which the ratio of side to base is 1/4) (Figure 97a) is the one known as a

Golden Gnomon. The two shapes can be obtained by cutting a diamond

shape or rhombus with angles of 72 degrees and 108 degrees in a way

that divides the long diagonal in a Golden Ratio (Figure 98).

Penrose and Princeton mathematician John Horton Conway

showed that in order to cover the whole plane with darts and kites in a

nonperiodic way (as in Figure 99), certain matching rules must be

obeyed. The latter can be ensured by adding "keys" in the form of

notches and protrusions on the sides of the

figures, like in the pieces of a jigsaw puzzle

(Figure 100). Penrose and Conway further

(a) (b)

Figure 100
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tern. Recall that the Pythagorean inter-

est in the Golden Ratio started with the

infinite series of nested pentagons and

pentagrams in Figure 105. All four of

the Penrose tiles are hidden in this fig-

ure. Points B and D mark the opposite

far corners of the kite DCBA, while

points A and C mark the "wings" of the

dart ABC . Similarly, you can find the

fat rhombus AECD and the thin one

(not to scale) ABCE

Penrose's work on tiling has been expanded to three dimensions. In

the same way that two-dimensional tiles can be used to fill the plane,

three-dimensional "blocks" can be used to fill up space. In 1976, math-

ematician Robert Ammann discovered a pair of "cubes" (Figure 106),

one "squashed" and one "stretched," known as rhombohedra, that can

fill up space with no gaps. Ammann was further able to show that given

a set of face-matching rules, the pattern that emerges is nonperiodic and

has the symmetry properties of the icosahedron (Figure 20e; this is the

equivalent of fivefold symmetry in three dimensions, since five sym-

metric edges meet at every vertex). Not surprisingly, the two rhombo-

hedra are Golden Rhombohedra—their faces actually are identical to

the rhombi of the Penrose tiles (Figure 101).

Figure 106

Penrose's tilings might have remained in the relative obscurity of

recreational mathematics were it not for a dramatic discovery in 1984.

Israeli materials engineer Dany Schectman and his collaborators found

that the crystals of an aluminum manganese alloy exhibit both long-

range order and fivefold symmetry. This was just about as shocking to
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crystallographers as the discovery of a herd of five-legged cows would be

to zoologists. For decades, solid-state physicists and crystallographers

were convinced that solids can come in only two basic forms: Either

they are highly ordered and fully periodic crystals, or they are totally

amorphous. In ordered crystals, like those of ordinary table salt, atoms

or groups of atoms appear in precisely recurring motifs, called tinit cells,

which form periodic structures. For example, in salt, the unit cell is a

cube, and each chlorine atom is surrounded by sodium neighbors and

vice versa (Figure 107). Just as in a perfectly tiled floor, the position and

orientation of each unit cell determines uniquely the entire pattern. In

amorphous materials, such as glasses, on the

other hand, the atoms are totally disordered. In

the same way that only shapes like squares

(with a fourfold symmetry), triangles (threefold

symmetry), and hexagons (sixfold symmetry)

can fill the entire plane with a periodic tiling,

only crystals with two-, three-, four-, and six-

fold symmetry were thought to exist. Schect-

man's crystals caused complete bewilderment

because they appeared both to be highly or-

dered (like periodic crystals) and to exhibit fivefold (or icosahedral)

symmetry. Before this discovery, few people suspected that another state

of matter could exist, sharing important aspects with both crystalline

and amorphous substances.

These new kinds of crystals (since the original discovery, other al-

loys of aluminum have been found) are now known as qtiasi-crystals

-they are neither amorphous like glass nor precisely periodic like salt. In

other words, these unusual materials appear to have precisely the prop-

erties of Penrose tilings! But this realization by itself is of little use to

physicists, who want to understand why and how the quasi-crystals

form. Penrose's and Ammann's matching rules are in this case little

more than a clever mathematical exercise that does not explain the be-

havior of real atoms or atom clusters. In particular, it is difficult to

imagine energetics that permit precisely the existence of two types of

clusters (like the two Ammann rhombohedra) in just the required pro-

portion in terms of density.
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A clue toward a possible explanation came in 1991, when mathe-

matician Sergei E. Burkov of the Landau Institute of Theoretical

Physics in Moscow realized that two shapes of tiles are not needed to

achieve quasi-periodic tiling in the plane. Burkov showed that quasi-

periodicity could be generated even using a single, decagonal (ten-

sided) unit, provided that the tiles are allowed to overlap—a property

forbidden in previous tiling attempts. Five years later, German mathe-

matician Petra Gummelt of the Ernst Moritz Arndt University in

Greifswald proved rigorously that Penrose tiling can be obtained by us-

ing a single "decorated" decagon combined with a specific overlapping

rule. Two decagons may overlap only if shaded areas in the decoration

overlap (Figure 108). The decagon is also closely related to the Golden

Ratio—the radius of the circle that circumscribes a decagon with a side

length of 1 unit is equal to 4.

Based on Gummelt's work, mathemat-

ics finally could be turned into physics.

Physicists Paul Steinhardt of Princeton

University and Hyeong-Chai Jeong of Se-

jong University in Seoul showed that the

purely mathematical rules of overlapping

units could be transformed into a physical

picture in which "quasi-unit cells," which

are really clusters of atoms, simply share

atoms. Steinhardt and Jeong suggested that

quasi-crystals are structures in which iden-

tical clusters of atoms (quasi-unit cells)

share atoms with their neighbors, in a pat-

tern that is designed to maximize the clus-

ter density. In other words, quasi-periodic

packing produces a system that is more sta-

ble (higher density and lower energy) than

otherwise. Steinhardt, Jeong, and collaborators also attempted to verify

this model experimentally in 1998. They bombarded a quasi-crystal al-

loy of aluminum, nickel, and cobalt with X-ray and electron beams.

The images of the structure obtained from the scattered beams were in
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remarkable agreement with the picture of overlapping decagons. This is

shown in Figure 109, where a decagon tiling pattern is superimposed

on the experimental result. More recent experiments gave results that

were somewhat more ambiguous. Nevertheless, the general impression

remains that quasi-crystals can be explained by the Steinhardt-Jeong

model.

Figure 109 Figure 110

Images of the surfaces of quasi-crystals (taken in 1994 and 2001)

reveal another fascinating relation to the Golden Ratio. Using a tech-

nique known as scanning tunneling microscopy (STM), scientists from

the University of Basel, Switzerland, and from the Ames Laboratory at

Iowa State University were able to obtain high-resolution images of the

surfaces of an aluminum-copper-iron alloy and an aluminum-palla-

dium-manganese alloy, both of which are quasi-crystals. The images

show flat "terraces" (Figure 110) terminating in steps that come pri-

marily in two heights, "high" and "low" (both measuring only a few

hundred-millionths of an inch). The ratio of the two heights was found

to be equal to the Golden Ratio!

Quasi-crystals are a magnificent example of a concept that started

out as a purely mathematical entity (based on the Golden Ratio) but

that eventually provided an explanation of a real, natural phenomenon.

What is even more amazing about this particular development is that

the concept emerged out of recreational mathematics. How could math-

ematicians have "anticipated" later discoveries by physicists? The ques-

tion becomes more intriguing yet when we recall that Direr and Kepler
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showed interest in tilings with fivefold symmetric shapes already in the

sixteenth and seventeenth centuries. Can even the most esoteric topics

in mathematics eventually find applications in either natural or human-

inspired phenomena? We shall return to this question in Chapter 9.

Another fascinating aspect of the quasi-crystals story is related to two

of the main theorists involved. Both Penrose and Steinhardt spent much

of their scientific careers on topics related to cosmology—the study of the

universe as a whole. Penrose is the person who discovered that Einstein's

theory of general relativity predicts its own defects, points in which the

strength of gravity becomes infinite. These mathematical singularities

correspond to the objects we call black holes, which are masses that have

collapsed to such densities that their gravity is sufficiently strong to pre-

vent any light, mass, or energy to escape from them. Observations during

the past quarter century have revealed that black holes are not just imag-

inary theoretical concepts but actual objects that exist in the universe. Re-

cent observations with the two large space observatories, the Hubble

Space Telescope and the Chandra X-ray Observatory, have shown that

black holes are not even very rare. Rather, the centers of most galaxies har-

bor monstrous black holes with masses between a few million and a few

billion times the mass of our Sun. The presence of the black holes is re-

vealed by the gravitational pull they exert on stars and gas in their neigh-

borhood. According to the standard "big bang" model that describes the

origin of our entire universe, the cosmos as a whole started its expansion

from such a singularity—an extremely hot and dense state.

Paul Steinhardt was one of the key figures in the development of

what is known as the inflationary model of the universe. According to

this model, originally proposed by physicist Alan Guth of MIT, when

the universe was only a tiny fraction of a second old (0.000 . . . 1; with

the "1" at the 35th decimal place), it underwent a fantastically rapid ex-

pansion, increasing in size by a factor of more than 10 30 (1 followed by

30 zeros) within a fraction of a second. This model explains a few oth-

erwise puzzling properties of our universe, such as the fact that it looks

almost precisely the same in every direction—it is exquisitely isotropic.

In 2001, Steinhardt and collaborators proposed a new version of the

universe's very beginnings, known as the Ekpyrotic Universe (from the
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Greek word for "conflagration," or a sudden burst of fire). In this still

very speculative model, the big bang occurred when two three-

dimensional universes moving along a hidden extra dimension collided.

The intriguing question is: Why did these two outstanding cos-

mologists decide to get involved in recreational mathematics and quasi-

crystals?

I have known Penrose and Steinhardt for many years, being in the

same business of theoretical astrophysics and cosmology. In fact, Penrose

was an invited speaker in the first large conference that I organized on

relativistic astrophysics in 1984, and Steinhardt was an invited speaker

in the latest one in 2001. Still, I did not know what motivated them to

delve into recreational mathematics, which appears to be rather remote

from their professional interests in astrophysics, so I asked them.

Roger Penrose replied: "I am not sure I have a deep answer for that.

As you know, mathematics is something most mathematicians do for

enjoyment." After some reflection he added: "I used to play with shapes

fitting together since I was a child; some of my work on tiles therefore

predated my work in cosmology. At the particular time, however, my

recreational mathematics work was at least partially motivated by my

cosmological research. I was thinking about the large-scale structure of

the universe and was looking for toy models with simple basic rules,

which could nevertheless generate complicated structures on large

scales."

"But," I asked, "what was it that induced you to continue to work

on that problem for quite a while?"

Penrose laughed and said, "As you know, I have always been inter-

ested in geometry; that problem simply intrigued me. Furthermore,

while I had a hunch that such structures could occur in nature, I just

couldn't see how nature could assemble them through the normal

process of crystal growth, which is local. To some extent I am still puz-

zled by that."

Paul Steinhardt's immediate reaction on the phone was: "Good

question!" After thinking about it for a few minutes he reminisced:

"As an undergraduate student I really wasn't sure what I wanted to do.

