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Abstract 

 

It is shown how Shack’s vector product (SVP) can be used to express the expansion of 

the monochromatic wavefront aberration function for rotationally symmetric optical 

imaging models using the H. H. Hopkins’ expansion coefficients.  As a result of this 

research it was discovered that SVP fits naturally within the framework of 2-dimensional 

Geometric Algebra (GA).  It is further shown how SVP can be used to define two-

dimensional vectors in terms of the Zernike polynomials.  The wavefront aberration 

function expansion is then expressed in terms of these Zernike vectors.  A method for 

calculating the H. H. Hopkins’ expansion coefficients is described, including the 

calculation of the per surface, sphere/asphere, intrinsic/extrinsic expansion coefficient 

contributions.  Methods for converting the Zernike expansion coefficients into the H. H. 

Hopkins’ expansion coefficients have been developed and are presented in this work.  

Nodal aberration theory (NAT), now well established in the literature, is presented in 

terms of these mathematical developments.  As a quantitative validation of the NAT 

predications of an optical system’s field dependence, comparisons are made between the 

full field displays (FFDs) produced by using a double Zernike expansion of the wavefront 

aberration function and by application of NAT to rotationally symmetric optical imaging 

systems having one or more surfaces decentered and/or tilted.  Validation of these 

developments is provided using idealized computer models of several space telescopes 

having one or more optical surfaces decentered and/or tilted.  Initial steps toward one 

approach for extending NAT to include optical imaging systems containing freeform 

surface shapes defined by Zernike polynomials is also provided.  



  vi 

Contributors and Funding Sources 

 

This work was supervised by a dissertation committee consisting of Professor Jannick 

Rolland (advisor) of the Institute of Optics, Dr. Kevin Thompson, visiting scientist with the 

Institute of Optics, Professor Miguel Alonso of the Institute of Optics,  and Professor Judith 

Pipher of the Department of Physics and Astronomy.  An initial version of the Matlab 

program for creating the full field display figures originally appearing in [1] and reproduced 

in Chapter 6 was obtained from Dr. Christina Dunn.  Dr. K. Thompson provided the modified 

fifthdef/FORDER CODE V® macros used for calculating the Buchdahl/Rimmer based Wklm 

expansion coefficients.  Dr. Thompson also provided the initial versions of the optical models 

used in this work.  All other work conducted for the dissertation was completed by the 

student independently.  Graduate study was supported by a NASA Graduate Student 

Researchers Program (GSRP) fellowship from Sept. 2010 through Aug. 2013.  Additional 

support has been provided by a Fellowship from the Carl Zeiss Corporation.  This 

research also benefitted from support by the NYSTAR Foundation (C050070), the II-VI 

Foundation, and the National Science Foundation (EECS-1002179).  Synopsys, Inc. 

provided an educational license for their optical design software CODE V®. 

 

 

 

  



  vii 

Table of Contents 

 

 

Dedication   ................................................................................................................... ii 

Biographical Sketch ........................................................................................................... iii 

Acknowledgments.............................................................................................................. iv 

Abstract   ................................................................................................................... v 

Contributors and Funding Sources..................................................................................... vi 

List of Tables  ................................................................................................................... x 

List of Figures  ................................................................................................................ xiv 

List of Symbols and Abbreviations................................................................................ xxix 

Chapter 1 Introduction ........................................................................................................ 1 

Chapter 2 Shack’s Vector Product (SVP) in the Context of Geometric Algebra ............... 6 

2.1 Historical Background .............................................................................................. 7 

2.2 Introduction to Geometric Algebra ........................................................................... 9 

2.3 Reflection and Rotation Operators .......................................................................... 14 

2.4 Shack’s Vector Product........................................................................................... 20 

2.5 Example: The Quadratic Formula for Vectors........................................................ 28 

Chapter 3 Selected Perspectives on Zernike Polynomials ................................................ 32 



  viii 

3.1 Introduction to Zernike Polynomials ...................................................................... 33 

3.2 Defining Zernike Vectors Using SVP..................................................................... 43 

3.3 Discrete Orthogonality of Zernike Polynomials ..................................................... 45 

3.4 Zernike Polynomials for Non-Circular Pupils ........................................................ 47 

3.5 Zernike Polynomials as a Sum of Decentered Rotationally Symmetric Terms ...... 47 

Chapter 4 SVP, Zernike Vectors and the Wavefront Aberration Function Expansions ... 49 

4.1 The Wavefront Aberration Function Definition ..................................................... 53 

4.2 Wavefront Aberration Function in Terms of SVP .................................................. 63 

4.3 Wavefront Aberration Function Expansion in Terms of Zernike Vectors ............. 70 

4.4 Method for Obtaining Expansion Coefficients ....................................................... 76 

4.5 Per Surface, Sphere/Asphere, and Intrinsic/Extrinsic Contributions ...................... 82 

Chapter 5 Sigma Offset Vectors, Full Field Displays, and Nodal Aberration Theory’s 

Nodal Splits ..................................................................................................... 91 

5.1 Calculating 2D Sigma Offset Vectors ..................................................................... 93 

5.2 Review of Full Field Displays (FFDs) .................................................................. 109 

5.3 An Example of Nodal Point Splits and Nodal Locations ..................................... 113 

Chapter 6 Application of the Theoretical Development ................................................. 117 

6.1 Early Development, Early Results ........................................................................ 119 

6.2 Two Mirror Telescope Model ............................................................................... 128 



  ix 

6.3 A Three Mirror Anastigmat Telescope ................................................................. 151 

6.4 TMA With Coma Free Pivot................................................................................. 177 

6.5 A Three Mirror Anastigmat Telescope with Decentered Aperture Stop .............. 187 

Chapter 7 Extending NAT For Freeform Optical Elements ........................................... 197 

7.1 NAT and Freeform Optical Surfaces .................................................................... 197 

7.2 Examples of NAT and Zernike Defined Freeform Optical Surfaces .................... 215 

Chapter 8 Conclusion and Future Research .................................................................... 228 

Bibliography  ............................................................................................................... 232 

Appendix I. Geometric Algebra Forms of Shack’s Vector Product .......................... 235 

Appendix II. Implementation of Recurrence Relations For Zernike Polynomials ..... 238 

Appendix III. Discrete Orthogonality of Zernike Polynomials ................................... 240 

Appendix IV. Zernike Polynomials as Decentered Rotationally Symmetric Terms ... 259 

Appendix V. Wavefront and Transverse Ray Coefficients ......................................... 270 

Appendix VI. Calculating Field Linear, Field Conjugate Astigmatism ....................... 277 

 

  



  x 

 

List of Tables 

 

Table 3.1 Examples of 0-P normalized Zernike polynomials up to j=21. ........................ 36 

Table 3.2 Examples of RMS normalized Zernike polynomials up to j=21. ..................... 38 

Table 3.3 Fringe Zernike polynomial orderings (0-P normalization). .............................. 39 

Table 3.4 Continuation of the list of Fringe Zernike polynomials (0-P normalization). .. 40 

Table 3.5  Examples of 0-P normalized Zernike vectors written in terms of SVP. .......... 45 

Table 4.1  Pupil dependence in terms of Zernike vectors. ................................................ 71 

Table 4.2 ,

m

k nV  expansion coefficients. .............................................................................. 74 

Table 6.1 Surface definitions for the Baker telescope model.  Table generated by CODE   

                V®. .................................................................................................................. 121 

Table 6.2 Surface definitions for the James Webb-like model.  Table generated by CODE  

                V®. .................................................................................................................. 123 

Table 6.3  Surface data for optical model. ...................................................................... 129 

Table 6.4  Through 6
th

 order intrinsic Wklm coefficients for the Zernike astigmatism term.

 ........................................................................................................................ 134 

Table 6.5  Through 6
th

 order extrinsic Wklm coefficients for the Zernike astigmatism term.

 ........................................................................................................................ 134 

Table 6.6  Through 6
th

 order intrinsic Wklm coefficients for the Zernike coma term. ..... 136 

Table 6.7  Through 6
th

 order extrinsic Wklm coefficients for the Zernike coma term. .... 136 



  xi 

Table 6.8  Through 6
th

 order intrinsic Wklm coefficients for the Zernike spherical term. 138 

Table 6.9  Through 6
th

 order extrinsic Wklm coefficients for the Zernike spherical term.

.......................................................................................................................... 138 

Table 6.10  Normalized sigma offset vector values. ....................................................... 140 

Table 6.11  Normalized sigma offset vector values. ....................................................... 146 

Table 6.12  Additional surface and model definitions for the TMA. ............................. 152 

Table 6.13  Wklm expansion coefficients for Zernike astigmatism through 6
th

 order. ..... 155 

Table 6.14  8
th

 order Wklm expansion coefficients for Zernike astigmatism calculated by 

the GQ method. ............................................................................................. 156 

Table 6.15  Wklm expansion coefficients for Zernike coma through 6
th

 order.  GQ = value 

calculated by Gaussian quadrature.  FF = fifthdef/FORDER value. (Units = 

waves) ........................................................................................................... 158 

Table 6.16  8
th

 order Wklm expansion coefficients for Zernike coma.  (Units = waves) . 159 

Table 6.17 Wklm expansion coefficients for Zernike spherical through 6
th

 order.  GQ = 

values from Gaussian quadrature.  FF = values from fifthdef/FORDER. (Units 

= waves) ........................................................................................................ 163 

Table 6.18  8
th

 order Wklm expansion coefficients for Zernike spherical. (Units = waves)

....................................................................................................................... 164 

Table 6.19  Sigma values for mirror #3. ......................................................................... 167 

Table 6.20  The sigma offset vectors. ............................................................................. 172 

Table 6.21  Sigma offset vectors for coma free pivot model. ......................................... 177 



  xii 

Table 6.22  New asphere Wklm values for secondary mirror obtained by least squares fit 

(LSF) of FFD data of Figure 6.33(a) and the field function through 8
th

 order.  

(Units = waves.) ............................................................................................ 182 

Table 6.23  New asphere Wklm values for secondary mirror obtained by least squares fit 

(LSF) of FFD data of Figure 6.34(a) and the field function through 8
th

 order.  

(Units = waves.) ............................................................................................ 183 

Table 6.24  Layout parameters for the optical imaging model. ...................................... 188 

Table 6.25  Per surface expansion coefficients. IS = intrinsic sphere, IA = intrinsic 

asphere, ES = extrinsic sphere, EA = extrinsic asphere.  GQ = values from 

Gaussian quadrature.  FF = values from fifthdef/FORDER.  (Units = waves.)

....................................................................................................................... 189 

Table 6.26  Per surface expansion coefficients. IS = intrinsic sphere, IA = intrinsic 

asphere, ES = extrinsic sphere, EA = extrinsic asphere.  (Units = waves.) .. 190 

Table 6.27  Normalized sigma offset vectors’ y components. ........................................ 192 

Table 7.1  Field contributions to Zernike astigmatism term due to Zernike cap. ........... 212 

Table 7.2  Two mirror optical system's parameters. ....................................................... 216 

Table 7.3  Zernike astigmatism related Wklm coefficients through 6
th

 order. (Units = 

waves.) ............................................................................................................. 217 

Table 7.4  Least squares fit determined expansion coefficients. (Units = waves) .......... 218 

Table 7.5  Sigma offset vector values. ............................................................................ 220 

Table 7.6  The two mirror optical system's parameters. ................................................. 223 



  xiii 

Table 7.7  Zernike astigmatism related Wklm coefficients through 6th order. (Units = 

waves) .............................................................................................................. 223 

Table 7.8  Least squares fit determined expansion coefficients. (Units = waves) .......... 225 

 

Table III.1  Radial values used with GQ method............................................................ 253 

Table III.2  Azimuthal values used with GQ method. .................................................... 254 

Table IV.1  Monomials and their decentered shape term equivalent. ............................ 262 

Table IV.2  Monomials and their decentered shape term equivalent, cont. .................... 263 

Table IV.3  0-P normalized Zernike polynomials and their binomial representation. The 

y-axis is being used as the reference axis for the Zernike azimuthal parameter.

.......................................................................................................................... 264 

Table IV.4  0-P normalized Zernike polynomials composed of decentered shape terms.  

The y-axis is the reference axis. ....................................................................... 265 

Table IV.5  0-P normalized Zernike polynomials composed of decentered shape term 

using the x-axis as reference axis..................................................................... 266 

Table IV.6  0-P normalized Zernike polynomials composed of decentered shape terms 

using the x-axis as reference axis, and a decenter amount of 1/10. ................. 268 

 

  



  xiv 

 

List of Figures 

 

 

Figure 2.1  Basis vector notation. ....................................................................................... 9 

Figure 2.2  The unit area basis elements.  The orientation of a plane is denoted in the 

plane, not perpendicular to the plane. ............................................................ 10 

Figure 2.3  Oriented unit volume basis element: A spiral in a unit volume. .................... 10 

Figure 2.4  Reflection of A  about the unit vector n̂  gives 'A . ....................................... 15 

Figure 2.5 An arbitrary unit vector in the 1 2
ˆ ˆI e e   plane. ............................................. 19 

Figure 2.6  Shack's vector product of A  and B . .............................................................. 21 

Figure 2.7  (1) Defining the vectors and their angles.  (2) A  is reflected about 2ê  to 
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Chapter 1 Introduction 

Portions of this Chapter have been taken from the author’s article [2] and appear here in a 

slightly revised form. 

 This research concerns the development of a bridge between the optical design 

community’s utilization of the H. H. Hopkins expansion of the monochromatic wavefront 

aberration function and the optical testing community’s utilization of a Zernike expansion 

of the wavefront aberration function.  Although the field dependence of the wavefront 

aberrations has been noted and utilized in the optical design community for many years 

(hence the development of the Fringe Zernike ordering of the Zernike polynomials), it is 

less well known or utilized in the optical testing community.  Equations are developed in 

this work that explicitly provide the field dependence of the Zernike polynomial 

expansion of the wavefront aberration function as well as equations for expressing the 

Zernike expansion coefficients in terms of the H. H. Hopkins expansion coefficients.   

 For aberration theorists working in optical design, a common starting point for 

evaluation of aberrations is a form of the wavefront aberration function expansion written 

out by H. H. Hopkins [3] in the 1950s.  R. V. Shack later wrote the wavefront aberration 

function expansion in terms of 2-dimensional (2D) pupil and field vectors [4].  This led 

Shack to develop a vector multiplication that has become known in the optics literature as 

Shack’s vector multiplication and Shack’s vector product (SVP) [5].  This vector product 

is similar to the multiplication of complex numbers [6].  It has also been defined in terms 

of the Cartesian components of the two vectors involved.  SVP of the two vectors has 
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then been defined by converting the vectors into complex numbers, performing the 

complex number multiplication, and then converting the result back into a 2D vector.  

Using geometric algebra (GA) [7, 8, 9, 10] as the 2D vector algebra eliminates any need 

to convert 2D vectors into complex numbers and vice versa.  This is because, as the 

research to be described in Chapter 2 has demonstrated, SVP is a fundamental construct 

of 2D GA. 

 Zernike polynomials [11, 12, 13] have been adopted by both the optical testing 

and the optical design communities and the supporting fields of optical engineering and 

optical alignment following the introduction of commercial laser-based interferometers.  

They are orthogonal and complete over a unit radius circular pupil and they present the 

balance between multiple orders of the aberrations of H. H. Hopkins in the context of 

minimizing the RMS wavefront error for optical design.  Zernike polynomials provide an 

excellent metric basis for describing and understanding errors in the shape of an optical 

surface.  In the initial application of Zernike polynomials to the testing of individual 

optical surfaces there was no motivation to consider field dependence, only aperture 

dependence was being sought.  With the research described here, the field dependence is 

made explicit and may then find useful application in the testing community. 

 Researchers have used Zernike polynomial fits to the wavefront computed at a 

sparse set of field-of-view points in an attempt to characterize the performance of 

misaligned optical systems.  Specifically, McLeod [14] used Zernike polynomials to 

describe characteristics of 4
th

 order astigmatism within the field of view resulting from 

misalignment between the primary and secondary mirrors of a Ritchey-Chrétien 
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telescope.  Rakich [15] describes the field dependence of the aberrations using the Burch 

plate diagram method [16] for simplifying the fourth-order analysis of optical systems 

and uses Zernike polynomials to resolve individual plate contributions to the system 

aberration into the coefficients for coma and astigmatism in Zernike terms that arise from 

misalignments.  Noethe and Guisard [17] present measurements of the astigmatic field 

for the European Southern Observatory (ESO) Very Large Telescope (VLT), using 

measurements of the coefficients of their Zernike polynomial astigmatic components Z4 

and Z5 (Fringe ordering Z5 and Z6).  Matsuyama and Ujike [18] have developed 

“functions that are orthogonal to each other and expressed by a simple combination of 

Zernike function(s) of pupil coordinates and Zernike function(s) of field coordinates.”  

Kim, et al. [19] used Zernike coefficients to develop a merit function for a telescope 

alignment scheme.  Lee, et al. [20] used Zernike polynomials as an orthogonal basis for 

decomposing alignment influence functions.  Schechter and Levinson [21] studied the 

fourth- and sixth-order aberration patterns that arise when small misalignments are 

present in a rotationally symmetric telescope system.   

 In Chapter 3 of this work the real number form (as opposed to the complex 

number form) of the Zernike polynomials is defined and it is shown how they can be 

written in terms of SVP.  It is then shown how to define Zernike vectors that will be used 

to express the wavefront aberration function expansion, a new result of this research.  An 

Appendix (Appendix III) to this Chapter is provided giving the details for the discrete 

orthogonality relation of the real number Zernike polynomials.  The relations developed 

are used in a Gaussian Quadrature (GQ) procedure (together with optical path length 
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difference data obtained by real ray tracing for an optical model under consideration) to 

calculate the wavefront aberration function expansion coefficients.  An additional 

Appendix (Appendix IV) reports on a discovery of this research that the Zernike 

polynomials can be written as a sum of decentered, rotationally symmetric terms.   

 Chapter 4 develops and presents the core results of this research.  The H. H. 

Hopkins formulation of the wavefront aberration function used by aberration theorists 

working in the field of optical design is written in terms of SVP formulated in the context 

of GA.  In this form, the field dependence and the pupil dependence can be separated, 

and the vector nature of the field dependence is made explicit.  It is shown that a subset 

of the Zernike vectors introduced in Chapter 3 can also be written in terms of SVP.  This 

subset of Zernike vectors is exactly the collection of Zernike vectors needed for 

expressing the wavefront aberration function of rotationally symmetric optical imaging 

systems in terms of Zernike vectors.  New equations for the wavefront aberration 

function expansion having the field and pupil parameters separated, referenced to the 

Sagittal and the Medial focal surfaces, are presented.  A double Zernike expansion (in 

field and in pupil parameters) is also developed.  Equations for obtaining the H. H. 

Hopkins’ expansion coefficients from the double Zernike expansion coefficients are 

determined. 

 Chapter 5 provides a brief review of nodal aberration theory (NAT) [3].  NAT is 

used to investigate the field dependence of the wavefront aberration function expansion 

of rotationally symmetric optical imaging systems that have one or more of its surfaces 

perturbed (decentered and/or tilted).   
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 Chapter 6 presents validation of the mathematical development developed in the 

preceding Chapters using 2 and 3-mirror telescope models.  This Chapter provides 

examples of utilizing the developed field dependent equations for rotationally symmetric 

optical imaging systems that have at least one surface that is decentered or tilted.  

Quantitative and qualitative comparisons between the field dependent display plots 

generated by real ray trace data and the double Zernike expansion, and the single Zernike 

expansion using NAT’s sigma offset vectors are presented.   

 Chapter 7 proposes a new method for utilizing NAT to obtain the field 

contributions due to freeform optical elements defined using xy polynomials and Zernike 

polynomials.  Examples of utilizing the new approach are also provided. 

 Finally, Chapter 8 provides conclusions and comments on future research 

directions. 
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Chapter 2 Shack’s Vector Product (SVP) in the Context of Geometric 

Algebra 

In this work, geometric algebra (GA) is used primarily as an alternative to using the 

complex number algebra for 2D vector calculations.  GA is an algebraic system that 

includes many other algebraic systems that are traditionally considered separately, such 

as vectors, complex numbers, quaternions, differential forms, Dirac and Pauli spinors, 

tensors, etc.  GA also provides real geometric interpretations of its elements (as opposed 

to “imaginary” elements).  Additionally, GA does not suffer from the deficiencies 

inherent in the traditional vector algebra.  For example, in the traditional vector algebra of 

Gibbs and Heaviside, the vector cross product is only valid in a 3-dimensional vector 

space, it makes no notational distinction between vectors and pseudo-vectors (for 

example, torque, angular momentum and the magnetic field pseudo-vectors), and “does 

not include a consistent way to represent vector rotations” [22].  Typically, in the vector 

algebra approach to vector rotations, the vector would first be converted into a complex 

number representation, then multiplied by a phasor, then converted back into a vector.  

The matrix formulation of vector rotations again requires objects and an algebra beyond 

the vector algebra (the matrix algebra) to accomplish vector rotations.  This is what the 

authors mean when they say that the vector algebra does not have a consistent way to 

represent vector rotations: An additional algebra (the complex number algebra, or matrix 

algebra) is required.  GA provides a single algebra which overcomes all these 
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deficiencies.  Finally, since GA is being used in many disciplines, from computer 

graphics to theoretical physics, it has the potential to provide a common mathematical 

system that will aid cross disciplinary studies.  

 The goals of this Chapter are to provide a brief introduction to GA at the level 

necessary to understand this work, show how Shack’s vector product (SVP) of two 2D 

vectors, which is central to this work, can be expressed using the GA vector products and 

to illustrate how calculations involving SVP can be performed.  It does not assumed that 

the reader has been previously exposed to GA.  In the next Chapter, it is shown how SVP 

in the GA form can be used to define a special set of Zernike polynomial vectors.  This 

set of Zernike vectors is exactly the collection of Zernike vectors needed for expressing 

the expansion of the monochromatic wavefront aberration function for rotationally 

symmetric optical imaging systems in terms of Zernike vectors.  This will be 

demonstrated in a later Chapter. 

2.1 Historical Background 

The concept of a vector is now so important and basic to the sciences that it is hard to 

imagine that there was a time in which vectors, vector algebra and vector calculus were 

not known.  Vectors had to be invented.  This is also true of complex numbers, complex 

number algebra, and complex analysis.  A fascinating account of the history and 

development of vectors can be found in Crowe’s book [23].  In 1545, Gerolamo Cardano 

“…acknowledged the existence of what are now called imaginary numbers” in his book 

Ars Magna [24].  However, it was not until the work of Cauchy (early to mid-1800’s) that 

complex numbers were defined as a pair of real numbers [25].  Hamilton, attempting to 
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extend the complex number algebra to two and then to three dimensions, discovered and 

developed his quaternions in 1843 [23, 26].  Although well known, but not universally 

adopted at the time, quaternions have seen a recent increase in interest largely due to the 

fact that it is easier and more efficient to program rotations in 3D Euclidean space about 

an arbitrary axis using quaternions than using the Euler angle formalism [27].  Maxwell 

used Hamilton’s quaternions, and components, in writing out his equations of 

Electrodynamics.  It was principally Gibbs and Heaviside who changed Maxwell’s 

equations into the vector form that we know today.  Maxwell never wrote his equations in 

modern vector form.  Vectors were being developed at that time as a reduction of 

Hamilton’s quaternions.   

 While this development of quaternions and vectors was underway, Hermann 

Grassmann developed and published an alternative algebra in his 1844 book Lineale 

Ausdehnungslehre.  This algebra includes the complex number algebra, Hamilton’s 

quaternion algebra and vector algebra, although this was not appreciated at that time.  

Grassmann’s book was not well received so another, refined, edition was published in 

1862 called Ausdehnungslehre [28].  But once again, although known, it was not adopted.  

William K. Clifford further developed Grassmann’s work in the 1870s and introduced the 

term “geometric algebra”.  “In 1878, one year after Grassmann’s death, William K. 

Clifford (1845-1879) published his ‘Applications of Grassmann's extensive algebra’…, in 

which he successfully unified Grassmann’s extensive algebra with Hamilton’s quaternion 

… description of rotations. This was the birth of (Clifford) Geometric Algebra…” [29].   
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 Although additional work in this area of algebra slowly progressed, present day 

interest did not significantly increase until David Hestenes saw that the algebras used in 

quantum mechanics (the spinor algebra of Pauli and Dirac) were exactly those of Clifford 

(Grassmann) algebra [30].  Hestenes continued to develop Clifford (Grassmann) 

Geometric Algebra, which is now seen to unify complex numbers, quaternions, vectors, 

differential forms, spinors, as well as Pluker coordinates, homogeneous coordinates, 

Euclidean geometry, differential geometry, projective geometry, and more, into a unified 

geometric algebra and calculus for physics and engineering [7].  Recently, a plethora of 

work in the application of GA has occurred in many areas including: rigid body dynamics 

(including robotics), computer vision, computer graphics, theoretical and applied physics, 

computational engineering, and other areas.   

2.2 Introduction to Geometric Algebra 

For a Euclidean three dimensional vector space, the orthonormal basis vectors are usually 

denoted in GA as 1 2 3
ˆ ˆ ˆ, ,e e e .  

  
Figure 2.1  Basis vector notation. 

 

The wedge product (also called the outer or exterior product), denoted by “ ”, of two 

basis vectors is defined by the relations 

 ˆ ˆ ˆ ˆ , ,i j j ie e e e i j      (2.1) 
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 ˆ ˆ 0, ,i je e i j    (2.2) 

with , 1, 2, 3i j  .  Note that the new objects ˆ ˆ ,i je e i j   cannot be further reduced.  As 

relation (2.1) shows, the wedge product is anti-commutative.  It is also associative and 

distributive over addition.  The new objects, 1 2 2 3 3 1
ˆ ˆ ˆ ˆ ˆ ˆ, ,e e e e e e   , like the unit vectors 

1 2 3
ˆ ˆ ˆ, ,e e e  (and the unit scalar 1) are members of the basis set for 3D GA.  They represent 

oriented unit plane elements, analogues to the basis vectors 1 2 3
ˆ ˆ ˆ, ,e e e  which represent 

oriented unit line elements.    

 
Figure 2.2  The unit area basis elements.  The orientation of a plane is denoted in the plane, 

not perpendicular to the plane. 

 

Additionally, there is a basis object defined by 

 1 2 3
ˆ ˆ ˆI e e e   , (2.3) 

called the pseudo-scalar.  It represents the oriented unit volume element.   

 

Figure 2.3  Oriented unit volume basis element: A directional spiral in a unit volume. 
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The complete basis set for 3D GA is then given by the set 

  1 2 3 1 2 2 3 3 1 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1, , , , , , ,e e e e e e e e e e e e     . (2.4) 

A general element in the 3 dimensional GA can be written as 

 1 2 3 1 2 2 3 3 1 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆA s ae be ce d e e f e e g e e he e e             , (2.5) 

where s, a, b, c, d, f, g, h are real numbers.  The s part is called the “scalar” part, the 

1 2 3
ˆ ˆ ˆae be ce   part is called the “vector” part, the 1 2 2 3 3 1

ˆ ˆ ˆ ˆ ˆ ˆd e e f e e g e e      part is 

called the “bi-vector” part, and the 1 2 3
ˆ ˆ ˆhe e e   part is called the “tri-vector” part.  This 

nomenclature is derived from the number of unit basis vectors needed to define a single 

term of the part considered.  The object A of Eq. (2.5) is called a multi-vector.  This is 

similar in structure to complex numbers when written in the form c real imaginary  .  

The complex number c has a real number (scalar) part plus some mathematical object that 

is not a real number.  The whole cannot be further reduced to a real number.  In a similar 

way, objects of GA, for example, 1 2
ˆ ˆ3 5A e e   , cannot be further reduced to a single 

real number. 

 The geometric product, written as a juxtaposition of symbols, of two vectors (but 

not in general between two multi-vectors) is given by 

 AB A B A B   . (2.6) 

where the “ ” is the vector inner product, also called the dot or vector scalar product.  

Although A  and B  are vectors, their geometric product, in general, is a multi-vector.  

The geometric product is associative, distributive over addition and invertible, but not 

commutative nor anticommutative.  To define the geometric product for arbitrary multi-
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vectors requires expanding the definition of the vector dot product for objects which are 

not simply vectors.  The resulting operator is called a “left contraction”.  Such an 

extension of the vector dot product is not required in this work.  The interested reader is 

referred to Hestenes [7] and to Dorst, et al. [9] for further details.   

 Since the dot product between vectors is symmetric  A B B A  and the wedge 

product is antisymmetric  A B B A    , the following equations are obtained 

  
1

2
A B AB BA  , (2.7) 

  
1

2
A B AB BA   , (2.8) 

where the juxtaposition of the vectors indicates the geometric product.   

 Because the basis vectors are orthonormal, so that the dot product between 

different basis vectors is zero, a shorthand notation is frequently used in the literature for 

i j k    

 ˆ ˆ ˆ ˆ ˆ ,i j i j i je e e e e    (2.9) 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ .i j k i j k i j ke e e e e e e     (2.10) 

The pseudo-scalar can then be written as 

 1 2 3
ˆ ˆ ˆI e e e  . (2.11) 

The inverse of the pseudo-scalar is given by 

 1

3 2 1
ˆ ˆ ˆI e e e   .   (2.12) 

Explicitly, this is shown by 
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        1

1 2 3 3 2 1 1 2 3 3 2 1 1 2 2 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1I I e e e e e e e e e e e e e e e e e e       . (2.13) 

Note that for i j   

 ˆ ˆ ˆ ˆ
i j j ie e e e    (2.14) 

 The magnitude of the wedge product of two non-zero vectors is the area of the 

parallelogram formed by the two vectors.  Additionally, for a 3D vector space only, there 

is a relation between the wedge product and the vector cross product given by  

   1A B A B I     , (2.15) 

Explicitly, for the nonzero vectors 
1 2 3
ˆ ˆ ˆ

x y zA A e A e A e    and 
1 2 3
ˆ ˆ ˆ

x y zB B e B e B e    , 

    1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ

x y z x y zA B A e A e A e B e B e B e        , (2.16) 

 

   

 

1 1 2 3 2 1 2 3

3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

x x y z y x y z

z x y z

A B A e B e B e B e A e B e B e B e

A e B e B e B e

         

    , (2.17) 

 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

x x x y x z

y x y y y z

z x z y z z

A B A B e e A B e e A B e e

A B e e A B e e A B e e

A B e e A B e e A B e e

       

     

      , (2.18) 

 1 2 1 3 2 1 2 3 3 1 3 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

x y x z y x y z z x z yA B A B e e A B e e A B e e A B e e A B e e A B e e        . (2.19) 

Multiplying by the inverse pseudo-scalar, gives 

    1

1 2 1 3 2 1 2 3 3 1 3 2 3 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

x y x z y x y z z x z yA B I A B e e A B e e A B e e A B e e A B e e A B e e e e e       , (2.20) 

 

  1

1 2 3 2 1 1 3 3 2 1 2 1 3 2 1 2 3 3 2 1

3 1 3 2 1 3 2 3 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

x y x z y x y z

z x z y

A B I A B e e e e e A B e e e e e A B e e e e e A B e e e e e

A B e e e e e A B e e e e e

     

  . (2.21) 

By using Eq. (2.14) this simplifies to 
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   1

3 2 3 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ

x y x z y x y z z x z yA B I A B e A B e A B e A B e A B e A B e        . (2.22) 

This can be rearranged and written as 

        1

1 2 3
ˆ ˆ ˆ

y z z y z x x z x y y xA B I A B A B e A B A B e A B A B e        , (2.23) 

which is seen to be the vector cross product of A  and B .  Therefore, for a 3D vector 

space only, 

   1A B I A B    . (2.24) 

 

2.3 Reflection and Rotation Operators 

SVP of two 2D vectors results in a third vector, in the plane defined by the two vectors, 

that is a rotated and scaled version of one of the two vectors involved.  Therefore, 

rotations using 2D GA is here reviewed and illustrated.  

 The basis set for 2D GA is  

  1 2 1 2
ˆ ˆ ˆ ˆ1, , ,e e e e . (2.25) 

A general multi-vector then has the form 

 1 2 1 2
ˆ ˆ ˆ ˆ ,V s ae be ce e      (2.26) 

where s, a, b, and c are real numbers. 

 The reflection operation of a vector A  about a unit vector n̂ , in the 1 2
ˆ ˆe e  plane, 

is given by the expression 

 ˆ ˆ'A n An . (2.27) 
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Figure 2.4  Reflection of A  about the unit vector n̂  gives 'A . 

 

As an example, consider the reflection of 1̂A e  about the axis line defined by the vector 

2ê .  This is written as 

 2 1 2
ˆ ˆ ˆ'A e e e . (2.28) 

Since the geometric product (indicated by the juxtaposition of the vectors) is associative, 

this expression can be evaluated in any order.  For example 

  2 1 2
ˆ ˆ ˆ'A e e e . (2.29) 

By Eq. (2.9), since the dot product 2 1
ˆ ˆ 0e e  ,  

  2 1 2
ˆ ˆ ˆ'A e e e  . (2.30) 

From Eq. (2.1) 

  1 2 2
ˆ ˆ ˆ' .A e e e    (2.31) 

Using Eq. (2.9) again, in the opposite direction, gives 

  1 2 2
ˆ ˆ ˆ'A e e e  . (2.32) 

By the associativity property, this can be written as 

  1 2 2
ˆ ˆ ˆ'A e e e  . (2.33) 
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Finally, using Eq. (2.6) and Eq. (2.2)  

 1̂'A e  , (2.34) 

as expected for a reflection of 1̂e  about the line defined by 2ê . 

