
U.U.D.M. Project Report 2013:23

Examensarbete i matematik, 15 hp
Handledare och examinator: Jakob Björnberg
Augusti 2013

Department of Mathematics
Uppsala University

The Brownian tree

Christoffer Cambronero

Contents

1 Introduction.. 2

2 Background .. 3

2.1 Brownian motion ... 3

2.2 Paul Lévy's construction .. 3

2.3 Donsker construction .. 4

2.4 Theorem .. 5

3 Galton Watson trees ... 6

3.1 Galton Watson trees definition ... 6

3.1.1 Theorem ... 7

3.1.2 Proof ... 7

3.2 Critical case.. 8

3.3 Representations of Galton Watson tree ... 9

3.3.1 Dyck paths .. 9

3.3.2 Depth first search (DFS).. 10

4 Brownian tree ... 12

4.1 Brownian bridge and brownian excursion .. 12

4.2 Convergence theorems ... 14

4.3 An interesting choice of 𝑝 ... 15

4.4 Theorem .. 15

4.4.1 Proof ... 15

4.5 Connections ... 17

5. Simulation ... 18

2

1 Introduction

The purpose of this paper will be to show how to generate different types of trees using

basic probability. We start the paper by defining Brownian motion which is used to

simulate different types of trees later. Brownian motion uses the normal distribution and

thanks to that becomes a unique stochastic process, but more on that in chapter 2. Later,

in chapter 3, the brownian motion will be our tool to simulate trees. In this paper we

look at two types of trees, Galton Watson trees (chapter 3) and Brownian trees (chapter

4).

Figure 1.1. A tree containing 3000 nodes

3

2 Background

2.1 Brownian motion

The central object of this paper will be Brownian motion, which is defined as follows:

Brownian motion starting at 𝑥 is the unique continuous stochastic process {𝐵(𝑡): 𝑡 ≥ 0}

such that the following holds:

 𝐵 0 = 𝑥 , 𝑥 ∈ 𝑹

 All the increments 𝐵 𝑡 − 𝐵 𝑠 , 𝑠 < 𝑡 are independent

 The increments 𝐵 𝑡 − 𝐵(𝑠)~𝑁(0, 𝑡 − 𝑠)

If 𝑥 = 0 we say that the process 𝐵 𝑡 : 𝑡 ≥ 0 is a standard Brownian motion. In this

paper we will only be talking about standard brownian motion.

There are many ways to construct a Brownian motion. In this paper Paul Lévy's and

Donsker's construction will be presented.

2.2 Paul Lévy's construction

The Paul Lévy construction is a way to generate a Brownian motion on the interval

 0,1 . The idea is to start by creating the values of the process at two points and

approximate the process between these points by a straight line and then, step by step,

create more points between the existing points and draw new lines between them. The

amount of points and where they will be placed are determined by

𝐷𝑛 = {
𝑘

2𝑛
∶ 0 ≤ 𝑘 ≤ 2𝑛 }

where 𝑛 is the 𝑛th step of the construction, starting at step 𝑛 = 0. Also let 𝐷 be defined

as

𝐷 = 𝐷𝑛

∞

𝑛=0

and let {𝑍𝑑 : 𝑑 ∈ 𝐷} be independent such that if 𝑑 ∈ 𝐷𝑛\𝐷𝑛−1 then 𝑍𝑑~𝑁(0, 2−(𝑛+1)).

𝐵𝑛(𝑡) will be the value of 𝑡 in step 𝑛. Lastly, let ∀𝑛 𝐵𝑛 0 = 0.

Now that everything has been defined the construction can begin. For the first step,

𝑛 = 0, the set of points will be 𝐷0 = {0,1} and we define

4

𝐵0 𝑡 =
𝑍1 𝑖𝑓 𝑡 = 1
0 𝑖𝑓 𝑡 = 0

𝑎𝑛𝑑 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛

For the next steps, 𝑛 ≥ 1,

𝐵𝑛 𝑡 =
2−(𝑛+1)/2 ∗ 𝑍𝑡 𝑖𝑓 𝑡 ∈ 𝐷𝑛\𝐷𝑛−1

𝐵𝑛−1(𝑡) 𝑖𝑓 𝑡 ∈ 𝐷𝑛−1

𝑎𝑛𝑑 𝑙𝑖𝑛𝑒𝑎𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐷𝑛

Figure 2.1 The first three steps in the Lévy constrction

It can be shown
1

 that the functions (𝐵(𝑛) 𝑡 : 𝑡 ∈ [0,1]) converge to a standard

Brownian motion as stated more precisely in 2.4 below.