Then, in graduate school, I looked for some mental relief from my
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strenuous efforts in particle physics, and I found that in the topic of or-

der and symmetry in solids. Once I stumbled on the problem of quasi-

periodic crystals, I found it irresistible and I kept coming back to it."

F RAC TA LS

The Steinhardt-Jeong model for quasi-crystals has the interesting prop-

erty that it produces long-range order from neighborly interactions,

without resulting in a fully periodic crystal. Amazingly enough, we can

also find this general property in the Fibonacci sequence. Consider the

following simple algorithm for the creation of a sequence known as the

Golden Sequence. Start with the number 1, and then replace 1 by 10.

From then on, replace each 1 by 10 and each 0 by 1. You will obtain the

following steps:

10

101

10110

10110101

1011010110110

101101011011010110101

and so on. Clearly, we started here with a "short-range" law (the simple

transformation of 0 --■ 1 and 1 -, 10) and obtained a nonperiodic long-
range order. Note that the numbers of is in the sequence of lines 1, 1,
2, 3, 5, 8 . . . form a Fibonacci sequence, and so do the numbers of Os
(starting from the second line). Furthermore, the ratio of the number of
is to the number of Os approaches the Golden Ratio as the sequence
lengthens. In fact, an examination of Figure 27 reveals that if we take 0
to stand for a baby pair of rabbits and 1 to stand for a mature pair, then
the sequence just given mirrors precisely the numbers of rabbit pairs.
But there is even more to the Golden Sequence than these surprising
properties. By starting with 1 (on the first line), followed by 10 (on the
second line), and simply appending to each line the line just preceding
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it, we can also generate the entire sequence. For example, the fourth

line, 10110, is obtained by appending the second line, 10, to the third,

101, and so on.

Recall that "self-similarity" means symmetry across size scale. The

logarithmic spiral displays self-similarity because it looks precisely the

same under any magnification, and so does the series of nested pen-

tagons and pentagrams in Figure 10. Every time you walk into a hair

stylist shop, you see an infinite series of self-similar reflections of your-

self between two parallel mirrors.

The Golden Sequence is also self-similar on different scales. Take

the sequence

and probe it with a magnifying glass in the following sense. Starting

from the left, whenever you encounter a 1, mark a group of three sym-

bols, and when you encounter a 0, mark a group of two symbols (with

no overlap among the different groups). For example, the first digit is a

1, we therefore mark the group of the first three digits 101 (see below).

The second digit from the left is a zero, therefore we mark the group of

two digits 10 that follow the first 101. The third digit is 1; therefore we

mark the three digits 101 that follow the 10; and so on. The marked se-

quence now looks like this

Now from every group of three symbols retain the first two, and from

every group of two retain the first one (the retained symbols are under-

lined):

If you now look at the retained sequence

you find that it is identical to the Golden Sequence.
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We can do another magnification exercise on the Golden Sequence

simply by underlining any pattern or subsequence. For example, sup-

pose we choose "10" as our subsequence, and we underline it whenever

it occurs in the Golden Sequence:

If we now treat each 10 as a single symbol and we mark the number of

places by which each pattern of 10 needs to be moved to overlap with

the next 10, we get the sequence: 2122121 . . . (the first "10" needs to

be moved two places to overlap with the second, the third is one place

after the second, etc.). If we would now replace each 2 by a 1 and each

1 by a 0 in the new sequence, we recover the Golden Sequence. In other

words, if we look at any pattern within the Golden Sequence, we dis-

cover that the same pattern is found in the sequence on another scale.

Objects with this property, like the Russian Matrioshka dolls that fit

one into the other, are known as fractals. The name "fractal" (from the

Latin fracttis, meaning "broken, fragmented") was coined by the famous

Polish-French-American mathematician Benoit B. Mandelbrot, and it

is a central concept in the geometry of nature and in the theory of

highly irregular systems known as chaos.
Fractal geometry represents a brilliant attempt to describe the

shapes and objects of the real world. When we look around us, very few

forms can be described in terms of the simple figures of Euclidean

geometry, such as straight lines, circles, cubes, and spheres. An old

mathematical joke tells of a physicist who thought that he could be-

come rich from betting at horse races by solving the exact equations of

motion for the horses. After much work, he indeed managed to solve

the equations—for spherical horses. Real horses, unfortunately, are not

spherical, and neither are clouds, cauliflowers, or lungs. Similarly, light-

ning, rivers, and drainage systems do not travel in straight lines, and

they all remind us of the branching of trees and of the human circula-

tory system. Examine, for example, the fantastically intricate branching

of the "Dolmen in the Snow" (Figure 111), a painting by the German

romantic painter Caspar David Friedrich (1774-1840; currently in the

Gemaldegalerie Neue Meister in Dresden).
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Mandelbrot's gigantic

mental leap in formulating

fractal geometry has been

primarily in the fact that

he recognized that all of

hese complex zigs and

zags are not merely a nui-

sance but often the main

mathematical characteris-

tic of the morphology.

Mandelbrot's first realiza-

tion was the importance

of self-similarity—the fact

that many natural shapes

display endless sequences of motifs repeating themselves within motifs,

on many scales. The chambered nautilus (Figure 4) exhibits this prop-

erty magnificently, as does a regular cauliflower—break off smaller and

smaller pieces and, up to a point, they continue to look like the whole

vegetable. Take a picture of a small piece of rock, and you will have a

hard time recognizing that you are not looking at an entire mountain.

Even the printed form of the continued fraction that is equal to the

Golden Ratio has this property (Figure 112)—magnify the barely re-

solved symbols and you will see the same continued fraction. In all of

these objects, zooming in does not smooth out the degree of roughness.

Rather, the same irregularities characterize all scales.

At this point, Mandelbrot asked himself, how do you determine the

dimensions of something that has such a fractal structure? In the world

of Euclidean geometry, all the

objects have dimensions that i+ 

can be expressed as whole
if

numbers. Points have zero di-

mensions, straight lines are 1. 
one-dimensional, plane fig-

1 

ures like triangles and pen-

tagons are two-dimensional,

and objects like spheres and Figure 112
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the Platonic solids are three-dimensional. Fractal curves like the path of

a bolt of lightning, on the other hand, wiggle so aggressively that they

fall somewhere between one and two dimensions. If the path is rela-

tively smooth, then we can imagine that the fractal dimension would be

close to one, but if it is very complex, then a dimension closer to two

can be expected. These musings have turned into the by now-famous

question: "How long is the coast of Britain?" Mandelbrot's surprising

answer is that the length of the coastline actually depends on the length

of your ruler. Suppose you start out with a satellite-generated map of

Britain that is one foot on the side. You measure the length and convert

it to the actual length by multiplying by the known scale of your map.

Clearly this method will skip over any twists in the coastline that are

too small to be revealed on the map. Equipped with a one-yard stick,

you therefore start the long journey of actually walking along Britain's

beaches, painstakingly measuring the length yard by yard. There is no

doubt that the number you get now will be much larger than the pre-

vious one, since you managed to capture much smaller twists and turns.

You immediately realize, however, that you would still be skipping over

structures on smaller scales than one yard. The point is that every time

you decrease the size of your ruler, you get a larger value for the length,

because you always discover that there exists substructure on even

smaller scale. This fact suggests that even the concept of length as rep-

resenting size needs to be revisited when dealing with fractals. The con-

tours of the coastline do not become a straight line upon magnification;

rather, the crinkles persist on all scales and the length increases ad in-

finitum (or at least down to atomic scales).

This situation is exemplified beautifully by what could be thought

of as the coastline of some imaginary land. The Koch snowflake is a

curve first described by the Swedish mathematician Helge von Koch

(1870-1924) in 1904 (Figure 113). Start with an equilateral triangle,

one inch long on the side. Now in the middle of each side, construct a

smaller triangle, with a side of one-third of an inch. This will give the

Star of David in the second figure. Note that the original outline of the

triangle was three inches long, while now it is composed of twelve seg-

ments, one-third of an inch each, so that the total length is now four

inches. Repeat the same procedure consecutively—on each side of a tri-
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angle place a new one, with a side length that is one-third that of the

previous one. Each time, the length of the outline increases by a factor

of 4/3 to infinity, in spite of the fact that it borders a finite area. ( We can

show that the area converges to eight-fifths that of the original tri-

angle.)

Figure 113

The realization of the existence of fractals raised the question of the

dimensions that should be associated with them. The fractal dimension

is really a measure of the wrinkliness of the fractal, or of how fast length,

surface, or volume increases if we measure it with respect to ever-

decreasing scales. For example, we feel intuitively that the Koch curve

(bottom of Figure 113) takes up more space than a one-dimensional line

but less space than the two-dimensional square. But how can it have an

intermediate dimension? There is, after all, no whole number between

1 and 2. This is where Mandelbrot followed a concept first introduced

in 1919 by the German mathematician Felix Hausdorff (1868-1942), a

concept that at first appears mind boggling—fractional dimensions. In

spite of the initial shock we may experience from such a notion, frac-

tional dimensions were precisely the tool needed to characterize the

degree of irregularity, or fractal complexity, of objects.

In order to obtain a meaningful definition of the self-similarity

dimension or fractal dimension, it helps to use the familiar whole-
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number dimensions 0, 1,

2, 3 as guides. The idea is

to examine how many

small objects make up a

larger object in any num-

ber of dimensions. For

example, if we bisect a

(one-dimensional) line, we

obtain two segments (for a

reduction factor of f = 1/2).

When we divide a (two-

dimensional) square into

subsquares with half the side length (again a reduction factor f = 1/2),we

get 4 = 2 2 squares. For a side length of one-third (f = 1/3), there are 9 =

3 2 subsquares (Figure 114). For a (three-dimensional) cube, a division

into cubes of half the edge-length (f = 1/2) produces 8 = 23cubes, and

one-third the length (f =1/3) produces 27 = 3 3 cubes (Figure 114). If you

examine all of these examples, you find that there is a relation between

the number of subobjects, n, the length reduction factor, f, and the di-

mension, D. The relation is simply n = (1/f)D. (I give another form of

this relation in Appendix 7.) Applying the same relation to the Koch

snowflake gives a fractal dimension of about 1.2619. As it turns out, the

coastline of Britain also has a fractal dimension of about 1.26. Fractals

therefore serve as models for real coastlines. Indeed, pioneering chaos

theorist Mitch Feigenbaum, of Rockefeller University in New York, ex-

ploited this fact to help produce in 1992 the revolutionary Hammond

Atlas of the World. Using computers to do as much as possible unas-

sisted, Feigenbaum examined fractal satellite data to determine which

points along coastlines have the greatest significance. The result—a

map of South America, for example, that is better than 98 percent ac-

curate, compared to the more conventional 95 percent scored by older

atlases.

For many fractals in nature, from trees to the growth of crystals, the

main characteristic is branching. Let us examine a highly simplified

model for this ubiquitous phenomenon. Start with a stem of unit

length, which divides into two branches of length 1/2 at 120 degrees
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(a) (b) (a) (b)

Figure 115 Figure 116

(Figure 115). Each branch further divides in a similar fashion, and the

process goes on without bound.