 Since any rotation can be decomposed into two reflections, any rotation operator 

acting on a vector A  can be written as 

       1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ''A m n An m mn Anm mn A nm R AR    , (2.35) 

where m̂  and n̂  define the two unit vectors about which the reflections are to be 

performed.  R is called a rotor and 1R  denotes the inverse of the rotor.  That is 

      1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1R R mn nm m nn m mm     . (2.36) 

As Eq. (2.35) shows, rotors are the geometric product of two unit vectors.  To better 

understand rotors, their general form as a multi-vector in a 2 dimensional GA vector 

space is presented.  Let 

 
1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ,x y x ym m e m e n n e n e     , (2.37) 

where , , ,x y x ym m n n  are real numbers with the restriction that m̂  and n̂  are unit vectors.  

Then 

   1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ

x y x yR mn m e m e n e n e    , (2.38) 

which can be simplified to 

     1 2
ˆ ˆ

x x y y y x x yR n m n m n m n m e e    . (2.39) 

Therefore, the rotor can be written as 

 ˆ ˆ ,R mn a b I    (2.40) 
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where  x x y ya n m n m  ,  y x x yb n m n m   and 1 2 1 2
ˆ ˆ ˆ ˆI e e e e    is the pseudo-scalar 

in the 2D GA.  Note that  

      1 2 1 2 1 2 1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1.I I e e e e e e e e e e e e       (2.41) 

Thus the 2D GA includes the complex number algebra. 

 By analogy with the exponential expansion 

 
0 !

n
x

n

x
e

n





  ,  (2.42) 

and using the geometric product, the following expansion can be written 

 
     

2 3

0

1 ... .
! 2 3!

n

I x

n

I x I x I x
e I x

n





       (2.43) 

Using the property shown in Eq. (2.41) with Eq. (2.43) results in the equations  

  
 

 
 

 

 

2 2 4 4 3 3 5 5

2 3

2 2 1

0 0

1 ... ...
2! 4! 3! 5!

1 ... ...
2! 3!

1 1 .
2 ! 2 1 !

I x

n n
n n

n n

I x I x I x I x
e I x

x x
I x

x x
I

n n

 

 

   
          
   

   
        
   

   
            
   (2.44) 

Recalling the expansion of the sine and cosine functions leads to 

 cos( ) sin( )I xe x I x  . (2.45) 

This is Euler’s equation expressed in 2D GA.  One needs to be aware that the pseudo-

scalar I is not the same as the complex number 1i   .  The pseudo-scalar I is an 

oriented unit area object.  Note that Eq. (2.45) is the same form as the rotor in Eq. (2.40) 

above.  Then let  
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2IR e  . (2.46) 

It can be shown that 

 
1 2IR e   , (2.47) 

so that 1 1RR  .  A rotor acting on a general 2D vector  1 2
ˆ ˆ

x yA a e a e   is then written as 

(note the half-angles) 

 1 2 2I IRAR e Ae   . (2.48) 

It can be shown that this leads to 

          1

1 2
ˆ ˆcos sin sin cosx y x yRAR a a e a a e         , (2.49) 

and this is recognized as a rotation of the vector A  in the 1 2
ˆ ˆI e e   plane by an angular 

amount   in the clockwise (x-axis toward –y-axis) direction (when 0  ).  Hence the 

name “rotor” for R.   

 One important property of 2D GA is that the order of the geometric product of 

three 2D vectors can be reversed.  (This is not necessarily true for vectors of higher 

dimensional GAs because then the three vectors need not all lay in the same plane.)  For 

example, it can be shown that for 2D vectors 

 .ABC CBA  (2.50) 

Using this property, it can be shown that rotations in a plane can also be accomplished 

without having to use the half-angle of the rotation amount.  By using Eq. (2.50) it can be 

shown that 

 
2 2 1I IRA e A Ae AR     , (2.51) 

and therefore 
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1 1 1 2 2

1 1 1 1 2' I I IA R AR AR R Ae e Ae AR            . (2.52) 

Similarly, it can be shown that 

 
1 2 2

1 1 1 1 3' .I I IA R AR R R A e e A e A R A        (2.53) 

Therefore, rotation of a vector in the plane can be accomplished by the application of (the 

geometric product of) a single rotor on the left or the right of the vector. 

 Consider a rotor of the form 2
ˆ ˆR e n  where n̂  is a unit vector in the 1 2

ˆ ˆI e e   

plane. 

 

Figure 2.5 An arbitrary unit vector in the 1 2
ˆ ˆI e e   plane. 

 

Using the angle   as defined in Figure 2.5, we have 

 

      

       

2 2 1 2 2 1 2

2 1 2 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆsin cos

ˆ ˆ ˆ ˆ ˆ ˆsin cos cos sin ,

x yR e n e n e n e e e e

e e e e e e

 

   

    

     (2.54) 

which gives 

 
IR e  . (2.55) 
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When used as a single sided rotor on the right of a vector this is a clockwise (x-axis 

toward  –y-axis) rotation (assuming   is positive) of the vector in the 1 2
ˆ ˆI e e   plane by 

the angular amount   that is the signed angle between 2ê  and n̂ .   

 In the next section these properties of GA and rotors are used to develop 

equations for Shack’s vector product. 

2.4 Shack’s Vector Product 

This research makes extensive use of SVP, described as follows.  Consider two 2D 

vectors A  and B  in the xy-plane such that vector A  makes an angle   with respect to 

the y-axis, and such that vector B  makes an angle   with respect to the y-axis, both 

angles being measured in a clockwise direction from the y-axis toward the x-axis.  Let the 

vector C  be the result of SVP of A  and B .  Then the vector C  will have a magnitude 

equal to the product of the magnitudes of A  and B , and will make an angle   with 

respect to the y-axis equal to the sum of the angles   and  .  This is illustrated in  

Figure 2.6. 
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Figure 2.6  Shack's vector product of A  and B . 

 

 In the Optics literature, SVP is indicated by the juxtaposition of the vectors.  This 

conflicts with the GA geometric product notation.  Therefore the symbol “ ” will be 

used to denote SVP in this work.  Other notation for SVP will be introduced below as 

needed. 

 There are many ways to interpret (and therefore implement) SVP as a procedure 

(sequence of calculations).  Some examples are: 

 First rotate the vector A  by the angular amount   and then multiply the result by 

the magnitude of vector B .    

 First rotate the vector B  by the angular amount   and then multiply the result by 

the magnitude of vector A . 



  22 

 First rotate the vector 2ê  by the angular amount   plus the angular amount   

and then multiply the result by the magnitude of vector A  and by the magnitude of 

vector B .   

 Since any rotation can be decomposed into 2 sequential reflections, first reflect 

vector A  about the y-axis (the 2ê  axis) to get a vector 'A .  Then reflect 'A  about 

a unit vector n̂  halfway between 2ê  and B .  Finally, multiply the resulting vector 

by the magnitude of vector B .   This sequence is shown in Figure 2.7 on the 

following page. 

 

 Based on the description of the GA equations for reflections and rotations of 2D 

vectors provided above, the steps illustrated in Figure 2.7 can be written as the following 

equation 

   2 2
ˆ ˆ ˆ ˆC A B B n e Ae n  , (2.56) 

where the parentheses have been added for clarity, highlighting the groups of single 

reflection operations.  This is the starting point for all the other formulations of SVP in 

GA.   
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 (1) (2) 

     
 (3) (4) 

Figure 2.7  (1) Defining the vectors and their angles.  (2) A  is reflected about 2ê  to produce 

A .  (3) Unit vector n̂  is defined halfway between 2ê  and B .  (4) 'A  is reflected about 

n̂  and scaled by B  to produce the resultant vector C . 
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For example, by using a different grouping (recall that the geometric product is 

associative), SVP can be written as 

     1

2 2
ˆ ˆ ˆ ˆA B B ne A e n B R AR  , (2.57) 

where the rotor R is given by 

 2
ˆ ˆR ne . (2.58) 

 Several different expressions and procedural interpretations for SVP are provided 

in Appendix I.  The simplest form developed in this research is 

 2
ˆA B Ae B  . (2.59) 

Recalling the property shown in Eq. (2.50), that the outer two vectors can be exchanged 

in the geometric product of three 2D vectors, shows that SVP, Eq. (2.59), is a 

commutative product,   

 .A B B A   (2.60) 

Eq. (2.59) also shows that SVP of two vectors explicitly depends on three vectors, the 

third vector being a unit vector along the line used as the reference axis.  Also, an 

important property of SVP is that the result is always a 2D vector. 

 A convention often used in the optical design community is that angles at 

measured from the positive y-axis toward the positive x-axis.  In the optical testing 

community, the x-axis is often chosen as the reference axis.  To accommodate both 

conventions, the notation and definition of SVP is extended.  A subscript on the Shack 

vector product symbol “ ” will be used to indicate which axis is being used as the 
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reference axis.  Let  ,x yA A A  and  ,x yB B B  be two arbitrary non-zero 2D vectors.  

Then SVP is defined to be 

  1̂ ,x x x y y y x x yA B Ae B A B A B A B A B C     , (2.61) 

  2
ˆ ,y y x x y y y x xA B Ae B A B A B A B A B D     , (2.62) 

where the subscript on the star multiplication symbol indicates which axis is being used 

as the reference axis.  Note that Eq. (2.61) and Eq. (2.62) show that, depending on which 

axis is being used as the reference axis, SVP of two 2D vectors can produce different 

results, as Figure 2.8 illustrates. 

 

Figure 2.8  Shack's vector product.  (a) graphical representation of 
xA B , 

(b) graphical representation of 
yA B . 

 

Also note that Eq. (2.61) and Eq. (2.62) can be used to show that 

 0C D  , (2.63) 

and therefore, for non-zero vectors, xA B  is perpendicular to yA B .  

 When the two vectors are the same vector, so that B A , Eq. (2.61) and Eq. 

(2.62) form the second power or “square” of the vector with respect to SVP.  This can be 

extended to include a vector raised to a positive integer power (or zero).  Using curly 
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braces to indicate powers of a vector with respect to SVP, the following notation is 

defined 

       1 1 1

''

ˆ ˆ ˆ cos , sin ,
n n

x x x x x
x

n A sn A s

A A A Ae Ae e A A A n n     (2.64) 

       2 2 2

''

ˆ ˆ ˆ sin , cos ,
n n

y y y y y
y

n A sn A s

A A A Ae Ae e A A A n n     (2.65) 

where n ≥ 0 and an integer, A  is the magnitude of the vector, and the subscripts x and y 

indicate which axis is used as the reference axis.  To check that these definitions are 

consistent with Eq. (2.61) and Eq. (2.62), set n = 2, and use the trigonometric relations 

      2 2cos 2 cos sin    , (2.66) 

      sin 2 2cos sin   . (2.67) 

Then  

 

      

        

 

2 2

2
2 2

2 2

cos 2 , sin 2

cos sin , 2cos sin

, 2

x x
x

x x x x

x y x y

A A

A

A A A A

 

   



 

 
, (2.68) 

and this is the same as Eq. (2.61) for the case B A .  Similarly,  

 

      

        
 

2 2

2
2 2

2 2

sin 2 , cos 2

2cos sin , cos sin

2 ,

y y
y

y y y y

x y y x

A A

A

A A A A

 

   



 

  , (2.69) 

and this is the same as Eq. (2.62) for the case B A .  The definitions in Eq. (2.64) and 

Eq. (2.65) are therefore consistent with the definitions in Eq. (2.61) and Eq. (2.62). 
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 Further extensions of the definitions of Eq. (2.64) and Eq. (2.65) can be made to 

define the n
th

 root of a 2D vector with respect to SVP as follows 

       
1/ 1/

cos / , sin /
n n

x x
x

A A n n  , (2.70) 

       
1/ 1/

sin / , cos /
n n

y y
y

A A n n  , (2.71) 

where n is a non-zero positive integer. 

 The cosine of the difference of two angles in terms of SVP has been developed in 

this research as follows.  Consider the trigonometric identity  

          cos cos cos sin sinn n n n n n             , (2.72) 

where η is either x or y indicating which reference axis is used.  This can be written in 

Cartesian vector component form using the vector dot product as 

 

           

         

cos cos , sin cos , sin

sin , cos sin , cos

n n n n n n

n n n n

     

   

     

   

 

 . (2.73) 

And, using Eq. (2.64) and Eq. (2.65), this can be written in terms of SVP as 

      ˆ ˆcos
n n

n n A B  
     , (2.74) 

where Â  and B̂  are unit vectors having angles   and  , respectively, with respect to 

the reference axis η.  In writing Eq. (2.74) use of the fact that  

        
n nn n

x yx y
A B A B , (2.75) 

has been employed.  Eq. (2.74) is key to writing the wavefront aberration function 

expansion in terms of SVP. 
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2.5 Example: The Quadratic Formula for Vectors 

As an example of using the above mathematical development, a quadratic formula for 

vector calculations using SVP is developed.  The resulting equation will be used in the 

chapter on nodal aberration theory (NAT).   

 For the quadratic equation 

 
2 0ax bx c   , (2.76) 

the quadratic formula for the (possibly complex) solutions is given by 

   21
4

2
x b b ac

a
    
 

. (2.77) 

An alternative expression exists but will not be considered here [31].   

 A quadratic equation for 2D vectors using SVP can be written as 

  
2

0a X b X c 

   , (2.78) 

where a , b  and c  are known constant 2D vectors, and  0 0,0  is the 2D zero vector.  

(Recall that the result of SVP is always a vector, never a scalar.)  It will be shown that the 

vector solutions for the 2D vectors X  such that Eq. (2.78) holds are given by the formula  

   
1/2

2
11

4
2

X a b b a c 




  
    

 
 . (2.79) 

In Eq. (2.79) the notation 
1a
 is used for the unique vector such that 

 
1 1 ˆa a a a e  

   , (2.80) 

is the inverse of the non-zero vector a  with respect to SVP.  An explicit expression for 

1a
 is given by 



  29 

 

    

    

1

1
cos , sin

1
sin , cos

x x

y y

x
a

a

y
a

  

  




 


 
  


 , (2.81) 

where x  is the angle that the vector a  makes with respect to the x-axis, and 
y  is the 

angle that the vector a  makes with respect to the y-axis. 

 Let  

  11

2
A a b

  , (2.82) 

and 

 
  

1/2
2

11
4

2
B a b a c 

 

 
. (2.83) 

Then the solutions for X  can be written as 

 
X A B  . (2.84) 

This is demonstrated as follows.  Since the geometric product is distributive over 

addition,  

      
2

ˆ ˆ ˆ ˆ ˆX A B e A B Ae A Be A Ae B Be B    

       . (2.85) 

Using Eq. (2.50) gives 

  
2

ˆ ˆ ˆ2X Ae A Ae B Be B  

   . (2.86) 

Putting this into the left hand side of Eq. (2.78) gives 
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   

 

2

ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ2 .

a X b X c a Ae A Ae B Be B b X c

ae Ae A ae Ae B ae Be B b A B c

ae Ae A ae Ae B ae Be B b A b B c

      


      

       

      

     

       (2.87) 

Using Eq. (2.82) gives 

 

     

 

 

2
1 1

1

1

1 1
ˆ ˆ

2 2

1
ˆ ˆ2

2

1
ˆ ˆ .

2

a X b X c ae a b e a b

ae a b e B

ae Be B b a b b B c

     


  

    

 





   
       

   

 
  

 

 
     

 
 (2.88) 

Expanding gives 

 

 
2

1 1

1

1

1
ˆ ˆ ˆ ˆ

4

ˆ ˆ ˆ

1
ˆ ˆ ˆ ˆ ˆ .

2

a X b X c ae a e be a e b

ae a e be B

ae Be B be a e b be B c

     


  

    

 





  

     (2.89) 

This can be simplified to 

  
2

11
ˆ ˆ ˆ ˆ .

4
a X b X c be a e b ae Be B c     




      (2.90) 

Now, using Eq. (2.83), ˆBe B  can be written as 

 

    

     

  
 
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22
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1/2 1/2
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2
1 1

2
1 1 1

1
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2

1 1
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1
4

4

1
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4

Be B B a b a c

a b a c a b a c

a a b a c

a e a e b a e c

  
   

    
  

  


  




 

 

  

 
   

 

   
     
   

 

   (2.91) 
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Using this result in Eq. (2.90) gives 

 

   

 

22
1 1 1 1

2
1 1 1 1

1 1

1 1
ˆ ˆ ˆ ˆ ˆ ˆ

4 4
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ

4 4
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0.
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       
 

      


   

   

   

 

  
      

 


   


   


 (2.92) 

Therefore, 

   
1/2

2
11

4
2

X a b b a c 




  
    

 
 (2.93) 

are solutions to the equation 

  
2

0.a X b X c 

    (2.94) 

For the special case ˆa e , Eq. (2.94) can be written as 

  
2

0X b X c

    (2.95) 

with solutions 

   
1/2

21 1
4 .

2 2
X b b c

 


    (2.96) 
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Equation Chapter (Next) Section 1 

Chapter 3 Selected Perspectives on Zernike Polynomials 

Zernike polynomials are used extensively in optical design and testing, primarily because 

they are orthogonal and complete over a unit radius circular disk and they present the 

balance between multiple orders of H. H. Hopkins’ aberrations in the context of 

minimizing the root mean square (RMS) wavefront error.  (A unit radius circular disk 

may represent a normalized circular optical pupil or a normalized circular optical surface 

in an optical imaging system.)  Zernike polynomials also provide an excellent metric 

basis for describing and understanding errors in the shape of an optical surface.  

However, multiple definitions of the Zernike polynomials exist, each having different 

normalizations and sign conventions, making communication with Zernike polynomials 

risky due to improper assumptions regarding which convention is being used.  In this 

work, the Zernike polynomials are used to express the pupil and field dependence of the 

wavefront aberration function expansion and to define the surface shape of a freeform 

optical element.   

 In this Chapter, a review of some of the notation conventions used in the literature 

for specifying Zernike polynomials is presented.  Explicit definitions and lists of a few 

Zernike polynomials using both the zero-to-peak (0-P) and RMS normalizations is given.  

A discussion and examples of the Fringe ordering compared to other orderings is also 

presented.  Then it is shown how to use the properties of Shack’s vector product (SVP), 

developed in the previous Chapter, to define Zernike vectors that will be used in the 

definition of the wavefront aberration function expansion in the following Chapter.  
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Finally, brief comments on the issues of computer implementation and extensions to non-

circular pupil shapes are given.  Two interesting properties of the Zernike polynomials 

(orthogonality over a discrete set of points and expressions for the Zernike polynomials 

as sums of decentered, rotationally symmetric terms) are presented in Appendix III and 

Appendix IV, respectively.   

3.1 Introduction to Zernike Polynomials 

The Zernike polynomials were developed by Frits Zernike in 1934 [11, 32].  The original 

definition of these polynomials used a complex number representation that is still used by 

many researchers in different branches of optical sciences [11].  In this work, a real 

number representation commonly used in optical engineering is defined and utilized. 

 The Zernike polynomials are orthogonal and complete over a unit radius disk 

[11].  Therefore, they can be used to generate a mathematical expansion of any smooth, 

continuous function defined over the unit radius disk.  These properties of the Zernike 

polynomials make them ideal for fitting interferometric data as well as surface data of 

optical elements when dealing with circular shaped pupils and optical elements.   

 The real circular Zernike polynomials can be written as functions of the form  

      
 

 

cos 0
, ,

sin 0

m m m

n j n n

m m
Z Z N R

m m


    




 
  

 
, (3.1) 

where n and m are positive integers such that 0 m n   and such that n m  is even and 

m can change in increments or decrements of 2.  m

nN  is a normalization constant that may 
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be different for different values of n and m.   m

nR   is the radial function factor and is 

given by [11] 

  
    

 
/2

2

0

1 !

! ! !
2 2

sn m
n sm

n

s

n s
R

n m n m
s s s

 






 


    
    

   

  , (3.2) 

with the radius parameter restricted to 0 1  .  A useful relation when calculating the 

norm of the Zernike polynomials is [11] 

    
 

1 2

1 2 1 2 1 2

1

0 1

1
,

2 1

m m

n n n n m mR R d
n

     


  (3.3) 

where  

 
1 2

1 2

,

1 2

1 for
,

0 for
n n

n n

n n



 


 (3.4) 

is the Kronecker delta.  In some references the m value is allowed to be negative, 

absorbing the “±” into m itself.  In this case the radial function factor given in (3.2) is 

defined with the absolute value of m.  However, this notation is not universally used in 

the literature.  The azimuthal factors in Eq. (3.1) are written in the form shown to indicate 

that for a given 0m   there is a choice of either a cosine factor or a sine factor in the 

azimuthal parameter 0 2   .   

 There are two primary normalization conventions in use.  These are called the 

zero-to-peak, 0-P, normalization and the root mean square, RMS, normalization.  For the 

0-P normalization the normalization constant m

nN  is set to 1.  In this case the squared 

norm of a Zernike polynomial is given by 
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      
 

 

2 1
2 0,

0 0

1
, , , .

2 1

mm m m

n n nZ Z Z d d
n

  
          


 

   (3.5) 

 When the wavefront aberration function  , , ,W H    , a function of field 

parameters H  and  , and pupil parameters   and  , to be defined in the next Chapter, 

is expanded in terms of the Zernike polynomials over the normalized pupil parameters, 

the expansion may be written as 

            0 1 1

1 0 2 1 3 1, , , , , , ...W C H Z C H Z C H Z            , (3.6) 

where  ,jC H   are the expansion coefficients.  Given an interferogram of the wavefront 

aberration in the exit pupil of an optical system, the Cj can be approximately determined 

by a least squares fit of the Zernike polynomials to the interferogram data.  The variance 

of the fit over the unit radius pupil is given by   

    

2
2 1 2 1

2 2

0 0 0 0

, , ,W P d d W P d d

 

          
 

  
 

     (3.7) 

where the probability distribution function for a unit radius circular pupil is  

  
1 1

, .
pupil area

P  


   (3.8) 

Then, for this 0-P normalization, the variance is calculated to be  

 
 

0,2 2

2

1
.
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m

i

i

C
n










  (3.9) 

Table 3.1 provides a list of 21 Zernike polynomials using the 0-P normalization. 

 For the RMS normalization convention, employed by Noll [33] and Mahajan, et 

al. [12], the normalization constant is given by 
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   0,2 1 .m

n mN n    (3.10) 

 

Table 3.1 Examples of 0-P normalized Zernike polynomials up to j=21. 

ORDER 

PARAMETERS 

ZERNIKE POLYNOMIAL 

   , ,m

n jZ Z      

j n m  

1 0 0 1   

2 1 +1  cos     

3 1 –1  sin     

4 2 +2  2 cos 2     

5 2 0 22 1     

6 2 –2  2 sin 2     

7 3 +3  3 cos 3     

8 3 +1    33 2 cos      

9 3 –1    33 2 sin      

10 3 –3  3 sin 3     

11 4 +4  4 cos 4     

12 4 +2    4 24 3 cos 2      

13 4 0 4 26 6 1      

14 4 –2    4 24 3 sin 2      

15 4 –4  4 sin 4     

16 5 +5  5 cos 5     

17 5 +3    5 35 4 cos 3      

18 5 +1    5 310 12 3 cos        

19 5 –1    5 310 12 3 sin        

20 5 –3    5 35 4 sin 3      

21 5 –5  5 sin 5     

 

The squared norm of an RMS normalized Zernike polynomial is 

      
2 1

2

0 0

, , ,m m m

n n nZ Z Z d d



              . (3.11) 
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When the RMS normalized Zernike polynomials are used to expand the wavefront 

aberration function, as in Eq. (3.6), the variance, Eq. (3.7), of the expansion is calculated 

to be [12] 

 
2 2

2

i

i

C


 . (3.12) 

Table 3.2, presented on the next page, gives 21 examples of the RMS normalized Zernike 

polynomials.  Note that not only are the normalization constants different, the j-ordering 

assigned to the Zernike polynomials are different.  This set is popular among astronomers 

as it colocates terms with the same  -dependence.  It was originally introduced by Noll 

in the context of atmospheric turbulence models [34]. 

 As indicated in Eq. (3.1), there is also the notational convention  ,jZ    used in 

the literature for specifying the Zernike polynomials.  This notation is often employed 

when there is need for sequentially ordering the Zernike polynomials or a finite subset of 

the polynomials.  One such subset ordering of the Zernike polynomials is called the 

Fringe Zernike polynomials.  Table 3.3 and Table 3.4 provide a list of the Fringe Zernike 

polynomials.  The ISO specification [35] utilizes the ordering label 0 35j   while 

CODE V®, for example, uses the labeling 1 37j  . 
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Table 3.2 Examples of RMS normalized Zernike polynomials up to j=21. 

ORDER 

PARAMETER 

ZERNIKE POLYNOMIAL 

   , ,m

n jZ Z      

j n m  

1 0 0 1   

2 1 +1  4 cos     

3 1 –1  4 sin     

4 2 0  23 2 1     

5 2 –2  26 sin 2       

6 2 +2  26 cos 2     

7 3 –1    38 3 2 sin      

8 3 +1    38 3 2 cos      

9 3 –3  38 sin 3     

10 3 +3  38 cos 3     

11 4 0  4 25 6 6 1      

12 4 +2    4 210 4 3 cos 2      

13 4 –2    4 210 4 3 sin 2      

14 4 +4  410 cos 4     

15 4 –4  410 sin 4     

16 5 +1    5 312 10 12 3 cos        

17 5 –1    5 312 10 12 3 sin        

18 5 +3    5 312 5 4 cos 3      

19 5 –3    5 312 5 4 sin 3      

20 5 +5  512 cos 5     

21 5 –5  512 sin 5     

 

  



  39 

 

 

Table 3.3 Fringe Zernike polynomial orderings (0-P normalization). 

  

CODE V® 

 

ISO 

Zernike Polynomial 

   , ,m

n jZ Z      

n m j j  

0 0 1 0 1   

1 +1 2 1  cos     

1 –1 3 2  sin     

2 0 4 3 22 1     

2 +2 5 4  2 cos 2     

2 –2 6 5  2 sin 2     

3 +1 7 6    33 2 cos       

3 –1 8 7    33 2 sin      

4 0 9 8 4 26 6 1       

3 +3 10 9  3 cos 3    

3 –3 11 10  3 sin 3    

4 +2 12 11    4 24 3 cos 2      

4 –2 13 12    4 24 3 sin 2      

5 +1 14 13    5 310 12 3 cos        

5 –1 15 14    5 310 12 3 sin       
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Table 3.4 Continuation of the list of Fringe Zernike polynomials (0-P normalization). 

  

CODE V ® 

 

ISO 

Zernike Polynomial 

   , ,m

n jZ Z      

n m j j  

6 0 16 15 6 4 220 30 12 1        

4 +4 17 16  4 cos 4    

4 –4 18 17  4 sin 4      

5 +3 19 18    5 35 4 cos 3       

5 –3 20 19    5 35 4 sin 3       

6 +2 21 20    6 4 215 20 6 cos 2        

6 –2 22 21    6 4 215 20 6 sin 2        

7 +1 23 22    7 5 335 60 30 4 cos          

7 –1 24 23    7 5 335 60 30 4 sin          

8 0 25 24 8 6 4 270 140 90 20 1          

5 +5 26 25  5 cos 5     

5 –5 27 26  5 sin 5     

6 +4 28 27    6 46 5 cos 4       

6 –4 29 28    6 46 5 sin 4      

7 +3 30 29    7 5 321 30 10 cos 3        

7 –3 31 30    7 5 321 30 10 sin 3       

8 +2 32 31    8 6 4 256 105 60 10 cos 2         

8 –2 33 32    8 6 4 256 105 60 10 sin 2          

9 +1 34 33    9 7 5 3126 280 210 60 5 cos            

9 –1 35 34    9 7 5 3126 280 210 60 5 sin           

10 0 36 35 10 8 6 4 2252 630 560 210 30 1           

12 0 37 NA 12 10 8 6924 2772 3150 1680        

  4 2420 42 1      

 

 In CODE V®, an extension of the Fringe Zernike set is extended through j = 49. 

 The Fringe convention is the preferred Zernike polynomial ordering for lens design 

because it groups terms according to the associated optical wavefront aberration order.  

When the wavefront aberration function is expanded in terms of Zernike polynomials, the 
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expansion coefficients are functions of the field parameters  ,H   [1], each having a 

factor of the form mH , while the Zernike polynomials are functions of the pupil 

parameters  ,  , with the pupil dependence of highest exponent value being 
n .  The 

wavefront aberration order for a Zernike expansion term is then given by the sum m + n.  

As an example, 9Z  of the CODE V® Fringe set has a 
4  pupil dependence, whereas 

10 11,Z Z  have a 
3  pupil dependence.  9Z  is placed before 10 11,Z Z  in the Fringe 

ordering because 9Z  has a 0H  factor in the associated aberration function’s field 

dependence, whereas 10 11,Z Z  have a 3H  factor in the associated aberration function’s 

field dependence.  In terms of the optical aberration ordering, 9Z  corresponds to a 0 + 4 

= 4
th

 order aberration whereas 10 11,Z Z  correspond to 3 + 3 = 6
th

 order aberrations.  

Therefore, 9Z  is placed before 10 11,Z Z  in the Fringe ordering of the Zernike 

polynomials.  

 The selection of the coordinate axis used for angular reference in optical design is 

often selected to be the y-axis.  In optical testing the x-axis is often employed as the axis 

for angular reference.  In Chapter 2, SVP has been defined for both the x- and the y-axis 

as reference.  It will shortly be shown how to define Zernike vectors in terms of SVP.  It 

is then necessary to specify which axis is being used as the reference axis for the Zernike 

polynomial’s azimuthal parameter.  Therefore, in this work, a subscript is included on the 

angular dependence indicating which reference axis is being used.  For example, 

    , ,m

n jZ Z      , (3.13) 
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where  ,x y .  When no such axis is explicitly indicated, the x-axis will be assumed. 

 The explicit equation for the radial factor of the Zernike polynomials given in Eq. 

(3.2) is sufficient for computing low order (low n value) Zernike polynomials using 

standard double precision floating point number representation.  But even for moderate 

values of 15n   the factorials can quickly produce very large numbers that, when 

multiplied by small numbers (the azimuthal factor), can result in numerical inaccuracies 

in the computation [36].  It is known that the calculation of Zernike polynomials with 

25n   can lead to significant numerical errors depending on the way that the radial 

factor is calculated [37, 38].  The solution is to adapt recurrence relations that do not 

suffer from such numerical errors even for high order, 50n  , Zernike polynomials.  A 

Matlab implementation of the recurrence relation [36, 38] is given in Appendix II.  

Another approach to the numeric inaccuracy issue is to take advantage of modern 

computer programming language number representations and computational methods.  

For example, Matlab® has a symbolic toolbox that includes “variable precision 

arithmetic” that enables numeric calculations to any specified precision (significant digits 

below the decimal point).  Mathematica® provides for “arbitrary-precision numbers” that 

provides a similar numeric computational ability to any desired precision.  These 

techniques overcome the numeric accuracy limitations of standard double precision 

floating point number representation.  However, these alternatives tend to be slower in 

computational speed.   
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3.2 Defining Zernike Vectors Using SVP 

The Zernike polynomials, over a unit radius disk, using the 0-P normalization, Eq. (3.1), 

can be rewritten as 

 
     

 

 

cos
,

sin

m

m m

nn m

m for m
Z

m for m







 
  

 



 
 



R , (3.14) 

where n and m are positive (or zero) integers, m ≤ n,  n – m is even, and  m

n R  is given 

by   

 
 /2

2

0

( 1) ( )!
( )

! ! !
2 2

n m s
m n s m

n

s

n s

n m n m
s s s

 


 



 


    
    

   

R . (3.15) 

The subscript η is used to indicate which axis is the reference axis.  The advantage of 

pulling out a 
m  factor from the radial component of Eq. (3.1) and including it into the 

azimuthal factor will be shown below.  The “ ” superscript is to be considered a 

separate parameter and is not to be combined with the integer m.  One consequence of 

this notational convention is that there is now a Zernike polynomial notation for the 

number zero, 
   0

0
, 0Z 

   , although zero is not a Zernike polynomial.  This is a 

useful notational extension to be used in the definition of Zernike polynomial vectors that 

follows. 

 There are different ways in which Zernike vectors have been defined in the 

literature [39, 40, 41, 42].  Although the Zernike polynomials are orthogonal to one 

another, this property is not used in this research for defining the vector basis set for the 

Zernike vectors.  Instead, the ˆ ˆ,x y  unit vector basis set of the object (image) and entrance 
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(exit) pupil coordinate planes of the optical system are used.  Define a 2D vector 

consisting of the Zernike polynomials by 

        1 2

1 2

ˆ ˆ, , ,
m m

n n
Z a Z x b Z y     

 
   (3.16) 

where a and b are real constants.  Of particular interest to this research is the special 

subset of Zernike vectors for which m1 = m2 = m, n1 = n2 = n, and a = b = 1.  Denote these 

Zernike vectors as follows: 

             , , , , ,m m m

x x xn x n x n x
Z Z Z        (3.17) 

             , , , , .m m m

y y yn y n y n y
Z Z Z        (3.18) 

Note that  

               0 0 0

0 0 0
, , , , 1, 0 ,x x xx x x

Z Z Z         (3.19) 

while 

               0 0 0

0 0 0
, , , , 0, 1 .y y yy y y

Z Z Z         (3.20) 

These illustrate the use of the notational convention 
   0

0
, 0Z 

    mentioned above.   