2.3 Donsker construction

Let 𝑋𝑛 be independent with the same distribution, such that ∀𝑖 𝐸 𝑋𝑖 = 𝜇, 𝑉 𝑋𝑖 =

𝜎2 < ∞. Let 𝑆0 = 0 and create the random walk

𝑆𝑛 = 𝑋𝑖

𝑛

𝑖=1

and let 𝑆(𝑡) for 𝑡 ≥ 0 be given by interpolating between the integer points, i.e.

𝑆 𝑡 = 𝑆 𝑡 + 𝑡 − 𝑡 ∗ (𝑆 𝑡 +1 − 𝑆 𝑡)

1
 Mörters and Peres. Brownian Motion, chapter 1

5

Figure 2.2 The first steps of the Donsker construction

Assume now that 𝜇 = 0 and 𝜎2 = 1, this can easily be done by considering
𝑋𝑖−𝜇

𝜎
 and

this way we don't lose any generality. Let us now define

𝐵(𝑛) 𝑡 =
𝑆(𝑛 ∗ 𝑡)

 𝑛
 , 𝑛 ≥ 1

For 𝑡 = 1 we have

𝐵(𝑛) 1 =
𝑆(𝑛)

 𝑛
 → 𝑁(0,1)

when 𝑛 → ∞, thanks to the central limit theorem. Donsker's theorem
2
 states that the

entire procress (𝐵(𝑛) 𝑡 : 𝑡 ∈ [0,1]) converges to a standard Brownian motion as stated

more precisely in 2.4 below.

2.4 Theorem

In both these approximations 𝐵𝑛 𝑡 : 𝑡 ∈ [0,1] when 𝑛 → ∞ converges to 𝐵(𝑡) in the

sense that

𝑃 lim
𝑛→∞

max
𝑡∈ 0,1

 𝐵 𝑛 𝑡 − 𝐵 𝑡 = 0 = 1

Observe that if 𝐵1,𝐵2, … are independent brownian motions on the interval [0,1] then

one can concatenate these to create a new brownian motion on [0,∞)

2
 Mörters and Peres. Brownian Motion, theorem 5.22

6

Figure 2.3. A concatenation of three Brownian motions

3 Galton Watson trees

3.1 Galton Watson trees definition

A tree in graph theory is defined as an undirected connected graph, free of any loops. In

this section we will discuss Galton Watson trees. Galton Watson trees are defined as

trees that start with one node and with some random variable gets a number of children.

By children we mean nodes that are connected with the node which had the children.

Each of these children has with the same random variable a number of children

independently of the rest of the tree.

A Galton Watson tree can be used as a model to simulate populations. Let the

probability of offsprings be 𝑝 = (𝑝0, 𝑝1, 𝑝2, …) and let X be a random variable such that

𝑃 𝑋 = 𝑘 = 𝑝𝑘 . Also let the expected value be

𝜇 = 𝑘 ∗ 𝑝𝑘

∞

𝑘=0

7

and assume that the variance 𝜎2 = 𝑉 𝑋 < ∞. We let 𝑍𝑛 define the total number of

individuals in generation 𝑛 defined as follows. By default 𝑍0 = 1 and the unique

individual at generation 0 has k children with probability 𝑝𝑘 . Now let (𝑋𝑗
(𝑛)

; 𝑛, 𝑗 ≥ 1)

be independent with 𝑃 𝑋𝑗
 𝑛

= 𝑘 = 𝑝𝑘 ∀𝑘 . We interpret 𝑋𝑗
(𝑛)

 as the number of

offspring in the nth generation by the jth individual in that generation, and we

recursively define

𝑍𝑛 = 𝑋𝑗
(𝑛)

𝑍𝑛−1

𝑗 =1

The first question one may ask is whether the the tree dies out, meaning that it's finite.