If instead of a length reduction factor of 1/2 we had chosen a some-

what larger number (e.g., 0.6), the spaces among the different branches

would have been reduced, and eventually branches would overlap.

Clearly, for many systems (e.g., a drainage system or a blood circulatory

system), we may be interested in finding out at what reduction factor

precisely do the branches just touch and start to overlap, as in Figure

116. Surprisingly (or maybe not, by now), this happens for a reduction

factor that is equal precisely to one over the Golden Ratio, 1/phi  = 0.618. . .

(A short proof is given in Appendix 8.) This is known as a Golden Tree,

and its fractal dimension turns out to be about 1.4404. The Golden

Tree and similar fractals composed of simple lines cannot be resolved

very easily with the naked eye after several iterations. The problem can

be partially resolved by using two-dimensional figures like lunes (Figure

117) instead of lines. At each step, you can use a copying machine

equipped with an image reduction feature to produce lunes
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Figure 119 Figure 120

Figure 121 Figure 122

reduced by a factor 1/4). The resulting image, a Golden Tree composed

of lunes, is shown in Figure 118.

Fractals can be constructed not just from lines but also from simple

planar figures such as triangles and squares. For example, you can start

with an equilateral triangle with a side of unit length and at each cor-

ner attach a new triangle with a side length of 'A. At each of the free cor-

ners of the second-generation triangles, attach a triangle with a side

length of A, and so on (Figure 119). Again, you may wonder at what re-

duction factor do the three boughs start to touch, as in Figure 120, and

again the answer turns out to be 1/4). Precisely the same situation oc-

curs if you build a similar fractal using a square (Figure 121)—overlap-

ping occurs when the reduction factor is 1/4 = 0.618 . . . (Figure 122).
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Furthermore, all the unfilled white rectangles in the last figure are

Golden Rectangles. We therefore find that while in Euclidean geome-

try the Golden Ratio originated from the pentagon, in fractal geometry

it is associated even with simpler figures like squares and equilateral tri-

angles.

Once you get used to the concept, you realize that the world around

us is full of fractals. Objects as diverse as the profiles of the tops of forests

on the horizon and the circulatory system in a kidney can be described in

terms of fractal geometry. If a particular model of the universe as a whole

known as eternal inflation is correct, then even the entire universe is

characterized by a fractal pattern. Let me explain this concept very

briefly, giving only the broad-brush picture. The inflationary theory,

originally advanced by Alan Guth, suggests that when our universe was

only a tiny fraction of a second old, an unbridled expansion stretched our

region of space to a size that is actually much larger than the reach of our

telescopes. The driving force behind this stupendous expansion is a very

peculiar state of matter called a false vacuum. A ball on top of a flat hill,

as in Figure 123, can symbolically describe the situation. For as long as

the universe remained in the false vacuum state (the ball was on the hill-

top), it expanded extremely rapidly, doubling in size every tiny fraction

of a second. Only when the ball rolled down the hill and into the sur-

rounding, lower-energy "ditch" (representing symbolically the fact that

the false vacuum decayed) did the tremendous expansion stop. Accord-

ing to the inflationary model, what we call our universe was caught in the

false vacuum state for a very brief period, during which it expanded at a

Figure 123
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fantastic rate. Eventually the false vacuum decayed, and our universe

resumed the much more leisurely expansion we observe today. All the

energy and subatomic particles of our universe were generated during

oscillations that followed the decay (represented schematically in the

third drawing in Figure 123). However, the inflationary model also pre-

dicts that the rate of expansion while in the false vacuum state is much

faster than the rate of decay. Consequently, the fate of a region of false

vacuum can be illustrated schematically as in Figure 124. The universe

started with some region of false vacuum. As time progressed, some

part (a third in the figure) of the region has decayed to produce a

"pocket universe" like our own. At the same time, the regions that

stayed in the false vacuum state continued to expand, and by the time

represented schematically by the second bar in Figure 124, each one of

them was actually the size of the whole first bar. (This is not shown in

the figure because of space constraints.) Moving in time from the second

bar to the third, the central pocket universe continued to evolve slowly

as in the standard big bang model of our universe. Each of the remain-

ing two regions of false vacuum, however, evolved in precisely the same

way as the original region of false vacuum—some part of them decayed,

producing a pocket universe. Each region of false vacuum expanded

to become the same size as the first bar (again, not shown in the

figure because of space

constraints). An infinite

number of pocket uni-

verses thus were produced,

and a fractal pattern was

generated—the same se-

quence of false vacua and

pocket universes is repli-

cated on ever-decreasing

scales. If this model truly

represents the evolution of

the universe as a whole,

then our pocket universe is but one out of an infinite number of pocket

universes that exist.

In 1990, North Carolina State University professor Jasper Memory
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published a poem entitled "Blake and Fractals" in the Mathematics Mag-

azine. Referring to the mystic poet William Blake's line "To see a World

in a Grain of Sand," Memory wrote:

William Blake said he could see

Vistas of infinity

In the smallest speck of sand

Held in the hollow of his hand.

Models for this claim we've got

In the work of Mandelbrot:

Fractal diagrams partake

Of the essence sensed by Blake.

Basic forms will still prevail

Independent of the Scale;

Viewed from far or viewed from near

Special signatures are clear.

When you magnify a spot,

What you had before, you've got.

Smaller, smaller, smaller, yet,

Still the same details are set;

Finer than the finest hair

Blake's infinity is there,

Rich in structure all the way—

Just as the mystic poets say.

Some of the modern applications of the Golden Ratio, Fibonacci num-

bers, and fractals reach into areas that are much more down to earth

than the inflationary model of the universe. In fact, some say that the

applications can reach even all the way into our pockets.

A GOLDEN TOUR OF WALL STREET

One of the best-known attempts to use the Fibonacci sequence and the

Golden Ratio in the analysis of stock prices is associated with the name

of Ralph Nelson Elliott (1871-1948). An accountant by profession, El-
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liott held various executive positions with railroad companies, primar-

ily in Central America. A serious alimentary tract illness that left him

bedridden forced him into retirement in 1929. To occupy his mind, El-

liott started to analyze in great detail the rallies and plunges of the Dow

Jones Industrial Average. During his lifetime, Elliott witnessed the

roaring bull market of the 1920s followed by the Great Depression. His

detailed analyses led him to conclude that market fluctuations were not

random. In particular, he noted: "the stock market is a creation of man

and therefore reflects human idiosyncrasy." Elliott's main observation

was that, ultimately, stock market patterns reflect cycles of human op-

timism and pessimism.

On February 19, 1935, Elliott mailed a treatise entitled The Wave
Principle to a stock market publication in Detroit. In it he claimed to

have identified characteristics which "furnish a principle that deter-

mines the trend and gives clear warning of reversal." The treatise even-

tually developed into a book with the same title, which was published

in 1938.

Elliott's basic idea was rela-

tively simple. He claimed that

market variations can be charac-

terized by a fundamental pattern

consisting of five waves during

an upward ("optimistic") trend

(marked by numbers in Figure

125) and three waves during a

downward ("pessimistic") trend

(marked by letters in Figure

125). Note that 5, 3, 8 (the total

number of waves) are all Fi-

bonacci numbers. Elliott further

asserted that an examination of

the fluctuation on shorter and

shorter time scales reveals that

the same pattern repeats itself

(Figure 126), with all the num-

bers of the constituent wavelets
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corresponding to higher Fibonacci numbers. Identifying 144 as "the

highest number of practical value," the breakdown of a complete mar-

ket cycle, according to Elliott, might look as follows. A generally up-

ward trend consisting of five major waves, twenty-one intermediate

waves, and eighty-nine minor waves (Figure 126) is followed by a gen-

erally downward phase with three major, thirteen intermediate, and

fifty-five minor waves (Figure 126).

(a) (b)

Figure 127

Some recent books that attempt to apply Elliott's general ideas to

actual trading strategies go even further. They use the Golden Ratio to

calculate the extreme points of maximum and minimum that can be ex-

pected (although not necessarily reached) in market prices at the end of

upward or downward trends (Figure 127). Even more sophisticated al-

gorithms include a logarithmic spiral plotted on top of the daily mar-

ket fluctuations, in an attempt to represent a relationship between price

and time. All of these forecasting efforts assume that the Fibonacci se-

quence and the Golden Ratio somehow provide the keys to the opera-

tion of mass psychology. However, this "wave" approach does suffer

from some shortcomings. The Elliott "wave" usually is subjected to

various (sometimes arbitrary) stretchings, squeezings, and other alter-

ations by hand to make it "forecast" the real-world market. Investors

know, however, that even with the application of all the bells and whis-

tles of modern portfolio theory, which is supposed to maximize the re-

turns for a decided-on level of risk, fortunes can be made or lost in a

heartbeat.
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You may have noticed that Elliott's wave interpretation has as one

of its ingredients the concept that each part of the curve is a reduced-

scale version of the whole, a concept central to fractal geometry. Indeed,

in 1997, Benoit Mandelbrot published a book entitled Fractals and Scal-

ing in Finance: Discontinuity, Concentration, Risk, which introduced well-

defined fractal models into market economics. Mandelbrot built on the

known fact that fluctuations in the stock market look the same when

charts are enlarged or reduced to fit the same price and time scales. If

you look at such a chart from a distance that does not allow you to read

the scales, you will not be able to tell if it represents daily, weekly, or

hourly variations. The main innovation in Mandelbrot's theory, as com-

pared to standard portfolio theory, is in its ability to reproduce tumul-

tuous trading as well as placid markets. Portfolio theory, on the other

hand, is able to characterize only relatively tranquil activity. Mandel-

brot never claimed that his theory could predict a price drop or rise on

a specific day but rather that the model could be used to estimate prob-

abilities of potential outcomes. After Mandelbrot published a simpli-

fied description of his model in Scientific American in February 1999, a

myriad of responses from readers ensued. Robert Ihnot of Chicago prob-

ably expressed the bewilderment of many when he wrote: "If we know

that a stock will go from $10 to $15 in a given amount of time, it

doesn't matter how we interpose the fractals, or whether the graph looks

authentic or not. The important thing is that we could buy at $10 and

sell at $15. Everyone should now be rich, so why are they not?"

Elliott's original wave principle represented a bold if somewhat

naive attempt to identify a pattern in what appears otherwise to be a

rather random process. More recently, however, Fibonacci numbers and

randomness have had an even more intriguing encounter.

RABBITS AND COIN TOSSES

The defining property of the Fibonacci sequence—that each new num-

ber is the sum of the previous two numbers—was obtained from an un-

realistic description of the breeding of rabbits. Nothing in this

definition hinted that this imaginary rabbit sequence would find its way



THE GOLDEN RATIO 227

into so many natural and cultural phenomena. There was even less, how-

ever, to suggest that experimentation with the basic properties of the

sequence themselves could provide a gateway to understanding the

mathematics of disordered systems. Yet this was precisely what hap-

pened in 1999. Computer scientist Divakar Viswanath, then a postdoc-

toral fellow at the Mathematical Sciences Research Institute in Berkeley,

California, was bold enough to ask a "what if?" question that led unex-

pectedly to the discovery of a new special number: 1.13198824 . . . .