 Using Eqs. (2.64), (2.65) and (3.14), the Zernike vectors in Eqs. (3.17) and (3.18) 

can be written in terms of SVP as 

      , ( ) .
mm m

nn
Z  

   R  (3.21) 

 Table 3.5 provides a list of the Zernike vectors that will be used in the next 

Chapter to convert the H. H. Hopkins based wavefront aberration function expansion into 

an expansion in terms of Zernike vectors. 
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Table 3.5  Examples of 0-P normalized Zernike vectors written in terms of SVP. 

Zernike 

Vector 

Zernike Vector in Terms of SVP 

   0

0
Z  

 
 

0




 

   1

1
Z  

 
 

1




 

   0

2
Z  

 
  

022 1


 
 

   2

2
Z  

 
 

2




 

   1

3
Z  

   
123 2


 
 

   3

3
Z  

 
 

3




 

   0

4
Z  

 
  

04 26 6 1


   
 

   2

4
Z  

   
224 3


 
 

   4

4
Z     

4


  

   1

5
Z  

 
  

14 210 12 3


   
 

   3

5
Z      

325 4


   

   5

5
Z     

5


  

   0

6
Z  

 
  

06 4 220 30 12 1


     
 

   2

6
Z      

24 215 20 6


     

   4

6
Z      

426 5


   

   6

6
Z     

6


  

   0

8
Z  

   
08 6 4 270 140 90 20 1


       
 

   2

8
Z      

26 4 256 105 60 10


       

   4

8
Z      

44 228 42 15


     

   6

8
Z      

628 7


   

   8

8
Z     

8


  

 

 

3.3 Discrete Orthogonality of Zernike Polynomials 

The Zernike polynomials are complete and orthogonal over the unit radius disk.  This 

means that any continuous function  ,f    defined over the unit radius disk can be 
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expanded in terms of the Zernike polynomials.  The expansion coefficients, for 0-P 

normalization, are given by 

 
 

 
   

2 1

0, 0 0

2 1
, ,

1

m m

n n

m

n
C f Z d d



      
 

 



    . (3.22) 

However, it is often the case that the continuous function  ,f    is not known in 

analytic form, but its values are known, or can be determined, at a finite number of points 

over the disk.  In such cases, it is still desirable to know the Zernike expansion 

coefficients through an upper n and m value to obtain an approximation of the continuous 

function as a finite series expansion.  Such an approximation to the function will be a 

good representation of the function if the function converges within the n and m upper 

limits used.   

 In general, the Zernike polynomials are not orthogonal over a finite, discrete set 

of points.  However, in a 2005 paper [43], Pap and Schipp published a result showing that 

a finite set of complex number Zernike polynomials are orthogonal over a finite set of 

discrete points across a unit radius disk.  In this way, values for the expansion 

coefficients can be obtained by special sampling of the function over the discrete set of 

points. 

 As mentioned above, the original work presented in [43], as well as in [44, 45], 

utilized a complex number form of the Zernike polynomials.  Appendix III provides a 

derivation of the discrete orthogonality properties and equations for the real number form 

of the Zernike polynomials used in this dissertation.  The results derived in Appendix III 

were used in this research as part of a Gaussian quadrature (GQ) method for obtaining the 
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Zernike expansion coefficients of the wavefront aberration function expansion, to be 

explained in the following Chapter. 

 

3.4 Zernike Polynomials for Non-Circular Pupils 

Optical systems need not have circular shaped pupils.  In such cases, it may still be 

desirable to work with orthogonal polynomials over the non-circular pupil shapes.  

Zernike polynomials have been used to define sets of orthogonal polynomials over 

annular, rectangular, elliptical and hexagonal pupil shapes [46, 47].  Each polynomial is 

then a finite weighted sum of the circular Zernike polynomials.  These new polynomials 

maintain the orthogonality and completeness properties of the circular Zernike 

polynomials and can therefore be used to fit data from systems having these non-circular 

pupil shapes.  During the research described in this dissertation, a Matlab® program was 

developed to implement these new polynomials for non-circular pupil shapes.  The 

program, called ZernikeCalc, is available on the MathWork’s Matlab® Central File 

Exchange website [48].  Because the optical models investigated in this research have 

circular pupils, use of ZernikeCalc was not directly made. 

 

3.5 Zernike Polynomials as a Sum of Decentered Rotationally Symmetric Terms 

During the course of this research, it was discovered that the Zernike polynomials can be 

represented as sums of decentered rotationally symmetric terms.  A decentered 
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rotationally symmetric term is defined here by the sag equation (distance from the xy-

plane to the surface) 

   nz f a    , (3.23) 

where a is a real number, ρ is the radial distance from the rotational symmetry z-axis to 

the surface given by  

 2 2x y    , (3.24) 

and n is a positive integer greater than 1.  The details are presented in Appendix IV. 

 Because this research project utilizes Zernike polynomials, decentering of 

rotationally symmetric optical surfaces, and NAT’s method for the mathematical 

description of the field dependence of the wavefront aberration function for optical 

imaging systems having decentered surfaces (to be described in Chapter 5), finding that 

Zernike polynomials can be expressed as a sum of decentered rotationally symmetric 

terms was an interesting discovery to make.  Pursuing this line of research has led to an 

approach for the application of NAT to optical elements having a freeform surface shape 

defined by the Zernike polynomials.  The mathematical development and examples 

utilizing  NAT  with  freeform  optical  surface  shapes  made  possible  by  expressing 

the Zernike polynomials as decentered rotationally symmetric terms are presented in 

Chapter 7. 
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Equation Chapter (Next) Section 1 

Chapter 4 SVP, Zernike Vectors and the Wavefront Aberration 

Function Expansions 

Like the Zernike polynomial definition, there are different conventions and assumptions 

used in the literature resulting in different definitions of the wavefront aberration 

function.  Each of these satisfies a different need of the researcher employing the 

definition.  Quoting H. H. Hopkins: “Thus one is led to consider a spherical wave-front as 

free from aberration, and to define the aberration of a wave-front as its departure from 

any conveniently chosen sphere of reference measured as an optical path length.” [3]  In 

this Chapter, the definition of the wavefront aberration function is presented that is used 

in this research.  In presenting the definition, an attempt to explicitly define the terms and 

assumptions is made.  No attempt is made to reconcile the developed definition with any 

other definition used in the literature.  The definition used in this work is that 

implemented in the optical design software CODE V® and Zemax® that use the real 

chief ray to define the reference sphere. 

 Using an extension of H. H. Hopkins’ expansion of the wavefront aberration 

function and his wavefront expansion coefficients as a starting point, it is shown how to 

convert the power series expansion into a vector expansion using Shack’s vector product 

(SVP).  An expansion in terms of Zernike polynomials and in terms of the Zernike 

vectors, defined in the previous Chapter, is derived.  A way to obtain the Hopkins 

expansion coefficients from the Zernike expansion coefficients is also derived.  In this 
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way, a bridge between the optical design community, using the Hopkins’ expansion 

coefficients, and the optical test and measurement communities, using the Zernike 

expansion coefficients, can be made. 

 The method for obtaining the Zernike expansion coefficients used in this research 

is presented.  It utilizes the Gaussian quadrature (GQ) method associated with the discrete 

Zernike orthogonality property mentioned in the previous Chapter and derived in 

Appendix III. 

 Because several different forms of the wavefront aberration function expansion 

will be developed, a labeling of the expansion coefficients has been used to assist in 

indicating which expansion is being referred to.  The “U” expansion coefficients will be 

associated with double Zernike expansions of the wavefront aberration function, the “V” 

expansion coefficients will be associated with the single Zernike expansion, and the “W” 

expansion coefficients will be associated with expansions involving no Zernike 

polynomial.  It is hoped that this sequential labeling of the expansion coefficients will 

make the reading of this Chapter easier to follow. 

 The specific wavefront aberration function expansions to be developed are as 

follows. 

 Expansions using Wklm coefficients: 

  1) H. H. Hopkins’ Expansion.  For rotationally symmetric optical imaging 

systems.  Most often used by optical designers.  The field parameter 

H  is restricted to be along the y-axis.  No Zernike polynomials 

involved. 
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  2) Shack’s Vector Form.  For rotationally symmetric optical imaging 

systems.  An extension of H. H. Hopkins’ expansion that removes the 

restriction on the field parameter.  No Zernike polynomials involved. 

  3) Shack Vector Product Form.  For rotationally symmetric optical 

imaging systems.  The field vector H  and pupil vector   parameters 

are written in terms of SVP.  Field and pupil parameters can be 

factored by a vector dot product.  No Zernike polynomials involved.  

This form is used to derive the expansions in terms of Zernike 

polynomials. 

 Expansion using ,

m

k nV  coefficients: 

  1) An expansion where the pupil vector parameter   is expanded in terms 

of Zernike polynomial vectors.  For rotationally symmetric optical 

imaging systems.  The ,

m

k nV  expansion coefficients can be expressed in 

terms of the Wklm expansion coefficients. 

 Expansion using ,H

m

n nU


 coefficients: 

  1) An expansion where the field vector and pupil vector parameters are 

both expanded in terms of Zernike polynomial vectors.  For 

rotationally symmetric optical imaging systems.  The Wklm coefficients 

can be expressed in terms of the ,H

m

n nU


 coefficients. 
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 Expansion using 
,

,
H

H

m m

n nU 


 coefficients: 

  1) An expansion where the field and pupil parameters are expanded in 

terms of Zernike polynomials (not Zernike vectors).  For rotationally 

nonsymmetric optical imaging systems.  The GQ method uses this 

form to obtain the 
,

,
H

H

m m

n nU 


 expansion coefficients.  The 

,

,
H

H

m m

n nU 


 

coefficients reduce to the ,H

m

n nU


 coefficients in the rotationally 

symmetric optical imaging system case and these ,H

m

n nU


 coefficients 

are used to calculate the Wklm expansion coefficients. 

A graphical summary is presented in Figure 4.1. 

 
Figure 4.1  Summary of expansion coefficients U, V and W.  “Exp. Term Form” is an 

abbreviation for “expansion term form.”  “Opt. Sys. Type” is an abbreviation for “optical 

system type.”  “Rot. Nonsym.” is an abbreviation for “rotationally nonsymmetric.”  “Rot. 

Sym.” is an abbreviation for “rotationally symmetric.”  “ ” is the vector dot product.   
m

H  

and  
m

  are SVPs to the mth power. 

 

The details of Figure 4.1 are developed in the following sections. 

 



  53 

4.1 The Wavefront Aberration Function Definition 

The coordinate systems used in this research are illustrated in Figure 4.2. 

 

Figure 4.2  Optical imaging system’s components and local coordinate systems. 

 

The object plane is generally positioned to the left of the other optical system’s elements.  

A ray is emitted from an object point in the object plane and travels to the right toward 

the entrance pupil.  This left to right direction is defined to be the +z-axis direction.  Each 

of the elements in the optical model, including the object, entrance pupil, optical surfaces 

with optical power, exit pupil and image have their own local coordinate systems.  These 

are all centered on the z-axis and form a right handed coordinate system with the +x-axis 

direction considered to be into the page and +y-axis direction considered to be “up” or 

toward the top of the page.  A reflective surface does not change the local coordinate 

system’s orientation of any of the surfaces in the optical model.  When it is necessary to 

utilize a global coordinate system from which all the other surfaces’ location can be 

defined, the entrance pupil’s coordinate system will be used.  For optical imaging models 
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having the object plane at z = – ∞, the entrance pupil will always be to the right of the 

object plane.  For those optical imaging systems having a finite distance between the 

object surface and the entrance pupil, it may occur that the entrance pupil is to the left of 

the object plane.  Similarly, the exit pupil for an imaging system may occur to the right of 

the image plane.   

 The terminology “optical imaging system,” “optical system,” “optical imaging 

system model,” and “optical model” will all refer to an idealized software model and/or 

an idealized mathematical model of the real optical imaging system.  As part of this 

idealization away from the real optical imaging system, it will be assumed that diffraction 

effects can be ignored and that computer ray tracing is sufficient for describing and 

analyzing the optical system’s optical aberrations. 

 The terminology “paraxial imaging” will refer to ray tracing with rays that are 

infinitesimally close to the mechanical coordinate axis (MCA) (the symmetry axis for a 

rotationally symmetric optical imaging system) having infinitesimally small angles with 

respect to the MCA.  “Gaussian imaging” will refer to first order ray tracing [49].  This 

distinction is not strictly adhered to.  Paraxial imaging results in perfect imaging while 

Gaussian imaging, an extension to finite angles of the infinitesimal angles of paraxial 

imaging, is an approximation to perfect imaging.  “Real ray tracing” will refer to 

computer ray tracing through an optical model without restrictions to first order 

idealizations. 

 The wavefront aberration function has been defined in several different ways in 

the literature [3, 11, 49].  As an initial definition (meaning without details), it can be 
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defined to be the optical path difference (OPD) from the ray’s wavefront point (labeled A 

in Figure 4.3) when the wavefront is at the system’s exit pupil, to the ray’s intersection 

point (labeled B) with the image space reference sphere.   

 
Figure 4.3  Definition of wavefront aberration function W. 

 

In Figure 4.3 the point labeled “C” is the intersection point of the optical axis with the 

image space reference sphere at the center of the exit pupil, the point labeled “D” is the 

intersection of the optical axis and the Gaussian image plane, the point labeled “E” is the 

center of the image space reference sphere, the point labeled “F” is the intersection point 

of the ray being traced with the Gaussian image plane, “R” is the reference sphere’s 

radius, “ BFR ” is the ray being traced, and “W” is the OPD for the ray being traced. 

 Although this initial definition seems simple enough, there are many subtleties 

that need to be made explicit.  For example, there are several choices for the location of 

the center of the reference sphere as well as choices for how the exit pupil is to be 

located.  Additionally, the parameters of the wavefront aberration function have different 

meanings depending on the definition used.  Therefore, additional details need to be 

provided.   
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 In this work, the image space reference sphere will be centered at the intersection 

point of the field point’s chief ray and the Gaussian image plane (labeled “E” in Figure 

4.3), determined by real ray tracing.  The image space reference sphere’s surface will be 

defined to pass through the intersection point of the field point’s chief ray and the optical 

axis ray (OAR) in image space (the z-axis in the case shown in Figure 4.3).  This is the 

center of the real (as opposed to Gaussian) exit pupil.  Again, real ray tracing is used to 

determine this point along the field point’s chief ray. 

 The reason that the professional optical design software packages use this 

definition for the image space reference sphere is because they are designed to perform 

far more than just geometrical ray tracing calculations.  Specifically, they are designed to 

perform diffraction related calculations and it is known that diffraction effects are 

minimal in the real exit pupil.  

 One consequence of the placement of the image space reference sphere at the 

intersection of the field point’s chief ray with the image plane is that it removes distortion 

aberrations from the wavefront aberration function even in the case that the final image 

has significant distortion.  This is often acceptable because the distortion aberration is not 

an image quality reducing aberration and it can be computed independently. 

 The wavefront aberration function, W, for a monochromatic ray being traced 

through the optical imaging system model, is a scalar function in four parameters.  These 

four parameters uniquely define the ray that is being traced.  Two parameters are 

associated with the object source point (also called the field point) from which the ray 
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originates and two parameters specify a point in the optical system through which the ray 

passes.   

 There are different ways to specify the two field parameters as well as different 

conventions for choosing the point in the optical system that the ray passes through.  For 

example, the field parameters, denoted by  ,x yH H H , could be the x and y Cartesian 

coordinates of the object point from which the ray originates, or, when the object is 

effectively infinitely far away from the rest to the optical system, they could be the angles 

that a line from the center of the entrance pupil to the object point makes with the z-axis 

when the line is projected onto the xz- and yz-planes.  In this work, the field parameters 

are taken to be the Cartesian coordinates of the point in the optical system’s object plane 

normalized by the maximum value defining the extent of the object (assumed to be a 

circle in the object plane).  Since these parameters are normalized, the case of the object 

plane being infinitely far away from the entrance pupil presents no difficulties.  An 

alternative form of the normalized Cartesian coordinates, the polar coordinate form, 

 ,H H  , where   is either x or y indicating which axis is used as the reference axis, 

may also be utilized. 

 The ray intersection point often selected in the optical system for the remaining 

two (pupil) parameters is the intersection point of the ray with either the (real or 

Gaussian) entrance pupil plane or the (real or Gaussian) exit pupil plane [11, 49].  Other 

choices that occur in the literature are the intersection point of the ray being traced with 

the object space or image space reference spheres [50, 51].  In this work, the Gaussian 

entrance pupil plane is chosen.  The point through which the ray passes in the Gaussian 
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entrance pupil plane will be denoted by  ,x y    and these will be called the pupil 

coordinates of the ray traced.  These coordinates are normalized with respect to the 

pupil’s radial extent.  Alternatively, a polar form for these normalized pupil coordinates, 

 ,    , may be utilized.  The wavefront aberration function is then denoted by,  

      , , , , , , ,x y x yW W H W H H W H           . (4.1) 

 The object is idealized and modeled as a finite number of perfect point emitters in 

the idealized object plane.  From each object’s field point an expanding spherical wave is 

imagined.  This spherical wavefront, also called the phase front, travels to the Gaussian 

entrance pupil of the optical imaging system model.  The location of the Gaussian 

entrance pupil plane is determined by paraxial imaging and the pupil will be assumed to 

have a plane circular shape.  Rays are imagined and modeled, in the absence of 

diffraction, as vectors normal to the wavefront surface.  For any object field point there is 

a unique ray that connects the object field point to the center of the Gaussian entrance 

pupil.  This ray is called the chief ray for that field point, or the field point’s chief ray.  

The sphere centered on the field point and passing through the intersection of the field’s 

chief ray with the center of the Gaussian entrance pupil is called the object space 

reference sphere for that field point. 

 A real ray trace is performed through the optical imaging system model from the 

object plane field point to the Gaussian image plane.  The optical path length (OPL) of 

the ray from the ray’s intersection with the object space reference sphere to the image 

space reference sphere, defined above, is calculated.  The optical path difference (OPD) 
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is then defined to be the OPL of the ray minus the OPL for the field point’s chief ray.  

This means that for any field point’s chief ray, the OPD for that chief ray is always zero.   

 The wavefront aberration function value    , , , ,x y x yW W H W H H     for 

the ray specified by the normalized parameters    , , , ,x y x yH H H    is the OPD 

value for that ray   

    , , , , , ,x y x y x y x yW H H OPD H H     . (4.2) 

 There is another aberration used in optical design called the transverse ray 

aberration.  The transverse ray is the vector, in the Gaussian image plane, from the 

Gaussian image point of the ray to the real ray trace intersection point of the ray with the 

Gaussian image plane.  It is often stated that the relation between the wavefront 

aberration function and the transverse ray aberration vector function is given by 

    
1

, , , , , ,
' '

x y x y x y x yH H W H H
n u

      , (4.3) 

where  , , ,x y x yH H    is the transverse ray vector function, 'n  is the image space 

index of refraction, 'u  is the marginal ray’s image space angle with respect to the optical 

axis,  , , ,x y x yW H H    is the wavefront aberration function and   is the gradient 

operator with respect to the pupil parameters.  This equation is valid for the 4
th

 order 

wavefront aberration function W but does not hold in general for high order terms of the 

wavefront expansion [52].  That is, in the derivation of this equation (see for example 

[49]) the approximations used limit its validity to 3
rd

 order in transverse ray aberrations.  

It can be shown that Eq. (4.3) leads to inconsistent equations for the 6
th

 order wavefront 
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aberration expansion coefficients when used with Cox’s 5
th

 order equations for the 

transverse ray aberration function expansion [53].  (See Appendix V for an example.)  

Also, as pointed out previously, there are several different ways to define the wavefront 

aberration function.  Different meanings of the pupil parameters (defined with respect to 

entrance or exit pupil planes, or defined with respect to object or image space reference 

spheres) may not be consistent with the derivation of this equation.  Lastly, the selection 

of which definition of the image space reference sphere to use may result in an 

incompatibility with the derivation of Eq. (4.3).  Therefore, using Eq. (4.3) as the vehicle 

for obtaining wavefront aberration expansion coefficients, or for work involving higher 

than 4
th

 order wavefront expansion terms, is perilous. 

 Because the exact analytic form of the wavefront aberration function for an 

optical model is not in general known, an expansion of the function in terms of a power 

series in the ray’s four normalized parameters is made.  This is written as 

  
0 0 0 0

, , , ,m n p q

x y x y mnpq x y x y

m n p q

W H H C H H   
   

   

  (4.4) 

where 
mnpqC  are the expansion coefficients.  It is assumed that this expansion (as well as 

all other expansions of the wavefront aberration function to be presented) converges.  The 

question of the rate of convergence of this expansion is of particular interest for 

rotationally non-symmetric optical imaging systems.  However, it is an issue not well 

addressed in the literature. 

 The z-axis will be used as the MCA.  The optical imaging system models to be 

considered will be restricted to be rotationally symmetric about the MCA in the absence 
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of any decenters and/or tilts of the model’s surfaces.  Consequently, the form of the 

wavefront aberration function consists of only terms that are rotationally invariant to a 

rotation about the symmetry axis (i.e., MCA).  The terms in the expansion Eq. (4.4) are 

then restricted to be any one or multiples (including powers) of the following four 

rotationally invariant forms 

  2 2 ,x yH H H H   (4.5) 

  2 2 ,x y      (4.6) 

   ,x x y yH H H     (4.7) 

   ,x y y x
Z

H H H        (4.8) 

where  
Z

  indicates the z-component of the vector enclosed.  Further requiring the 

wavefront aberration function to have reflection symmetry through a meridional plane (a 

plane containing the field point and the rotational symmetry z-axis) rules out Eq. (4.8).  

That is, the wavefront aberration function is not to change sign across the plane 

containing the field point and the z-axis.  The resulting form of the wavefront aberration 

function’s expansion can then be written as 

          
0 0 0

, ,
n m p

k l m S
n p m

W H W H H H   
  

  

  (4.9) 

where  k l m S
W  are the expansion coefficients with 2 , 2k n m l p m    .  The notation 

“{S}” is used to indicate that an additional “S” subscript is appended to Wklm when the 

Wklm coefficient is associated with the sagittal focal surface.  This occurs when, for a 

Wklm, both n ≠ 0 and p ≠ 0. 
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 Because the optical system is restricted to be rotationally symmetric, the field 

point, in optical design, is often selected to be along the positive y-axis.  Using the y-axis 

as the reference axis from which angles are measured, the field parameters may be 

written as  , yH H   with 0y  .  Similarly, the pupil parameters may be written as a 

vector in the plane of the entrance pupil,  , y   .  Then the wavefront aberration 

function can be written in the form 

    2 2

{ }

0 0 0

, cosn m p m m

klm S y

n p m

W H W H  
  

 

  

 , (4.10) 

where H is the magnitude of the normalized field parameter vector H ,   is the 

magnitude of the normalized pupil parameter vector   and 
y  is the angle that the pupil 

parameter vector makes with respect to the positive y-axis.  This is the traditional form 

presented for the expansion of the wavefront aberration function for rotationally 

symmetric optical imaging systems.   

 To explore the full field parameter dependence of the aberration function the 

restriction that the field point selected be along the y-axis is removed.  Then from Eq. 

(4.9) 

    2 2

{ }

0 0 0

, cosn m p m m

klm S

n p m

W H W H     
  

 

  

   (4.11) 

where 
    is the angle, in the xy-plane, between the field parameter vector H  and the 

pupil parameter  , and the subscript  ,x y  is used to indicate which convention is 
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used as the reference axis, either the x-axis or the y-axis, from which the angles are 

measured.  This is a generalization of the form presented in Hopkins [3]. 

 The wavefront aberration order of a term in Eq. (4.11) is given by the sum 

 2 2 2 2( )Order k l n p m n p m        , (4.12) 

and is therefore always even. 

 For clarity, it is stated again that the field parameters used in this work are the 

normalized Cartesian coordinates of the object point of the ray under consideration. 

 

4.2 Wavefront Aberration Function in Terms of SVP 

It is most desirable to write the wavefront aberration function’s terms in such a way that 

the two field parameters are factored (separated except by multiplication) from the two 

pupil parameters.  As the function is written in Eq. (4.11), the factor  cosm

    

appears to prevent this.  However, it has been found in this research that this separation of 

field and pupil parameters can be accomplished by using the trigonometry relation 

        
  1

1
2

1
0

1 1
cos cos 2

2 2
2

E mm

m

E mm m
t

m
m

m tm
t



       

 




 
          

 

 , (4.13) 

where  

  

1

0
E m

for m even

otherwise



 


. (4.14) 

Writing  

 2 2m m t tH H H , (4.15) 
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2 2m m t t   , (4.16) 

the following relation is obtained, 

 

   

    
  1

1
2

2 2 2 2

1
0

1
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2
2

1
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2
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m
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m
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m
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H H m t m t
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 

    

   

 

 




 
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 
 

 
    

 
   (4.17) 

Recalling Eq. (2.74), repeated here for convenience,  

      ˆ ˆcos
n n

n n A B  
    , (4.18) 

the cosine terms in Eq. (4.17) can be written as 

         
2 22 2 cos 2 2

m t m tm t m tH m t m t H  
   

       . (4.19) 

Then 
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 ,  (4.20) 

where the relation    
0 0

1H


   has been used.  This result can be used to write Eq. 

(4.11) as 
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where the field and pupil parameters have been completely separated by a vector dot 

product for all orders of the expansion. 

 Keeping only through 8
th

 order terms, the wavefront aberration function 

expansion can be written as follows.   
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Collecting like terms in    
u u vH


   results in  
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By using the definitions [54] 
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1
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2
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 240 240 242

1
,
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 440 440 442 444

1 3
,

2 8
M S SW W W W    (4.30) 
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 531 531 533

3
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M SW W W   (4.32) 
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1
,
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M SW W W   (4.33) 

where the subscript “M” is used to indicate quantities associated with the medial focal 

surface, the wavefront imaging aberration function through 8
th

 order can be written as 
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 A general pattern of the field dependent vector functions is that they factor into a 

scalar part, shown in parentheses, containing even powers of H , and a Shack vector 

product part, shown as curly braces.  For example 

     
1 12 4 2

131 331 531 .

Field Dependent Part

M M

Scalar Part Vector
Part

W W W H W H H


       (4.35) 
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Of primary interest in this work are the characteristics of the field dependent parts of the 

wavefront aberration function expansion terms, called the “field functions”, particularly 

when the rotationally symmetric optical system’s elements are perturbed, breaking the 

rotational symmetry restriction.  This is the subject of NAT, briefly reviewed in the next 

Chapter. 

 From the notational patterns found in Eq. (4.34), a summation equation for the 

wavefront aberration function expansion using the medial focus surface klmMW  

coefficients has been developed in this research.  The wavefront aberration function 

expansion can be written as  

        
0,1

2 2

0 0 0

1
,

2

mm
m mn p

k l m M
p m n

W H W H H




  

   

  

 
  

 
  , (4.36) 

where 

 0,

1 0

0 0
m

m

m



 


 , (4.37) 

and 2 , 2k n m l p m    .  The “{M}” subscript indicates inclusion of the “M” 

subscript when 0 and 0p n   for a given Wklm coefficient.  The wavefront aberration 

order of a term is, as before, given by 

  2Order n p m    . (4.38) 

 In terms of the Wklm{S} coefficients used in the original expansion, Eq. (4.11), the 

following relation has been derived 

 0,

,
1

, { }

2

2 m

k l
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k l mM u m k lu S

u m
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W K W
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   , (4.39) 
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where 
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and 
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k for k l

k l
l for l k
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 . (4.41) 

 By defining  
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the wavefront aberration function expansion can be written as 

            
0 0 0

,
n m m p
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p m n
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

   
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  . (4.43) 

Thus by using the medial focal surface based coefficients,  k l m M
W  , and SVP, a simple 

equation (compared to Eq. (4.21)) for the aberration function expansion with the field and 

pupil parameters factored has been achieved. 

 It is interesting to note the similarities and differences of Eq. (4.43) and Shack’s 

vector form of the wavefront aberration function expansion, Eq. (4.9), repeated here for 

ease of comparison. 

          
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4.3 Wavefront Aberration Function Expansion in Terms of Zernike Vectors 

There are several different ways that the pupil dependence of the wavefront aberration 

function expansion terms, through 8
th

 order, Eq. (4.34), can be converted into Zernike 

vector functions of the pupil parameters.  One way is to simply use algebra.  Specifically, 

the entries in Table 3.5, listing the Zernike vectors in terms of SVP, can be used to solve 

for the pupil dependencies in terms of Zernike vectors.  For example, the pupil 

dependence  
1 2


   is determined by first noticing that (from Table 3.5) 

        
1 11 2

3
3 2Z   

      . (4.45) 

Then 

        
1 11 2

3

1 2

3 3
Z   

      . (4.46) 

And since (from Table 3.5) 

      
11

1
Z  

    , (4.47) 

the following is obtained 

          
1 2 1 1

3 1

1 2

3 3
Z Z 

      . (4.48) 

Proceeding in a similar way, a tabulation of all the pupil dependencies of Eq. (4.34) in 

terms of the Zernike vectors is obtained.   
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Table 4.1  Pupil dependence in terms of Zernike vectors. 

Pupil 

Dependence 

 

Equivalent Zernike Vector Combination 

 
0




    0

0
Z  

 

 
0 2


 

        0 0

2 0

1 1

2 2
Z Z  

 

 
0 4


 

            0 0 0

4 2 0

1 1 1

6 2 3
Z Z Z     

 

 
0 6


 

                0 0 0 0

6 4 2 0

1 1 9 1

20 4 20 4
Z Z Z Z        

 

 
0 8


 

                    0 0 0 0 0

8 6 4 2 0

1 1 2 2 1
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

 
   1

1
Z  

 

 
1 2


 

        1 1

3 1

1 2

3 3
Z Z  

 

 
1 4


 

            1 1 1

5 3 1

1 2 1

10 5 2
Z Z Z     

 

 
1 6


   

               1 1 1 1

7 5 3 1

1 6 2 2

35 35 5 5
Z Z Z Z          

 
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

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2
Z  

 

 
2 2


 

        2 2

4 2

1 3

4 4
Z Z  

 

 
2 4


   

           2 2 2

6 4 2

1 1 3

15 3 5
Z Z Z       

 
2 6


   

               2 2 2 2

8 6 4 2

1 1 5 1

56 8 14 2
Z Z Z Z          

 
3




 
   3

3
Z  

 

 
3 2


   

       3 3

5 3

1 4

5 5
Z Z    

 
4


     4

4
Z    

 

 The pupil dependence of the terms in the wavefront aberration function expansion 

of Eq. (4.34) can now be written in terms of the pupil Zernike vectors.  Substituting the 

Zernike vector equivalent pupil dependence of Table 4.1 for the pupil dependencies in 
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Eq. (4.34) and then collecting terms of like Zernike pupil dependence results in the 

wavefront aberration function as shown in Eq. (4.49). 
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  (4.49) 

Using a single symbol ,

m

k nV  for the expansion coefficient of each term gives, 
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0
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1 1 0 0

0,87 8
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      (4.50) 

The general form for rotationally symmetric optical imaging models is given by 

        
0

,

0 0
2 2

,
m

m k m

k n n
n m n k

m k

W H V H H Z 
 

 

  
 

   (4.51) 

 The terms most often of interest are the Zernike astigmatism     2

2
Z    , Zernike 

coma     1

3
Z    , and Zernike spherical     0

4
Z    terms.  In Chapter 6, the examples 

provided will utilize this through 8
th

 order expansion of the wavefront aberration 

function.  Explicit expressions for the ,

m

k nV  coefficients in terms of the { }k l m MW  

coefficients for the through 12
th

 order expansion are presented in Table 4.2 on the 

following page. 

 It is also desirable to write the wavefront aberration function’s field dependence 

in terms of Zernike vectors.  To write the field dependence in Eq. (4.49) in terms of the 

Zernike vectors, the   and   of Table 4.1 are replaced with H  and H , respectively.  

The field functions in Eq. (4.49) can then be replaced with field dependent Zernike 
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vectors.  The idea of expanding both the pupil and the field dependence in terms of 

Zernike polynomials for rotationally symmetric optical imaging systems has been 

previously suggested in the literature [55, 56, 57, 58].  However, these other double 

Zernike expansions have not been in terms of the Zernike vectors nor SVP, a result of 

this research.   

Table 4.2 ,

m

k nV  expansion coefficients. 

,

m

k nV   Equivalent { }k l m MW  Expression 

2

0,2V  
222 242 262 282 2,10,2

1 3 3 1 3

2 8 10 4 14
W W W W W     

2

2,2V  
422 442 462 482

1 3 3 1

2 8 10 4
M M MW W W W    

2

4,2V  
622 642 662

1 3 3

2 8 10
M MW W W   

2

6,2V  
822 842

1 3

2 8
MW W  

2

8,2V  
10,2,2

1

2
W  

1

0,3V  
131 151 171 191 1,11,1

1 2 2 8 5

3 5 5 21 14
W W W W W     

1

2,3V  
331 351 371 391

1 2 2 8

3 5 5 21
M M M MW W W W    

1

4,3V  
531 551 571

1 2 2

3 5 5
M M MW W W   

1

6,3V  
731 751

1 2

3 5
M MW W  

1

8,3V  
931

1

3
MW  

0

0,4V  
040 060 080 0,10,0 0,12,0

1 1 2 25 25

6 4 7 84 84
W W W W W     

0

2,4V  
240 260 280 2,10,0

1 1 2 25

6 4 7 84
M M M MW W W W    

0

4,4V  
440 460 480

1 1 2

6 4 7
M M MW W W   

0

6,4V  
640 660

1 1

6 4
M MW W  

0

8,4V  
840

1

6
MW  
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 For a rotationally symmetric optical imaging model, the double Zernike vector 

expansion of the wavefront aberration function is given by 

          
0

,

0 0

2

,
H H

H

m m m

n n n n
n m n n

m

W H U Z H Z
 

 

  
 

  



    (4.52) 

where the “m – 2” below the summation is used to indicate decrements of m by 2 rather 

than increments of 1. 