For the tree to die out an entire generation has to have zero offsprings, 𝑚 = 𝑃(∃𝑛 ∶

 𝑍𝑛 = 0).

3.1.1 Theorem

𝑚 = 1 𝑖𝑓 𝜇 ≤ 1 𝑐𝑎𝑙𝑙𝑒𝑑 𝑠𝑢𝑏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑎𝑛𝑑 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑐𝑎𝑠𝑒𝑠

𝑚 < 1 𝑖𝑓 𝜇 > 1 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑠𝑢𝑝𝑒𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑐𝑎𝑠𝑒

𝑖𝑛 𝑐𝑎𝑠𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑝𝑘 > 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ≥ 2.

3.1.2 Proof

Let

𝐺 𝑠 = 𝐸 𝑠𝑧1 = 𝑠𝑘 ∗

𝑘≥0

𝑝𝑘 𝑓𝑜𝑟 0 ≤ 𝑠 ≤ 1

 and let 𝑚𝑛 = 𝑃(𝑍𝑛 = 0) . Note that 𝑚𝑛 ≤ 𝑚𝑛+1 because if 𝑍𝑛 = 0 then 𝑍𝑛+1 = 0 .

Hence

𝑚 = lim
𝑛→∞

𝑚𝑛

we have

𝑚1 = 𝑝0 = 𝐺 0

𝐸 𝑠𝑍2 = 𝐸 𝑠
 𝑍𝑗

(1)𝑍1
𝑗 =1 = 𝐸(𝐸 𝑠𝑍1)𝑍1

(1)

 = 𝐺(𝐺(𝑠))

where 𝑍1, 𝑍𝑗
(1)

 are independent, all with distribution 𝑝. So

𝑚2 = 𝑃 𝑍2 = 0 = 𝐺 𝐺 0 = 𝐺(𝑚1)

8

and in the same way

𝑚𝑛 = 𝐺(𝑚𝑛−1)

G is continuous in s, so letting 𝑛 → ∞ implies that 𝑚 = 𝐺(𝑚).

Note that 𝐺(𝑠) is increasing in s, and in fact convex in 𝑠∈(0,1)(𝐺 ′′ (𝑠) ≥ 0)

Figure 3.1. The graph to the right shows 𝐺 ′ 1 > 1, the one to the left shows 𝐺 ′ 1 ≤ 1

By looking at the figures above one can see that the only way for 𝑚 < 1 is if 𝐺 ′ 1 > 1.

And since

𝐺 ′ 𝑠 = 𝑘 ∗ 𝑠𝑘−1 ∗ 𝑝𝑘

∞

𝑘=0

and set 𝑠 = 1 gives

𝐺 ′ 1 = 𝑘 ∗ 1 ∗ 𝑝𝑘 =

∞

𝑘=0

𝜇

i.e.

𝑚 < 1 𝑖𝑓𝑓 𝜇 > 1

3.2 Critical case

So if 𝜇 ≤ 1 the tree will be finite and a very interesting case is when 𝜇 = 1, the critical

case. In the subcritical case, when 𝜇 < 1 , the tree is usually "small" with high

9

probability. Assuming sufficient moments we have that 𝑃 𝑍𝑗 > 𝑛𝑗≥0 ≤

𝑒−𝛼𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 > 0. For the critical case on the other hand, 𝑃(𝑍𝑗 > 𝑛𝑗≥0 ≈ 𝑛−𝛽 ,

meaning that when 𝑛 → ∞ the critical case decreases slower than the subcritical case

regardless of the precise values of 𝛼 > 0, 𝛽 > 0.

𝑒−𝛼𝑛

𝑛−𝛽
=

𝑛𝛽

𝑒𝛼𝑛
 → 0 𝑤ℎ𝑒𝑛 𝑛 → ∞

i.e. the tree is finite but usually "very big" for the critical case compared to the

subcritical case.

3.3 Representations of Galton Watson tree

In this section we will look at two different ways of representing a tree with a finite

sequence of numbers. Both methods are used for different reasons and both are useful

depending on what you are after.