The beauty of Viswanath's discovery lies primarily in the simplicity of its

central idea. Viswanath merely asked himself: Suppose you start with the

two numbers 1, 1, as in the original Fibonacci sequence, but now instead

of adding the two numbers to get the third, you flip a coin to decide

whether to add them or to subtract the last number from the previous

one. You can decide, for example, that "heads" means to add (giving 2 as

the third number) and "tails" means to subtract (giving 0 as the third

number). You can continue with the same procedure, each time flipping

a coin to decide whether to add or subtract the last number to get a new

one. For example, the series of tosses HTTHHTHTTH will produce the

sequence 1, 1, 2, —1, 3, 2, 5, —3, 2, —5, 7, 2. On the other hand, the

(rather unlikely) series of tosses HHHHHHHHHHHH ... will pro-

duce the original Fibonacci sequence.

In the Fibonacci sequence, terms increase rapidly, like a power of

the Golden Ratio. Recall that we can calculate the seventeenth number

in the sequence, for example, by raising the Golden Ratio to the seven-

teenth power, dividing by the square root of 5, and rounding off the re-

sult to the nearest whole number (which gives 1597). Since Viswanath's

sequences were generated by a totally random series of coin tosses, how-

ever, it was not at all obvious that a smooth growth pattern would be

obtained, even if we ignore the minus signs and take only the absolute

value of the numbers. To his own surprise, however, Viswanath found

that if he ignored the minus signs, the values of the numbers in his ran-

dom sequences still increased in a clearly defined and predictable rate.

Specifically, with essentially 100 percent probability, the one hundredth

number in any of the sequences generated in this way was always close

to the one hundredth power of the peculiar number 1.13198824 . . . ,

and the higher the term was in the sequence, the closer it came to the
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corresponding power of 1.13198824 . . . . To actually calculate this

strange number, Viswanath had to use fractals and to rely on a powerful

mathematical theorem that was formulated in the early 1960s by math-

ematicians Hillel Furstenberg of the Hebrew University in Jerusalem

and Harry Kesten of Cornell University. These two mathematicians

proved that for an entire class of randomly generated sequences, the ab-

solute value of a number high in the sequence gets closer and closer to

the appropriate power of some fixed number. However, Furstenberg and

Kesten did not know how to calculate this fixed number; Viswanath

discovered how to do just that.

The importance of Viswanath's work lies not only in the discovery

of a new mathematical constant, a significant feat in itself, but also in

the fact that it illustrates beautifully how what appears to be an entirely

random process can lead to a fully deterministic result. Problems of this

type are encountered in a variety of natural phenomena and electronic

devices. For example, stars like our own Sun produce their energy in nu-

clear "furnaces" at their centers. However, for us actually to see the stars

shining, bundles of radiation, known as photons, have to make their

way from the stellar depths to the surface. Photons do not simply fly

through the star at the speed of light. Rather, they bounce around, be-

ing scattered and absorbed and reemitted by all the electrons and atoms

of gas in their way, in a seemingly random fashion. Yet the net result is

that after a random walk, which in the case of the Sun takes some 10

million years, the radiation escapes the star. The power emitted by the

Sun's surface determined (and continues to determine) the temperature

on Earth's surface and allowed life to emerge. Viswanath's work and the

research on random Fibonaccis that followed provide additional tools

for the mathematical machinery that explains disordered systems.

There is another important lesson to be learned from Viswanath's

discovery—even an eight-hundred-year-old, seemingly trivial mathe-

matical problem can still surprise you.



9

I S GOD A

MATHEMATICIAN?

I should attempt to treat human vice and folly geometrically .. .

the passions of hatred, anger, envy, and so on, considered in themselves,

follow from the necessity and efficacy of nature. . . . I shall, therefore,

treat the nature and strength of the emotion in exactly the same manner,

as though I were concerned with lines, planes and solids.

-iARUCH SPINOZA (1632-1677)

Two and two the mathematician continues to make four, in spite of the

whine of the amateur for three, or the cry of the critic for five.

-JAMES MCNEILL WHISTLER (1834-1903)

Euclid defined the Golden Ratio because he was interested in using this

simple proportion for the construction of the pentagon and the penta-

gram. Had this remained the Golden Ratio's only application, the pres-

ent book would have never been written. The delight we derive from

this concept today is based primarily on the element of surprise. The

Golden Ratio turned out to be, on one hand, the simplest of the con-

tinued fractions (but also the "most irrational" of all irrational numbers)

and, on the other, the heart of an endless number of complex natural

phenomena. Somehow the Golden Ratio always makes an unexpected
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appearance at the juxtaposition of the simple and the complex, at the

intersection of Euclidean geometry and fractal geometry.

The sense of gratification provided by the Golden Ratio's surprising

emergences probably comes as close as we could expect to the sensuous

visual pleasure we obtain from a work of art. This fact raises the ques-

tion of what type of aesthetic judgment can be applied to mathematics

or, even more specifically, what did the famous British mathematician

Godfrey Harold Hardy (1877-1947) actually mean when he said: "The

mathematician's patterns, like the painter's or the poet's, must be beau-

tiful."

This is not an easy question. When I discussed the psychological

experiments that tested the visual appeal of the Golden Rectangle, I de-

liberately avoided the term "beautiful." I will adopt the same strategy

here, because of the ambiguity associated with the definition of beauty.

The extent to which beauty is in the eye of the beholder when referring

to mathematics is exemplified magnificently by a story presented in the

excellent 1981 book The Mathematical Experience by Philip J. Davis and

Reuben Hersh.

In 1976, a delegation of distinguished mathematicians from the

United States was invited to the People's Republic of China for a series

of talks and informal meetings with Chinese mathematicians. The del-

egation subsequently issued a report entitled "Pure and Applied Math-

ematics in the People's Republic of China." By "pure," mathematicians

usually refer to the type of mathematics that at least on the face of it has

absolutely no direct relevance to the world outside the mind. At the

same time, we should realize that Penrose tilings and random Fibonac-

cis, for example, provide two of the numerous examples of "pure" math-

ematics turning into "applied." One of the dialogues in the delegation's

report, between Princeton mathematician Joseph J. Kohn and one of his

Chinese hosts, is particularly illuminating. The dialogue was on the

topic of the "beauty of mathematics," and it took place at the Shanghai

Hua-Tung University.

Kohn: Should you not present beauty of mathematics?

Couldn't it inspire students? Is there room for the

beauty of science?
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Answer: The first demand is production.

Kohn: That is no answer.

Answer: Geometry was developed for practice. The evolution

of geometry could not satisfy science and

technology; in the seventeenth century, Descartes

discovered analytical geometry. He analyzed pistons

and lathes and also the principles of analytical

geometry. Newton's work came out of the

development of industry. Newton said, "The basis of

any theory is social practice." There is no theory of

beauty that people agree on. Some people think one

thing is beautiful, some another. Socialist

construction is a beautiful thing and stimulates

people here. Before the Cultural Revolution some of

us believed in the beauty of mathematics but failed

to solve practical problems; now we deal with water

and gas pipes, cables and rolling mills. We do it for

the country and the workers appreciate it. It is a

beautiful feeling.

Since, as this dialogue starkly indicates, there is hardly any formal, ac-

cepted description of aesthetic judgment in mathematics and how it

should be applied, I prefer to discuss only one particular element in

mathematics that invariably gives pleasure to nonexperts and experts

alike—the element of surprise.

MATHEMATICS SHOULD SURPRISE

In a letter written on February 27, 1818, the English Romantic poet

John Keats (1795-1821) wrote: "Poetry should surprise by a fine excess

and not by Singularity—it should strike the Reader as a wording of his

own highest thoughts, and appear almost a Remembrance." Unlike po-

etry, however, mathematics more often tends to delight when it exhibits

an unanticipated result rather than when conforming to the reader's

own expectations. In addition, the pleasure derived from mathematics
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is related in many cases to the surprise felt upon perception of totally

unexpected relationships and unities. A mathematical relation known

as Benford's law provides a wonderful case study for how all of these el-

ements combine to produce a great sense of satisfaction.

Take a look, for example, in the World Almanac, at the table of "U.S.

Farm Marketings by State" for 1999. There is a column for "Crops" and

one for "Livestock and Products." The numbers are given in U.S. dol-

lars. You would have thought that the numbers from 1 to 9 should oc-

cur with the same frequency among the first digits of all the listed

marketings. Specifically, the numbers starting with 1 should constitute

about one-ninth of all the listed numbers, as would numbers starting

with 9. Yet, if you count them, you will find that the number 1 appears

as the first digit in 32 percent of the numbers (instead of the expected

11 percent if all digits occurred equally often). The number 2 also ap-

pears more frequently than its fair share—appearing in 19 percent of

the numbers. The number 9, on the other hand, appears only in 5 per-

cent of the numbers—less than expected. You may think that finding

this result in one table is surprising, but hardly shocking, until you ex-

amine a few more pages in the Almanac (the numbers above were taken

from the 2001 edition). For example, if you look at the table of the

death toll of "Some Major Earthquakes," you will find that the numbers

starting with 1 constitute about 38 percent of all the numbers, and

those starting with 2 are 18 percent. If you choose a totally different

table, such as the one for the population in Massachusetts in places of

5,000 or more, the numbers start with 1 about 36 percent of the time

and with 2 about 16.5 percent of the time. At the other end, in all of

these tables the number 9 appears first only in about 5 percent of the

numbers, far less than the expected 11 percent. How is it possible that

tables describing such diverse and apparently random data all have the

property that the number 1 appears as the first digit 30-some percent of

the time and the number 2 around 18 percent of the time? The situa-

tion becomes even more puzzling when you examine still larger data-

bases. For example, accounting professor Mark Nigrini of the Cox

School of Business at Southern Methodist University, Dallas, examined

the populations of 3,141 counties in the 1990 U.S. Census. He found

that the number 1 appeared as the first digit in about 32 percent of the
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numbers, 2 appeared in about 17 percent, 3 in 14 percent, and 9 in less

than 5 percent. Analyst Eduardo Ley of Resources for the Future in

Washington, D.C., found very similar numbers for the Dow Jones In-

dustrial Average in the years 1990 to 1993. And if all of this is not

dumfounding enough, here is another amazing fact. If you examine the

list of, say, the first two thousand Fibonacci numbers, you will find that

the number 1 appears as the first digit 30 percent of the time, the num-

ber 2 appears 17.65 percent, 3 appears 12.5 percent, and the values con-

tinue to decrease, with 9 appearing 4.6 percent of the time as first digit.

In fact, Fibonacci numbers are more likely to start with 1, with the

other numbers decreasing in popularity in precisely the same manner as the

jtist-described random selections of numbers!