 The preceding development has been for rotationally symmetric optical systems.  

For the case of rotationally nonsymmetric optical systems, an expansion in field and pupil 

parameters in terms of the Zernike polynomials, in field and pupil, is given by 

          
,

,

0 0
22

,
H

H H

H H

H H H

H

n n
m m mm

n n n n
n m n n m n

mm

W H U Z H Z


 

 

  



  
 

   


     , (4.53) 

where “ 2m  ” and “ 2Hm  ” indicate addition in increments of 2.  Note that these are 

Zernike polynomials, not the Zernike vectors previously used for the case of rotationally 

symmetric optical systems.  Recall that the Zernike polynomials are complete over a unit 

radius disk (normalized object and pupil) and thus any function defined over the unit 

radius object disk and unit radius pupil disk may be so expanded [56, 59, 60].  This, Eq. 

(4.53), will be called the double Zernike expansion of the wavefront aberration function.  

It is this form of the wavefront aberration function expansion that is used together with 

the GQ method to obtain the expansion coefficients 
,

,
H

H

m m

n nU 


 from which, for rotationally 
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symmetric optical imaging systems, the Wklm{M} expansion coefficients of Eq. (4.49) can 

be obtained, as will be shown below.  

 

4.4 Method for Obtaining Expansion Coefficients 

The 
,

,
H

H

m m

n nU 


 expansion coefficients of the general double Zernike expansion of the 

wavefront aberration function, Eq. (4.53), may be calculated in the following way.  An 

optical design, ray tracing software package is used to implement the optical imaging 

system models and to perform the real ray tracing.  The OPD value for each ray traced 

(real ray tracing) is calculated.  A data file containing five numerical values for each ray 

traced is obtained.  These five values are the 2 field and 2 pupil parameter values 

identifying the ray traced, and the calculated OPD value for that ray.  Using the discrete 

Zernike orthogonality properties described in Appendix III, the GQ method is used twice, 

once in pupil and once in field parameter values, to obtain the 
,

,
H

H

m m

n nU 


 expansion 

coefficients. 

 For the through 12
th

 order expansion of the wavefront aberration function, the 

maximum radial, n, Zernike index is set to max 12n  .  Then the number of radial (field 

and pupil) values needed to perform the GQ procedure, as calculated by Eq. (III.61), is  

 max 12
1 1 7

2 2
radial

n
N

   
       

  
 , (4.54) 

while the number of angular values required, as given by Eq. (III.65), is   

 max2 1 2 12 1 25angleN n       . (4.55) 
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There are then 7 25 175radial angleN N     field and pupil points required for one 

application of the GQ method.  This means that 175 175 175 30,800    rays need to be 

traced, and their OPD values calculated.  The “+175” is to account for the chief ray, 

which is not one of the rays needed by the GQ method and so must be traced in addition 

to the GQ rays.  Depending on the implementation of the real ray tracing program, this 

can take a long time.  Fortunately, the available commercial optical design software 

packages today are very fast for tracing rays.   

 Note that the number of rays to be traced, 30800, is for a single optical model to 

determine the optical model’s total  k l m M
W  values.  As will be detailed in the next 

section, to obtain the required per surface, sphere/asphere, and intrinsic/extrinsic 

expansion coefficient values,  k l m M
W , requires at most 4 separate optical models per 

surface of the original optical model.  So, depending on the number of surfaces in the 

original optical model, several times this number of rays may need to be traced.   

 With the double Zernike expansion coefficients 
,H

m

n nU


 of Eq. (4.52) for a 

rotationally symmetric optical imaging model known (the 
,

,
H

H

m m

n nU 


 coefficients reduce the 

to 
,H

m

n nU


expansion coefficients for the rotationally symmetric case), a set of equations 

can be derived for the calculation of the  k l m M
W  expansion coefficients.  The derivation 

of these equations has been accomplished for the through 12
th

 order expansion of the 

wavefront aberration function.  The method of derivation is here described. 
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 A Matlab® program, using the add-on symbolic toolbox for symbolic algebraic 

manipulation, was written to implement Eq. (4.43), providing the wavefront aberration 

function expansion in terms of the  k l m M
W  expansion coefficients and SVP in field and 

pupil parameters.  Another Matlab® function was written to calculate the conversion of 

the pupil and field dependencies occurring in the wavefront aberration function 

expansion into the equivalent real number Zernike polynomials.  A portion of these 

conversions has been presented in Table 4.1.  Then, in software, collecting like terms in 

the resulting symbolic expression of the  ,W H   expansion provides the Zernike-in-

field, Zernike-in-pupil expansion of the wavefront aberration function in terms of the 

 k l m M
W  expansion coefficients.  Comparison with the double Zernike expression of Eq. 

(4.52) provides equations for the 
,H

m

n nU


 expansion coefficients in terms of the  k l m M
W  

expansion coefficients.  A sample of these equations is presented here. 

 2

10,2 1022

1
.

420
U W

 
  
 

   (4.56) 

 2

8,2 822 842 1022

1 3 3
.

112 448 140
MU W W W

 
   
 

   (4.57) 

 2

6,2 622 642 662 822 842 1022

1 1 1 1 3 1
.

30 40 50 16 64 12
M M MU W W W W W W

 
      
 

  (4.58) 

 

2

4,2 422 442 462 482 622 642

662 822 842 1022

1 3 3 1 1 1

8 32 40 16 6 8

1 5 15 5
 .

10 28 112 28

M M M M M

M M

U W W W W W W

W W W W


     



    


  (4.59) 
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2

2,2 222 242 262 282 2102 422 442 462

482 622 642 662 822 842 1022

1 3 3 1 3 3 9 9

2 8 10 4 14 8 32 40

3 3 9 9 1 3 3
.

16 10 40 50 4 16 14

M M

M M M M M M

U W W W W W W W W

W W W W W W W


       



       


 (4.60) 

 

 1

9,3 931

1
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378
MU W
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 

   (4.61) 

 1

7,3 731 751 931

1 2 4
.
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1 1 1 2 12 1
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1

3,3 331 351 371 391 531 551

571 731 751 931

1 2 2 8 2 4

9 15 15 63 15 25

4 2 4 8
 .

25 15 25 63

M M M M M M

M M M M
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1

1,3 131 151 171 191 1,11,1 331 351 371

391 531 551 571 731 751 931

1 2 2 8 5 2 4 4

3 5 5 21 14 9 15 15

16 1 1 1 2 4 1
.

63 6 5 5 15 25 9

M M M
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
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


       



  (4.65) 

 The complete set of such equations through 12
th

 order (not shown) are then 

inverted to provide the  k l m M
W  coefficients in terms of the 

,H

m

n nU


 coefficients.  Some of 

the resulting equations are provided here. 

 





0 0 0 0 0 0 0

040 0,4 0,6 0,8 0,10 0,12 2,4 2,6

0 0 0 0 0 0 0 0

2,8 2,10 4,4 4,6 4,8 6,4 6,6 8,4

6 5 15 35 70 5

15 35 5 15 5 .

W U U U U U U U

U U U U U U U U

      

          (4.66) 
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



1 1 1 1 1 1 1 1 1

131 1,3 1,5 1,7 1,9 1,11 3,3 3,5 3,7 3,9
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5,3 5,5 5,7 7,3 7,5 9,3

3 4 10 20 35 2 8 20 40

3 12 30 4 16 5 .

W U U U U U U U U U

U U U U U U

        
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
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0 0 0 0 0 0

6,2 6,4 6,6 8,2 8,4 10,2

4 3 6 10 15 3 9 18 30

6 18 36 10 30 15

MW U U U U U U U U U

U U U U U U
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



0 0 0 0 0 0 0

060 0,6 0,8 0,10 0,12 2,6 2,8 2,10

0 0 0

4,6 4,8 6,6

20 7 28 84 7 28

7 .

W U U U U U U U

U U U

      

     (4.71) 

 





1 1 1 1 1 1 1

151 1,5 1,7 1,9 1,11 3,5 3,7 3,9

1 1 1

5,5 5,7 7,5

10 6 21 56 2 12 42

3 18 4 .

W U U U U U U U

U U U

      

     (4.72) 

 





2 2 2 2 2 2 2

242 2,4 2,6 2,8 2,10 4,4 4,6 4,8

2 2 2

6,4 6,6 8,4

8 5 15 35 3 15 45

6 30 10 .

W U U U U U U U

U U U

      

     (4.73) 

 





0 0 0 0 0 0 0

240 2,4 2,6 2,8 2,10 4,4 4,6 4,8

0 0 0

6,4 6,6 8,4

12 5 15 35 3 15 45

6 30 10

MW U U U U U U U

U U U

      

     (4.74) 

 





1 1 1 1 1 1 1

331 3,3 3,5 3,7 3,9 5,3 5,5 5,7

1 1 1

7,3 7,5 9,3

9 4 10 20 4 16 40

10 40 20 .

MW U U U U U U U

U U U

      

     (4.75) 
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



3 3 3 3 3 3 3

333 3,3 3,5 3,7 3,9 5,3 5,5 5,7

3 3 3

7,3 7,5 9,3

4 4 10 20 4 16 40

10 40 20 .

W U U U U U U U

U U U

      

     (4.76) 

 





0 0 0 0 0 0 0

420 4,2 4,4 4,6 4,8 6,2 6,4 6,6

0 0 0

8,2 8,4 10,2

12 3 6 10 5 15 30

15 45 35 .

MW U U U U U U U

U U U

      

     (4.77) 

 





2 2 2 2 2 2 2

422 4,2 4,4 4,6 4,8 6,2 6,4 6,6

2 2 2

8,2 8,4 10,2

8 3 6 10 5 15 30

15 45 35 .

W U U U U U U U

U U U

      

     (4.78) 

 





1 1 1 1

511 5,1 5,3 5,5 5,7

1 1 1 1 1 1

7,1 7,3 7,5 9,1 9,3 11,1

10 2 3 4
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W U U U U

U U U U U U

   

        (4.79) 

 

  0 0 0 0 0 0

080 0,8 2,8 4,8 0,10 2,10 0,1270 9 9 45 .W U U U U U U        (4.80) 

 

Thus a bridge between the Wklm expansion coefficients often used by the optical design 

community and the 
,H

m

n nU


 expansion coefficients of the double Zernike expansion has 

been established at the total system level.  In the following section, the per system Wklm;j 

expansion coefficients are obtained.  

 For a rotationally symmetric optical imaging model, some of the expansion 

coefficients, 
,

,
H

H

m m

n nU 


, of the general expansion Eq. (4.53) should be zero.  The deviation 

from zero of such coefficients provides some indication of the accuracy of the method 

used to obtain all of the 
,H

m

n nU


 coefficient values.   
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 Since, for rotationally symmetric systems, the 
,

,
H

H

m m

n nU 


 occur in pairs, 

 , ,

, ,,
H H

m m m m

n n n nU U
 

   
, it should be the case that  , ,

, , ,H H H

m m m m m

n n n n n nU U U
  

     .  Then the 

difference in the pairs’ values is another indication of the accuracy of these coefficients.  

This method for estimating the computational error of the 
,H

m

n nU


 values is used in 

Chapter 6. 

 Using error propagation techniques, and the estimate of the ,H

m

n nU


 error, an upper 

bound for the estimate of the computational errors in the final  k l m M
W  expansion 

coefficients can be calculated.  Examples will be provided in Chapter 6.  Estimations for 

the errors in the calculated  k l m M
W  expansion coefficients appears to be lacking in the 

literature.  The technique used in this research provides a method to obtain computational 

error estimates for the values calculated.  These errors occur due to limitations of 

numerical representation and error propagation during calculations. 

 

4.5 Per Surface, Sphere/Asphere, and Intrinsic/Extrinsic Contributions 

In optical design, and for a large part of the present work, specifically for NAT, it is 

desirable to know the contribution that each optical element in the optical model, surface 

by surface, makes to the total system’s aberration function.  An assumption is made, for 

rotationally symmetric optical models, that the contribution each optical element (surface 

with optical power) makes to the total system’s aberration function can be summed to 
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produce the total system’s aberration function.  Therefore a sum over all surfaces is 

introduced.  For example, Eq. (4.9) is now written as 

          
#

;
1 0 0 0

, ,
Surfaces

n m p

k l m S j
j n p m

W H W H H H   
  

   

     (4.81) 

where the expansion coefficients 
{ };klm S jW  now carry the subscript j to indicate the j

th
 

surface’s contribution.   

 When the optical surface j has a rotationally symmetric non-spherical shape, the 

surface is considered to be composed of a sphere base shape plus an “aspheric cap” shape 

that is added to the sphere base shape.  It is then desirable to know the contribution to the 

surface’s total aberration contribution provided by the sphere base shape and separately 

the contribution attributable to the aspheric cap shape.  In this terminology, an asphere is 

composed of a sphere base shape plus an “aspheric cap” given by  

 aspheric cap asphere sphere   . (4.82) 

A conic is one type of asphere. 

 A spherical wavefront is a wavefront without aberrations.  When a spherical 

wavefront interacts with (is refracted or reflected by) an optical element, the resulting 

wavefront will in general have a nonspherical shape.  The difference between the 

spherical shape of a nonaberrated incident wavefront and the resulting nonspherical shape 

of the wavefront due to aberrations is called the intrinsic aberration contribution.   

 It is not always the case that the incident wavefront onto an optical surface is free 

of aberrations.  Then the resulting wavefront, after refracting/reflecting from the optical 

surface, will have components due to the aberration free spherical incident wavefront and 
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a component due to the aberrations present in the incident wavefront.  The contribution 

due to the aberrations in the incident wavefront is called the extrinsic aberration 

contributions.  The total aberration contribution of a surface is the sum of the intrinsic 

and the extrinsic aberration contributions. 

 Because the surface is divided into a sphere base shape plus an aspheric cap 

shape, there are four contributions to the surface’s total aberration contribution.  These 

are denoted by 
( ) ( ) ( ) ( )

; ; ; ;, , , andIS IA ES EA

klm j klm j klm j klm jW W W W  where “IS” denotes the intrinsic 

contribution from surface j’s sphere base shape, “IA” denotes the intrinsic contribution 

from surface j’s aspheric cap shape,  “ES” denotes the extrinsic contribution from surface 

j’s sphere base shape, and “EA” denotes the extrinsic contribution from surface j’s 

aspheric cap shape.  Then 

 
( ) ( ) ( ) ( ) ( )

; ; ; ; ; ;

Surf Tot IS IA ES EA

klm j klm j klm j klm j klm j klm jW W W W W W       (4.83) 

where 
( )

;

Surf Tot

klm jW  is the total expansion coefficient aberration contribution for surface j.   

 Figure 4.4 provides an illustration of one example of the hierarchy of 

contributions to the surface’s total aberration coefficient value.   

 
Figure 4.4  Hierarchy of total surface’s aberration coefficient.  The numbers at the left 

indicates the level of separation in the hierarchy tree.  “S” = sphere, “A” = aspheric cap, “IS” 

= intrinsic sphere, “ES” = extrinsic sphere, “IA” = intrinsic aspheric cap, “EA” = extrinsic 

aspheric cap. 
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 There are other ways that this hierarchy can be arranged.  For example, at the 

second level, the 
( )

;

Surf Tot

klm jW  could be separated into the total intrinsic contribution 
( )

;

I

klm jW  

and the total extrinsic contribution 
( )

;

E

klm jW  rather than the sphere and aspheric cap 

contributions. 

 Assuming that the total optical model’s 
klmW  values can be obtained, as outlined 

in the preceding section or by other means, the following method has been defined and 

implemented in this work to obtain the per surface, sphere/asphere cap, and 

intrinsic/extrinsic 
( )

;

Type

klm jW  contributions.  These expansion coefficients are utilized in NAT 

to be described in the next Chapter for the analysis of the wavefront aberration function’s 

field dependence.   

 Assume that the optical model consists of N optical surfaces that have non-zero 

optical power.  For completeness of the method to be described, assume that all the 

surfaces are aspheres.  For any surface j N  in the optical system, it is assumed that all 

the surfaces preceding surface j form an optical imaging subsystem, denoted by 
'j j

S


 , of 

the total optical system TotalS .  Each such subsystem will have its own object, entrance, 

exit, and Gaussian image planes.  It is further assumed that each individual surface j, 

separated from the rest of the original optical system, will form its own optical imaging 

subsystem, denoted by 
jS  .  These subsystems are defined and modeled such that the 

Gaussian entrance pupil for 
jS  is the Gaussian exit pupil of 

'j j
S


 and the Gaussian 
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object plane for 
jS  is the Gaussian image plane of 

'j j
S


.  Then the total per surface 

expansion coefficients for surface j are defined to be  

 
( ) ( ) ( )

; ; ;' '
Total Total Total

klm j klm j j klm j j
W W W

 
   . (4.84) 

 To obtain the four wavefront expansion coefficient types listed above, changes to 

both the shape of the wavefront that is incident onto the j
th

 surface as well as to the shape 

of the j
th

 surface are needed.  Additional notation to keep these changes clear will now be 

defined.  The incident wavefront onto the j
th

 surface will be either the real wavefront 

(RW) shape from subsystem 
'j j

S


 or, by constructing a new optical model consisting of 

just surface j, an aberration free spherical wavefront (SW).  The j
th

 surface may have 

either the real surface (RS) shape of the original surface or it is replaced in the optical 

model with just the base sphere shape (SS) component of the j
th

 surface’s shape.  Then 

Eq. (4.84) can be written as  

 
( ) ( ) ( )

; ; ;' '
RWRS Total Total

klm j klm j j klm j j
W W W

 
   , (4.85) 

denoting the aberrations attributable to surface j as a result of the real wavefront incident 

onto surface j using surface j’s real surface shape. 

 By replacing the j
th

 optical surface by its spherical base shape in the 'j j
S

  model 

 
( ) ( ) ( )

; ; ;' '
RWSS RWSS Total

klm j klm j j klm j j
W W W

 
   , (4.86) 

is obtained.   

 Replacing the incident wavefront onto the j
th

 surface by a spherical wavefront 

originating from the local, surface j’s, object plane, the coefficient values ( )

;
SWRS

klm j
W  are 
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obtained.  This is accomplished by constructing a separate optical model, 
jS  , consisting 

of only one surface with optical power, namely surface j. 

 Finally, replacing the j
th

  surface shape in the 
jS  optical model by the sphere base 

shape of the j
th

 surface, ( )

;
SWSS

klm j
W  is obtained.  The four per surface expansion coefficient 

types can now be calculated as follows.   

 ( ) ( )

; ;
IS SWSS

klm j klm j
W W  , (4.87) 

 ( ) ( ) ( )

; ; ;
IA SWRS SWSS

klm j klm j klm j
W W W   , (4.88) 

 ( ) ( ) ( )

; ; ;
ES RWSS SWSS

klm j klm j klm j
W W W   , (4.89) 

 ( ) ( ) ( ) ( ) ( )

; ; ; ; ;
EA RWRS IS IA ES

klm j klm j klm j klm j klm j
W W W W W     . (4.90) 

 Note that by the construction of these equations, it is always the case that 

 ( ) ( ) ( ) ( ) ( )

; ; ; ; ;
Total IS IA ES EA

klm j klm j klm j klm j klm j
W W W W W     . (4.91) 

This is unfortunate because it does not provide for a way to independently validate the 

separation of the total surface contribution into the four component values.  However, as 

mentioned in other work [50] the 4
th

 order extrinsic coefficients ( ) ( )

; ;
andES EA

klm j klm j
W W  are 

always zero.  This has been a valuable debugging condition during the implementation of 

this method for calculating the ( )

;
Type

klm j
W  coefficients.  Using Eq. (4.87) through Eq. (4.90) 

for the 4
th

 order extrinsic coefficients should always produce a number close to zero.  

When this does not occur an error in implementation can be assumed.  It also provides 

some indication of how accurate the calculated 
;klm j

W  values are.  The inaccuracies arise 
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from the limitations of the number representation used for the calculations, and from 

error propagation associated with the implemented equations.  The 4
th

 order extrinsic 

coefficients, being theoretically zero, are not programmed into the generation of any full 

field display (FFD) plots to be presented in Chapters 5 through 7. 

 Although the above method for obtaining the ( )

;
Type

klm j
W  expansion coefficients 

appears to be straight forward, there is a subtle point that needs to be made explicit.  

Recall that the wavefront aberration function expansion is defined in this dissertation 

using the normalized Cartesian coordinate object field parameters H .  Not all researchers 

may choose to use this parameterization of the wavefront aberration function.  It is 

possible that some researchers may choose to use a normalized object angle 

parameterization.  An illustration comparing these choices is given in Figure 4.5.  

 
Figure 4.5  Field parameterization choice comparison.  Points labeled “A” are all the same 

point in the object plane along the +y-axis.  Points labeled “B” are all the same points in the 

object plane along the –y-axis.  NCC = normalized Cartesian coordinates.  NOA = normalized 

object angle.  The object point’s angle, along with its sign convention, is shown as .  ENP = 

entrance pupil.  +Z is the direction of positive ray translation. 
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In Figure 4.5, the normalized field component along the y-axis, Hy , may be either the 

normalized Cartesian coordinate 
NCC

yH  or the normalized object angle 
NOA

yH .  The object 

angle to the point (either point “A” or to point “B”) is given by .  The sign convention 

for  is indicated in Figure 4.5.   

 From Figure 4.5 it is seen that the following relation holds between the two 

different normalized field choices, 

 NCC NOAH H   . (4.92) 

Why this matters is because it changes the sign of all the Wklm values with k odd.  k is the 

power of the field parameter H.  As an example, consider the 4
th

 order coma term 

   2

131,comaW H W H    . (4.93) 

Explicitly stating that the field parameters are the normalized Cartesian coordinates, this 

can be written as 

   2

131,NCC NCC NCC

comaW H W H    . (4.94) 

Explicitly stating that the field parameters are the normalized object angles, the coma 

term is written as 

   2

131,NOA NOA NOA

comaW H W H     (4.95) 

Since the amount of the departure of the wavefront from the reference sphere, the amount 

of wavefront aberration, is independent of the choice of field normalization, the relation  

    , ,NCC NOA

coma comaW H W H   , (4.96) 



  90 

holds.  This implies that 

 131 131

NCC NCC NOA NOAW H W H  . (4.97) 

Using Eq. (4.92) in Eq. (4.97), the following equations are obtained 

  131 131

NCC NCC NOA NCCW H W H   , (4.98) 

 
131 131

NCC NOAW W   . (4.99) 

Therefore, the sign of the odd k Wklm expansion coefficients is different depending on the 

normalized field parameter chosen. 

 This result may be the cause of a sign issue in the examples of Chapter 6.  In that 

Chapter, the 4
th

 order Wklm values calculated using the GQ method are compared to the 

values reported by the CODE V® macros fifthdef and FORDER, which also calculate the 

4
th

 order Wklm values.  It is there seen that the W131 values of fifthdef/FORDER have 

opposite signs to that of the GQ calculated values.  However, it is not known exactly 

what field parameterization the equations implemented in fifthdef/FORDER are for. 

 The important point of this discovery of this research is that the Wklm values are 

not all independent of the choice of the normalized field parameterization used, and it is 

therefore critical to report which field normalization is being used when calculating and 

reporting Wklm expansion coefficient values. 
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Equation Chapter (Next) Section 1 

Chapter 5 Sigma Offset Vectors, Full Field Displays, and Nodal 

Aberration Theory’s Nodal Splits 

Nodal aberration theory (NAT) was originally developed by Kevin P. Thompson [5, 54, 

61, 62, 63, 64], based on early insight into binodal astigmatism from Roland V. Shack.  It 

builds on the work of Buchroeder, also working with Shack, who determined that when 

an optical surface of a rotationally symmetric optical imaging system is tilted, the center 

of the field dependence of the wavefront aberration function in the image plane shifts. 

[65]  The quantification of this shift is denoted by a per surface 2D sigma “offset” vector, 

j .  If the optical surface is composed of a sphere base shape plus an aspheric cap shape 

(which includes the conic shapes), then each of these two component shapes of the 

overall surface shape contributes a different shift to the total field dependence.  

Therefore, for a single optical surface, there is a sigma offset vector for the sphere base 

shape and a different sigma offset vector for the additional aspheric cap shape.   

 In NAT, a nodal point (a.k.a. node point) for an aberration term in the wavefront 

aberration function expansion is the object field point H  that makes the field dependent 

vector factor (the field function) of the wavefront aberration expansion term zero.  Then 

the contribution of that aberration term to the total wavefront aberration function at that 

object field point will be zero.   

 The vector valued field dependence of a scalar aberration term of the wavefront 

aberration function expansion, either as an expansion in terms of Shack’s vector product 
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(SVP), as in Eq. (4.43), or as an expansion in Zernike vectors in pupil coordinates, as in 

Eq. (4.51), can be graphically displayed as 2-dimensional plots called full field displays 

(FFDs).  For a rotationally symmetric optical imaging system, the node points for a field 

dependent term in the wavefront aberration function expansion is located at the 

coordinate origin  0,0H  .  When one or more of the imaging system’s optical surfaces 

is perturbed (tilted and/or decentered laterally from the mechanical coordinate axis 

(MCA)) then the node points for a field dependent term in the aberration function 

expansion may shift away from the coordinate origin, and may also split into multiple 

nodes depending on the characteristics of the field dependence of the expansion term.  

NAT is the study of these characteristics of the field dependence of the wavefront 

aberration function expansion terms. 

 In this Chapter, a summary of the concepts and equations used in NAT is 

presented.  A review of the definitions and equations for the 2D field sigma offset vectors 

is given and it is shown how these vectors are introduced into the wavefront aberration 

function expansion terms.  Clarification of previously published work is made.  The 

development of equations for the sigma offset vectors, correcting for sign issues that have 

been identified in this research, is presented.   

 A global coordinate system will be used to locate surfaces and points of 

intersection, e.g. the intersection point of the optical axis ray (OAR) and a surface or the 

aberration field axis (AFA) and a surface.  A vector may then be formed between two 

points as the difference of the two vectors to the points with respect to the global 

coordinate system.  This is illustrated in Figure 5.1. 
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Figure 5.1  The vector V  is obtained as the subtraction of the two vectors 1P   and 2P  

associated with the surface points P1 and P2, respectively, and referenced with respect to the 

global coordinate system.  As an example, P1 may be the intersection point of the OAR with 

the surface, while P2 may be the intersection point of the AFA with the surface. 

 

5.1 Calculating 2D Sigma Offset Vectors 

Consider a rotationally symmetric optical imaging system.  The axis of symmetry will be 

defined to be along the z-axis and it will be called the mechanical coordinate axis (MCA).   

Rays travel from the object plane, through the imaging system, to the Gaussian image 

plane.  The positive direction of a ray will be selected to be in the sense of the positive z-

axis.  The ray from the center of the object (the intersection of the negative z-axis with 

the object plane) through the center of the entrance pupil and on through the imaging 

system, to the Gaussian image plane, is called the optical axis ray (OAR).  As shown in 

Figure 5.2, this ray is coincident with the MCA for this case of a rotationally symmetric 

optical imaging system. 
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Figure 5.2  OAR and MCA coincide for rotationally symmetric imaging system. 

 

But when one or more of the optical system’s surfaces is perturbed by tilts and/or 

decenters, the OAR will not coincide with the MCA.  In all cases, the intersection of the 

OAR with the Gaussian image plane is defined to be the coordinate origin in the image 

plane.  Therefore, the coordinate origin in the image plane need not coincide with the 

intersection of the MCA with the image plane.  The difference between the OAR and the 

MCA intersection points with the image plane is called the boresight error of the imaging 

system.  See Figure 5.3. 

 

Figure 5.3  For a rotationally symmetric imaging system with one or more tilted and/or 

decentered optical surfaces, the OAR and MCA need not coincide, giving rise to the boresight 

error vector. 
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 When one or more of the optical imaging system’s elements (optical surfaces with 

optical power) are perturbed (decentered and/or tilted) the center of the field dependence 

of the wavefront aberration function changes.  To account for this re-centering of the 

field dependence, per surface, normalized, sigma offset vectors are introduced into the 

field dependence of the wavefront aberration function.  There is one sigma offset vector 

associated with the spherical base shape of the surface, 
( )S

j , and one sigma offset vector 

associated with the aspheric cap shape of the surface, 
( )A

j .  For both the per surface 

normalized sphere sigma offset vector 
( )S

j  and the per surface normalized asphere sigma 

offset vector 
( )A

j  there is a choice to define them either in the normalized local image 

plane or the normalized local object plane.  In this work, these vectors will be defined in 

the normalized local image plane.  Once these normalized sigma vector values have been 

obtained with respect to the normalized local image plane of an optical surface j, they 

need to be propagated to the system’s normalized object plane so that they may be used 

together with (combined with) the normalized field parameters H , defined in this work 

in the system’s normalized object plane.  This may involve a “sign flip” for the 

normalized local sigma offset vector values depending on the orientation of the local 

image plane with respect to the system’s object plane.  The details are presented below. 

 Thompson, et al., [66] proposed an equation for the sphere sigma offset vector to 

facilitate its calculation irrespective of how the local coordinate system is defined in 

optical design software.  However, this research has discovered that while the proposed 

equation provides the correct magnitude for the sphere sigma vector components there is 
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an overall sign issue with the proposed equation for some optical systems.  Likewise, 

there is a sign issue for the reported [66] equation for the asphere sigma offset vector for 

some optical systems.  For this reason, tracking the necessary sign flips is made explicit 

in the following development. 

 For the sphere base shape of a refracting/reflecting optical surface j, the center of 

the field dependence for an aberration term in the wavefront aberration function 

expansion is located in the normalized local image (LI) plane by the 2D normalized 

sphere sigma offset vector 
( )s LI

j .  It is defined to be the 2D vector 
( )s

j  in surface j’s 

local image plane divided by the absolute value of the chief ray height in the local image 

plane for the unperturbed optical model.  The vector 
( )s

j  is defined in the local image 

plane from the intersection point of the OAR to the intersection point of the AFA.  The 

AFA passes through the center of the local entrance (and exit) pupil and through the 

center of curvature of the surface.  This is illustrated in Figure 5.4.  Note that the AFA 

considered as a ray has an incident and refraction/reflection angle of zero at surface j 

because it is perpendicular to the surface at the intersection point by construction.  
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Figure 5.4  Definition of the vector 
( )s

j  for a sphere base shape surface.  (a) The general 

setup.  (b) Magnified view showing the vector definition.  “AFA” is a line through the center 

of the entrance pupil and through the center of curvature of the sphere base shape that 

intersects with the local image plane. 

 

 Based on the definition of the 
( )s

j  vector shown in Figure 5.4 the following 

definition can be written for the local image space, normalized sigma offset vector 

 

( )

( )

( , ) ( , )

s LI LI

j j js LI

j LI LI

j j
x y x y

AFA OAR

HCY HCY


   
   
     

 , (5.1) 

where superscript “LI ” stands for “local image” plane of surface j, 
LI

jAFA  is the vector 

to the intersection point of the AFA with the local image plane of surface j, 
LI

jOAR  is the 

vector to the intersection of the OAR with the local image plane of surface j, and 

LI

jHCY  is the absolute value of the height of the maximal chief ray in the local image 

plane of surface j for the unperturbed optical imaging system.  The  
( , )

.
x y

 notation is 

used to explicitly indicate that the resulting vector is a 2D vector in the xy-plane. 
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 For the aspheric cap component of the surface’s overall shape, unlike for the base 

sphere, there is a unique surface vertex point, which is labeled “V” in Figure 5.5, about 

which the aspheric cap shape is rotationally symmetric.  The center of the field 

dependence for an aberration term in the wavefront aberration function expansion 

associated with the aspheric cap of a surface j is located in the local normalized image 

plane by the 2D local image space normalized asphere sigma offset vector 
( )A LI

j .  

However, to obtain this asphere sigma vector, a vector 
( )( )A Surf

j  is first defined at the 

local surface j.  Once the 
( )( )A Surf

j  vector value at surface j is obtained it is projected to 

the local image plane of surface j and normalized by the absolute value of the maximal 

chief ray height at the local image plane of the unperturbed system.  The 
( )( )A Surf

j  vector 

defined at surface j is the vector from the OAR’s intersection point at surface j to the 

aspheric cap’s vertex point “V”.  See Figure 5.5.  As an equation, this can be written as 

 
( )( )

( , )

A surf

j j j
x y

V OAR   
 

 , (5.2) 

where jV  is a vector to surface j’s vertex point, and jOAR  is a vector to the intersection 

point of the OAR with surface j.  The  
( , )

.
x y

 notation is used to explicitly indicate that 

the resulting vector is a 2D vector in the xy vertex plane of the surface.  The surface’s 

vertex plane is the plane containing the surface’s vertex point and is perpendicular to the 

MCA (the z-axis) regardless of the tilts and decenters applied to the surface.   
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Figure 5.5  The 
( )( )A Surf

j  vector is defined to be the vector from the OAR at surface j to the 

aspheric cap’s vertex point “V”.  It is to be projected to the local image plane.  (a) For the 

case that the local exit pupil occurs to the left of the local image plane and the surface j. 