3.3.1 Dyck paths

Start with a Galton Watson tree with 𝜇 = 1. The size of the tree will be defined as the

number of nodes in it. We will define excursion based on the tree by walking 2(𝑛 − 1)

steps along the edges as follows:

For every step we take along the edges that leads "further away" in the graph distance

from the root the excursion goes up one and as we "gets closer" to the root the excursion

goes down one.

Figure 3.2. A tree with 6 nodes and an excursion that has walked 10 steps.

10

3.3.2 Depth first search (DFS)

The DFS representation provides a useful method for simulating a size-conditioned

Galton Watson tree. The DFS will unlike Dyck paths excursion keep track of how many

offspring each node has and will from that create its own excursion. Lets say a tree of

size 𝑛 is desired, then a sequence (𝜉1, 𝜉2, … , 𝜉𝑛) is needed where 𝜉𝑖 is the numbers of

offsprings on the 𝑖th node. Here the nodes are numbered by walking along the edges

starting on the left side of the root, much like the Dyck path. Should a node which was

already visited be visited again it will not be counted again.

Figure 3.3. A tree with 6 nodes all numbered according to DFS

We also define 𝑈𝑘 = " 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑜 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑓𝑡𝑒𝑟 𝑘 𝑠𝑡𝑒𝑝𝑠".

𝑈0 = 1
𝑈1 = 𝑈0 + 𝜉1 − 1

⋮

𝑈𝑘 = 𝑈𝑘−1 + 𝜉𝑘 − 1 = 𝑈0 + (𝜉𝑗 − 1)

𝑘

𝑗 =1

Or simplified 𝑈𝑘 = 1 + (𝜉𝑗 − 1)𝑘
𝑗=1 . To obtain a tree of size 𝑛 two criteria needs to be

met.

(1) 𝑈𝑛 = 0
(2) 𝑈𝑘 > 0 ∀𝑘 < 𝑛

11

Lets rewrite (1) to easier use it

𝑈𝑛 = 1 + (𝜉𝑗 − 1)

𝑛

𝑗 =1

 → 𝜉𝑗 = 𝑛 − 1

𝑛

𝑗 =1

.

If we now obtain a sequence (𝜉1, 𝜉2, … , 𝜉𝑛) that meets (1) there exist a unique rotation

that

 𝜉𝑙 , 𝜉𝑙+1, … , 𝜉𝑛 , 𝜉1, 𝜉2, … , 𝜉𝑙−1 → (𝜉1
1, … , 𝜉𝑛

1)

that meets (2) , i.e. 𝑈𝑘 > 0 ∀𝑘 < 𝑛 . (This follows from the so-called Dvoretzky-

Motzkin cycle lemma
3
)

Figure 3.4. Shows a DFS before and after rotation

As seen in fig 3.4, where 𝑛 = 6, although 𝑈6 = 0 both 𝑈3 and 𝑈4 fail on criterion 2 .

After the rotation all 𝑈𝑘 𝑘 < 𝑛 fulfill 2 .

Since we can generate sequences of length 𝑛 until we get one that meets (1), 𝜉𝑗 =𝑛
𝑗 =1

𝑛 − 1, and after that rotate the sequence to fulfill (2) we can now create a Galton

Watson tree with the desired size 𝑛 with the rotated sequence.

Observe that if we look at the critical case when 𝐸 𝜉𝑗 = 1 it will lead to

𝐸 𝜉𝑛
𝑛
𝑗 =1 = 𝑛 which are very close to the sought number 𝑛 − 1 . Meaning our

generations of sequence won't take so long before fulfilling criterion (1).

3
 Luc Devroye, Simulating size-constrained Galton-Watson Trees, p. 5

12

4 Brownian tree

We will start by explaining how to construct a tree from a continuous function. Start by

letting 𝑓(𝑡) be a continuous function on the interval [0,1] with 𝑓 0 = 𝑓 1 = 0 and

𝑓 𝑡 ≥ 0∀𝑡 ∈ [0,1]. To construct a tree we say that we "glue together" any point 𝑥, 𝑦

such that 𝑓 𝑥 = 𝑓(𝑦) and 𝑓 𝑡 > 𝑓 𝑥 ∀𝑡 ∈ (𝑥, 𝑦) . Upon doing so every local

minimum will act as a branching point and every local maximum will act as an ending

point.