Astronomer and mathematician Simon Newcomb (1835-1909)

first discovered this "first-digit phenomenon" in 1881. He noticed that

books of logarithms in the library, which were used for calculations,

were considerably dirtier at the beginning (where numbers starting

with 1 and 2 were printed) and progressively cleaner throughout.

While this might be expected with bad novels abandoned by bored

readers, in the case of mathematical tables they simply indicated a more

frequent appearance of numbers starting with 1 and 2. Newcomb, how-

ever, went much further than merely noting this fact; he came up with

an actual formula that was supposed to give the probability that a ran-

dom number begins with a particular digit. That formula (presented in

Appendix 9) gives for 1 a probability of 30 percent; for 2, about 17.6

percent; for 3, about 12.5 percent; for 4, about 9.7 percent; for 5, about

8 percent; for 6, about 6.7 percent; for 7, about 5.8 percent; for 8, about

5 percent; and for 9, about 4.6 percent. Newcomb's 1881 article in the

American Jotirnal of Mathematics and the "law" he discovered went en-

tirely unnoticed, until fifty-seven years later, when physicist Frank

Benford of General Electric rediscovered the law (apparently indepen-

dently) and tested it with extensive data on river basin areas, baseball

statistics, and even numbers appearing in Reader's Digest articles. All the

data fit the postulated formula amazingly well, and hence this formula

is now known as Benford's law.

Not all lists of numbers obey Benford's law. Numbers in telephone

books, for example, tend to begin with the same few digits in any given
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region. Even tables of square roots of numbers do not obey the law. On

the other hand, chances are that if you collect all the numbers appear-

ing on the front pages of several of your local newspapers for a week, you

will obtain a pretty good fit. But why should it be this way? What do

the populations of towns in Massachusetts have to do with death tolls

from earthquakes around the globe or with numbers appearing in the

Reader's Digest? Why do the Fibonacci numbers also obey the same law?

Attempts to put Benford's law on a firm mathematical basis have

proven to be much more difficult than expected. One of the key obsta-

cles has been precisely the fact that not all lists of numbers obey the law

(even the preceding examples from the Almanac do not obey the law

precisely). In his Scientific American article describing the law in 1969,

University of Rochester mathematician Ralph A. Raimi concluded that

"the answer remains obscure."

The explanation finally emerged in 1995-1996, in the work of

Georgia Institute of Technology mathematician Ted Hill. Hill became

first interested in Benford's law while preparing a talk on surprises in

probability in the early 1990s. When describing to me his experience,

Hill said: "I started working on this problem as a recreational experi-

ment, but a few people warned me to be careful, because Benford's law

can become addictive." After a few years of work it finally dawned on

him that rather than looking at numbers from one given source, the

mixture of data was the key. Hill formulated the law statistically, in a

new form: "If distributions are selected at random (in any unbiased way)

and random samples are taken from each of these distributions, then the

significant-digit frequencies of the combined sample will converge to Ben-

ford's distribution, even if some of the individual distributions selected

do not follow the law." In other words, suppose you assemble random

collections of numbers from a hodgepodge of distributions, such as a

table of square roots, a table of the death toll in notable aircraft disas-

ters, the populations of counties, and a table of air distances between se-

lected world cities. Some of these distributions do not obey Benford's

law by themselves. What Hill proved, however, is that as you collect

ever more of such numbers, the digits of these numbers will yield fre-

quencies that conform ever closer to the law's predictions. Now, why do

Fibonacci numbers also follow Benford's law? After all, they are fully



THE GOLDEN RATIO 235

determined by a recursive relation and are not random samples from

random distributions.

Well, in this case it turns out that this conformity with Benford's

law is not a unique property of the Fibonacci numbers. If you examine

a large number of powers of 2 (2 ' = 2, 2 2 = 4, 2 3 = 8, etc.), you'll see that

they also obey Benford's law. This should not be so surprising, given

that the Fibonacci numbers themselves are obtained as powers of the

Golden Ratio (recall that the nt h Fibonacci number is close to 4,
n/A ). In

fact, we can prove that sequences defined by a large class of recursive re-

lations follow Benford's law.

Benford's law provides yet another fascinating example of pure

mathematics transformed into applied. One interesting application is

in the detection of fraud or fabrication of data in accounting and tax

evasion. In a broad range of financial documents, data conform very

closely to Benford's law. Fabricated data, on the other hand, very rarely

do. Hill demonstrates how such fraud detection works with another

simple example, using probability theory. In the first day of class in his

course on probability, he asks students to do an experiment. If their

mother's maiden name begins with A through L, they are to flip a coin

200 times and record the results. The rest of the class is asked to fake a

sequence of 200 heads and tails. Hill collects the results the following

day, and within a short time he is able to separate the genuine from the

fake with 95 percent accuracy. How does he do that? Any sequence of

200 genuine coin tosses contains a run of six consecutive heads or six

consecutive tails with a very high probability. On the other hand, peo-

ple trying to fake a sequence of coin tosses very rarely believe that they

should record such a sequence.

A recent case in which Benford's law was used to uncover fraud in-

volved an American leisure and travel company. The company's audit

director discovered something that looked odd in claims made by the

supervisor of the company's healthcare department. The first two digits

of the healthcare payments showed a suspicious spike in numbers start-

ing with 65 when checked for conformity to Benford's law. (A more de-

tailed version of the law predicts also the frequency of the second and

higher digits; see Appendix 9.) A careful audit revealed thirteen fraud-

ulent checks for amounts between $6,500 and $6,599. The District
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Attorney's office in Brooklyn, New York, also used tests based on Ben-

ford's law to detect accounting fraud in seven New York companies.

Benford's law contains precisely some of the ingredients of surprise

that most mathematicians find attractive. It reflects a simple but aston-

ishing fact—that the distribution of first digits is extremely peculiar. In

addition, that fact turned out to be difficult to explain. Numbers, with

the Golden Ratio as an outstanding example, sometimes provide a more

instantaneous gratification. For example, many professional and ama-

teur mathematicians are fascinated by primes. Why are primes so im-

portant? Because the "Fundamental Theorem of Arithmetic" states that

every whole number larger than 1 can be expressed as a product of

prime numbers. (Note that 1 is not considered a prime.) For example,

28 = 2 x 2 X 7; 66 =. 2 x 3 x 11; and so on. Primes are so rooted in the

human comprehension of mathematics that in his book Cosmos, when

Carl Sagan (1934-1996) had to describe what type of signal an intelli-

gent civilization would transmit into space he chose as an example the

sequence of primes. Sagan wrote: "It is extremely unlikely that any nat-

ural physical process could transmit radio messages containing prime

numbers only. If we received such a message we would deduce a civi-

lization out there that was at least fond of prime numbers." The great

Euclid proved more than two thousand years ago that infinitely many

primes exist. (The elegant proof is presented in Appendix 10.) Yet most

people will agree that some primes are more attractive than others.

Some mathematicians, such as the French Francois Le Lionnais and the

American Chris Caldwell, maintain lists of "remarkable" or "titanic"

numbers. Here are just a few intriguing examples from the great trea-

sury of primes:

• The number 1,234,567,891, which cycles through all the digits,

is a prime.

• The 230t h largest prime, which has 6,400 digits, is composed of

6,399 9s and only one 8.

• The number composed of 317 iterations of the digit 1 is a prime.

• The 713
th
 largest prime can be written as (10' 1 ) x (1019'5 +

1991991991991991991991991) + 1, and it was discovered in—

you guessed it-1991.
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From the perspective of this book, the connection between primes

and Fibonacci numbers is of special interest. With the exception of the

number 3, every Fibonacci number that is a prime also has a prime sub-

script (its order in the sequence). For example, the Fibonacci number

233 is a prime, and it is the thirteenth (also a prime) number in the se-

quence. The converse, however, is not true: The fact that the subscript

is a prime does not necessarily mean that the number is also a prime.

For example, the nineteenth number (19 is a prime) is 4181, and 4181

is not a prime—it is equal to 113 X 37.

The number of known Fibonacci primes has increased steadily over

the years. In 1979, the largest known Fibonacci prime was the 531 " in

the sequence. By the mid-1990s, the largest known was the 2,971 5[ ; and

in 2001, the 81,839 th number was shown to be a prime with 17,103

digits. So, is there an infinite number of Fibonacci primes (as there is an

infinite number of primes, in general)? No one actually knows, and this

is probably the greatest unsolved mathematical mystery about Fi-

bonacci numbers.

THE UNREASONABLE POWER OF MATHEMATICS

The collection of dialogues Intentions contains the aesthetic philosophy

of the famous playwright and poet Oscar Wilde (1854-1900). In that

collection, the dialogue "The Decay of Lying" is a particularly provoca-

tive presentation of Wilde's ideas on "the new aesthetics." In the con-

clusion of this dialogue, one of the characters (Vivian) summarizes:

Life imitates Art far more than Art imitates Life. This results not

merely from Life's imitative instinct, but from the fact that the

selfconscious aim of Life is to find expression, and that Art offers it

certain beautiful forms through which it may realize that energy.

It is a theory that has never been put forward before, but it is ex-

tremely fruitful, and throws an entirely new light upon the history

of Art.

It follows, as a corollary from this, that external Nature also

imitates Art. The only effects that she can show us are effects that
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we have already seen through poetry, or in paintings. This is the

secret of Nature's charm, as well as the explanation of Nature's

weakness.

We could almost substitute "Mathematics" for "Art" in this passage

and obtain a statement that reflects the reality with which many out-

standing minds have struggled. Mathematics appears at first glance to

be just too effective. In Einstein's own words: "How is it possible that

mathematics, a product of human thought that is independent of expe-

rience, fits so excellently the objects of physical reality?" Another out-

standing physicist, Eugene Wigner (1902-1995), known for his many

contributions to nuclear physics, delivered in 1960 a famous lecture en-

titled "The Unreasonable Effectiveness of Mathematics in the Physical

Sciences." We have to wonder, for example, how is it possible that plan-

ets in their orbits around the Sun were found to follow a curve (an el-

lipse) that had been explored by the Greek geometers long before

Kepler's laws were discovered? Why does the explanation of the exis-

tence of quasi-crystals rely on the Golden Ratio, a concept conceived by

Euclid for purely mathematical purposes? Is it not astounding that the

structure of so many galaxies containing billions of stars follows closely

Bernoulli's favorite curve—the magnificent logarithmic spiral? And the

most astonishing of all: Why are the laws of physics themselves ex-

pressible as mathematical equations in the first place?

But this is not all. Mathematician John Forbes Nash (now world fa-

mous as the subject of the book and film biography A Beautiful Mind),
for example, shared the 1994 Nobel Prize in economics because his

mathematical dissertation (written at age twenty-one!) outlining his

"Nash Equilibrium" for strategic noncooperative games inaugurated a

revolution in fields as diverse as economics, evolutionary biology, and

political science. What is it that makes mathematics work so well?