(Based on Fig. 2.8 of [54].)  (b) For the case that the local exit pupil occurs to the left of the 

local image plane but to the right of surface j.  Notice the sign flip for case (b) in going from 

surface j to the local image plane.  CP = center of the exit pupil. 

 

 By defining the “Line of Projection” to be the line connecting the center of the 

local exit pupil “CP” and the asphere’s vertex point “V”, and extending this line to the 

local image plane, similar triangles are formed.  In this way, the 
( )( )A surf

j  vector is 

projected to the local image plane.  Note that, as shown in Figure 5.5(b), and explicitly 

identified in this research, there may be a sign flip associated with this projection.  To 
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account for this sign flip, the sign of the chief ray height at the local image plane is 

multiplied by the sign of the chief ray height at surface j, both for the unperturbed optical 

model.  This is written as 

    ( )( ) ( )( )sgn sgn

img

jA img img surf A surf

j j j jsurf

j

HCY
HCY HCY

HCY
    , (5.3) 

where  sgn img

jHCY  is the sign of the chief ray at the unperturbed local image plane, 

 sgn surf

jHCY  is the sign of the chief ray at the unperturbed surface j, img

jHCY  is the 

absolute value of the chief ray height in the local image plane of surface j for the 

unperturbed model, and surf

jHCY  is the absolute value of the chief ray height at surface j 

also for the unperturbed model. 

 The normalized asphere sigma offset vector associated with surface j, in the local 

normalized image plane, is then given by 

    ( ) ( )( )1
sgn sgnA LI img surf A surf

j j j jsurf

j

HCY HCY
HCY

    . (5.4) 

Simplifying gives 

   ( , )( ) sgn
j j

x yA LI img

j j surf

j

V OAR
HCY

HCY


 
 

  , (5.5) 

where the absolute value of the height of the chief ray at surface j, 
surf

jHCY , in the 

unperturbed system has been removed. 
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 Note that since neither jV  nor jOAR  at surface j depend on the tilt of the aspheric 

cap (about the surface’s vertex jV ), the  A LI

j  offset vectors are independent of surface 

j’s tilt [54].  

 These per surface normalized sigma offset vectors (sphere  S LI

j  and asphere 

 A LI

j ) are used to identify the center of the field dependence in the optical system’s 

normalized local Gaussian image plane for the aberration terms in the wavefront 

aberration function expansion.  This is illustrated in Figure 5.6.   

 
Figure 5.6  A normalized sigma offset vector (sphere or aspheric cap) signifies a shift in the 

center of the field dependence of an aberration term in the normalized local image (LI) plane. 

(Based on Fig. 9 of [66].) 

 

 The “LI” superscripts in Figure 5.6 are used to emphasize that the parameters 

shown are with respect to the local image space of surface j.  Recall that the wavefront 

aberration function has been defined in this work to be a function of the total system’s 

object space normalized Cartesian field parameter H .  Because the normalized object 

field parameter H  and the image conjugate normalized field parameter 
LIH , defined in 

the normalized local image plane, are the same up to sign, a sign flip may be necessary 
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when introducing the local image space defined sigma offset vectors into the object space 

defined wavefront aberration function.  The identification of this sign flip is made explicit 

in this research and is shown in the following derivation. 

 Consider the wavefront aberration function expansion written in the following 

way 

          1 2, , , , ,Obj Obj Obj Obj Obj Obj Obj Obj

j j j NW H W H W H W H W H            , (5.6) 

where the field and pupil parameters are normalized parameters, and the j subscript is 

indicating the surface number.  The  ,Obj Obj

jW H   are the aberration contributions to 

the total wavefront aberration function attributable to surface j.  There are two cases to 

consider.  The first case is that the optical subsystem consisting of all surfaces up to and 

including surface j is an image inverting optical subsystem.  The second case is that the 

optical subsystem consisting of all surfaces up to and including surface j is not an image 

inverting optical subsystem. 

CASE I: 

For an arbitrary but fixed j ≤ N , and assuming that subsystem 
'j j

S


 is an image inverting 

optical system defined by the relations, for normalized parameters, 

 
Obj LIH H   , (5.7) 

 
Obj LI    , (5.8) 

then  

    , ,Obj Obj LI LI

j jW H W H     . (5.9) 
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Following the NAT prescription to re-center the field dependence for an optical imaging 

system having decentered or tilted optical elements, the substitution LI LI

A jH H  [54] is 

made, giving 

    , ,LI LI LI LI

j j A jW H W H       . (5.10) 

Using the vector relation, illustrated in Figure 5.6,   

 LI LI LI

A j jH H    , (5.11) 

gives 

      , , ,LI LI LI LI LI LI LI LI

j A j j j j jW H W H W H                 . (5.12) 

Again using Eq. (5.7) and Eq. (5.8) for an image inverting optical subsystem,  

    , ,LI LI LI Obj LI Obj

j j j jW H W H         . (5.13) 

This sequence of relations has shown, for the case that the subsystem 'j jS 
 is image 

inverting, that the NAT prescription for the re-centering of the field dependence for 

rotationally nonsymmetric optical imaging systems is given by 

    , ,Obj Obj Obj LI Obj

j j jW H W H     . (5.14) 

CASE II: 

For the case that the subsystem 
'j j

S


 is not an image inverting optical system,  

 
Obj LIH H  , (5.15) 

 
Obj LI   . (5.16) 

Then the following relation holds, 
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    , ,Obj Obj LI LI

j jW H W H   . (5.17) 

Following the NAT prescription to re-center the field dependence for an optical imaging 

system having decentered or tilted optical elements, the substitution LI LI

A jH H  is made, 

giving 

    , ,LI LI LI LI

j j A jW H W H   . (5.18) 

Using the vector relation, illustrated in Figure 5.6,   

 LI LI LI

A j jH H    , (5.19) 

gives 

      , , ,LI LI LI LI LI LI LI LI

j A j j j j jW H W H W H           . (5.20) 

Again using Eq. (5.15) and Eq. (5.16) for a non-inverting imaging optical subsystem,  

    , ,LI LI LI Obj LI Obj

j j j jW H W H       . (5.21) 

This sequence of relations has shown, for the case that the subsystem 'j jS 
 is not image 

inverting, that the NAT prescription for the re-centering of the field dependence for 

rotationally nonsymmetric optical imaging systems is given by 

    , ,Obj Obj Obj LI Obj

j j jW H W H     . (5.22) 

 Then, from these two cases, the re-centering of the field dependence in the 

wavefront aberration function is written as 

    , ,Obj Obj Obj LI Obj

j j jW H W H      (5.23) 
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 One way to avoid this use of the “±” symbol, as well as the superscripts “Obj” 

and “LI”, while retaining the form previously published in the literature [5] for re-

centering the field dependence, is to change the equations for the sigma offset vectors to 

incorporate the potential orientation sign flip of the local image plane with respect to the 

total system’s object plane.  That is, define 

 
( ) ( )S S LI

j j    , (5.24) 

and 

 
  ( )A A LI

j j    , (5.25) 

where the “+” is used when the optical subsystem 'j jS 
 is not image inverting, and “−” is 

used when it is an image inverting subsystem.   

 By using Obj

TotHCY  for the (maximal) chief ray height at the total system’s object 

plane (which may be infinite), and 
Img

jHCY  for the chief ray height at surface j’s local 

image plane, the sphere sigma equation can be written as  

    ( ) ( )sgn sgnS Obj Img S LI

j Tot j jHCY HCY   . (5.26) 

And for the asphere sigma offset vector, it may be written as 

       ( )sgn sgn
A Obj Img A LI

j Tot j jHCY HCY   . (5.27) 

Using Eq. (5.1) and Eq. (5.5) these may be written as  

     ( , )( ) sgn sgn

LI LI

j j
x yS Obj LI

j Tot j LI

j

AFA OAR

HCY HCY
HCY



 
 

  , (5.28) 

and  
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       ( , )
sgn sgn

j j
A x yObj surf

j Tot j surf

j

V OAR
HCY HCY

HCY


 
 

  . (5.29) 

Note that it is customary to use the absolute value of a quantity that is to be used as a 

normalization factor so that the direction of the vector to be normalized is not 

inadvertently changed.  Hence the absolute value is not removed from Eq. (5.28) and Eq. 

(5.29).  This also helps to keep track of the source of the sign flips. 

 Explicitly providing the sign flips in equations Eq. (5.28) and Eq. (5.29) is new to 

this research, although their concept (the definitions of the sigma offset vectors) is not.  

These equations are to be assumed when referring to the sigma offset vectors j  

throughout the rest of this dissertation unless explicitly stated otherwise.  They are 

written in this form, using the sgn(.) notation, to keep track of the source of sign flips and 

to aid in understanding how they may be implemented in a computer program. 

 Note that these equations are applicable for the case that the wavefront aberration 

function’s normalized field parameters H  are the object space normalized Cartesian 

coordinate field parameters, as used throughout this dissertation.  Some researcher’s may 

prefer to use normalized image space field parameters when defining the wavefront 

aberration function’s field parameters.  Let Img

TotHCY  be the chief ray height at the total 

system’s image plane.  The sigma offset vector equations, when using the total system’s 

image plane to define the field parameters of the wavefront aberration function are given 

by 

    ( ) ( )sgn sgnS Img Img S LI

j Tot j jHCY HCY   , (5.30) 
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and 

        
sgn sgn

A A LIImg Img

j Tot j jHCY HCY   . (5.31) 

 Whether the normalized field parameters H  are defined using the system’s object 

plane or the system’s image plane, the form of the equations for re-centering of the 

wavefront aberration function is generally given as [5] 

    , ,j j jW H W H     , (5.32) 

where it is now to be understood that the sigma offset vectors incorporates the possible 

sign flips as given in Eq. (5.26) and Eq. (5.27) or in Eq. (5.30) and Eq. (5.31) depending 

on the choice of the wavefront aberration function’s field parameterization.  

 As discussed in the previous Chapter, there are four types of 
( )

;

Type

k l m jW  expansion 

coefficients (Type = IS, IA, ES, EA) and, at this time, only two types of sigma offset 

vectors (sphere and aspheric cap).  When re-centering the field dependence of the 

wavefront aberration function, the IS, ES and EA are to be associated with the sphere 

sigma offset vectors, and the IA is to be associated with the aspheric cap sigma vectors.  

As an example, consider the through 6
th

 order field dependence for the Zernike 

astigmatism term  2

2Z   for a rotationally symmetric optical imaging system 

  
#
&

2
2

222; 242; 422;

1 3 1

2 8 2

Surfaces
Types

j j j

j

F W W W H H


 
   

 
  . (5.33) 

Writing the expansion coefficient types explicitly gives 
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 

 

 

 

#
2

2

222; 242; 422;

2
2

222; 242; 422;

2
2

222; 242; 422;

2
2

222; 242; 422;

1 3 1

2 8 2

1 3 1

2 8 2

1 3 1

2 8 2

1 3 1

2 8 2

Surfaces
IS IS IS

j j j

j

IA IA IA

j j j

ES ES ES

j j j

EA EA EA

j j j

F W W W H H

W W W H H

W W W H H

W W W H H









 
    

 

 
   

 

 
   

 

 
  

 



 . (5.34) 

For the case of a rotationally nonsymmetric optical system, the re-centering of the field 

dependence is accomplished by the NAT prescription described above.  This gives 

 

     

     

 

#
2

( ) ( ) ( )

222; 242; 422;

2
( ) ( ) ( )

222; 242; 422;

( )

222; 242; 422;

1 3 1

2 8 2

1 3 1

2 8 2

1 3 1

2 8 2

Surfaces
IS IS IS S S S

j j j j j j

j

IA IA IA A A A

j j j j j j

ES ES ES S

j j j j j

F W W W H H H

W W W H H H

W W W H H





  

  

 

 
       

 

 
      

 

   



   

     

2
( ) ( )

2
( ) ( ) ( )

222; 242; 422;

1 3 1

2 8 2

S S

j

EA EA EA S S S

j j j j j j

H

W W W H H H







  

 
  

 

 
     

 
 , (5.35) 

where the 2H  have first been replaced by their vector equivalent H H , and where 
( )S

j  

is the sigma offset vector associated with the sphere base shape of surface j , Eq. (5.26), 

and 
( )A

j  is the sigma offset vector associated with the aspheric cap of surface j , Eq. 

(5.27). 

 Note that once the OAR is deflected from the MCA, for example, by surface j, all 

other optical surfaces after surface j may have sigma offset vectors associated with them 

even though these surfaces may not be tilted nor decentered.  For this reason, the sigma 
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offset vectors are not necessarily directly associated with the tilt or decenter parameters 

of a surface in the optical model. 

 It is expected that the magnitude of the normalized sigma offset vectors, for small 

perturbations of an optical surface, will be less than or approximately one.  For larger 

values, it is not clear that the use of the sigma vectors in the wavefront aberration 

function expansion doesn’t significantly alter the convergence of the function’s 

expansion.  In one example to be presented in Chapter 6, the magnitude of a normalized 

sigma vector is greater than 20.  This, together with the limited accuracy of the Wklm 

expansion coefficients, and the truncation order of the expansion used, may lead to 

inaccuracy in the resulting field dependence for the optical model considered.  The range 

of acceptability for the magnitude of the sigma offset values has not been formally 

addressed here.  However, it seems clear that sigma values much greater than one may 

present issues in the computational accuracy of the field functions. 

 

5.2 Review of Full Field Displays (FFDs) 

FFDs are a graphical way of illustrating the vector field dependence (the field functions) 

of the terms in the wavefront aberration function expansion in the field parameter space 

(the  ,x yH H H  space).  (Note that this is not the image plane of the system.  

Although the normalized field parameters can be mapped to the image plane, the 

wavefront aberration function, and hence the field functions, is not defined in the image 

plane.)  The FFDs are the primary method for quantitatively and qualitatively validating 

the mathematical development in this research.  They are the primary means for assessing 
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the field dependence of the wavefront aberration function for optical imaging systems.  

An example of a FFD is shown in Figure 5.7.  This FFD was created from real ray trace 

data for a 2 mirror Ritchey-Chrétien telescope model.  The half-field of view (HFOV) for 

the optical model is 0.6 degrees.  Other details of the optical model will be presented in 

the next Chapter. 

 
Figure 5.7  Example of a FFD for the Zernike astigmatism term  2

2Z   . 

 

 Figure 5.7 shows a plot of the field dependence of the wavefront aberration 

function expansion for the Zernike astigmatism terms       2 2 2

2 2 2,Z Z Z     

through 12
th

 order.  Specifically, the double Zernike expansion of the wavefront 

aberration function, Eq. (4.53), was used together with the GQ method described in 

Appendix III to obtain the expansion coefficients 
,

,
H

H

m m

n nU 


.  The input to the GQ method 

was the OPD real ray trace data obtained from CODE V® for the optical model.  With 

the expansion coefficients determined, the field dependent vector function 
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   2 2 2

2 2 2, ,x yF H H F F   associated with the  2

2Z   terms were then known as 

functions of the normalized Cartesian object field parameters  ,x yH H H .  From Eq. 

(4.53) 

  
12

, 22

2 ,2

0
2

H

H H

H H

H H H

H

n
m m

n n

n m n
m

F U Z H


 


    , (5.36) 

  
12

, 22

2 ,2

0
2

H

H H

H H

H H H

H

n
m m

n n

n m n
m

F U Z H


 


     (5.37) 

A grid of 21×21 normalized object field points was used together with the field 

dependent vector function 
2

2F  to calculate the vector value at each of the normalized 

field grid points.  A symbol was plotted at each of the grid points to represent the vector 

values 
2

2F  of the field dependence of the  2

2Z   aberration function’s expansion terms.  

In Figure 5.7, the symbol used is a line segment.  The length of the line segment 

corresponds to the magnitude of the vector’s magnitude, 2

2F .  The orientation of the 

line segment likewise corresponds to the orientation of the 
2

2F  vector’s orientation in the 

field parameter’s space  ,x yH H  coordinate plane.  It is customary to ignore the “head” 

and “tail” aspect of the symbol used to represent the Zernike astigmatism aberration 
2

2F  

vector, hence the line segment is used as the symbol plotted.  A scale bar is provided in 

the lower right hand corner of the plot, in units of waves. 

 The FFD of Figure 5.7 is presented with two axis scales for both the x- and y-

axes.  In this work the field parameters to the wavefront aberration function are the 
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normalized Cartesian x and y values  ,x yH H  identifying the object source point for the 

ray being traced through the optical system.  In optical design it is more common to use 

the associated object angles to identify the object source point, particularly when the 

object is effectively at (minus) infinity along the z-axis.  However, since the relation 

between the object angles and the Cartesian coordinate system of the object plane 

changes sign depending on whether or not the entrance pupil occurs to the left or to the 

right of the object plane, both parameterizations are here shown to avoid any confusion. 

 In addition to the Zernike astigmatism FFD shown above, two other FFDs are 

often produced to display the field dependence of the Zernike coma 

      1 1 1

3 3 3,Z Z Z     and the Zernike spherical     0 0

4 4 ,0Z Z   aberration 

expansion terms.  The following FFDs provide examples for these FFD types using the 

same telescope model as for the Zernike astigmatism plot above.   

 
Figure 5.8  Examples of (a) Zernike coma and (b) Zernike spherical FFDs. 
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As shown in Figure 5.8, the Zernike coma plots use cone-like symbols  to represent the 

1

3F  field dependent vector function values with the tip of the cone pointing in the vector 

direction, while the Zernike spherical plots use a circle symbols to represent the 
0

4F  field 

dependent vector function values.  Other symbols are used in the FFDs associated with 

other types of Zernike aberration terms of the wavefront aberration function expansion. 

 As can be seen in the Zernike coma plot, there is a center nodal point (zero value) 

at (0, 0) and a set of field points forming a ring of zeros.  In the terminology of NAT, this 

ring of zeros is not considered to be “nodal points”.  It is simply a ring of zeros.  This ring 

of zeros in the field dependence of the Zernike coma term  1

3Z   results from the 

associated field function (shown here through 6
th

 order) 

    
1 1

1 2

3 131 151 331

1 2 1

3 5 3
MF W W H W H H

   
     
   

 , (5.38) 

having a field linear part and a field cubic part.  Where the two contributing parts cancel 

defines the ring of zeros. 

 

5.3 An Example of Nodal Point Splits and Nodal Locations 

When an optical surface in a rotationally symmetric optical imaging system is perturbed 

(decentered and/or tilted) the center node point in a FFD may split into multiple nodes.  

Thompson [5, 54, 61] originally developed analytic equations for the resulting nodal 

point locations using the Shack vector expansion of the wavefront aberration function, 

see Eq. (4.9), through 4
th

 order using a complex number formalism for SVP.  Later, in a 
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series of papers [62, 63, 64], Thompson extended this to include through 6
th

 order 

aberration terms.  For illustrative purposes only, the binodal split of the Zernike 

astigmatism term for 4
th

 order is presented here using the Zernike expansion of the 

wavefront aberration function and the GA definition for SVP as developed in this 

research. 

 Continuing with the telescope model of the previous section, the primary mirror 

of the model is decenter in the +y-axis direction by 3 mm and the Zernike astigmatism 

FFD is again generated.  The single nodal point in the Zernike astigmatism FFD, 

originally located at the center  0,0H   of the plot is now seen to split into two nodal 

points. 

 

Figure 5.9  Example of a nodal point split of Zernike astigmatism.  Left: Rotationally 

symmetric optical imaging system. Right: Primary mirror decentered by y = +3mm. 

 

 This behavior can be calculated by considering the Zernike astigmatism vector 

field function 
2

2F .  Assuming that the Zernike astigmatism is dominated by 4
th

 order 
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aberrations, the field dependence of  2

2Z   for the rotationally symmetric model (see 

Eq. (4.49)) can be approximated to be  

  
#
&

2
2

2 222;

1

2

Surfaces
Types

j

j

F W H


   . (5.39) 

For the rotationally nonsymmetric case, this vector function becomes, by NAT 

recentering of the field parameter 

  
#
&

2
2 ( )

2 222;

1

2

Surfaces
Types

Type

j j

j

F W H


   . (5.40) 

Setting this equal to the zero vector, and recalling the algebraic properties of SVP, the 

equation for the nodal points can be written as 

    
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Distributing the summation gives 
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And this can be written as 

  
2

0
B C

H H
A A



    , (5.43) 

where 
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#
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j

A W   , a scalar, (5.44) 
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B W    , a vector, (5.45) 

  
#
&

2
( )

222;

1

2

Surfaces
Types

Type

j j

j

C W

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Using Eq. (2.96), the vector form of the quadratic equation using SVP, the two nodal 

point locations 
1,2H  are given by 

 

1/2
2

1,2

1 1
4

2 2

B B C
H

A A A
 

    
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 . (5.47) 

 As Thompson has shown, far more complicated nodal patterns and equations for 

the node locations can emerge when higher order aberration terms are considered [62,63]. 
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Equation Chapter (Next) Section 1 

Chapter 6 Application of the Theoretical Development 

This chapter provides several examples of the application of the material developed in the 

previous Chapters to idealized optical imaging system models as a means for validating 

the mathematical development.  These examples will consist of mirror based telescope 

systems.  Not all models used as examples will be realizable as actual telescopes.  The 

goal here is to qualitatively and quantitatively check the mathematical development 

previously presented rather than the performance evaluation of any particular telescope 

system.   

 The primary method for qualitatively checking the mathematical development is 

the visual comparison of the full field displays (FFDs) calculated using the vector field 

function of terms from the wavefront aberration function’s expansions.  Two different 

expansions, and thus two different processes, are used.  These processes are graphically 

presented in Figure 6.1. 

 
Figure 6.1  Outline of the processes for generating FFDs for rotationally nonsymmetric 

optical imaging systems.  Process “A” uses the double Zernike expansion of the wavefront 

aberration function.  Process “B” uses the Wklm values, NAT sigma offset vectors, and the 

field functions from the single Zernike expansion. 
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 The first expansion of the wavefront aberration function used is that of Eq. (4.53) 

utilizing the double Zernike form, through 12
th

 order in pupil and field, having the 

,

,
H

H

m m

n nU 


 as expansion coefficients.  This expansion is valid for rotationally symmetric and 

rotationally nonsymmetric optical models.  The expansion coefficients are obtained from 

using real ray trace data (OPD values for the rays traced) from CODE V® and the GQ 

method described in Appendix III.  With the expansion coefficients known, and using the 

double Zernike expansion, the desired FFDs are produced.  Typically the FFDs of the 

vector field functions of the Zernike astigmatism  2

2Z  , the Zernike coma  1

3Z  , and 

the Zernike spherical  0

4Z   terms are used.   

 The second expansion of the wavefront aberration function used is the single 

Zernike (in pupil parameters) expansion given by Eq. (4.51) valid for rotationally 

symmetric optical imaging systems only.  This expansion is in terms of the Wklm 

expansion coefficients.  For a rotationally symmetric optical imaging model, the 
,

,
H

H

m m

n nU 


 

expansion coefficients are the 
,H

m

n nU


 expansion coefficients.  The Wklm expansion 

coefficients are then obtainable by using Eq. (4.66) through Eq. (4.80) that are in terms of 

the 
,H

m

n nU


, as well as additional similar equations for higher order Wklm when needed.  

The per surface, sphere/asphere, intrinsic/extrinsic Wklm values are then obtained as 

detailed in Chapter 4.  After obtaining the Wklm coefficients, the optical model is 

perturbed (some of the optical elements are decentered and/or tilted) and the sigma offset 

vectors of NAT are calculated.  Using the vector field functions of the expansion, Eq. 
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(4.51), the Wklm coefficients, and the sigma offset vectors, the FFDs are again produced.  

These FFDs are visually compared to the FFDs produced using the double Zernike 

expansion for the same perturbed optical imaging model.   

 The quantitative check of the mathematical development is performed by 

calculating the difference between the two FFD’s plot data generated as described above.  

Plots of the differences for each FFD, as well as the numeric value of the mean, standard 

deviation, and signed maximum difference of the FFD difference data, are provided. 

 

6.1 Early Development, Early Results 

During the early stages of the research described in this dissertation, the wavefront 

aberration function expansion in terms of Zernike polynomials in the normalized pupil 

parameters,  , for rotationally symmetric optical imaging systems was developed.  This 

resulted in the publication of the article [1] detailing the results obtained.  The material 

presented in that paper occurred before the development of the Zernike vector concept as 

presented in Chapter 3 as well as many other concepts developed in Chapters 2 through 5.  

This also occurred before the quantitative analysis of the FFD comparison was 

developed.  For this reason, only qualitative comparisons are presented in this section as 

they are presented in the original article [1].  Quantitative analyses of FFD comparisons 

are presented in section 2 of this Chapter for the optical models presented there. 

 At the time of the writing of article [1], the wavefront aberration function 

expansion was written in the form 
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              2 2, cos sinm m m m

n nW H g H H m Z g H H m Z          , (6.1) 

where H is the magnitude of the normalized field parameter vector,  is the angle that the 

field vector makes with the +x-axis,   is the normalized pupil vector, and 

    2 2

0

q

q

q

g H C H


  , (6.2) 

where Cq are expansion coefficients. 

 The qualitative check of the expansion, through 6
th

 order plus 8
th

 order spherical, 

was performed by utilizing CODE V® version 10.4’s FFD capabilities and three optical 

models.  A modified version of the fifthdef.seq and FORDER.seq CODE V® macros 

(modified and provided by Kevin Thompson) for the calculation of the per surface 

wavefront aberration expansion coefficients Wklm;j through 6
th

 order plus 8
th

 order 

spherical, but not including the separation of the extrinsic sphere and extrinsic asphere 

coefficients, was utilized.  The results are described in this section.   

 The first model presented in the paper [1] is that of a Baker telescope model.  The 

layout of the model is presented in Figure 6.2. 

 
Figure 6.2  Baker model layout.  The arrows indicate the location of the aperture stop.  

Originally published in [1]. 
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 The model has an entrance pupil diameter of 468.75 mm and a half-field of view 

(HFOV) of 1.0°.  The surface parameters for the model are presented in Table 6.1. 

Table 6.1 Surface definitions for the Baker telescope model.  Table generated by CODE V®. 

 

 The FFD comparison is presented in Figure 6.3.  It shows that the equations 

developed and presented in the paper [1] qualitatively reproduce the FFDs produced by 

CODE V® (version 10.4) for this model.  

 Initially, the Zernike astigmatism FFD, the top row column (b) of Figure 6.3, 

calculated by the equations, did not match the CODE V generated FFD shown in column 

(a).  As a result of this investigation it was found that CODE V® (version 10.4) divides 

the azimuthal angular dependence of the field parameters of Zernike astigmatism by ½ in 

order to present the results with respect to the image plane rather than with respect to the 

exit pupil where the wavefront aberration function is defined.  The other models to be 

presented in this section of this Chapter similarly use the reduced angular value to match 

CODE V® (v10.4).  All other Chapters, and all other sections in this Chapter, restore the 

factor of 2 for the azimuthal angle in the field dependence of the Zernike astigmatism 

FFDs to be consistent with the definition of the wavefront aberration function. 
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Figure 6.3  (a) The left plots are from CODE V (V10.4), while (b) the right plots are based on 

analytic calculations using Eq. (12) of paper [1] (wavefront expanded through 6th order plus 

8th order spherical). Top row: Z5 + Z6 (Astigmatism). Middle row: Z7 + Z8 (Coma). Bottom 

row: Z9 (Spherical).  Originally published in [1]. 
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 The second model presented in paper [1] is that of an imaging system based on 

the James Webb telescope.  The layout is presented in Figure 6.4. 

 
Figure 6.4  Model based on the James Web telescope.  Arrows indicate the location of the 

aperture stop.  Based on a Figure originally published in [1]. 

 

 The entrance pupil is defined to have a diameter of 6603.5 mm and the HFOV is 

defined to be 0.25°.  The surface definitions are presented in Table 6.2.  The conic 

constant for the primary,  secondary,  and  tertiary  mirrors  are  – 0.9967,  –1.6598,  and  

–0.6595, respectively. 

 

Table 6.2 Surface definitions for the James Webb-like model.  Table generated by CODE V®. 

 

 

 The FFDs generated by CODE V® and by the analytic equations presented in [1] 

are reproduced in Figure 6.5.  Because the Zernike astigmatism FFD obtained by using 

the through 6
th

 order wavefront aberration function expansion did not reproduce the full 

field plot generated by CODE V® (version 10.4), it was hypothesized that the Zernike 
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astigmatism for this model had a significant amount of higher than 6
th

 order astigmatism 

contributions.   

 

Figure 6.5  Qualitative comparison of CODE V (version 10.4) FFDs to the FFDs produced by the equations 

presented in [1] for the wavefront aberration function expansion through 6th order plus 8th order spherical  (a) 

The left plots are CODE V generated FFDs (field range ± 0.25°), while (b) the center displays are based on 

analytic calculations using Eq. (12) of paper [1] (wavefront aberration function expanded through 6th order) 

with a field range ± 0.25°. The right display (c) shows the result for an equation for Zernike astigmatism 

expanded through 8th order (Eq. (16) of paper [1]) and a least squares fit to CODE V data providing a far better 

qualitative match to the CODE V® results. Top row: Z5 + Z6 (Astigmatism). Middle row: Z7 + Z8 (Coma). 

Bottom row: Z9 (Spherical).  Originally published in [1]. 
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 To test this hypothesis, and because at the time of this part of the research higher 

than 6
th

 order Wklm values were not available, a Matlab® function was written to perform 

a least squares fit to some of the Zernike astigmatism data used by CODE V® to generate 

the CODE V® Zernike astigmatism FFD.  The Zernike astigmatism (Fringe Zernike 

5 6,Z Z ) terms of the wavefront aberration function was expanded through 8
th

 order and, 

for the field angle 0   , they take the form 

    2 4 6

5,2 5,4 5,6 5W w H w H w H Z        (6.3) 

where ,r sw  are the expansion coefficients to be determined by least squares fit to the 

CODE V® full field data.  These coefficients are related to the Wklm coefficients, but do 

not provide the Wklm coefficients.  They are undetermined sums of the Wklm coefficients.  

“Undetermined” because it is not known exactly which orders contribute to their values. 

 With the coefficient values obtained from the least squares fit, the Zernike 

astigmatism FFD of Figure 6.5(c) was generated.  As can be seen, there is now a very 

good match to the CODE V® generated Zernike astigmatism FFD validating the 

assumption that higher order contributions contribute significantly to Zernike 

astigmatism for this model and that the equations can reproduce the CODE V® results. 

 The third model presented in [1] is that of a 3-mirror proprietary telescope model.  

Therefore, details of the model are not given.  The HFOV for the model is 15°.  The FFD 

comparison between the CODE V® and analytic equations of [1] are presented in Figure 

6.6. 
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Figure 6.6  Qualitative comparison of CODE V® FFDs for a proprietary telescope model. (a) The left displays 

are generated by CODE V® (version 10.4), while (b) the center displays are based on analytic calculations using 

Eq. (12) of [1] (wavefront expanded through 6th order).  The right plots (c) show the results for the wavefront 

aberration function expanded through 8th order (Eq. (16) of [1]) and a least squares fit to CODE V’s display 

data. Top row: Z5 + Z6 (Astigmatism). Middle row: Z7 + Z8 (Coma). Bottom row: Z9 (Spherical). The field 

range is ± 15°.  Originally published in [1]. 

 

 It is seen that the analytic equations for the expansion of the wavefront aberration 

function through 6
th

 order do not reproduce the FFDs produced by CODE V®.  The 

wavefront aberration function was then expanded through 8
th

 order for Zernike coma 
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(Fringe 7 8,Z Z ) and spherical (Fringe 9Z ) as well as for astigmatism.  For the case 

0    these terms then have the form 

 

       

   

2 4 6 3 5

5,2 5,4 5,6 5 7,1 7,3 7,5 7

2 4

9,0 9,2 9,4 9

W w H w H w H Z w H w H w H Z

w w H w H Z

 



       

      (6.4) 

Using this expansion, a least squares fit, and the CODE V® data for the FFDs, as with 

the previous model, the ,r sw  expansion coefficients were obtained.  Using the obtained 

values and the equations in [1] the FFDs shown in column “c” of Figure 6.6 were 

obtained.  These plots show good qualitative agreement with the CODE V® generated 

FFDs. 

 The results indicated the need, for some optical models, to include the 8
th

 order 

wavefront aberration expansion coefficients.  These are not available using the fifthdef 

and FORDER CODE V® macros.  Therefore, an alternative method for the calculation of 

the wavefront aberration expansion coefficients, Wklm;j, that would not be limited to 

through 6
th

 order was sought.  Additionally, it was discovered that the equations used in 

the CODE V® macros for some of the 6
th

 order expansion coefficient calculations could 

not be reproduced, and that no published detailed documentation of the derivation could 

be located [67, 68].  (See Appendix V for an example of the issues found when 

attempting one approach to derive the 6
th

 order expansion coefficients.)  Finally, it is not 

clear what definition (what reference sphere location, what exit pupil (real or Gaussian) 

location) is used for the Wklm;j coefficients calculated by the fifthdef.seq/FORDER.seq 

CODE V® macros.  The development of the GQ method for the calculation of the Wklm;j 

expansion coefficients as described in this dissertation overcomes these limitations.   
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 In the remainder of this Chapter, the FFDs from CODE V® version 10.5 are used 

as part of the qualitative comparisons of the FFDs.  As pointed out previously, the CODE 

V® version 10.4 Zernike astigmatism FFD has a factor of 2 difference in its azimuthal 

angle parameter compared to the equations developed in this dissertation.  CODE V® 

version 10.5 restored this factor of 2.   