Figure 4.1. A tree constructed from a function

To now create a brownian tree we need to use a function 𝑓with the properties above,

which is derived from brownian motion. A brownian motion 𝐵(𝑡) itself however does

not meet the requirement of 𝐵(𝑡) ≥ 0∀𝑡 ∈ [0,1]. To solve this problem we start by

defining the brownian bridge and then the brownian excursion.

4.1 Brownian bridge and brownian excursion

One can "force" a brownian motion to return to 0 at a given time. Lets define

ᵬ𝑡 = 𝐵(𝑡) − t ∗ 𝐵(1)

Then ᵬ𝑡 is called a brownian bridge. By defining ᵬ𝑡 as above we obtain ᵬ0 = 𝐵(0) =

0 and ᵬ1 = 𝐵(1) − 𝐵(1) = 0 i.e. a brownian motion that returns to 0 at time 1.

13

Figure 4.2. A brownian bridge

In order to obtain a "Brownian" function that is ≥ 0∀𝑡 ∈ [0,1] we will now use the fact

that a brownian bridge returns to 0 at time 1. We define the Brownian excursion ē𝑡 as

following:

ē𝑡 = ᵬ𝜏+𝑡(𝑚𝑜𝑑 1) − ᵬ𝜏

where ᵬ𝜏 is the minimum of ᵬ(this is in fact unique with probability 1). The Brownian

excursion will now be a continuous positive brownian function on the interval [0,1].

14

Figure 4.3. A brownian excursion

By using the brownian excursion, ē𝑡 , as our function for creating a tree a brownian tree

will be obtained.

4.2 Convergence theorems

Let 𝑇𝑛 be a Galton Watson tree where we condition on the size 𝑛 of the tree. Also let

𝑒𝑥𝑇𝑛
 𝑡 be the excursion from 3.3.1, i.e. 𝑒𝑥𝑇𝑛

 𝑡 is the distance from the root at the 𝑡th

step. Aldous proved
4
([DA, Theorem 23]) that if we let 𝑛 → ∞ then

𝜎 ∗ 𝑛−
1
2 ∗ 𝑒𝑥𝑇𝑛

 𝑡 → 2 ∗ ē𝑡

In this sense the size conditioned Galton Watson trees 𝑇𝑛 converges to the Brownian

tree.

4
 David Aldous. The Contunuum Random Tree III, theorem 23

15

4.3 An interesting choice of 𝒑

As mentioned earlier in theorem 3.1.1, 𝑚 = 1 𝑖𝑓 𝜇 ≤ 1 where 𝑚 was the probability

that the tree died out, we shall now look at the critical case when 𝜇 = 1. We have

already established that trees where 𝜇 = 1 are usually big, but there are many choices of

𝑝 to obtain 𝜇 = 1. What we will look at now is called the geometric distribution.

𝑝𝑘 = 2−(𝑘+1) (𝑘 ≥ 0)

Observe that choosing 𝑝𝑘 as above gives

𝜇 = 𝑝𝑘 =

∞

𝑘=0

 2−(𝑘+1) =

∞

𝑘=0

1

2
 2−𝑘 =

∞

𝑘=0

1

2
∗

1

1 −
1
2

= 1

The geometric distribution, according to Aldous, will have an easy excursion

description.

4.4 Theorem

Let 𝑋1, 𝑋2, … be independently ±1 with probability
1

2
.

𝑒𝑥𝑇𝑛
 𝑘 𝑤𝑖𝑙𝑙 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑎𝑠 𝑋1 + 𝑋2 + ⋯

+ 𝑋𝑘 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑜𝑛:

1) 𝑋𝑗 = 0

2𝑛

𝑗 =1

2) 𝑋𝑗

𝑙

𝑗 =1

≥ 0 ∀𝑙 ≤ 2𝑛

4.4.1 Proof

Call a sequence 𝑋1, … , 𝑋2𝑛 accepted if (1) and (2) hold. Call a Galton Watson tree with

𝑝 as above accepted if it has size 𝑛. Let 𝐴𝑛 denote the set of accepted sequences, i.e

𝐴𝑛 = {𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑎1, … , 𝑎2𝑛 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑖 𝑎𝑗 = 0

2𝑛

𝑗=1

𝑎𝑛𝑑 (𝑖𝑖) 𝑎𝑗 ≥ 0 ∀𝑙 ≤ 2𝑛

𝑙

𝑗 =1

 }

We denote the size of the set 𝐴𝑛 by 𝐶𝑛 . In fact 𝐶𝑛 is a Catalan number. Thus 𝐴𝑛 is the

set of accepted sequences of length 2𝑛. We hace two ways of sampling elements of 𝐴𝑛 ,

lets call them way 1 and way 2.