The recognition of the extraordinary "effectiveness" of mathematics

even made it into a hysterically funny passage in Samuel Beckett's novel

Molloy, about which I have a personal story. In 1980, two colleagues

from the University of Florida and I wrote a paper about neutron stars,

which are extremely compact and dense astronomical objects that result
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from the gravitational collapse of the cores of massive stars. The paper

was more mathematical than the garden variety of astronomical papers,

and consequently we decided to add an appropriate motto on the first

page. The motto read:

Extraordinary how mathematics help you .. .

—SAMUEL BECKETT, Molloy

The line was cited as being taken from the first of the trilogy of novels

Molloy, Malone Dies, and The Unnamable by the famous writer and play-

wright Samuel Beckett (1906-1989). All three novels, incidentally,

represent a search for self—a hunt for identity by writers through writ-

ing. We are led to observe the characters in states of decay while they

pursue a meaning for their existence.

Papers in astrophysics very rarely have mottoes. Consequently, we

received a letter from the editor of The Astrophysical Journal informing

us that while he liked Beckett, too, he did not quite see the necessity of

including the motto. We replied that we would leave the decision of

whether to publish the motto or not entirely to him, and the paper

eventually was published with the motto in the December 15 issue.

Here, however, is the full passage from Molloy:

And in winter, under my greatcoat, I wrapped myself in swathes of

newspaper, and did not shed them until the earth awoke, for good,

in April. The Times Literary Supplement was admirably adapted to

this purpose, of a neverfailing toughness and impermeability. Even

farts made no impression on it. I can't help it, gas escapes from my

fundament on the least pretext, it's hard not to mention it now and

then, however great my distaste. One day I counted them. Three

hundred and fifteen farts in nineteen hours, or an average of over

sixteen farts an hour. After all it's not excessive. Four farts every fif-

teen minutes. It's nothing. Not even one fart every four minutes. It's

unbelievable. Damn it, I hardly fart at all, I should never have men-

tioned it. Extraordinary how mathematics help you to know your-

self.



240 MARIO LIVIO

The history of mathematics has produced at least two attempts, philo-

sophically very different, to answer the question of the incredible power

of mathematics. The answers are also related to the fundamental issue of

the actual nattire of mathematics. A comprehensive discussion of these

topics can fill entire volumes and is certainly beyond the scope of this

book. I will therefore give only a brief description of some of the main

lines of thought and present my personal opinion.

One view on the nature of mathematics, traditionally dubbed the

"Platonic view," is that mathematics is universal and timeless, and its

existence is an objective fact, independent of us humans. According to

this Platonic view, mathematics has always been out there in some ab-

stract world, for humans to simply discover, just as Michelangelo

thought that his sculptures existed inside the marble and he merely un-

covered them. The Golden Ratio, Fibonacci numbers, Euclidean geom-

etry, and Einstein's equations are all a part of this Platonic reality that

transcends the human mind. Supporters of this Platonic view regard the

famous Austrian logician Kurt GOdel (1906-1978) also as a whole-

hearted Platonist. They point out that not only did he say about math-

ematical concepts that "they, too, may represent an aspect of objective

reality" but that his "incompleteness theorems" by themselves could be

taken as arguments in favor of the Platonic view. These theorems, prob-

ably the most celebrated results in the whole of logic, show that for any

formal axiomatic system (e.g., number theory) there exist statements

formulable in its language that it cannot either prove or disprove. In other

words, number theory, for example, is "incomplete" in the sense that

there are true statements of number theory that the theory's methods of

proof are incapable of demonstrating. To prove them we must jump to

a higher and richer system, in which again other true statements can be

made that cannot be proved, and so on ad infinitum. Computer scien-

tist and author Douglas R. Hofstadter phrased this succinctly in his

fantastic book Godel, Escher, Bach: An Eternal Golden Braid: "Provability

is a weaker notion than truth." In this sense, there will never be a for-

mal method of determining for every mathematical proposition

whether it is absolutely true, any more than there is a way to

determine whether a theory in physics is absolutely true. Oxford's

mathematical physicist Roger Penrose is among those who believe that
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GOdel's theorems argue powerfully for the very existence of a Platonic

mathematical world. In his wonderfully thought-provoking book Shad-

ows of the Mind Penrose says: "Mathematical truth is not determined ar-

bitrarily by the rules of some 'man-made' formal system, but has an

absolute nature, and lies beyond any such system of specifiable rules."

To which he adds that: "Support for the Platonic viewpoint . . . was an

important part of Godel's initial motivations." Twentieth-century

British mathematician G. H. Hardy also believed that the human func-

tion is to "discover or observe" mathematics rather than to invent it. In

other words, the abstract landscape of mathematics was there, waiting

for mathematical explorers to reveal it.

One of the proposed solutions to the mystery of the effectiveness of

mathematics in explaining nature relies on an intriguing modification

of the Platonic ideas. This "modified Platonic view" argues that the

laws of physics are expressed as mathematical equations, the structure of

the universe is a fractal, galaxies arrange themselves in logarithmic spi-

rals, and so on, because mathematics is the universe's language. Specifi-

cally, mathematical objects are still assumed to exist objectively, quite

independent of our knowledge of them, but instead of placing mathe-

matics entirely in some mythical abstract plane, at least some parts of it

would be placed in the real cosmos. If we want to communicate with in-

telligent civilizations 10,000 light-years away, all we have to do is

transmit the number 1.6180339887 . . . and be sure that they will un-

derstand what we mean, because the universe has undoubtedly imposed

the same mathematics on them. God is indeed a mathematician.

This modified Platonic view was precisely the belief expressed by

Kepler (colored by his religious inclinations), when he wrote that

geometry "supplied God with patterns for the creation of the world,

and passed over to Man along with the image of God; and was not in

fact taken in through the eyes." Galileo Galilei had similar thoughts:

Philosophy is written in this grand book—I mean the universe—

which stands continually open to our gaze, but it cannot be under-

stood unless one first learns to comprehend the language and

interpret the characters in which it is written. It is written in the

language of mathematics, and its characters are triangles, circles,
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and other geometrical figures, without which it is humanly impos-

sible to understand a single word of it; without these, one is wan-

dering about in a dark labyrinth.

The mystic poet and artist

William Blake had a rather

different opinion of this

mathematician God. Blake

utterly despised scientific ex-

planations of nature. To him,

Newton and the scientists

who followed him merely

conspired to unweave the

rainbow, to conquer all mys-

teries of human life by rules.

Accordingly, in Blake's pow-

erful etching "The Ancient of

Days" (Figure 128; currently

at the Pierpont Morgan Li-

brary, New York), he depicts

an evil God who wields a

compass not to establish uni-

versal order but rather to clip

the wings of imagination.

Kepler and Galileo, however, were definitely not the last mathe-

maticians to adopt this "modified" version of the Platonic view, nor

were such views limited to those who, like Newton, took for granted

the existence of a Divine Mind. The great French mathematician, as-

tronomer, and physicist Pierre-Simon de Laplace (1749-1827) wrote in

his Theorie Analitiqtie des Probabilites (Analytic theory of probabilities;

1812):

Given for one instant an intelligence which comprehends all the

forces by which nature is animated and the respective positions of

the beings which compose it, if moreover this intelligence were vast
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enough to submit these data to analysis, it would embrace in the

same formula both the movements of the largest bodies in the uni-

verse and those of the lightest atom.

This was the same Laplace who replied to Napoleon Bonaparte: "Sire, I

have no need for that hypothesis," when the emperor remarked that

there is no mention of the creator in Laplace's large book on celestial

mechanics.

Very recently, IBM mathematician and author Clifford A. Pickover

wrote in his lively book The Loom of God: "I do not know if God is a

mathematician, but mathematics is the loom upon which God weaves

the fabric of the universe. . . . The fact that reality can be described or

approximated by simple mathematical expressions suggests to me that

nature has mathematics at its core."

Supporters of the "modified Platonic view" of mathematics like to

point out that, over the centuries, mathematicians have produced (or

"discovered") numerous objects of pure mathematics with absolutely no

application in mind. Decades later, these mathematical constructs and

models were found to provide solutions to problems in physics. Penrose

tilings and non-Euclidean geometries are beautiful testimonies to this

process of mathematics unexpectedly feeding into physics, but there are

many more.

There were also many cases of feedback between physics and math-

ematics, where a physical phenomenon inspired a mathematical model

that later proved to be the explanation of an entirely different physical

phenomenon. An excellent example is provided by the phenomenon

known as Brownian motion. In 1827, British botanist Robert Brown

(1773-1858) observed that when pollen particles are suspended in wa-

ter, they get into a state of agitated motion. This effect was explained by

Einstein in 1905 as resulting from the collisions that the colloidal par-

ticles experience with the molecules of the surrounding fluid. Each sin-

gle collision has a negligible effect, because the pollen grains are

millions of times more massive than the water molecules, but the per-

sistent bombardment has a cumulative effect. Amazingly, the same

model was found to apply to the motions of stars in star clusters. There
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the Brownian motion is produced by the cumulative effect of many

stars passing by any given star, with each passage altering the motion

(through gravitational interaction) by a tiny amount.

There exists, however, an entirely different view (from that of the

modified Platonic view) on the nature of mathematics and the reason for

its effectiveness. According to this view (which is intricately related to

dogmas labeled "formalism" and "constructivism" in the philosophy of

mathematics), mathematics has no existence outside the human brain.

Mathematics as we know it is nothing but a human invention, and an

intelligent civilization elsewhere in the universe might have developed

a radically different construct. Mathematical objects have no objective

reality—they are imaginary. In the words of the great German philoso-

pher Immanuel Kant: "The ultimate truth of mathematics lies in the

possibility that its concepts can be constructed by the human mind." In

other words, Kant emphasizes the freedom aspect of mathematics, the

freedom to postulate and to invent patterns and structures.

This view of mathematics as a human invention has become popu-

lar in particular with modern psychologists. For example, French re-

searcher and author Stanislas Dehaene concludes in his interesting 1997

book The Number Sense that "intuitionism {which to him is synonymous

with mathematics as a human invention} seems to me to provide the

best account of the relations between arithmetic and the human brain."

Similarly, the last sentence in the book Where Mathematics Comes From

(2000) by the University of California, Berkeley, linguist George Lakoff

and psychologist Rafael E. Nunez reads: "The portrait of mathematics

has a human face." These conclusions are based primarily on the results

of psychological experiments and on neurological studies of the func-

tionality of the brain. Experiments show that babies have innate mech-

anisms for recognizing numbers in small sets and that children acquire

simple arithmetical capabilities spontaneously, even without much for-

mal instruction. Additionally, the inferior parietal cortex has been iden-

tified as the area of the brain that hosts the neural circuitry involved in

symbolic numerical capabilities. This area of both cerebral hemispheres

is located anatomically at the junction of neural connections from

touch, vision, and audition. In patients suffering from a rare form of

seizure while performing arithmetic manipulations (known as epilepsia
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arithmetices), brain wave measurements (electroencephalograms) show

abnormalities in the inferior parietal cortex. Similarly, lesions in this re-

gion affect mathematical ability, writing, and spatial coordination.