 The mathematical and other developments detailed in the previous Chapters, will 

now be used in the remaining examples of this Chapter.  The examples are used to 

quantitatively and qualitatively check the mathematical development since the 

publication of [1]. 

 

6.2 Two Mirror Telescope Model 

The first example is a two mirror, rotationally symmetric telescope system.  The layout of 

the model is presented in Figure 6.7, generated by CODE V®, modified to include the 

surface numbers and scale bar.  The model started as a Ritchey-Chrétien telescope design 

but the surface shapes were then modified.  That is, the surface shapes have purposely not 

been optimized for minimal optical aberrations so that the sphere and coma FFDs will 

show non-negligible aberrations.  The purpose here is not to design optical imaging 

systems but to check the development detailed in previous Chapters and to illustrate the 

information available to a designer by performing similar field analysis during the design 

process.   
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Figure 6.7  Two mirror telescope.  Surface 1 is the aperture stop and entrance pupil.  Surfaces 

2 and 3 are the primary and secondary mirrors, respectively.  Surface 4 is the image plane. 

 

 This model is defined to have an entrance pupil diameter of 150 mm, and uses a 

wavelength of 632.8nm .  The HFOV is 0.6 degrees.  The primary mirror has a conic 

constant of 1.1  and the secondary mirror has a conic constant of 2.5 .  Additional 

surface and layout data are provided in Table 6.3 from CODE V®. 

Table 6.3  Surface data for optical model. 

 

 

 As described in Chapter 5, and in the introductory comments to this Chapter, two 

categories of FFDs are to be generated and used for comparison.  The first category of 

plots is that based on real ray tracing OPD data (obtained from CODE V®), a GQ 

method and the double Zernike expansion of the aberration function through 12
th

 order in 

field and pupil parameters, Eq. (4.53).  The results of applying the GQ method are the 

,

,
H

H

m m

n nU 


 expansion coefficients for the double Zernike expansion of the wavefront 

aberration function.  These coefficients, together with the double Zernike expansion 
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equation, are used to generate the data to be displayed in the first category of FFDs.  The 

second category of FFDs are generated by use of the H. H. Hopkins’ Wklm expansion 

coefficients, the single Zernike expansion of the wavefront aberration function (usually 

through 6
th

 or 8
th

 order) and, if the optical system is not rotationally symmetric, the sigma 

offset vectors.  The FFDs from these two categories are displayed side by side so that a 

visual qualitative comparison can be made.  The goal is to determine if the single Zernike 

expansion using the Hopkins’ Wklm expansion coefficients, commonly used by optical 

designers, together with the sigma offset vectors for rotationally nonsymmetric optical 

models, can reproduce the FFDs of the double Zernike expansion.  The double Zernike 

expansion is considered by the author to be a closer representation to the true field 

dependence of the optical model and so it is used as the basis for the comparison.  

Quantitatively checking the mathematical development is performed by calculating the 

difference between these two categories of FFD plot data.   

 The Wklm;j expansion coefficients were calculated as described in Chapter 4 and 

will be tabulated below.  An estimate of the computational error in the 
,H

m

n nU


 coefficient 

values used to calculate the Wklm values was performed.  Absent from the literature is a 

discussion of estimations of the error in the calculation of the Wklm expansion 

coefficients.  It was found that the method used in this research allows for the calculation 

of an upper bound for the estimate of the computational error by the relation 

, ,

, , ,
H

H H H

m m m m m

n n n n n nU U U

  

     .  The symbol “≡” is to be read as “is defined to be.”  This 

follows by considering both double Zernike expansions for the wavefront aberration 

function; for the rotationally symmetric case, Eq. (4.52), and for the rotationally 
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nonsymmetric case, Eq. (4.53).  For example, for the rotationally nonsymmetric case, the 

aberration function expansion will contain the terms  1

3Z 
 and  1

3Z 
 with field 

functions shown here as, 

          1, 1 1 1 1, 1 1 1

5,3 5 3 5,3 5 3W U Z H Z U Z H Z                 . (6.5) 

However, when the optical system is rotationally symmetric, Eq. (6.5) will reduce to the 

form, according to Eq. (4.52),  

        1, 1 1 1, 1 1 1 1

5,3 5 5,3 5 3 3, ,W U Z H U Z H Z Z                   
 , (6.6) 

         1 1 1 1 1

5,3 5 5 3 3, ,W U Z H Z H Z Z             
 , (6.7) 

     1 1 1

5,3 5 3W U Z H Z       . (6.8) 

Eq. (6.7) is obtained because it is a requirement that 
1, 1 1, 1 1

5,3 5,3 5,3U U U      in order to form 

the Zernike vector  1

5Z H  in Eq. (6.8).  So, in general, for a rotationally symmetric 

optical imaging system, an estimation of the computational error is given by the 

difference  

 
, ,

, ,
H

H H

m m m m

n n n nU U

 

       . (6.9) 

The following chart shows that the worst error   in any of the 
,

,
H

H

m m

n nU 


 coefficient values 

for this optical model is approximately 101.2 10  waves. 
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Figure 6.8  Estimated error values for the double Zernike expansion coefficients calculated as 

the difference 
, ,

, ,
H

H H

m m m m

n n n nU U

 

      .  

 

 Using this value for the error estimation of the double Zernike expansion 

coefficients, the equations Eq. (4.66) through Eq. (4.80) for the Wklm expansion 

coefficients, and the equations for error propagation, an estimate for the upper bound of 

the computational error in the Wklm values was calculated and is displayed in Figure 6.9 

for the through 8
th

 order coefficients.   
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Figure 6.9  Error estimations for the Wklm expansion coefficient values. 

 

 The bar chart of Figure 6.9 shows that the 4
th

 order Wklm values have an upper 

bound error estimate of approximately 85 10   waves while most of the 6
th

 order 

coefficients have an upper bound error estimate of approximately 710  waves or less.  

These error estimates provide some confidence that the Wklm values used in checking the 

theoretical development (the resulting values calculated using the Wklm values) will not be 

undermined by their computational error values.  From a practical point of view, recalling 

that values of the Wklm coefficients less than about 1/100
th

 of a wave are negligible, it is 

then confirmed that the values reported have calculation errors well below this criteria.  

 The through 6
th

 order Wklm coefficients for the Zernike astigmatism term  2

2Z   

are presented in Table 6.4 and Table 6.5, rounded to the 4
th

 decimal position.  Although 

not used in this research, the CODE V® fifthdef/FORDER calculated values are provided 

for comparison. 
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Table 6.4  Through 6th order intrinsic Wklm coefficients for the Zernike astigmatism term.   

GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves.) 

Surface 

Number 

 

Wklm 
Intrinsic (GQ) Intrinsic (FF) 

Sphere Asphere Total Sphere Asphere Total 

2 W222   1.2772 −0.0003   1.2769   1.2770 −0.0003   1.2767 

2 W242 −0.0251 −0.0002 −0.0253   0.0354 −0.0028   0.0326 

2 W422 −0.0002   0.0 −0.0002   0.0   0.0   0.0 

3 W222 −1.0676   0.6206 −0.4470 −1.0676   0.6206 −0.4470 

3 W242   0.0587 −0.0034   0.0553   0.0046 −0.0203 −0.0157 

3 W422 −0.0001   0.0 −0.0001 −0.0004   0.0008   0.0004 

 

Table 6.5  Through 6th order extrinsic Wklm coefficients for the Zernike astigmatism term.   

GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves.) 

Surface 

Number 

 

Wklm 

Extrinsic(GQ) Extrinsic(FF) 

Sphere Asphere Total Total 

2 W222   0.0   0.0   0.0   0.0 

2 W242   0.0   0.0   0.0   0.0 

2 W422   0.0   0.0   0.0   0.0 

3 W222   0.0   0.0   0.0   0.0 

3 W242 −0.0360   0.0019 −0.0341 −0.0184 

3 W422   0.0   0.0   0.0   0.0009 

 

 As seen in Table 6.4 and Table 6.5, there is a good match between the GQ Wklm 

values and the CODE V® fifthdef/FORDER calculated values for the 4
th

 order 

coefficients, but there are differences for the 6
th

 order coefficients.  Attempts to reconcile 

these differences were not performed. 

 Figure 6.10 provides the comparison of the Zernike astigmatism term’s FFDs.  

Figure 6.10(a) is a FFD plot for the optical model generated by CODE V® version 10.5 

and is included for visual comparison with the FFD plot Figure 6.10(b) generated by 

using the double Zernike expansion and GQ method for determining the expansion 

coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.10(c) was generated using the single Zernike 

expansion and the Wklm expansion coefficients.  The difference between the two FFD’s 
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data, (b) – (c), is also shown in Figure 6.10(d).   The difference data’s magnitude values 

have a maximum difference of 0.00002 waves, a mean of 0.000009 waves and a standard 

deviation (STD) of 0.000005 waves.  The difference data’s angle values have a maximum 

difference of 26.8 degrees, a mean of 0.06 degrees and a STD of 1.28 degrees.   

 
Figure 6.10  Comparison of Zernike astigmatism FFDs.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 6th order and the Wklm expansion coefficients.  (d) The difference between the 

Zernike astigmatism FFD data generated by the double Zernike expansion and the single 

Zernike expansion using the calculated Wklm values, (b) – (c). 
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 The through 6
th

 order Wklm expansion coefficients for the Zernike coma term 

 1

3Z   are presented in Table 6.6 and Table 6.7. 

Table 6.6  Through 6th order intrinsic Wklm coefficients for the Zernike coma term.  

GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves.) 

Surface 

Number 

 

Wklm 

Intrinsic(GQ) Intrinsic(FF) 

Sphere Asphere Total Sphere Asphere Total 

2 W131 12.4815   0.1873   12.6688 −12.4815 −0.1873 −12.6688 

2 W151 −0.0903 −0.0427   −0.1330   −0.2347   0.1448   −0.0899 

2 W331M −0.0026 −0.0   −0.0026   −0.0019   0.0   −0.0019 

3 W131 −6.7483 −5.0697 −11.8180     6.7483   5.0697   11.818 

3 W151   0.3409   0.1494     0.4903   −0.1045 −0.1523   −0.2568 

3 W331M   0.0004 −0.0030   −0.0026     0.0062   0.0008     0.0070 

 

Table 6.7  Through 6th order extrinsic Wklm coefficients for the Zernike coma term.   

GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves.) 

Surface 

Number 

 

Wklm 

Extrinsic(GQ) Extrinsic(FF) 

Sphere Asphere Total Total 

2 W131   0.0   0.0   0.0   0.0 

2 W151   0.0   0.0   0.0   0.0 

2 W331M   0.0   0.0   0.0   0.0 

3 W131   0.0   0.0   0.0   0.0 

3 W151 −0.25119 −0.11103   0.36222   0.3702 

3 W331M   0.00019   0.00198 −0.00217 −0.0119 

 

 Of particular interest, note that the W131 value from the GQ method has the 

opposite sign to the values calculated by fifthdef/FORDER.  One possible explanation for 

this has been offered at the end of Chapter 4.  That is, fifthdef/FORDER may be defined 

to use the normalized object angle field parameters rather than the normalized Cartesian 

field parameters.  There is a sign difference between these two ways of defining the 

normalized field parameters. 
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Figure 6.11  Comparison of Zernike coma FFDs. (a)  Generated by CODE V®.  (b) Generated 

from real ray tracing OPD data from CODE V®, double Zernike expansion through 12th 

order, and the GQ method.  (c) Generated by using the single Zernike expansion through 6th 

order and the Wklm expansion coefficients.  (d) The difference between the Zernike coma FFD 

data generated by the double Zernike expansion and the single Zernike expansion using the 

calculated Wklm values, (b) – (c). 

 

 Figure 6.11 provides the comparison of the Zernike coma term’s FFDs.  Figure 

6.11(a) is a FFD plot generated by CODE V® version 10.5.  Figure 6.11(b) is generated 
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by using the double Zernike expansion and the GQ method for determining the expansion 

coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.11(c) was generated using the single Zernike 

expansion and the Wklm expansion coefficients.  The difference between the two FFD’s 

data, (b) – (c), is also shown in Figure 6.11(d).  The difference data’s magnitude values 

have a maximum difference of 0.00009 waves, a mean of 0.00005 waves and a STD of 

0.00002 waves.  The difference data’s angle values have a maximum difference of – 158 

degrees, a mean of – 0.36 degrees and a STD of 7.5 degrees.  The large maximum angle 

difference occurs near the node where the data values are very small. 

 The through 6
th

 order Wklm coefficients for the Zernike spherical term  0

4Z   are 

presented in Table 6.8 and Table 6.9. 

Table 6.8  Through 6th order intrinsic Wklm coefficients for the Zernike spherical term.  

GQ = values from Gaussian quadrature.  FF = values from fifthdef/FORDER. (Units = waves.) 

Surface 

Number 

 

Wklm 

Intrinsic(GQ) Intrinsic(FF) 

Sphere Asphere Total Sphere Asphere Total 

2 W040   30.4932 −33.5425 −3.0493   30.4932 −33.5425 −3.0493 

2 W060   −0.1470     0.1798   0.0328     0.4662   −0.4958 −0.0296 

2 W240M   −0.0107     0.0018 −0.0089     0.0030     0.0001   0.0031 

3 W040 −10.6642   10.3539 −0.3103 −10.6642   10.3539 −0.3103 

3 W060     0.5566   −0.5406   0.0160     0.2377   −0.2285   0.0092 

3 W240M     0.0053   −0.0020   0.0033   −0.0117   −0.0089 −0.0206 

 

Table 6.9  Through 6th order extrinsic Wklm coefficients for the Zernike spherical term.  

GQ = values from Gaussian quadrature.  FF = values from fifthdef/FORDER. (Units = waves.) 

Surface 

Number 

 

Wklm 

Extrinsic(GQ) Extrinsic(FF) 

Sphere Asphere Total Total 

2 W040   0.0   0.0   0.0   0.0 

2 W060   0.0   0.0   0.0   0.0 

2 W240M   0.0   0.0   0.0   0.0 

3 W040   0.0   0.0   0.0   0.0 

3 W060 −0.43422   0.42159 −0.01263   0.0518 

3 W240M −0.00181   0.00191   0.0001   0.0002 
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Figure 6.12  Comparison of Zernike spherical FFDs.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 6th order and the Wklm expansion coefficients.  (d) The difference between the 

Zernike spherical FFD data generated by the double Zernike expansion and the single 

Zernike expansion using the calculated Wklm values, (b) – (c). 

 

 Figure 6.12 provides the comparison of the Zernike spherical term’s FFDs.  

Figure 6.12(a) is a FFD plot generated by CODE V® version 10.5.  Figure 6.12(b) is 
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generated by using the double Zernike expansion and the GQ method for determining the 

expansion coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.12(c) was generated using the 

single Zernike expansion and the Wklm expansion coefficients.  The difference between 

the two FFD’s data, (b) – (c), is also shown in Figure 6.12(d).  The difference data’s 

magnitude values have a maximum difference of 0.0002 waves, a mean of 0.00014 waves 

and a STD of 0.00001 waves.  The angular data is not reported because the y-component 

of the Zernike vector  0

4Z   is zero by construction. 

 Figure 6.10 through Figure 6.12 and the quantitative data all show good 

agreement between the double Zernike generated FFDs and the single Zernike generated 

displays using the Wklm values provided in Table 6.4 through Table 6.9.   

 The optical model was perturbed to produce a rotationally nonsymmetric case.  

Specifically, the primary mirror was decentered along the y-axis by +0.05 mm and the 

secondary mirror was decentered along the x-axis by +2 mm.  The sigma offset vectors 

were calculated using Eq. (5.26) and Eq. (5.27) and their values are shown in Table 6.10. 

Table 6.10  Normalized sigma offset vector values. 

Mirror # S

x
 

S

y  
A

x
 

A

y   

1   0.0   0.006515   0.0 −0.477447 

2 −0.350143   0.012968 −0.726156   0.012708 

 

 The FFDs for the Zernike astigmatism term comparison for this rotationally 

nonsymmetric optical model are presented in Figure 6.13.  Figure 6.13(a) is a FFD plot 

generated by CODE V® version 10.5.  Figure 6.13(b) is generated by using the double 

Zernike expansion and the GQ method for determining the expansion coefficients 
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,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.13(c) was generated using the single Zernike expansion 

and the Wklm expansion coefficients.  The difference between the two FFD’s data, (b) – 

(c), is also shown in Figure 6.13(d).  The difference data’s magnitude values have a 

maximum difference of – 0.01 waves, a mean of – 0.001 waves and a STD of 0.0046 

waves.  The difference data’s angle values have a maximum difference of – 13.89 

degrees, a mean of 0.008 degrees and a STD of 1.38 degrees.  

 As can be seen in Figure 6.13, the difference data shows a good agreement 

between the two FFDs.  The binodal split of the original single node of the rotationally 

symmetric case, as discussed in Chapter 5, is clearly observed in Figure 6.13.  Due to the 

decenter of the secondary mirror along the x-axis, the nodes are also seen to be shifted 

slightly to the right in the plots. 

 The FFDs for the Zernike coma term comparison for this rotationally 

nonsymmetric optical model are presented in Figure 6.14.  Figure 6.14(a) is a FFD plot 

generated by CODE V® version 10.5.  Figure 6.14(b) is generated by using the double 

Zernike expansion and the GQ method for determining the expansion coefficients 

,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.14(c) was generated using the single Zernike expansion 

and the Wklm expansion coefficients.  The difference between the two FFD’s data, (b) – 

(c), is also shown in Figure 6.14(d).  The difference data’s magnitude values have a 

maximum difference of – 0.016 waves, a mean of 0.014 waves and a STD of 0.001 

waves.  The difference data’s angle values have a maximum difference of – 0.31 degrees, 

a mean of – 0.22 degrees and a STD of 0.04 degrees.  
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Figure 6.13  Comparison of Zernike astigmatism FFDs.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 6th order the Wklm expansion coefficients, and the sigma offset vectors.  (d) The 

difference between the Zernike astigmatism FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 
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Figure 6.14  Comparison of Zernike coma FFDs.  (a) Generated by CODE V®.  (b) Generated 

from real ray tracing OPD data from CODE V®, double Zernike expansion through 12th 

order, and the GQ method.  (c) Generated by using the single Zernike expansion through 6th 

order the Wklm expansion coefficients, and the sigma offset vectors.  (d) The difference 

between the Zernike coma FFD data generated by the double Zernike expansion and the 

single Zernike expansion using the calculated Wklm values, (b) – (c). 

 

 

 It is seen that the perturbations of the mirrors in this model produce a constant 

coma field dependence. 
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 The FFDs for the Zernike spherical term comparison for this rotationally 

nonsymmetric optical model are presented in Figure 6.15.  Figure 6.15(a) is a FFD plot 

generated by CODE V® version 10.5.  Figure 6.15(b) is generated by using the double 

Zernike expansion and the GQ method for determining the expansion coefficients 

,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.15(c) was generated using the single Zernike expansion 

and the Wklm expansion coefficients.  The difference between the two FFD’s data, (b) – 

(c), is also shown in Figure 6.15(d).  The difference data’s magnitude values have a 

maximum difference of 0.003 waves, a mean of 0.001 waves and a STD of 0.001 waves.  

 From the plots in Figure 6.15 it is seen that the perturbed optical model’s 

spherical field dependence is also dominated by a constant spherical dependence across 

the field. 
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Figure 6.15  Comparison of Zernike spherical FFDs.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 6th order the Wklm expansion coefficients, and the sigma offset vectors.  (d)  The 

difference between the Zernike spherical FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 
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 Figure 6.13 through Figure 6.15 and the quantitative difference data show that 

there is a good agreement between the double Zernike expansion of the wavefront 

aberration function and the single Zernike expansion using the calculated Wklm values 

through 6
th

 order, and the NAT sigma offset vectors of Table 6.10, for this perturbed 

optical model case. 

 As another check of the mathematical development, the optical model was again 

perturbed to include tilts.  In this case, the primary mirror was decentered along the x-axis 

by +0.1 mm, and along the y-axis by +0.1 mm, and tilted by alpha = +0.25 degrees and 

beta = – 0.1 degrees.  An alpha tilt is a rotation of the mirror about the x-axis.  Looking 

from the negative x-axis toward the positive x-axis, a positive alpha tilt is a counter 

clockwise rotation.  A beta tilt is a rotation about the y-axis.  Looking from the negative 

y-axis toward the positive y-axis, a positive beta tilt is a counter clockwise rotation.  The 

secondary mirror was  decentered along the y-axis by – 0.2 mm, and tilted by an alpha 

amount of – 0.15 degrees.  The sigma offset vectors were calculated using Eq. (5.26) and 

Eq. (5.27) and their values are shown in Table 6.11. 

Table 6.11  Normalized sigma offset vector values. 

Mirror # S

x
 

S

y  
A

x
 

A

y   

1 –0.155915 –0.409326 –0.954895 –0.954895 

2 –0.310435 –0.913054 –0.304113 –0.725789 

 

 The FFDs for the Zernike astigmatism term comparison for this rotationally 

nonsymmetric optical model are presented in Figure 6.16.  Figure 6.16(a) is a FFD plot 

generated by CODE V® version 10.5.  Figure 6.16(b) is generated by using the double 

Zernike expansion and the GQ method for determining the expansion coefficients 
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,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.16(c) was generated using the single Zernike expansion 

and the Wklm expansion coefficients.  The difference between the two FFD’s data, (b) – 

(c), is also shown in Figure 6.16(d).  The difference data’s magnitude values have a 

maximum difference of – 0.017 waves, a mean of 0.004 waves and a STD of  0.006 

waves.  The  difference data’s angle values have a maximum difference of – 16.53 

degrees, a mean of – 0.17 degrees and a STD of 2.13 degrees.  The maximum angle 

difference occurs near the lower nodal point where the data values are very small. 

 The FFDs for the Zernike coma term comparison for this rotationally 

nonsymmetric optical model are presented in Figure 6.17.  Figure 6.17(a) is a FFD plot 

generated by CODE V® version 10.5.  Figure 6.17(b) is generated by using the double 

Zernike expansion and the GQ method for determining the expansion coefficients 

,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.17(c) was generated using the single Zernike expansion 

and the Wklm expansion coefficients.  The difference between the two FFD’s data, (b) – 

(c), is also shown in Figure 6.17(d).  The difference data’s magnitude values have a 

maximum difference of – 0.020 waves, a mean of – 0.018 waves and a STD of 0.001 

waves.  The difference data’s angle values have a maximum difference of 0.37 degrees, a 

mean of 0.27 degrees and a STD of 0.06 degrees.  
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Figure 6.16  Comparison of Zernike astigmatism FFDs.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 6th order the Wklm expansion coefficients, and the sigma offset vectors.  (d)  The 

difference between the Zernike spherical FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 
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Figure 6.17  Comparison of Zernike coma FFDs.  (a) Generated by CODE V®.  (b) Generated 

from real ray tracing OPD data from CODE V®, double Zernike expansion through 12th 

order, and the GQ method.  (c) Generated by using the single Zernike expansion through 6th 

order the Wklm expansion coefficients, and the sigma offset vectors.  (d) The difference 

between the Zernike spherical FFD data generated by the double Zernike expansion and the 

single Zernike expansion using the calculated Wklm values, (b) – (c). 
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Figure 6.18  Comparison of Zernike spherical FFDs.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 6th order the Wklm expansion coefficients, and the sigma offset vectors.  (d) The 

difference between the Zernike spherical FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 

 

 The FFDs for the Zernike spherical term comparison for this rotationally 

nonsymmetric optical model are presented in Figure 6.18.  Figure 6.18(a) is a FFD plot 

generated by CODE V® version 10.5.  Figure 6.18(b) is generated by using the double 
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Zernike expansion and the GQ method for determining the expansion coefficients 

,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.18(c) was generated using the single Zernike expansion 

and the Wklm expansion coefficients.  The difference between the two FFD’s data, (b) – 

(c), is also shown in Figure 6.18(d).  The difference data’s magnitude values have a 

maximum difference of 0.006 waves, a mean of 0.002 waves and a STD of 0.002 waves.   

 Figure 6.16 through Figure 6.18 and the quantitative difference data show that 

there is a good agreement between the double Zernike expansion of the wavefront 

aberration function and the single Zernike expansion using the calculated Wklm values 

through 6
th

 order, and the NAT sigma offset vectors in this perturbed optical model case.  

Therefore, this initial example has produced some confidence in the development 

presented in Chapters 2 through 5.   

 

6.3 A Three Mirror Anastigmat Telescope 

A three mirror anastigmat (TMA) telescope model was used to further test the 

developments detailed in Chapters 2 through 5.  The model is defined to have a HFOV of 

0.1 degrees, and uses a wavelength of 632.8nm .  The entrance pupil is defined to have a 

diameter of 6603.5 mm.  All three mirrors are defined to be conics.  The primary, 

secondary, and tertiary mirrors have conic constants 0.99666 , 1.65981 , and  

0.65954 , respectively.  Figure 6.19 from CODE V® (modified) provides an illustration 

of the layout. 
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Figure 6.19  TMA model.  Surface 1 is the aperture stop and entrance pupil.  Surface 2 is the 

primary mirror.  Surface 3 is the secondary mirror.  Surface 4 is the tertiary mirror.  Surface 

5 is the image plane.  All mirrors are conics. 

 

Additional model data are provided in Table 6.12 generated by CODE V®.  

Table 6.12  Additional surface and model definitions for the TMA. 

 

 

 The Wklm;j expansion coefficients were calculated as described in Chapter 4.  An 

estimate of the computational error in the 
,

,
H

H

m m

n nU 


 coefficient values used to calculate the 

Wklm values was performed.  Figure 6.20 shows that the worst error is approximately 

92.9 10  waves. 
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Figure 6.20  Double Zernike expansion coefficient error estimate. 

 

 Using this value for the computational error estimation of the double Zernike 

expansion coefficients, an estimate for the error in the calculated Wklm expansion 

coefficients was made and these are summarized in the bar chart of Figure 6.21. 

 
Figure 6.21  Computational error estimation for the Wklm expansion coefficients. 
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From this bar chart it can be seen that most of the Wklm values are good to about 63 10   

waves.  Although not as good as the previous model, it is still well below any threshold 

for concern. 

 The Wklm expansion coefficients associated with the Zernike astigmatism term 

 2

2Z   are provided in Table 6.13 and Table 6.14 through 8
th

 order, rounded to the 4
th

 

decimal position. 

 As mentioned previously, the fifthdef/FORDER CODE V® macros do not 

provide 8
th

 order Wklm expansion coefficients.  Therefore, the GQ derived Wklm 

coefficients for 8
th

 order Zernike astigmatism are listed separately in Table 6.14. 

 Using these expansion coefficient values the FFD for Zernike astigmatism was 

generated and is compared to the FFD generated by using the real ray trace OPD data, the 

double Zernike expansion, and the GQ method.  The FFD plots are shown in Figure 6.22.  

Figure 6.22(a) is a FFD plot generated by CODE V® version 10.5.  Figure 6.22(b) is 

generated by using the double Zernike expansion and the GQ method for determining the 

expansion coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.22(c) was generated using the 

single Zernike expansion and the Wklm expansion coefficients.  The difference between 

the two FFD’s data, (b) – (c), is also shown in Figure 6.22(d).   
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Table 6.13  Wklm expansion coefficients for Zernike astigmatism through 6th order.   

GQ = values from Gaussian quadrature.  FF = values from fifthdef/FORDER.  

(Units = waves) 

Wklm GQ/FF Primary Secondary Tertiary 

222

ISW  GQ   2.4525 −6.6022     6.9863 

FF   2.4525 −6.6023     6.9863 

222

IAW  GQ −0.0632   7.9483 −10.6876 

FF −0.0632   7.9482 −10.6876 
.

222

I TotW
 

GQ   2.3896   1.3461   −3.7013 

FF   2.3893   1.3459   −3.7013 

222

ESW  GQ   0.0   0.0     0.0 

222

EAW  GQ   0.0 −0.0001     0.0 

.

222

E TotW
 

GQ   0.0 −0.0001     0.0 

242

ISW  GQ −0.1423   0.9288   −0.0066 

FF   0.2568 −0.2144   −0.0027 

242

IAW  GQ   0.0149 −0.7030     0.0153 

FF   0.0409 −1.3301     0.0305 
.

242

I TotW
 

GQ −0.1274   0.2258     0.0093 

FF   0.2977 −1.5445     0.0278 

242

ESW  GQ   0.0 −0.7031     0.0216 

242

EAW  GQ   0.0   0.5447     0.0481 

.

242

E TotW
 

GQ   0.0 −0.1584     0.0697 

FF   0.0   1.2530   −0.0154 

422

ISW  GQ   0.0 −0.0004   −0.0133 

FF   0.0 −0.0001     0.0118 

422

IAW  GQ   0.0   0.0005     0.0115 

FF   0.0   0.0021   −0.0471 
.

422

I TotW
 

GQ   0.0   0.0001   −0.0018 

FF   0.0   0.0020   −0.0353 

422

ESW  GQ   0.0   0.0     0.0022 

422

EAW  GQ   0.0   0.0   −0.0069 

.

422

E TotW
 

GQ   0.0   0.0   −0.0048 

FF   0.0   0.0003     0.0352 
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Table 6.14  8th order Wklm expansion coefficients for Zernike astigmatism calculated by the 

GQ method. 

Wklm Primary Secondary Tertiary 

262

ISW  −0.0003 −0.1931     0.0 

262

IAW    0.0024 −0.1131     0.0003 

.

262

I TotW
 

  0.0021 −0.3062     0.0003 

262

ESW    0.0   0.2005   −0.0001 

262

EAW    0.0   0.1038   −0.0005 

.

262

E TotW
 

  0.0   0.3043   −0.0006 

442

IS

MW    0.0   0.0001     0.0 

442

IA

MW    0.0 −0.0006     0.0006 

.

442

I Tot

MW
 

  0.0 −0.0005     0.0006 

442

ES

MW    0.0 −0.0002   −0.0004 

442

EA

MW    0.0   0.0006   −0.0001 

.

442

E Tot

MW
 

  0.0   0.0004   −0.0005 

622

ISW    0.0   0.0     0.0 

622

IAW    0.0   0.0     0.0 

.

622

I TotW
 

  0.0   0.0     0.0 

622

ESW    0.0   0.0   −0.0001 

622

EAW    0.0   0.0     0.0001 

.

622

E TotW
 

  0.0   0.0     0.0 
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Figure 6.22  Comparison of Zernike astigmatism FFDs.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order and the Wklm expansion coefficients.  (d) The difference between the 

Zernike astigmatism FFD data generated by the double Zernike expansion and the single 

Zernike expansion using the calculated Wklm values, (b) – (c). 

 

 The difference data’s magnitude values have a maximum difference of – 0.00007 

waves, a mean of – 0.00004 waves and a STD of 0.00002 waves.  The difference data’s 
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angle values have a maximum difference of 0.93 degrees, a mean of 0.002 degrees and a 

STD of 0.04 degrees.  

 The Wklm expansion coefficients associated with the Zernike coma term  1

3Z   

are provided in Table 6.15 and Table 6.16 below, through 8
th

 order, rounded to the 4
th

 

decimal position. 

Table 6.15  Wklm expansion coefficients for Zernike coma through 6th order.  GQ = value 

calculated by Gaussian quadrature.  FF = fifthdef/FORDER value. (Units = waves) 

Wklm GQ/FF Primary Secondary Tertiary 

131

ISW  GQ   339.1506 −182.9330   −3.5408 

FF −339.1506   182.9350     3.5408 

131

IAW  GQ     54.3607 −197.7262   −9.3698 

FF   −54.3607   197.7269     9.3698 
.

131

I TotW
 

GQ   393.5113 −380.6592 −12.9106 

FF −393.5113   380.6592   12.9106 

131

ESW  GQ       0.0     −0.0020     0.0 

131

EAW  GQ       0.0     −0.0008     0.0 

.

131

E TotW
 

GQ       0.0     −0.0028     0.0 

151

ISW  GQ     −4.9026     35.1951   0.0106 

FF   −26.1816     −9.6005 −0.0045 

151

IAW  GQ   −12.0678     31.1538   0.0176 

FF     12.5177   −25.8990 −0.0256 
.

151

I TotW
 

GQ   −16.9704     66.3489   0.0282 

FF   −13.6639     35.4995 −0.0301 

151

ESW  GQ       0.0   −25.5605 −0.0064 

151

EAW  GQ       0.0   −23.8655   0.0194 

.

151

E TotW
 

GQ       0.0   −49.4260   0.0130 

FF       0.0     49.1674   0.0324 

331

IS

MW  GQ     −0.0013     −0.0061   0.0032 

FF     −0.0003       0.0527   0.0253 

331

IA

MW  GQ     −0.0001     −0.0408 −0.0080 

FF       0.0     −0.0224 −0.0058 
.

331

I Tot

MW
 

GQ     −0.0014     −0.0469 −0.0048 

FF     −0.0003       0.0303   0.0195 

331

ES

MW  GQ       0.0       0.0037 −0.0123 

331

EA

MW  GQ       0.0       0.0088   0.0844 

.

331

E Tot

MW
 

GQ       0.0       0.0125   0.0721 

FF       0.0     −0.0792 −0.0059 
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Table 6.16  8th order Wklm expansion coefficients for Zernike coma.  (Units = waves) 

Wklm Primary Secondary Tertiary 

171

ISW    −0.0621   −6.5288   0.0 

171

IAW      0.7929   −4.2792   0.0001 

.