16

Way 1

Sample 𝑋1, . . . , 𝑋2𝑛 as above conditioned on (𝑖) and (𝑖𝑖):

 Sequences 𝑥1, … , 𝑥2𝑛 that are ±1 and independent probabilities

Way 2

 Sample a Galton Watson tree with distribution 𝜉, and condition on size 𝑛 for the

tree.

 Create an excursion from the tree as in section 3.3.1

Both these ways gives the probabilities to all elements in 𝑎 ∈ 𝐴𝑛 . Define 𝑃1(𝑎) and

𝑃2(𝑎) as the probability to get an element from 𝐴𝑛 using way 1 respective way 2. We

now want to show that

𝑃1 𝑎 = 𝑃2 𝑎 𝑓𝑜𝑟 ∀𝑎 ∈ 𝐴𝑛

We do this by showing that both 𝑃1 𝑎 and 𝑃2 𝑎 do not depend on 𝑎. It follows that

𝑃1 𝑎 = 𝑃2 𝑎 =
1

𝐶𝑛
.

We start by considering way 1.

Let's fix 𝑎1, … , 𝑎2𝑛so that 𝑎𝑗 = 02𝑛
𝑗 =1 and 𝑎𝑗 ≥ 0 ∀𝑙 ≤ 2𝑛𝑙

𝑗=1 .

𝑃1 𝑎 = 𝑃 𝑋1 = 𝑎1, … , 𝑋2𝑛 = 𝑎2𝑛 𝑋𝑗 = 0

2𝑛

𝑗 =1

, 𝑋𝑗

𝑙

𝑗 =1

≥ 0 ∀𝑙 ≤ 2𝑛 =

=
𝑃(𝑋1 = 𝑎1, … , 𝑋2𝑛 = 𝑎2𝑛 , 𝑋𝑗 = 02𝑛

𝑗=1 , 𝑋𝑗
𝑙
𝑗 =1 ≥ 0 ∀𝑙 ≤ 2𝑛)

𝑃(𝑋𝑗 = 02𝑛
𝑗=1 , 𝑋𝑗

𝑙
𝑗 =1 ≥ 0 ∀𝑙 ≤ 2𝑛)

In the numerator the second and third expressions are implied by the first leading to

𝑃1 𝑎 =
𝑃(𝑋1 = 𝑎1, … , 𝑋2𝑛 = 𝑎2𝑛)

𝑃(𝑋𝑗 = 02𝑛
𝑗=1 , 𝑋𝑗

𝑙
𝑗 =1 ≥ 0 ∀𝑙 ≤ 2𝑛)

=

=
2−2𝑛

 𝑃(𝑋1 = 𝑏1, … , 𝑋2𝑛 = 𝑏2𝑛)

Where the sum is over all 𝑏1, … , 𝑏2𝑛 meeting the criteria (1) and (2). For each fixed

sequence 𝑏1, … , 𝑏2𝑛 in the sum we have 𝑃 𝑋1 = 𝑏1, … , 𝑋2𝑛 = 𝑏2𝑛 = 2−2𝑛 and the

number of such sequences is what we called 𝐶𝑛 .

17

2−2𝑛

2−2𝑛 ∗ 𝐶𝑛
=

=
1

𝐶𝑛

We now know that the probability of all accepted sequence is 𝑃1 𝑎 =
1

𝐶𝑛
 .

We now want to show that all accepted trees have the same probability. Since the

number of trees of size 𝑛 equals the number of accepted sequences, this will prove the

claim.