Even if based on physiology and psychology, the view of mathe-

matics as a human invention of no intrinsic reality still needs to answer

the two intriguing questions: Why is mathematics so powerful in ex-

plaining the universe, and how is it possible that even some of the

purest products of mathematics are found eventually to fit physical phe-

nomena like a glove?

The "human inventionist" reply to both of these questions is also

based on a biological model: evolution and natural selection. The idea

here is that progress in understanding the universe and the formulation

of mathematical laws that describe phenomena within it have been

achieved via an extended and tortuous evolutionary process. Our cur-

rent model of the universe is the result of a long evolution that involved

many false starts and blind alleys. Natural selection has weeded out

mathematical models that did not fit the observations and experiments

and left only the successful ones. According to this view, all "theories"

of the universe are in fact nothing but "models" whose attributes are de-

termined solely by their success in fitting the observational and experi-

mental data. Kepler's crazy model of the solar system in Mysterium
Cosmographictim was acceptable, as long as it could explain and predict

the behavior of the planets.

The success of pure mathematics turned into applied mathematics,

in this picture, merely reflects an overproduction of concepts, from

which physics has selected the most adequate for its needs—a true sur-

vival of the fittest. After all, "inventionists" would point out, Godfrey

H. Hardy was always proud of having "never done anything 'useful.' "

This opinion of mathematics is apparently espoused also by Marilyn vos

Savant, the "world record holder" in IQ—an incredible 228. She is

quoted as having said "I'm beginning to think simply that mathemat-

ics can be invented to describe anything, and matter is no exception."

In my humble opinion, neither the modified Platonic view nor the

natural selection view provides a fully satisfactory answer (at least in the

way both are traditionally formulated) to the mystery of the effective-

ness of mathematics.
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To claim that mathematics is purely a human invention and is

successful in explaining nature only because of evolution and natural

selection ignores some important facts in the nature of mathematics and

in the history of theoretical models of the universe. First, while the

mathematical rules (e.g., the axioms of geometry or of set theory) are in-

deed creations of the human mind, once those rules are specified, we

lose our freedom. The definition of the Golden Ratio emerged origi-

nally from the axioms of Euclidean geometry; the definition of the Fi-

bonacci sequence from the axioms of the theory of numbers. Yet the fact

that the ratio of successive Fibonacci numbers converges to the Golden

Ratio was imposed on us—humans had no choice in the matter. There-

fore, mathematical objects, albeit imaginary, do have real properties.

Second, the explanation of the unreasonable power of mathematics can-

not be based entirely on evolution in the restricted sense. For example,

when Newton proposed his theory of gravitation, the data that he was

trying to explain were at best accurate to three significant figures. Yet

his mathematical model for the force between any two masses in the

universe achieved the incredible precision of better than one part in a

million. Hence, that particular model was not forced on Newton by ex-

isting measurements of the motions of planets, nor did Newton force a

natural phenomenon into a preexisting mathematical pattern. Further-

more, natural selection in the common interpretation of that concept

does not quite apply either, because it was not the case that five com-

peting theories were proposed, of which one eventually won. Rather,

Newton's was the only game in town!

The modified Platonic view, on the other hand, faces different types

of challenges.

First, there is the important conceptual issue that the modified

Platonic view does not really offer any explanation to the power of math-

ematics. The question is simply transformed into a belief in the mathe-

matical underpinning of the physical world. Mathematics is simply

assumed to be the symbolic counterpart of the universe. Roger Penrose,

who as I noted before is himself a powerful supporter of the Platonic

world of mathematical forms, agrees that the "puzzling precise under-

lying role that the Platonic mathematical world has in the physical

world" remains a mystery. Oxford University physicist David Deutsch
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turns the question somewhat around. In his insightful 1997 book The

Fabric of Reality, he wonders: "in a reality composed of physics and un-

derstood by the methods of science, where does mathematical certainty

come from?" Penrose adds to the effectiveness of mathematics two more

mysteries. In his book Shadows of the Mind, he wonders: "How it is that

perceiving beings can arise from out of the physical world," and "how it

is that mentality is able seemingly to `create' mathematical concepts

out of some kind of mental model." These intriguing questions, which

are entirely outside the scope of the present book, deal with the origin

of consciousness and the perplexing ability of our rather primitive men-

tal tools to gain access into the Platonic world (which to Penrose is an

objective reality).

The second problem encountered by the modified Platonic view is

related to the question of tiniversality. To what extent are we certain that

the laws that the universe must obey have to be presented by mathe-

matical equations of the type we have formulated? Until very recently,

probably most physicists on the face of the Earth would have argued

that history has shown that equations are the only way in which the laws

of physics can be expressed. This situation may change, however, with

the impending publication of the book A New Kind of Science by Stephen

Wolfram. Wolfram, one of the most innovative thinkers in scientific

computing and in the theory of complex systems, has been best known

for the development of Mathematica, a computer program/system that

allows a range of calculations not accessible before. After ten years of

virtual silence, Wolfram is about to emerge with a provocative book

that makes the bold claim that he can replace the basic infrastructure of

science. In a world used to more than three hundred years of science be-

ing dominated by mathematical equations as the basic building blocks

of models for nature, Wolfram proposes simple computer programs in-

stead. He suggests that nature's main secret is the use of simple pro-

grams to generate complexity.

Wolfram's book was not out yet at the time of this writing, but

from a long conversation I had with him and from an interview he gave

to science writer Marcus Chown, I can safely conclude that his work has

many far-reaching implications. From the restricted point of view of its

reflection on Platonism, however, Wolfram's work points out that at the
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very least, the particular mathematical world that many thought exists

out there, and which was believed to underlie physical reality, may not

be unique. In other words, there definitely can exist descriptions of na-

ture that are very different from the one we have. Mathematics as we

know it captures only a tiny part of the vast space of all possible simple

sets of rules that might describe the workings of the cosmos.

If both the modified Platonic view and the natural selection inter-

pretation have difficulties in attempting to explain the striking effec-

tiveness of mathematics, is there an exposition that works?

I believe that the explanation has to rely on concepts borrowed from

both points of view rather than on adopting one or the other. The situ-

ation here is very similar to the historical attempts in physics to explain

the nature of light. The lesson from this piece of history of science is so

profound that I will describe it now briefly.

Newton's first paper was on optics, and he continued to work on

this subject for most of his life. In 1704 he published the first edition of

his book Opticks, which he later revised three times. Newton proposed a

"particle theory of light," in which light was assumed to be made up of

tiny, hard particles, that obey the same laws of motion as do billiard

balls. In Newton's words: "Even the rays of light seem to be hard bod-

ies." Two famous experiments at the beginning of the twentieth century

discovered the photoelectric effect and the Compton effect, and pro-

vided strong support for the idea of particles of light. The photoelectric

effect is a process in which electrons in a piece of metal absorb sufficient

energy from light to allow them to escape. Einstein's explanation of this

effect in 1905 (which won him the 1922 Nobel Prize for Physics)

showed that light delivers the energy to the electrons in a grainy fash-

ion, in indivisible units of energy. Thus, the photon—the particle of

light—was introduced. Physicist Arthur Holly Compton (1892-1962)

analyzed in 1918 to 1925 the scattering of X rays from electrons both

experimentally and theoretically. His work (which won him the 1927

Nobel Prize for Physics) further confirmed the existence of the photon.

But there was another theory of light—a wave theory—in which

light was assumed to behave like waves of water in a pond. This theory

was most strongly advocated by the Dutch physicist Christiann Huy-

gens (1629-1695). The wave theory did not have much going for it un-
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til the physicist and physician Thomas Young (1773-1829) discovered

interference in 1801. The phenomenon itself is quite simple. Suppose you

dip the index fingers of both hands periodically into the water in a pond.

Each finger will create a sequence of concentric ripples; crest and trough

will follow each other in the form of expanding rings. At points where a

crest emanating from one finger intersects a crest from the other, you get

the two waves to enhance each other ("constructive interference"). At

points where a crest overlaps with a trough, they annihilate each other

("destructive interference"). A detailed analysis of the fixed pattern that

emerges shows that along the central line (between the two fingers),

there is constructive interference. To either side, lines of destructive in-

terference alternate with lines of constructive interference.

In the case of light, destructive interference simply means dark

lines. Young, a child prodigy who spoke eleven languages by age six-

teen, performed an experiment in which he passed light through two

slits and demonstrated that the light on the viewing surface was "di-

vided by dark stripes."

Young's results, which were followed by impressive theoretical

work by French engineer Augustin Fresnel in 1815 to 1820, initiated a

conversion of physicists to the wave theory. Later experiments con-

ducted by the French physicist Leon Foucault in 1850 and by American

physicist Albert Michelson in 1883 showed unambiguously that the re-

fraction of light as it passes from air to water also behaves precisely as

predicted by the wave theory. More important, the Scottish physicist

James Clerk Maxwell (1831-1879) published in 1864 a comprehensive

theory of electromagnetism that predicted the existence of propagating

electromagnetic waves moving at the speed of light. He went on to pro-

pose that light itself is an electromagnetic wave. Finally, between 1886

and 1888, the German physicist Heinrich Herz proved experimentally

that light was indeed the electromagnetic wave predicted by Maxwell.

So, what is light? Is it a pure bombardment by particles (photons)

or a pure wave? Really, it is neither. Light is a more complicated physi-

cal phenomenon than any single one of these concepts, which are based

on classical physical models, can describe. To describe the propagation

of light and to understand phenomena like interference, we can and

have to use the electromagnetic wave theory. When we want to discuss
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the interaction of light with elementary particles, however, we have to

use the photon description. This picture, in which the particle and wave

descriptions complement each other, has become known as the wave-

particle duality. The modern quantum theory of light has unified the

classical notions of waves and particles in the concept of probabilities.

The electromagnetic field is represented by a wave function, which

gives the probabilities of finding the field in certain modes. The photon

is the energy associated with these modes.

Returning now to the question of the nature of mathematics and

the reason for its effectiveness, I believe that the same type of comple-

mentarity should be applied. Mathematics was invented, in the sense

that the "rules of the game" (the sets of axioms) are man-made. But once

invented, it took on a life of its own, and humans had (and still have) to

discover all of its properties, in the spirit of the Platonic view. The end-

less list of unexpected appearances of the Golden Ratio, the numberless

mathematical relations obeyed by the Fibonacci numbers, and the fact

that we still do not know if there are infinitely many Fibonacci primes

provide ample evidence for this discovery quest.

Wolfram holds very similar views. I asked him specifically whether

he thought mathematics was "invented" or "discovered." He replied: "If

there wasn't much choice in selecting this particular set of rules then it

would have made sense to say that it was discovered, but since there was

much choice, and our mathematics is merely historically based, I have

to say that it was invented." The phrase "historically based" in this con-

text is crucial since it implies that the system of axioms on Which our

mathematics is based is the one that happened to emerge because of the

arithmetic and geometry of the ancient Babylonians. This raises two

immediate questions: (1) Why did the Babylonians develop these par-

ticular disciplines and not other sets of rules? And a rephrasing of the

question on the effectiveness of mathematics: (2) Why were these disci-

plines and their offspring found to be useful at all for physics?