171

I TotW
 

    0.7308   10.8080   0.0001 

171

ESW      0.0     6.2872   0.0001 

171

EAW      0.0     3.7902 −0.0002 

.

171

E TotW
 

    0.0   10.0774 −0.0001 

351

IS

MW      0.0     0.0019   0.0 

351

IA

MW      0.0     0.0285   0.0009 

.

351

I Tot

MW
 

    0.0     0.0304   0.0009 

351

ES

MW      0.0   −0.0029 −0.0001 

351

EA

MW      0.0   −0.0273 −0.0009 

.

351

E Tot

MW
 

    0.0   −0.0302 −0.0010 

531

IS

MW      0.0     0.0   0.0 

531

IA

MW      0.0     0.0   0.0003 

.

531

I Tot

MW
 

    0.0     0.0   0.0003 

531

ES

MW      0.0     0.0 −0.0002 

531

EA

MW      0.0     0.0 −0.0001 

.

531

E Tot

MW
 

    0.0     0.0 −0.0003 

 

 It is again seen that the W131 values from GQ have an opposite sign from those 

values calculated by fifthdef/FORDER.  (See Chapter 4 for a possible explanation.) 

 The FFD comparison for Zernike coma terms is provided in Figure 6.23.  Figure 

6.23(a) is a FFD plot generated by CODE V® version 10.5.  Figure 6.23(b) is generated 

by using the double Zernike expansion and the GQ method for determining the expansion 



  160 

coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.23(c) was generated using the single Zernike 

expansion and the Wklm expansion coefficients.  The difference between the two FFD’s 

data, (b) – (c), is also shown in Figure 6.23(d).   

 
Figure 6.23  Comparison of Zernike coma FFDs.  (a) Generated by CODE V.  (b) Generated from real 

ray tracing OPD data from CODE V®, double Zernike expansion through 12th order, and the GQ 

method.  (c) Generated by using the single Zernike expansion through 8th order and Wklm expansion 

coefficients.  (d) The difference between the Zernike coma FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 
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Figure 6.24  Plot line tilts are artifacts of plotting function and not a result of the plot data.  

(a) The difference plot appears to show large angular deviations (highlighted box).  (b) 

Zooming in on the highlighted boxed area shows these angular deviations are artifacts of the 

plot and not an accurate portrayal of the angular difference data. 

 

 The difference data’s magnitude values have a maximum difference of 0.001 

waves, a mean of 0.0007 waves and a STD of 0.0003 waves.  The difference data’s angle 

values have a maximum difference of – 96.8 degrees, a mean of – 0.2 degrees and a STD 

of 4.6 degrees. 

 Figure 6.24 shows that the plot of the FFD data difference has lines that appear to 

have significant amounts of tilt.  By zooming in on one area of the plot that has tilted 

lines (shown as a box in (a)), it is seen in (b) that the amount of tilt of the lines is much 

less than suggested by the plot (a).  These lines are tilted, but not to the extent suggested 

by the plot (a). 

 As can be seen from Figure 6.23 and the quantitative data, there is good 

agreement using the Wklm expansion coefficients compared with the plot generated by 

using the double Zernike expansion through 12
th

 order.   
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 Reviewing the Wklm values of Table 6.15, it is seen that for the secondary mirror 

131 0.002ESW    waves.  This, being a 4
th

 order expansion coefficient, should have a zero 

value.  Although this and all other 4
th

 order extrinsic Wklm coefficients are not included in 

the equations used to generate the FFDs, it is still concerning.  (Recall from Chapter 4, 4
th

 

order extrinsic Wklm values are calculated in this work only as a debugging aid and they 

are not used in any of the wavefront aberration expansions programmed to generated the 

FFD plots.  See the discussion immediately after Eq. (4.91).)  This may be an indication 

of the size of the error in the other, higher order, extrinsic coefficient values.   

 The Wklm expansion coefficients for the Zernike spherical term are presented in 

Table 6.17 and Table 6.18, rounded to the 4
th

 decimal position. 

 The FFDs for the Zernike spherical term of the wavefront aberration function 

expansion are presented in Figure 6.25.  Figure 6.25(a) is a FFD plot generated by CODE 

V® version 10.5.  Figure 6.25(b) is generated by using the double Zernike expansion and 

the GQ method for determining the expansion coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 

6.25(c) was generated using the single Zernike expansion and the Wklm expansion 

coefficients.  The difference between the two FFD’s data, (b) – (c), is also shown in 

Figure 6.25(d). 
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Table 6.17 Wklm expansion coefficients for Zernike spherical through 6th order.  GQ = values 

from Gaussian quadrature.  FF = values from fifthdef/FORDER. (Units = waves) 

Wklm GQ/FF Primary Secondary Tertiary 

040

ISW  GQ   11725.2406 −1267.1479   0.4486 

FF   11725.2406 −1267.1890   0.4486 

040

IAW  GQ −11686.0841   1229.6641 −2.0536 

FF −11686.0842   1229.7039 −2.0536 
.

040

I TotW
 

GQ         39.1565     −37.4838 −1.6050 

FF         39.1564     −37.4851 −1.6050 

040

ESW  GQ           0.0       −0.0412   0.0 

040

EAW  GQ           0.0         0.0398   0.0 

.

040

E TotW
 

GQ           0.0       −0.0014   0.0 

060

ISW  GQ     −112.9970     296.1752 −0.0019 

FF       760.3538     128.1879 −0.0009 

060

IAW  GQ       111.3086   −288.0319   0.0065 

FF     −758.6582   −123.3859   0.0050 
.

060

I TotW
 

GQ         −1.6884         8.1433   0.0046 

FF           1.6956         4.8020   0.0041 

060

ESW  GQ           0.0   −218.9996   0.0002 

060

EAW  GQ           0.0     212.5216 −0.0011 

.

060

E TotW
 

GQ           0.0       −6.4781   0.0008 

FF           0.0       −6.5161 −0.0051 

240

IS

MW  GQ         −0.0373       −0.8171   0.0075 

FF           0.0042       −0.5117   0.0042 

240

IA

MW  GQ           0.0388       −0.4058   0.0048 

FF           0.0042       −0.4873   0.0124 
.

240

I Tot

MW
 

GQ           0.0015       −1.2229   0.0123 

FF           0.0084       −0.9990   0.0166 

240

ES

MW  GQ           0.0         0.5726   0.0197 

240

EA

MW  GQ           0.0         0.5445   0.0488 

.

240

E Tot

MW
 

GQ           0.0         1.1171   0.0685 

FF           0.0         0.9618 −0.0278 
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Table 6.18  8th order Wklm expansion coefficients for Zernike spherical. (Units = waves) 

Wklm Primary Secondary Tertiary 

080

ISW  −1.0735 −57.3475   0.0 

080

IAW    1.1462   55.8761   0.0 

.

080

I TotW
 

  0.0727   −1.4714   0.0 

080

ESW    0.0   52.6173   0.0 

080

EAW    0.0 −51.2179   0.0 

.

080

E TotW
 

  0.0     1.3994   0.0 

260

IS

MW  −0.0006     0.0792   0.0 

260

IA

MW  −0.0023   −0.1157   0.0003 

.

260

I Tot

MW
 

−0.0029   −0.0365   0.0003 

260

ES

MW    0.0   −0.0679 −0.0001 

260

EA

MW    0.0     0.1076 −0.0005 

.

260

E Tot

MW
 

  0.0     0.0397 −0.0006 

440

IS

MW    0.0     0.0   0.0 

440

IA

MW    0.0   −0.0005   0.0005 

.

440

I Tot

MW
 

  0.0   −0.0005   0.0005 

440

ES

MW    0.0     0.0 −0.0001 

440

EA

MW    0.0     0.0004 −0.0003 

.

440

E Tot

MW
 

  0.0     0.0004 −0.0004 
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Figure 6.25  Comparison of Zernike spherical FFDs.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order and Wklm expansion coefficients.  (d) The difference between the Zernike 

spherical FFD data generated by the double Zernike expansion and the single Zernike 

expansion using the calculated Wklm values, (b) – (c). 

 

 The difference data’s magnitude values have a maximum difference of 0.00002 

waves, a mean of – 0.000007 waves and a STD of 0.000004 waves. 
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 These FFDs and difference plot of Figure 6.25 and the difference data show a 

good match between the double Zernike full field display and the FFDs calculated using 

the Wklm expansion coefficients. 

 As can be seen from Table 6.17, for the secondary mirror, 040 0.0412ESW    waves.  

Being a 4
th

 order expansion coefficient its value should be zero.  This is another 

indication that the calculation of the extrinsic values for this optical model may require 

further investigation. 

 It is not clear what the cause of these non-zero extrinsic Wklm values for the 4
th

 

order coefficients is.  Since the estimated errors in the calculated Wklm values is at most 

610  waves, and the extrinsic values are calculated (see Chapter 4) by subtraction 

involving at most 4 Wklm values, the error due to error propagation in the calculation is 

only 62 10  .  It is therefore suggested that the large error estimate of the extrinsic 

values compared to the intrinsic Wklm error estimates may be due to small mismatches in 

setting up the necessary optical subsystems (individual surfaces as independent optical 

models) as outlined in Chapter 4 for the calculation of the per surface, intrinsic and 

extrinsic Wklm coefficients.   

 For a first rotationally nonsymmetric test case using this TMA model, the tertiary 

mirror was decentered along the x-axis by +5 mm, and along the y-axis by the amount 

+1.0 mm and tilted by alpha = +0.0025 degrees, beta = +0.001 degrees.  (Only the 3
rd

 

mirror was decentered and tilted at this point to provide a less complicated perturbed 

optical system for debugging purposes.  A more complicated set of perturbations will be 

presented in the next example.)  Because the decenters and tilts only concern the last 
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mirror, only the tertiary mirror will have non-zero sigma vector values.  These are shown 

in Table 6.19. 

Table 6.19  Sigma values for mirror #3. 

Mirror # Sphere Sigma Asphere Sigma 

X Y X Y 
3 –0.055631 –0.009561 –0.036147 –0.007229 

 

 Using these sigma offset vector values, and the Wklm values listed in Table 6.13 

through Table 6.18 above, the Zernike astigmatism FFD was generated and compared to 

the FFD generated from the double Zernike expansion and the GQ method, as shown in 

Figure 6.26.  Figure 6.26(a) is a FFD plot generated by CODE V® version 10.5.  Figure 

6.26(b) is generated by using the double Zernike expansion and the GQ method for 

determining the expansion coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.26(c) was 

generated using the single Zernike expansion and the Wklm expansion coefficients.  The 

difference between the two FFD’s data, (b) – (c), is also shown in Figure 6.26(d).  The 

difference data’s  magnitude  values  have  a  maximum  difference  of – 0.001  waves,  a  

mean  of – 0.00006 waves and a STD of 0.0009 waves.  The difference data’s angle 

values have a maximum difference of 163.43 degrees, a mean of – 1.25 degrees and a 

STD of 9.46 degrees. 
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Figure 6.26  Comparison of Zernike astigmatism FFD data.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order, the Wklm expansion coefficients and the sigma vectors of Table 6.19.  (d) 

The difference between the Zernike astigmatism FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 

 

 The comparison of the Zernike coma FFD data is shown in Figure 6.27.  Figure 

6.27(a) is a FFD plot generated by CODE V® version 10.5.  Figure 6.27(b) is generated 

by using the double Zernike expansion and the GQ method for determining the expansion 
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coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.27(c) was generated using the single Zernike 

expansion and the Wklm expansion coefficients.  The difference between the two FFD’s 

data, (b) – (c), is also shown in Figure 6.27(d).  The difference data’s magnitude values 

have a maximum difference of 0.007 waves, a mean of 0.002 waves and a STD of 0.001 

waves.  The difference data’s angle values have a maximum difference of – 0.80 degrees, 

a mean of – 0.01 degrees and a STD of 0.21 degrees. 

 The comparison of the Zernike spherical FFD data is shown in Figure 6.28.  

Figure 6.28(a) is a FFD plot generated by CODE V® version 10.5.  Figure 6.28(b) is 

generated by using the double Zernike expansion and the GQ method for determining the 

expansion coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.28(c) was generated using the 

single Zernike expansion and the Wklm expansion coefficients.  The difference between 

the two FFD’s data, (b) – (c), is also shown in Figure 6.28(d).  The difference data’s 

magnitude values have a maximum difference of 0.001 waves, a mean of – 0.0003 waves 

and a STD of 0.0006 waves. 

 Although this may be considered a simple case, it was instrumental in debugging 

both the mathematical development presented in the previous Chapters and the computer 

programs used to implement the mathematical development. 
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Figure 6.27  Comparison of Zernike coma FFD data.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order, the Wklm expansion coefficients and the sigma vectors of Table 6.19.  (d) 

The difference between the Zernike coma FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 
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Figure 6.28  Comparison of Zernike spherical FFD data.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order, the Wklm expansion coefficients and the sigma vectors of Table 6.19.  (d) 

The difference between the Zernike spherical FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 
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 The next case to be used to check the theoretical development decenters and tilts 

all the surfaces of the optical model.  The primary mirror was decentered along the x-axis 

by – 0.5 mm, along the y-axis by + 0.01 mm, and tilted by alpha = – 0.001 degrees.  The 

secondary  mirror  was  decentered  along the x-axis by + 0.005 mm, and tilted by beta = 

– 0.001 degrees.  The tertiary mirror was decentered along the y-axis by 1.0 mm, and 

tilted by alpha = – 0.001 degrees.  The resulting sigma offset vectors are shown in Table 

6.20. 

Table 6.20  The sigma offset vectors. 

Mirror # Sphere Sigma Asphere Sigma 

X Y X Y 
1 –0.020942   0.012027   0.130218 –0.002604 

2 –0.035522   0.021389 –0.035425   0.020122 

3 –0.034464   0.009120 –0.034431   0.013513 

 

 The FFD comparisons for this perturbed model are now presented.  Using the 

sigma offset vector values in Table 6.20, and the Wklm values listed in Table 6.13 through 

Table 6.18, the Zernike astigmatism FFD was generated and compared to the FFD 

generated from the double Zernike expansion and the GQ method, shown in Figure 6.29.  

Figure 6.29(a) is a FFD plot generated by CODE V® version 10.5.  Figure 6.29(b) is 

generated by using the double Zernike expansion and the GQ method for determining the 

expansion coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.29(c) was generated using the 

single Zernike expansion and the Wklm expansion coefficients.  The difference between 

the two FFD’s data, (b) – (c), is also shown in Figure 6.29(d).  The difference data’s 

magnitude values have a maximum difference of 0.003 waves, a mean of 0.001 waves 
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and a STD of 0.0005 waves.  The difference data’s angle values have a maximum 

difference of – 2.6 degrees, a mean of – 0.54 degrees and a STD of 0.83 degrees. 

 
Figure 6.29  Comparison of Zernike astigmatism FFD data.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order, the Wklm expansion coefficients and the sigma vectors of Table 6.20.  (d) 

The difference between the Zernike astigmatism FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 
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Figure 6.30  Comparison of Zernike coma FFD data.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order, the Wklm expansion coefficients and the sigma vectors of Table 6.20.  (d) 

The difference between the Zernike coma FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 
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 The Zernike coma FFDs are presented in Figure 6.30.  Figure 6.30(a) is a FFD 

plot generated by CODE V® version 10.5.  Figure 6.30(b) is generated by using the 

double Zernike expansion and the GQ method for determining the expansion coefficients 

,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.30(c) was generated using the single Zernike expansion 

and the Wklm expansion coefficients.  The difference between the two FFD’s data, (b) – 

(c), is also shown in Figure 6.30(d).  The difference data’s magnitude values have a 

maximum difference of 0.5344 waves, a mean of 0.5335 waves and a STD of 0.0005 

waves.  The difference data’s angle values have a maximum difference of 1.61 degrees, a 

mean of 1.59 degrees and a STD of 0.01 degrees. 

 The Zernike spherical FFDs are presented in Figure 6.31.  Figure 6.31(a) is a FFD 

plot generated by CODE V® version 10.5.  Figure 6.31(b) is generated by using the 

double Zernike expansion and the GQ method for determining the expansion coefficients 

,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.31(c) was generated using the single Zernike expansion 

and the Wklm expansion coefficients.  The difference between the two FFD’s data, (b) – 

(c), is also shown in Figure 6.31(d).  The difference data’s magnitude values have a 

maximum difference of 0.001 waves, a mean of – 0.0003 waves and a STD of 0.001 

waves. 

 All these comparisons of the TMA’s FFDs and quantitative data show reasonably 

good agreement in all cases.  Further investigation and refinement to the implementation 

may be needed to better understand the non-zero 4
th

 order extrinsic expansion coefficient 

values for the secondary mirror of this model. 
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Figure 6.31  Comparison of Zernike spherical FFD data.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order, the Wklm expansion coefficients and the sigma vectors of Table 6.20.  (d) 

The difference between the Zernike spherical FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 
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6.4 TMA With Coma Free Pivot 

This example investigates a TMA optical imaging model having a coma free pivot of the 

secondary mirror.  A coma free pivot is a decenter and tilt that keeps the coma of the total 

imaging system very small.  The TMA of the previous section is used and so its 

unperturbed data (the Wklm expansion coefficients and FFDs for the unperturbed system) 

will not be repeated here.   

 The secondary mirror is decentered along the y-axis by +0.59255 mm and tilted by 

alpha = +0.041666 degrees.  The sigma offset vectors for this configuration are calculated 

to be as shown in Table 6.21. 

Table 6.21  Sigma offset vectors for coma free pivot model. 

Mirror # Sphere Sigma Asphere Sigma 
X Y X Y 

1   0.0   0.0   0.0   0.0 

2   0.0   0.046339   0.0 –0.045987 

3   0.0   0.042951   0.0   0.045389 

 

 The FFD comparisons for this model are now presented.  Using the sigma offset 

vector values of Table 6.21, and the Wklm values listed in Table 6.13 through Table 6.18 

of the previous section, the Zernike astigmatism FFD was generated and compared to the 

FFD generated from the double Zernike expansion and the GQ method.  The FFDs are 

presented in Figure 6.32.  Figure 6.32(a) is a FFD plot generated by CODE V® version 

10.5.  Figure 6.32(b) was generated by using the double Zernike expansion and the GQ 

method for determining the expansion coefficients 
,

,
H

H

m m

n nU 


.  The FFD plot Figure 6.32(c) 

was generated using the single Zernike expansion and the Wklm expansion coefficients.  

The difference between the two FFD’s data, (b) – (c), is also shown in Figure 6.32(d).  
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The difference data’s magnitude values have a maximum difference of 0.08 waves, a 

mean of 0.04 waves and a STD of 0.02 waves.  The difference data’s angle values have a 

maximum difference of – 0.1 degrees, a mean of – 0.000002 degrees and a STD of 0.06 

degrees. 

 
Figure 6.32  Comparison of Zernike astigmatism FFD data.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order, the Wklm expansion coefficients and the sigma vectors of Table 6.21.  (d) 

The difference between the Zernike astigmatism FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 
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 The Zernike coma and Zernike spherical FFDs were generated and compared to 

the FFDs generated from the double Zernike expansion and the GQ method.  These FFD 

comparisons are presented in Figure 6.33 and Figure 6.34, respectively. 

 
Figure 6.33  Comparison of Zernike coma FFD data.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order, the Wklm expansion coefficients and the sigma vectors of Table 6.21. 
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Figure 6.34  Comparison of Zernike spherical FFD data.  (a) Generated by CODE V®.  (b) 

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order, the Wklm expansion coefficients and the sigma vectors of Table 6.21. 

 

 Clearly there is not an agreement between the double Zernike and single Zernike 

calculated Zernike coma and Zernike spherical FFDs.  Since all the preceding examples 

gave reasonable agreements to the FFDs, including the Zernike astigmatism of this 
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example shown in Figure 6.32, it is unlikely that these mismatches are due to incorrect 

sigma offset vector values.  As pointed out earlier, it was observed that the 4
th

 order 

extrinsic Wklm values for the secondary mirror were not zero, as they should be.  See 

Table 6.15 and Table 6.17.  This may be an indication that some of the greater than 4
th

 

order extrinsic Wklm values are sufficiently different from their correct values and are the 

cause of the FFD mismatch issue. 

 A series of least squares fits were performed using the Zernike coma data of the 

FFD shown in Figure 6.33(b) with the single Zernike expansion’s Zernike coma field 

function through 8
th

 order, Eq. (4.49), the Wklm;j values of Table 6.15 and Table 6.16, and 

the sigma offset values of Table 6.21, in order to determine what changes to the Wklm;j 

values would correct this FFD mismatch issue.  Explicitly, the Zernike coma field 

function programmed for the least squares fit is given by 
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  (6.10) 
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where the sum over j is a sum over each of the 3 mirrors of the optical system.  Different 

combinations of the Wklm;j expansion coefficients in Eq. (6.10) were selected to be 

determined by the least squares fit, keeping the original values for all other Wklm;j 

coefficients as listed in Table 6.15 and Table 6.16.  In this way, it was discovered that 

only two Wklm;j coefficient values, 
151

IAW  and 
151

EAW , needed to be changed to produce a FFD 

plot similar to Figure 6.33(b).  The two new values, together with their original values, 

are presented in Table 6.22. 

Table 6.22  New asphere Wklm values for secondary mirror obtained by least squares fit (LSF) 

of FFD data of Figure 6.33(a) and the field function through 8th order.  (Units = waves.) 

Mirror # 
151

IAW
 

(Original) 

151

IAW
 

(LSF)
 

151

EAW
 

(Original) 

151

EAW
 

(LSF)
 

2 31.1538 12.77773 – 23.8655 – 5.49191 

 

The FFD comparison using the two new Wklm values listed in Table 6.22, and all of the 

other values listed in Table 6.15 and Table 6.16, is shown in Figure 6.35. 

 
Figure 6.35  Zernike coma FFD comparison using new Wklm values.  (a) Generated from real 

ray tracing OPD data from CODE V®, double Zernike expansion through 12th order, and the 

GQ method.  (b) Generated by using the single Zernike expansion through 8th order, the new 

Wklm expansion coefficients and the sigma vectors of Table 6.21. 
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 For the Zernike spherical term, a similar least squares fit process was used to 

search for the minimum number of Wklm;j values that needed to be changed, and their 

values, that would result in a FFD similar to Figure 6.34(b).  It was found that changing 

the following Wklm;j values in Table 6.17 to the values shown in Table 6.23 produced a 

similar FFD to that of Figure 6.34(b). 

 

Table 6.23  New asphere Wklm values for secondary mirror obtained by least squares fit (LSF) 

of FFD data of Figure 6.34(a) and the field function through 8th order.  (Units = waves.) 

Mirror # 
060

IAW
 

(Original)
 

060

IAW
 

(LSF)
 

060

EAW
 

(Original)
 

060

EAW   

(LSF) 

2 – 288.0319 – 37.7553 212.5216 – 37.7553 

 
240

IA

MW
 

(Original)
 

240

IA

MW
 

(LSF)
 

240

EA

MW
 

(Original)
 

240

EA

MW
 

(LSF)
 

2 – 0.4058 0.1440 0.5445 – 0.0053 

 

The FFD comparison using these Wklm values, and the other values in Table 6.17 and 

Table 6.18, is shown in Figure 6.36. 
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Figure 6.36  Zernike spherical FFD comparison.  (a) Generated from real ray tracing OPD 

data from CODE V®, double Zernike expansion through 12th order, and the GQ method.  (b) 

Generated by using the single Zernike expansion through 8th order, the new Wklm expansion 

coefficients and the sigma vectors of Table 6.21. 

 

 It should be pointed out that the Wklm;j values reported in Table 6.22 and Table 

6.23 should not be taken literally.  Consider one part of the wavefront expansion’s field 

function used in the least squares fit of Zernike coma (the sum over j and sigma vectors 

are omitted to keep the equation simple), 
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 . (6.11) 

By replacing 151

IAW  and 151

EAW  by variables 1C  and 2C , to be determined by the least 

squares fit, the equation becomes 
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effectively, as far as the fit is concerned, resulting in the equation 
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Therefore, from performing this least squares fit, it cannot be determined if 131

IAW , 171

IAW , 

171

EAW  are also incorrect or if some combination of these are incorrect.  Nor can it be 

determined by how much these coefficients are incorrect.  Similarly for the Zernike 

spherical Wklm values listed in Table 6.23.  Therefore, the values listed in Table 6.22 and 

Table 6.23 cannot be said to be the true values of the Wklm coefficients listed. 

 One question to be asked is: Why didn’t this issue manifest with the other TMA 

models shown previously?  The answer may be that the other models were dominated by 

4
th

 order coma and spherical aberrations while this model, due to the coma free pivot 

perturbation, reduces (or eliminates) the 4
th

 order coma and spherical aberration 

contributions to very small values, resulting in 6
th

 order coma and spherical values being 

on a par with or greater than 4
th

 order.  Thus the issue is seen in this coma free pivot 

model but not in the preceding models. 

 The other question to be asked is: What is the cause of the incorrect Wklm values 

for the secondary mirror?  It is hypothesized that this is most likely due to a mismatch in 
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the subsystem and per surface optical models created out of the original optical model 

that are necessary for the calculation of the per surface, per sphere/asphere, 

intrinsic/extrinsic Wklm values as described in Chapter 4.  This mismatch may be due to 

the way that the OPD values used in the GQ method are calculated for the subsystems 

and per surface models needed for the calculation of the Wklm;j expansion coefficient 

values.  Recall that the OPD values are calculated based on the placement of the image 

space reference sphere.  CODE V® uses the real ray trace of the chief ray intersection 

with the real ray traced OAR for the location of the exit pupil rather than using the 

idealized, static, Gaussian exit pupil location.  Then, when an aspheric surface is changed 

from an aspheric shape to a sphere shaped surface, the real chief ray will intersect the 

OAR ray at a different position.  Thus the reference sphere is different for the two surface 

shapes (asphere and sphere).  Additionally, the intersection of the real ray traced chief ray 

with the image plane will be different.  Thus the center of the reference sphere will also 

be different for the asphere and sphere cases.  Because of these differences in the 

reference sphere for the asphere and sphere cases, the resulting Wklm values will not be 

referenced to the same reference sphere and it may therefore not be appropriate to 

subtract the asphere and sphere Wklm values.  It is therefore suggested that the Wklm issue 

may be resolved by defining the OPD calculations (and thus defining the wavefront 

aberration function) to be based on reference spheres defined by the Gaussian exit pupil 

location and the Gaussian location of the chief rays’ intersection points in the Gaussian 

image plane.  In this way, the reference spheres are not altered when going from an 
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aspheric shape to a sphere shape.  The Wklm values will then be well defined and will 

have a common basis for their subtraction.   

 

6.5 A Three Mirror Anastigmat Telescope with Decentered Aperture Stop 

This example investigates an optical imaging model having a decentered aperture stop as 

the entrance pupil.  The model is based on that presented by Forbes and Menke [69].  The 

purpose of this example is to determine whether the mathematical formulation presented 

in Chapter 5 is suitable for application to decentered aperture optical imaging models, or 

if some other component or parameterization needs to be added. 

 Figure 6.37 from CODE V® (modified) presents the layout of the optical model 

used. 

 
Figure 6.37  Layout of optical imaging model having a decentered aperture stop as entrance 

pupil. 
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 The model is defined to have a HFOV of 1 degree.  The wavelength used with the 

model is 500 nm .  The entrance pupil has a diameter of 100 mm and is decentered from 

the MCA along the positive y-axis by +70 mm.  All three mirrors are conics.  The 

primary, secondary and tertiary mirrors have conic constants 0.792 , 6.1  , and 0.135 , 

respectively.  The other parameters for the optical model are presented in Table 6.24 

generated by CODE V®.  Surface #1 is a dummy surface (having no optical power) used 

to define the global coordinate system of the model. 

 

Table 6.24  Layout parameters for the optical imaging model. 

 

 

 For the rotationally symmetric case (the aperture stop is not decentered) the Wklm 

expansion coefficients were calculated.  The resulting values are presented in Table 6.25 

for the Zernike astigmatism term of the wavefront aberration function expansion through 

8
th

 order, rounded to the 5
th

 decimal position. 
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Table 6.25  Per surface expansion coefficients. IS = intrinsic sphere, IA = intrinsic asphere, 

ES = extrinsic sphere, EA = extrinsic asphere.  GQ = values from Gaussian quadrature.  FF = 

values from fifthdef/FORDER.  (Units = waves.) 

Wklm GQ/FF Primary Secondary Tertiary 

222

ISW  GQ   1.44441 −0.64760     9.88228 

FF   1.4444 −0.6476     9.8823 

222

IAW  GQ −0.87585   3.67412 −13.22655 

FF −0.8759   3.6741 −13.2265 
.

222

I TotW
 

GQ   0.56825   3.02652   −3.34427 

FF   0.5686   3.0265   −3.3443 

222

ESW  GQ   0.0   0.0     0.0 

222

EAW  GQ   0.0   0.0     0.00002 

.

222

E TotW
 

GQ   0.0   0.0     0.00002 

242

ISW  GQ −0.01837   0.02611   −0.33636 

FF   0.0324 −0.1058   −0.1010 

242

IAW  GQ   0.18643 −0.39656     1.24415 

FF   0.0896 −0.2750     0.4604 
.

242

I TotW
 

GQ   0.16806 −0.37045   −0.90779 

FF   0.1220 −0.3807     0.3594 

242

ESW  GQ   0.0 −0.05981     0.04781 

242

EAW  GQ   0.0   0.18864   −1.01611 

.

242

E TotW
 

GQ   0.0   0.12883   −0.96830 

FF   0.0   0.7861   −1.0185 

422

ISW  GQ −0.00044 −0.00344   −0.20483 

FF −0.0004   0.0160     0.0025 

422

IAW  GQ   0.00064   0.00520     0.26627 

FF   0.0004 −0.0103   −0.0415 
.

422

I TotW  GQ   0.00019   0.00175     0.06144 

FF   0.0   0.0057   −0.0390 

422

ESW  GQ   0.0 −0.00178     0.10669 

422

EAW  GQ   0.0 −0.00242   −0.17188 

.

422

E TotW  GQ   0.0 −0.00420   −0.06520 

FF   0.0 −0.0027     0.0356 
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Table 6.26  Per surface expansion coefficients. IS = intrinsic sphere, IA = intrinsic asphere, 

ES = extrinsic sphere, EA = extrinsic asphere.  (Units = waves.) 

Wklm Primary Secondary Tertiary 

262

ISW    0.00059 −0.00064     0.01086 

262

IAW  −0.00752   0.04553     0.00589 

.

262

I TotW
 

−0.00693   0.04489     0.01675 

262

ESW    0.0   0.02038   −0.03829 

262

EAW    0.0 −0.04128   −0.00699 

.

262

E TotW
 

  0.0 −0.02090   −0.04528 

422

ISW  −0.00044 −0.00344   −0.20483 

422

IAW    0.00064   0.00520     0.26627 

.

422

I TotW
 

  0.00020   0.00176     0.06144 

422

ESW    0.0 −0.00178     0.10669 

422

EAW    0.0 −0.00242   −0.17188 

.

422

E TotW
 

  0.0 −0.00420   −0.06519 

442

IS

MW  −0.00001   0.00005     0.02884 

442

IA

MW  −0.00022 −0.00442   −0.03278 

.

442

I Tot

MW
 

−0.00023 −0.00437   −0.00394 

442

ES

MW    0.0   0.00082   −0.03858 

442

EA

MW    0.0   0.01016     0.03321 

.

442

E Tot

MW
 

  0.0   0.01098   −0.00537 

622

ISW    0.0   0.00001     0.00291 

622

IAW    0.0 −0.00020   −0.00328 

.

622

I TotW
 

  0.0 −0.00019   −0.00037 

622

ESW    0.0   0.0   −0.00244 

622

EAW    0.0   0.00005     0.00336 

.

622

E TotW
 

  0.0   0.00005     0.00092 
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 The following graph shows the estimate of computational error for the 
,

,
H

H

m m

n nU 


 

expansion coefficients is at most 119 10   waves. 

 
Figure 6.38  Upper bound error estimate of the double Zernike expansion coefficients. 

 

 Using this value, the estimate of error for the Wklm expansion coefficients was 

calculated and is presented in the bar chart of Figure 6.39. 

 
Figure 6.39  Estimate of errors in the Wklm expansion coefficient values. 
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 With some exceptions the through 8
th

 order Wklm coefficients have an estimated 

computational error of approximately 710  waves or less. 

 Note that the value of 222;3

EAW , a 4
th

 order extrinsic expansion coefficient, is not 

exactly zero, as it theoretically should be.  (As mentioned in Chapter 4, all 4
th

 order 

extrinsic Wklm values should be identically zero.)  This suggests that the accuracy of the 

calculated extrinsic Wklm values may not be better than 510  waves.  

 With the aperture decentered, the sigma offset vectors were calculated.  Since the 

decentering is along the positive y-axis, all the x components of the sigma vectors will be 

zero and are therefore not listed. 

Table 6.27  Normalized sigma offset vectors’ y components. 