To show this we will use DFS to represent a Galton Watson tree. To generate a tree of

size 𝑛 is the same as generating a sequence (𝜉1, 𝜉2, … , 𝜉𝑛) conditioned on 𝑈𝑛 = 0 and

𝑈𝑘 > 0 ∀𝑘 < 𝑛. So what is the probability of a given sequence? If we define 𝑏1, … , 𝑏2𝑛

as numbers such that (𝑖𝑖𝑖) (𝑏𝑗 − 1) = 0𝑛
𝑗 =1 and (𝑖𝑣) (𝑏𝑗 − 1) > 0 ∀𝑘 ≤ 𝑛𝑘

𝑗 =1 then

𝑃 𝜉1 = 𝑏1, … , 𝜉𝑛 = 𝑏𝑛 𝑖𝑖𝑖 𝑎𝑛𝑑 𝑖𝑣 𝑓𝑜𝑟 𝜉1, 𝜉2, … , 𝜉𝑛 =

𝑃 𝜉1 = 𝑏1, … , 𝜉𝑛 = 𝑏𝑛 , 𝑖𝑖𝑖 𝑎𝑛𝑑 𝑖𝑣 𝑓𝑜𝑟 𝜉1, 𝜉2 , … , 𝜉𝑛

𝑃 𝑖𝑖𝑖 𝑎𝑛𝑑 𝑖𝑣 𝑓𝑜𝑟 𝜉1, 𝜉2, … , 𝜉𝑛
=

Once more the second expression in the numerator is determed by the first and the

denominator is some function based on 𝑛

1

𝑓 𝑛
∗ 𝑃 𝜉1 = 𝑏1, … , 𝜉𝑛 = 𝑏𝑛 =

1

𝑓(𝑛)
∗ 2−𝑛 ∗ 2− 𝑏𝑗

𝑛
𝑗 =1

but from (𝑖𝑖𝑖) we get

2−2𝑛+1

𝑓(𝑛)
= 𝑝(𝑛)

which is some function that does not depend on 𝑏. So we must have 𝑃1 𝑎 = 𝑃2 𝑎 =
1

𝐶𝑛
 as discussed above.

4.5 Connections

Aldous proved in the general critical case that the excursion when we let 𝑛 → ∞ will

converge to a brownian excursion. This can be understood when one thinks about how

the Donsker construction works and the condition of never letting the sum take negative

18

values and end in value 0. Also the tree generated from this will tend to some kind of

brownian tree.

Intuitively the same should apply independently of the choice of 𝑝. Especially when one

thinks of how Donsker construction works, recall that all that is stated is that they need

to be same distributed. It's true that this holds, but we don't get it as easily as in theorem

3.4.

5. Simulation

There are many ways to simulate trees thanks to the countless numbers of programs

today. But by just simulate a tree in the critical- or subcritical case, when the chance of

the tree dying out is 1, usually tends to give a small tree.

Lets say a tree with 700 nodes is desired. One way could be to simulate a tree and count

the nodes and if it's not 700 nodes rerun the simulation untill the tree contains 700 nodes.

This method could however take very long time and use much computer power. That's

why, as mentioned before, the DFS is a good method when simulating trees.

The first thing one has to do now is just to simulate a sequence of 700 numbers and see

if the sum of them is 699. Since the expected value of each number is 1 (in the

subcritical case) acquire a sum of 699 won't take to long. After that is done the sequence

must be rotated untill 𝑈𝑘 > 0 ∀𝑘 < 700 , see 3.3.2 for more details.

Now a sequence is obtained that can be used for DFS. The hard part can be how to use

the sequence, remember how the nodes are number in DFS. One way is to write a

program that keep track of which nodes are connected to which nodes. Finally use a

program(for example graphviz) that draws up the tree using the pair nodes as

mentioned above.

19

Figure 5.1. A Galton Watson tree containing 700 nodes

20

Bibliography

[1] Peter Mörters and Yuval Peres, Brownian Motion. Cambridge University Press,

New York, 2010

[2] David Aldous, The Continuum Random Tree III, University of California, Berkeley,

1993

Published online

[3] Luc Devroye, Simulating size-constrained Galton-Watson Trees.
http://luc.devroye.org/gw-simulation.pdf (Retrieved 2013-08-13)