Interestingly, the answers to both of these questions may be related.

Mathematics itself could have originated from a subjective human per-

ception of how nature works. Geometry may simply reflect the human

ability to easily recognize lines, edges, and curves. Arithmetic may rep-
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resent the human aptitude to resolve discrete objects. In this picture,

the mathematics that we have is a feature of the biological details of humans

and of how they perceive the cosmos. Mathematics thus is, in some sense, the

language of the universe—of the universe discerned by humans. Other

intelligent civilizations out there might have developed totally differ-

ent sets of rules, if their mechanisms of perception are very different

from ours. For example, when one drop of water is added to another

drop or one molecular cloud in the galaxy coalesces with another, they

make only one drop or one cloud, not two. Therefore, if a civilization

that is somehow fluid based exists, for it, one plus one does not neces-

sarily equal two. Such a civilization may recognize neither the prime

numbers nor the Golden Ratio. To give another example, there is hardly

any doubt that had even just the gravity of Earth been much stronger

than it actually is, the Babylonians and Euclid might have proposed

a different geometry than the Euclidean. Einstein's theory of general

relativity has taught us that in a much stronger gravitational field,

space around us would be curved, not flat—light rays would travel

along curved paths rather than along straight lines. Euclid's geometry

emerged from his simple observations in Earth's weak gravity. (Other

geometries, on curved surfaces, were formulated in the nineteenth cen-

tury.)

Evolution and natural selection definitely played a cardinal role in

our theories of the universe. This is precisely why we don't continue to

adhere today to the physics of Aristotle. This is not to say, however, that

the evolution was always continuous and smooth. The biological evolu-

tion of life on Earth was neither. Life's pathway was occasionally shaped

by chance occurrences like mass extinctions. Impacts of astronomical

bodies (comets or asteroids) several miles in diameter caused the di-

nosaurs to perish and paved the way for the dominance of the mammals.

The evolution of theories of the universe was also sporadically punctu-

ated by quantum leaps in understanding. Newton's theory of gravita-

tion and Einstein's General Relativity ("I still can't see how he thought

of it," said the late physicist Richard Feynman) are two perfect exam-

ples of such spectacular advances. How can we explain these miraculous

achievements? The truth is that we can't. That is, no more than we can
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explain how, in a world of chess that was used to victories by margins of

half a point or so, in 1971 Bobby Fischer suddenly demolished both

chess grandmasters Mark Taimanov and Bent Larsen by scores of six

points to nothing on his way to the world championship. We may find

it equally difficult to comprehend how naturalists Charles Darwin

(1809-1882) and Alfred Russel Wallace (1823-1913) independently

had the inspiration to introduce the concept of evolution itself—the

idea of a descent of all life from a common ancestral origin. We must

simply recognize the fact that certain individuals are head and shoul-

ders above the rest in terms of insight. Can, however, dramatic break-

throughs like Newton's and Einstein's be accommodated at all in a

scenario of evolution and natural selection? They can, but in a some-

what less common interpretation of natural selection. While it is true

that Newton's theory of universal gravitation had no contending theo-

ries to compete with at the time, it would not have survived to the pres-

ent day had it not been the "fittest." Kepler, by contrast, proposed a

very short-lived model for the Sun-planet interaction, in which the Sun

spins on its axis flinging rays of magnetic power. These rays were sup-

posed to grab on the planets and push them in a circle.

When these generalized definitions of evolution (allowing for quan-

tum jumps) and natural selection (operating over extended periods of

time) are adopted, I believe that the "unreasonable" effectiveness of

mathematics finds an explanation. Our mathematics is the symbolic

counterpart of the universe we perceive, and its power has been continu-

ously enhanced by human exploration.

Jef Raskin, the creator of the Macintosh computer at Apple, em-

phasizes a different aspect—the evolution of human logic. In a 1998 es-

say on the effectiveness of mathematics, he concludes that "Human logic

[emphasis added] was forced on us by the physical world and is there-

fore consistent with it. Mathematics derives from logic. This is why

mathematics is consistent with the physical world."

In the play Tamburlaine the Great, a tale about a Machiavellian hero-

villain who is at the same time sensitive and a vicious murderer, the

great English playwright Christopher Marlowe (1564-1593) recog-

nizes this human aspiration for understanding the cosmos:
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Nature that framed us of four elements,

Warring within our breasts for regiment,

Doth teach us all to have aspiring minds:

Our souls, whose faculties can comprehend

The wondrous Architecture of the world:

And measure every wandering planet's course,

Still climbing after knowledge infinite,

And always moving as the restless spheres ..

The Golden Ratio is a product of humanly invented geometry. Humans

had no idea, however, into what magical fairyland this product was go-

ing to lead them. If geometry had not been invented at all, then we

might have never known about the Golden Ratio. But then, who

knows? It might have emerged as the output of a short computer pro-

gram.



APPENDIX 1

We want to show that for any whole numbers p and q, such that p is larger than q, the

three numbers: p — 2pq; q2 form a Pythagorean triple. In other words, we need
to show that the sum of the squares of the first two is equal to the square of the third.
For this we use the general identities that hold for any a and b:



Since based on our assumption the common measure of s, and d, is also a common

measure of d„ the last equality shows that it is also a common measure of s,. We there-

fore find that the same unit that measures s, and d, also measures s2,andd2.This process
can be continued ad infinitum, for smaller and smaller pentagons. We would obtain
that the same unit that was a common measure for the side and diagonal of the first

pentagon is also a common measure of all the other pentagons, irrespective of how tiny
they become. Since this clearly cannot be true, it means that our initial assumption
that the side and diagonal have a common measure was false—this completes the proof

that s, and d, are incommensurable.



APPENDIX 3

The area of a triangle is half the product of the base and the height to that base. In the
triangle TBC the base, BC, is equal to 2a and the height, TA, is equal to s. Therefore,
the area of the triangle is equal to s x a. We want to show that if the square of the pyra-

mid's height, h' , is equal to the area of its triangular face, s x a, then s/a is equal to the
Golden Ratio.
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One of the theorems in The Elements demonstrates that

when two triangles have the same angles, they are
similar.Namely, the two triangles have precisely the same
shape, with all their sides being proportional to each
other. If one side of one triangle is twice as long as the re-

spective side of the other triangle, then so are other sides.
The two triangles ADB and DBC are similar (because
they have the same angles). Therefore, the ratio ABIDB

(ratio of the sides of the two triangles ADB and DBC) is

equal to DBIBC (ratio of the bases of the same two trian-
gles):

But the two triangles are also isosceles, so that

We therefore find from the above two equalities that

which means (accordine to Euclid's definition) that point C divides line AB in a
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Quadratic equations are equations of the form

where a, b, c are arbitrary numbers. For example, in the equation 2x ' + 3x + 1 = 0,
a = 2, b = 3, c = 1.

The general formula for the two solutions of the equation is

In the above example

In the equation we obtained for the Golden Ratio,

we have a = 1, b = —1, c = —1. The two solutions therefore are:
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The problem of the inheritance can be solved as follows. Let us denote the entire estate
by E and the share (in bezants) of each son by x. (They all shared the inheritance
equally.)

The first son received:

The second son received:

Equating the two shares:

and arranging:

Therefore, each son received 6 bezants.
Substituting in the first equation we have:
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The total estate was 36 bezants. The number of sons was therefore 36/6 = 6.
Fibonacci's solution reads as follows:

The total inheritance has to be a number such that when I times 6 is added

to it, it will be divisible by 1 plus 6, or 7; when 2 times 6 is added to it, it is
divisible by 2 plus 6, or 8; when 3 times 6 is added, it is divisible by 3 plus

6, or 9, and so forth. The number is 36. I/7 of 36 minus 1/7 is 33/7; plus 1 is 42A,
or 6; and this is the amount each son received; the total inheritance divided

by the share of each son equals the number of sons, or 36/6 equals 6.
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The relation between the number of subobjects, n. the length reduction factor, f, and
the dimension, D, is

If a positive number A is written as A = 101, then we call L the logarithm (base 10) of
A, and we write it as log A. In other words, the two equations A = 10^L and L = log A

are entirely equivalent to each other. The rules of logarithms are:
(i) The logarithm of a product is the sum of the logarithms

(ii) The logarithm of a ratio is the difference of the logarithms

(iii) The logarithm of a power of a number is the power times the logarithm of the
number

Since 10 ' = 1, we have from the definition of the logarithm that log 1 = 0. Since 10^j =
10, 10 ' = 100, and so on, we have that log 10 = 1, log 100 = 2, and so on. Consequently,
the logarithm of any number between I and 10 is a number between 0 and 1; the loga-
rithm of any number between 10 and 100 is a number between 1 and 2; and so on.

If we take the logarithm (base 10) of both sides in the above equation (describing
the relation between n, f, and D), we obtain

Therefore, dividing both sides by log f
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In the case of the Koch snowflake, for example, each curve contains four "subcurves"



APPENDIX 8

If we examine Figure 116(a), we see that the condition for the two branches to touch
amounts to the simple requirement that the sum of all the horizontal lengths of the
ever-decreasing branches with lengths starting with f^3 would be equal to the horizon-
tal component of the large branch of length f All the horizontal components are given
by the total length multiplied by the cosine of 30 degrees. We therefore obtain:

Dividing by cos 30° we obtain

The sum on the right-hand side is the sum of an infinite geometric series (each term is
equal to the previous term multiplied by a constant factor) in which the first term is f^3,

and the ratio of two consecutive terms is f In general, the sum S of an infinite geo-
metric sequence in which the first term is a, and the ratio of consecutive terms q, is
equal to

For example, the sum of the sequence

in which a = 1 and q = 1/2 is equal to

In our case we find from the equation above:
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Dividing both sides by f, we get

Multiplying by (1 —1) and arranging, we obtain the quadratic equation:

with the positive solution
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Benford's law states that the probability P that digit D appears in the first place is given
by (logarithm base 10):



APPENDIX 10

Euclid's proof that infinitely many primes exist is based on the method of reductio ad
absurdum. He began by assuming the contradictory—that only a finite number of
primes exist. If that is true, however, then one of them must be the largest prime. Let

us denote that prime by P. Euclid then constructed a new number by the following
process: He multiplied together all the primes from 2 up to (and including) P, and then

he added 1 to the product. The new number is therefore

By the original assumption, this number must be composite (not a prime), because it

is obviously larger than P, which was assumed to be the largest prime. Consequently,
this number must be divisible by at least one of the existing primes. However, from its
construction, we see that if we divide this number by any of the primes up to P, this

will leave a remainder 1. The implication is, that if the number is indeed composite,

some prime larger than P must divide it. However, this conclusion contradicts the as-

sumption that P is the largest prime, thus completing the proof that there are infi-
nitely many primes.