Mirror 

# 

S

y  
A

y   

1 −26.8322   28.6450 

2 −11.8987     2.6975 

3     0.2823   −3.2057 

 

 It is concerning that most of the normalized sigma offset vectors’ y-components 

are greater than one in absolute value.  It may be that the convergence of the aberration 

function expansion significantly changes when the sigma offset vectors have magnitudes 

greater than one.  Or, due to the limited accuracy of the Wklm expansion coefficients, the 

resulting numeric value of the field terms may be significantly different from their true 

values.  For example, for the Zernike astigmatism term,  2

2Z  , the field dependent 

factors are all of the form 

  
2

2

2

s

klF W H H


  , (6.14) 
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where s is a positive integer or zero.  The magnitude of the term goes as 2s+2.  For the 

through 8
th

 order expansion being used, s is at most 2 and so the maximum power of H is 

6.  When following the NAT prescription for introducing the sigma offset vectors, 

jH H   ,  

       
2

2

s

kl j j jF W H H H


       . (6.15) 

Expanding the resulting equation, a term of the form  
2

2

2

s

kl j jW


   will appear.  For s = 

2, the sigma vector magnitude will then also have a power of 6.  Using 28y  , from 

Table 6.27 of sigma values, the sigma factor will have an order of  magnitude of 

  
6 828 10O    . (6.16) 

If the Wklm values are accurate out to the 7
th

 decimal position, then the resulting 

contribution to the overall field dependence may be off by tens of waves.  A similar result 

is obtained when using the estimate of error for the extrinsic Wklm values ( 510  waves) 

and mirror #2’s sigma y-component value ( 12 ).  For such cases, when the sigma offset 

vector components are large, the practical rule of thumb that 1/100
th

 waves is sufficient 

for Wklm values is not valid.  Even if the rounded to 5
th

 order Wklm values in Table 6.25 

are used with the 28y   value, the resulting error is of the order of 310  waves.  That is, 

thousands of waves in error. 

 A comparison of the Zernike astigmatism  2

2Z   FFDs shows a significant 

mismatch. 
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Figure 6.40  Comparison of Zernike astigmatism  2

2Z   FFDs.  (a) Generated by CODE V®.  

(b) Generated from real ray tracing OPD data from CODE V®, double Zernike expansion 

through 12th order, and the GQ method.  (c) Generated by using the single Zernike expansion 

through 8th order, Wklm expansion coefficients, and sigma offset vectors. 

 

 Whether the mismatch is due to a convergence issue and/or an accuracy issue, or 

some other factor, is not clear.  Note that the Wklm values actually used in creating the 

FFDs were calculated to the 8
th

 decimal position. 
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 A modification to the mathematical framework of Chapter 5 such that two 

additional sigma offset vectors are defined was investigated.  There would then be a total 

of four sigma offset vectors, one for each type of Wklm expansion coefficient (intrinsic 

sphere, intrinsic asphere, extrinsic sphere, and extrinsic asphere).  A Matlab® function 

was written, utilizing the built-in nonlinear least squares fit function provided with 

Matlab®, to obtain values for the new per surface extrinsic sphere and extrinsic asphere 

sigma offset vectors.  The input to the fit was the FFD data that produced the FFD shown 

in Figure 6.40(b), the original Wklm values (not the rounded values of Table 6.25), the two 

known sigma offset values of Table 6.27 used as the intrinsic sphere and intrinsic asphere 

sigma vectors, and the single Zernike wavefront aberration function expansion through 

8
th

 order for the Zernike astigmatism term,  2

2Z  .  A parameter to the fit program 

specified the interval within which to search for the 6 new y-component extrinsic sigma 

values (3 surfaces × 2 new sigma vectors = 6 component values to find).  The fit was run 

many times, varying the search interval from ±1 to ±300, in various increments ranging 

from 0.1 to 10 depending on the interval specified.  No values were found that 

significantly improved the FFD comparison shown in Figure 6.40.   

 Another attempt was made using the nonlinear least squares fit program, but this 

time without using any of the known sigma values.  That is, the program was modified to 

find all 12 y-components of the sigma vectors (3 surfaces × 4 different sigma types = 12).  

In this case, values for the sigma vectors that produced better matches to the FFD shown 

in Figure 6.40(b), were obtained.  However, the resulting sigma values were not unique.  

That is, varying the fit interval parameters resulted in greatly differing sigma values while 
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still producing better FFD matches than that shown in Figure 6.40.  Because unique 

(stable) values could not be determined the resulting sigma values where considered to be 

unreliable, and so they could not be used to relate the new values obtained to the optical 

model in any meaningful way.  Further investigation concerning the introduction of new 

sigma vectors was then abandoned.   

 An alternative approach that has had some success in addressing the issue of 

optical systems with a decentered pupil has been published in the literature [70, 71].  In 

their approach, a new decentered pupil vector is introduced into the pupil parameters of 

the wavefront aberration function expansion rather than attempting to adjust the field 

parameters.  Further details can be found in the papers cited. 
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Equation Chapter (Next) Section 1 

Chapter 7 Extending NAT For Freeform Optical Elements 

An approach for the development of mathematical expressions for the field dependence 

associated with freeform optical elements, a result of this research, using the techniques 

of NAT is proposed in this Chapter.  Examples will be shown that utilize the derived 

expressions and qualitative and quantitative comparisons of the FFDs are made.  Early 

results sufficient to suggest that this approach may be useful are provided leaving a more 

detailed and exhaustive analysis for future research. 

 In this work, a freeform optical element will mean a circular optical element that 

has a rotationally nonsymmetric smooth surface shape beyond the anamorphic shape.  

Since the Zernike polynomials are complete over a unit radius disk, the mathematical 

description of such a surface can be represented by a sum of Zernike polynomials.   

 

7.1 NAT and Freeform Optical Surfaces 

An asphere is defined by the sag equation 

 
 

2
4 6

4 6
2 21 1 1

Asphere

c
z A A

c


 

 
   

  
 , (7.1) 

where
1

c
r

  is the curvature of the surface, r being the radius of curvature for the surface 

at the surface’s vertex point,   is the conic constant, 
2 2 2x y   , and 4A , 6A , etc. are 

constant coefficients.   
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 In NAT, the contribution to the field dependence of a term in the expansion of the 

wavefront aberration function due to an aspheric surface is separated into the contribution 

due to a base sphere shape of the optical element plus the field dependence due to the 

remaining aspheric cap terms.  The sag of a spherical surface  0   is given by  

 
2

2 21 1
sphere

c
z

c






 
 . (7.2) 

Using Eq. (7.2) in Eq. (7.1), the base sphere shape of the asphere can be separated from 

the aspheric terms as follows, 

 
 

2 2 2
4 6

4 6
2 2 2 2 2 21 1 1 1 1 1 1

Asphere

c c c
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c c c

  
 

   
     

      

 . (7.3) 

Using the expansion 
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  , (7.4) 

the second and third terms of Eq. (7.3) can be written as 
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Matching like terms on the right hand side gives 

 
 

 

    
  

2 2
1 2 1 2
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 .  (7.6) 

The asphere sag equation can then be written as 
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This can be written as 
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and as 
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where 
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Since Eq. (7.9) has no azimuthal angle dependence it can also be written as 

  
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  , (7.11) 

where 0

2nC  are the Zernike polynomial expansion coefficients, and max  is the maximum 

radial extent of the surface.  Note that because only the m = 0 Zernike polynomials are 

used in Eq. (7.11), there is no azimuthal angle dependence. 

 For a freeform optical element, the remaining Zernike polynomials, those having 

an azimuthal angle dependence, are added to either Eq. (7.9) or to Eq. (7.11).  That is 

  
2

2

2 max
2 2

2 1
2

0

/
1 1

n
n m m

freeform n n n

n n m n
m m
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c
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    , (7.12) 

or 
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where the summation over m is such that n m n   , 0m  , and m changes in 

increments of +2. 

 To aid in the description of the method to be presented in the remainder of this 

section, and for explicit illustration purposes, the field function for the  2

2Z   term in 

the wavefront aberration function expansion Eq. (4.49) will be used, through 6
th

 order.  

(The “through 6
th

 order” restriction is too restrictive for some calculations, as will be 

pointed out below.)  The field function is then written, for some fixed but arbitrary 

optical element in the optical imaging system (suppressing the surface number “j” 

subscript), as  

  
2

2 2

2 222 242 422

1 3 1

2 8 2
F W W W H H



  
    

  
 . (7.14) 

After relabeling the expansion coefficients and distributing the Shack vector product, this 

can be written as 

    
2 2

2 2

2 1 2F V H V H H
 

   . (7.15) 

If the surface is an asphere, then, according to NAT, the field function is given in two 

parts, one for the base sphere shape contribution and one for the aspheric cap shape 

contribution, 

        
2 2 2 2

2 2 2

2 1 2 1 2

S S A AF V H V H H V H V H H
   

      
      

 . (7.16) 
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 Continuing in a similar way to separate out different surface shape contributions 

to the field function, an assumption is made that the field contribution due to any number 

of rotationally symmetric terms added to the base sphere shape can be separated into their 

individual term’s field contributions.  See Figure 7.1 where terms of the form 2

2A  , 

4

4A  , and 6

6A   are added to the base sphere.  Any rotationally symmetric term of the 

form 
n  where n is a real number, 2n   could be added to the base sphere. 

 
Figure 7.1  Separation of the surface shape into a sphere base shape plus individual 

rotationally symmetric terms.  The additional terms will contribute different amounts to the 

wavefront aberration function for the surface considered.  The A2, A4, A6 are the shape 

coefficients used to defined the additional term shapes.   2 2x y     

 

Each separate additional term will contribute a different amount to the overall surface’s 

field function, and each term having its own expansion coefficient.  Assuming that the 

surface has been defined with n additional terms, there are then n rotationally symmetric 

term contributions to the field function.  The field function is then written as 
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 , (7.17) 

where the n  V222(i)’s and n  V422(i)’s are new expansion coefficients.  The subscript 

notation for the expansion coefficients ( )klm iV  is such that k is the total power of the field 

parameter H, l is the total power of the pupil parameter ρ for which, in this example, 
2

2F  

is its field function, m is the power of SVP in field and pupil parameter and i is a 

sequential numbering of the rotationally symmetric additional terms being added to the 

sphere base shape.  Note that there may be multiple copies of terms having the same   

dependence.  For example, the additional terms may include two separate surface shape 

contributions, 
4 42  , or even 

4 42 2  .  In the latter case, there is no net surface 

shape change, but each term is still to be considered as a separate surface added to the 

base sphere and contributing equal but opposite amounts to the field function. 

 It is known from NAT that if an aspheric cap is decentered, the resulting field 

function is obtained by introducing a   offset vector, defined in the total system’s object 

plane, into the field dependence of the vector field function.  The decenter vector of the 

aspheric cap at surface j is denoted by the   symbol.  The   offset vector is obtained by 

normalizing and projecting the   decenter vector to the local image plane of surface j 

and then potentially adjusting the sign to account for the possible orientation difference 

between the system’s object plane and the local image plane.  This potential sign 

adjustment moves the offset vector to the total system’s object plane.  See Chapter 5 for 

details.   
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 It is now assumed that the individual additional surface shape terms being added 

to the sphere base shape may be separately and independently decentered radially away 

from the MCA (the z-axis) in a similar way that an aspheric cap is decentered in NAT.  

That is, the vertex of each of the additional terms may be decentered away from the 

MCA, remaining in the xy-plane, by different amounts and in different directions given 

by i  decenter vectors in the surface’s vertex plane.  Note that the case that one or more 

of the additional terms are not decentered is allowed by setting the corresponding i  

decenter vectors to be zero vectors.  This is illustrated in Figure 7.2. 

 
Figure 7.2  Some, not all, of the additional surface shape terms, considered as individual 

surface contributions, are decentered in the xy-plane.  The amount of and direction of the 

decentering is specified by the i  offset vectors, which is the zero vector for the additional 

surface shape terms that are not decentered. 

 

Letting Ai  represent the normalized offset vector in the total system’s object plane for 

additional surface shape term i, the field function can then be written as 
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 . (7.18) 

Eq. (7.18) describes the field dependent contribution of a surface having multiple 

additional surface shape terms, some of which may be individually decentered from the 

MCA, some of which may not be decentered, but for which as a whole the optical 

element is not decentered from the MCA. 

 As a specific example, consider a sphere shaped surface defined with an 

additional  3

3Z 
 “cap”, where  ,x y   is the normalized radial vector from the z-

axis to the surface.  The  3

3Z 
 cap may represent the effect of a 3 point mechanical 

mounting system’s deformation of an optical element’s surface shape as described in 

[72].  Using the x-axis as the axis of reference, and from Table IV.5 in Appendix IV, this 

Zernike polynomial can be written as a sum of decentered rotationally symmetric surface 

shape terms as follows. 

      3 3 3 3 3 3 3

3

1 1 3 1 3 1 3 1 3
1,0 1,0 , , , ,

12 2 2 2 2 2 2 2 2
Z r P P P P P P

           
                      

        
 , (7.19) 

where, as discussed in Appendix IV, 

      
2 2

,
n

nP x y x x y y       
 

 , (7.20) 

is the equation for the decentered shape terms.  There are then 6 decentered terms to 

define the Zernike polynomial  3

3Z 
.  Note that because this decomposition of the 
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Zernike polynomial decenters each term radially out to the perimeter of the Zernike 

polynomial’s unit radius disk, that is, because 
2 2 1x y   , then  ,norm x y    are 

normalized decenter vectors at the optical surface.  The position of each of the 6 

decentered terms that defines this Zernike polynomial is illustrated in Figure 7.3. 

 
Figure 7.3  Position of 6 decentered additional shape terms around the unit radius Zernike 

disk to define  3

3Z 
 . 

 

To calculate the decentered additional shape terms’ normalized sigma vectors to be used 

in the wavefront aberration function’s expansion field functions, the sign of the chief ray 

height at the surface with respect to the sign of the chief ray height at the system’s object 

plane needs to be taken into consideration.  Then, as with NAT’s sigma offset vectors 

described in Chapter 5, 

 

   

    

; sgn sgn

sgn sgn ,

Obj Surf

Ai j Tot j norm

Obj Surf
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HCY HCY

HCY HCY x y



 
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  , (7.21) 

where subscript “i” identifies which decentered additional term, subscript “j” identifies 

the surface,  Obj

TotHCY  is the chief ray height at the total system’s object plane (which may 

be infinite) and 
Surf

jHCY  is the chief ray height at surface j.   
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 Further noticing that the decentered additional surface shape terms occur in 

diametrically opposite positions around the perimeter of the unit radius disk, there are 

then only 3 Ai  offset vectors up to sign.  All the Ai  offset vectors are known from Eq. 

(7.19) and Eq. (7.21).  Not only are the positions of the decentered additional term pairs 

positioned diametrically opposite from one another, they have opposing sag shapes due to 

the alternating “+” and “−” signs in front of the terms in Eq. (7.19).  Since the shapes are 

otherwise the same, for the specific example of Eq. (7.19), their contributions to the field 

dependence is assumed to be the same up to sign.  The field function then becomes 
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where, for this specific example, from Eq. (7.19),  

     1 sgn sgn 1,0Obj Surf

A Tot jHCY HCY    , (7.23) 

    2

1 3
sgn sgn ,

2 2

Obj Surf

A Tot jHCY HCY
 

   
 

 , (7.24) 
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    3

1 3
sgn sgn ,

2 2

Obj Surf

A Tot jHCY HCY
 

   
 

 . (7.25) 

 In this, Eq. (7.22), form, there are 6 unknown expansion coefficients, V222(1) 

through V222(3) and V422(1) through V422(3).  A least squares fit to FFD data obtained by real 

ray tracing has been performed to obtain these 6 coefficients for the example being 

described.  Prior to performing the fit, and for this specific case of Eq. (7.19) defining the 

6 additional decentered surface shape terms, it was hypothesized that all the V222(i) 

coefficients should be the same and all the V422(i) coefficients should be the same.  This 

again is based on the idea that each of the 6 decentered surface shape terms are the same 

shape and should therefore contribute the same amount to the field dependence, up to 

sign.  The resulting 6 values obtained from the least squares fit for the coefficients 

confirmed this hypothesis.  (Explicit results will be shown in the next section.)  

Therefore, the field dependent vector function for the  2

2Z   pupil term of the wavefront 

aberration function expansion for a sphere shaped optical element having an additional 

 3

3Z 
 cap shape is given by, 
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
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      
  

       
  

      
  

       

      
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222 3 422 3 3 3

A A A

A A A A

A A A A

H H

V H V H H H

V H V H H H



 

 

  

   

   

   
  

      
  

      
  

 . (7.26) 

 This equation has only 2 unknown expansion coefficients V222 and V422.  These 2 

coefficients are related to the strength (a.k.a. amplitude or amount) of the Zernike 

polynomial that is added to the base sphere surface.  An explicit equation for coefficients 

V222 and V422 in terms of the Zernike polynomial strength (and other system and surface 

specific parameter values) would be very useful, allowing for the determination of the 

coefficients without the need for additional ray tracing and fitting.  The determination of 

coefficients V222 and V422 may be incorporated into the determination of the Wklm 

expansion coefficients since both, in this work, require real ray tracing data and some 

form of data fitting.  Alternatively, the paper by Fuerschbach, et al., [72] provides an 

alternative way to calculate the coefficients.  This then allows for the quantitative 

prediction of the change in the aberration function’s field dependence when one or more 

Zernike polynomials are added to the shape of an optical element.  Even without knowing 

the values of the V222 and V422 coefficients, the form of the contribution to the field 

dependence due to an additional Zernike cap has here been determined. 
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 When the surface to which the Zernike polynomial is to be added is not a 

spherical shape, i.e. aspheric shape, then the field dependence for the  m

nZ   aberration 

expansion term would be written as 

       m

n original surface
F Sphere Base Aspheric Cap Zernike    , (7.27) 

where the [Sphere Base] + [Aspheric Cap] components are treated as in previous 

Chapters and the [Zernike] component is treated as described in this section, adapted for 

the specific field function of the  m

nZ   aberration expansion term of interest.  It is to be 

understood that the [Zernike] component does not include the rotationally symmetric 

Zernike polynomials.  The rotationally symmetric Zernike polynomials are included in 

the [Aspheric Cap] as discussed during the development of Eq. (7.12) and Eq. (7.13). 

 It may be the case that the change in the field dependence due to the added 

Zernike polynomial(s) is not well reproduced by the through 6
th

 order of the total 

wavefront aberration limitation imposed in the above example (the field function of the 

 2

2Z   term).  In that case, the next higher order field dependent term can be included 

into the field function just for the Zernike surface shape contributions.  This would, for 

example, introduce a third expansion coefficient, “V622”, into the above example. 

 When the freeform optical element as a whole is decentered (meaning the base 

sphere, aspheric terms, and the additional non-rotationally symmetric Zernike polynomial 

terms are decentered as a single element) the field dependence of the field function is 

shifted, as prescribed by NAT, by the sigma offset vectors.  The sphere sigma offset 

vector, 
S , is used for the base sphere’s field terms and the aspheric cap sigma offset 
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vector, 
A , is used for the aspheric caps and for the decentered term’s field contributions 

associated with the Zernike caps written as decentered surface shape terms.  Continuing 

with the example above,  3

3Z 
 added to a base sphere shaped element, this gives 
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          
  

        
2

3 3

A A

A AH H


       
  

 .(7.28) 

 Note that in writing Eq. (7.28) a restriction was implicitly made that the surface to 

which the Zernike cap is being added to is the first optical surface in the optical system.  

This was done to keep the example simple at this point.  That is, all the extrinsic 

contributions are zero.  Including the extrinsic contributions is mentioned later in this 

section. 

 These developments should, at present, be considered speculative rather than 

rigorously derived.  However, as the examples in the next section of this Chapter will 

show, the resulting FFDs using the above development match the FFDs obtained by real 

ray tracing to a high degree. 

 This example (adding a  3

3Z 
 surface shape to a base sphere shaped optical 

element) also illustrates a potential practical limitation to this method.  Each additional 



  211 

non-rotationally symmetric Zernike polynomial used to define the optical surface will 

add additional decentered terms and new expansion coefficients.  The number of terms 

could become overwhelming quickly for surfaces requiring several Zernike polynomials 

for their shape description.  However, by using GA of Chapter 2, and for this specific 

case of adding a  3

3Z 
 cap shape to an optical surface, it can be shown (see Appendix 

VI) that Eq. (7.26) greatly simplifies because 

 

       
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  (7.29) 

and  
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     

        


       

       


,  (7.30) 

where the following notation is used 

  * ,x yH H H   . (7.31) 

That is, Eq. (7.26) reduces to  

    
2 2

2 2 *

2 1 2 4226S SF V H V H H V H
 

   
  

  (7.32) 

This field dependence due to the addition of a  3

3Z 
 cap shape onto an optical element 

has been named “field linear, field conjugate astigmatism” in the literature [72].  In the 

2D vector plane, a vector of the form as given in Eq. (7.31) is simply a reflection of the 
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vector  ,x yH H H  about the x-axis, accomplished using GA, as shown in Chapter 2, 

by 

 
*

1 1
ˆ ˆH e He  . (7.33) 

 In a similar way, the field contribution to the Zernike astigmatism term’s field 

dependence for other Zernike cap shapes can be calculated.  A small selection is 

presented in Table 7.1.   

 

 

Table 7.1  Field contributions to Zernike astigmatism term due to Zernike cap. 

Zernike Cap 

 m

nZ 
 

Vector Field Contribution To 

Zernike Astigmatism Term 

Shorthand Notation 

 2

2Z 
    2 2

222 422 4224 ,0 12 ,0x yV V V H H     *

42212const xV V H H   

 2

2Z 
    2 2

222 422 4224 0, 12 0, x yV V V H H     *

42212const xV V H H   

 3

3Z 
  4226 ,x yV H H     

*
1

*

422 4226 6
x

V H V H   

 3

3Z 
  4226 ,y xV H H    

1

422 4226 6
x

V V HH    

 4

4Z 
  2 2

6228 , 2x y x yV H H H H      
*

2

6228
x

V H   

 4

4Z 
  2 2

6228 2 ,x y x yV H H H H    
2

6228
x

V H   

 

In Table 7.1, the notation  ,y xH H H  has been used.  Note that for  4

4Z 
 and 

 4

4Z 
, the restriction of using through 6

th
 order expansion needed to be removed to 

obtain a non-zero field contribution.  The through 8
th

 order Zernike astigmatism 
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expansion term has been used for  4

4Z 
 and  4

4Z 
, hence the appearance of the 

expansion coefficient “V622” mentioned previously.  

 Note that the coefficients in each row of Table 7.1 are independent of any 

coefficients in any of the other rows in the Table.  That is “V422” in the  3

3Z 
 row is not 

the same as the “V422” coefficient in the  3

3Z 
 row.   Therefore, if both  3

3Z 
 and 

 3

3Z 
 Zernike caps are to be added to the shape of an optical element, then the 

resulting additional field contribution should be written using an apostrophe on one of the 

“V442” coefficients.  For example, this could be written as 

 
*

. 422 4226 6Z CapF V H V H   , (7.34) 

where 422V  would not necessarily have the same value as 422V  .  Of course, any other 

notational device could be employed to make it clear that the coefficients in one row of 

Table 7.1 are not the same as the coefficients in any other row. 

 By defining the vector 

  422 4226 , 6C V V   , (7.35) 

it can be shown that (see Appendix VI) 

 
* *

. 422 4226 6Z Cap xF V H V H C H    . (7.36) 

This is the form of the field linear, field conjugate astigmatism field contribution 

presented in [72].  However, in [72] the y-axis is used as the reference axis for SVP 

whereas Eq. (7.36) is written using the x-axis as the reference axis. 
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 The approach being described in this Chapter may not be limited to using Zernike 

polynomials for the description of the freeform surface shape.  It may be that any 

rotationally symmetric shape could be utilized as the surface shape terms added to the 

sphere base shape of the optical element.  However, at this point, this is only speculation 

and left for future research to explore. 

 It may be the case that there is an extrinsic aberration contribution to be 

considered due to the Zernike cap added to an otherwise rotationally symmetric optical 

element.  This may occur when the optical element to which the Zernike cap is to be 

added is not the first optical element in the imaging system.  Following the NAT 

treatment of an aspheric cap leads to the possibility that the Zernike cap aberration 

contribution may split into an intrinsic and an extrinsic contribution.  Then the 

application of NAT’s sphere and aspheric sigma offset vectors may be grouped as 

 

        

     .

Sphere Sigma
Intrinsic Extrinsic Extrinsic Extrinsicm

n Original

Asphere Sigma
Intrinsic Intrinsic

Original

F Sphere Base Sphere Base Aspheric Cap Zernike

Aspheric Cap Zernike

    

   (7.37) 

It is to be understood that the “[Zernike]” mentioned in Eq. (7.37) excludes any of the 

rotationally symmetric Zernike polynomials because the rotationally symmetric Zernike 

polynomials are to be considered part of the surface’s aspheric cap.  See the discussion 

associated with the development of Eq. (7.12) and Eq. (7.13) for a freeform optical 

surface.  The implementation of Eq. (7.37) would require repeating the terms associated 

with the Zernike cap in the field function and additional coefficients for the 

 
Extrinsic

Zernike  contributions that are obtained during the fit for the other Zernike-as-

decentered-terms expansion coefficients. 
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7.2 Examples of NAT and Zernike Defined Freeform Optical Surfaces 

In this section, several examples introducing a new way of applying NAT to optical 

imaging systems having an optical element with a Zernike freeform surface definition are 

provided.  It is suggested that this may be a fruitful way to determine the form of the field 

functions for freeform optical elements. 

 

Two Mirror Optical System with a Zernike Primary 

Figure 7.4 from CODE V® (modified) shows the configuration of the two mirror 

telescope model used.  The model is initially rotationally symmetric.  A Fringe Zernike 

polynomial    3

10 3Z Z   is added to the spherical primary mirror, surface #2.  The 

Zernike coefficient is 0.075  mm and the Zernike normalization radius is 75 mm .  

 
Figure 7.4  Two mirror system with Fringe Zernike surface on primary mirror. Surface 2 is 

the primary mirror having a base sphere shape plus a Zernike polynomial cap, surface 3 is 

the secondary mirror, and surface 4 is the image plane. 
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The entrance pupil has a diameter of 150 mm.  The HFOV is 0.6 degrees.  The secondary 

mirror is a conic with a conic constant 2.915 .  The wavelength is 632.8 nm .  Table 7.2 

produced by CODE V® presents the other system parameters. 

Table 7.2  Two mirror optical system's parameters. 

 

 

 The resulting Zernike astigmatism,     2 2

2 2,Z Z   , FFD is presented in Figure 

7.5. 

 
Figure 7.5  FFD of Zernike astigmatism term created by using real ray tracing, GQ, and 

double Zernike equation Eq. (4.53). 

 

 Removing the Zernike cap from the primary mirror, the Wklm coefficients were 

calculated for the rotationally symmetric optical model.  Those associated with the 
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Zernike astigmatism term through 6
th

 order are given in Table 7.3 showing that only the 

4
th

 order coefficient values are significant for this model.  

 

Table 7.3  Zernike astigmatism related Wklm coefficients through 6th order. (Units = waves.) 

Surface 

Number 

 

Wklm 

Intrinsic Extrinsic 

Sphere Asphere Sphere Asphere 

2 W222   1.2947   0.0   0.0   0.0 

2 W242 −0.0260   0.0   0.0   0.0 

2 W422 −0.0002   0.0   0.0   0.0 

3 W222 −1.0770   0.7154   0.0   0.0 

3 W242   0.0595 −0.0034 −0.0364   0.0023 

3 W422 −0.0001   0.0   0.0   0.0 

 

 The normalized Ai  decenter vectors, introduced in the preceding section, for 

 3

3Z 
 using the x-axis as the reference axis, are obtained from Table IV.5 in Appendix 

IV and are 

  1 1,0A    , (7.38) 

 
2

1 3
,

2 2
A

 
   
 

 , (7.39) 

 3

1 3
,

2 2
A

 
   
 

 . (7.40) 

 Using the plot data that produced the FFD of Figure 7.5 and a least squares fit 

with Eq. (7.26) for the field dependent vector function for a sphere surface having an 

additional  3

3Z 
 cap shape provided, as explained in previous section, the six total 

V222(i), V422(i) expansion coefficients.  As can be seen in Table 7.4, there are actually only 
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2 different coefficient values, providing some confirmation of the development presented 

in the previous section. 

 

Table 7.4  Least squares fit determined expansion coefficients. (Units = waves) 

 i = 1 i = 2 i = 3 

V222   0.0197   0.0197   0.0197 

V422   0.0493   0.0493   0.0493 

 

 Using the field vector function Eq. (7.26) developed in the previous section of this 

Chapter for the application of NAT to optical systems with Zernike defined freeform 

optical surfaces, the FFD shown in Figure 7.6(c) was produced.  Figure 7.6(a) is a FFD 

plot generated by CODE V® version 10.5.  Figure 7.6(b) is generated by using the 

double Zernike expansion and the GQ method for determining the expansion coefficients 

,

,
H

H

m m

n nU 


.   
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Figure 7.6  Comparison of Zernike astigmatism FFDs for two mirror optical system having a 

Zernike freeform surface defined primary mirror.  (a) Generated by CODE V®.  (b) Repeat 

of Figure 7.5, (c) Plot calculated by Eq. (7.26) using Wklm and Ai  decenter vectors.  (d) The 

difference between the Zernike astigmatism FFD data generated by the double Zernike 

expansion and the single Zernike expansion using the calculated Wklm values, (b) – (c). 

 

 

 This plot, Figure 7.6(c), visually matches the FFD of Figure 7.5 (repeated as plot 

(b) in Figure 7.6).  For a quantitative comparison, the difference between the two FFD’s 



  220 

data is also shown in Figure 7.6(d).  The difference data’s magnitude values have a 

maximum difference value of – 0.003 waves, a mean of 0.00003 waves, and a STD of 

0.0001 waves.  The difference data’s angle values have a maximum difference of – 5.5 

degrees, a mean of 0.01 degrees, and a STD of 0.27 degrees. 

 

Two Mirror Optical System with a Zernike Primary and Decentered 

The primary mirror of the previous optical model, having a  3

3Z 
 defined shape, was 

decentered as a whole optical element along the y-axis by an amount + 0.025 mm.  The 

NAT sigma offset vectors were calculated by Eq. (5.28) and Eq. (5.29) presented in 

Chapter 5 and their values are given in Table 7.5. 

 

Table 7.5  Sigma offset vector values. 

Surf.# Sphere  
Asphere  

 X Y X Y 
2 0.0 0.003235 0.0 −0.477447 

3 0.0 0.006455 0.0   0.00639 

 

 With these sigma offset values, and Eq. (7.28), the FFD for the Zernike 

astigmatism term of the wavefront aberration function expansion was recreated and 

presented in Figure 7.7.  Figure 7.7(a) is a FFD plot generated by CODE V® version 

10.5.  Figure 7.7(b) is generated by using the double Zernike expansion and the GQ 

method for determining the expansion coefficients 
,

,
H

H

m m

n nU 


.  Figure 7.7(c) is generated by 

using the Wklm expansion coefficients, the Ai  vectors of Eq. (7.38) through Eq. (7.40), 

the sigma offset vectors of Table 7.5, and the single Zernike expansion. 
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Figure 7.7  FFD comparison for decentered primary mirror case.  (a) Generated by CODE 

V®.  (b) By using real ray tracing, GQ, and double Zernike equation Eq. (4.53).  (c) By using 

Eq. (5.43), Wklm values, Ai  decenter and sigma offset vectors.  (d) The difference between 

the Zernike astigmatism FFD data generated by the double Zernike expansion and the single 

Zernike expansion using the calculated Wklm values, (b) – (c). 

 

 The difference between the two FFD’s data is also shown in Figure 7.7(d).  The 

difference data’s magnitude values have a maximum difference value of 0.09 waves, a 

mean of 0.04 waves, and a STD of 0.06 waves.  The difference data’s angle values have a 
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maximum difference of – 175.9 degrees, a mean of 1.3 degrees, and a STD of 18.9 

degrees.  The large maximum angle difference occurs near the node locations where the 

data values are very small. 

 Further research into the field contribution due to decentering of freeform 

surfaces in an optical imaging system is left for future research to address. 

 

Two Mirror Optical System with a Zernike Defined Secondary 

In this next example, a two mirror telescope model is used onto which an additional 

 3

3Z 
 cap is added to the secondary mirror.  This example was investigated to 

determine if the success of the previous examples in which the Zernike cap was added to 

a spherical primary mirror could be repeated for the original aspheric secondary mirror. 

 For this model, the entrance pupil has a diameter of 150 mm.  The HFOV is 1.0 

degree.  The primary mirror is a conic with a conic constant of 1.046192 .  The 

secondary mirror is a conic with a conic constant 2.915 .   

 
Figure 7.8  Two mirror telescope model with Zernike cap added to the secondary mirror.  

Surface 2 is the primary mirror having a conic shape, surface 3 is the secondary mirror 

having a conic shape plus a Zernike polynomial cap, and surface 4 is the image plane. 
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The Zernike strength coefficient is 0.00075  mm and the Zernike normalization radius is 

27.1573 mm .  The wavelength for the model is 632.8 nm .  Table 7.6 produced by 

CODE V® presents the other system parameters. 

Table 7.6  The two mirror optical system's parameters. 

 

 

 The rotationally symmetric version of this optical imaging system (removal of the 

Zernike cap) was used to obtain the Wklm expansion coefficients.  Table 7.7 provides the 

Wklm values though 6
th

 order associated with the Zernike astigmatism  2

2Z   term. 

Table 7.7  Zernike astigmatism related Wklm coefficients through 6th order. (Units = waves) 

Surface 

Number 

 

Wklm 

Intrinsic Extrinsic 

Sphere Asphere Sphere Asphere 

2 W222   3.5969 −0.0002   0.0   0.0 

2 W242 −0.0721 −0.0002   0.0   0.0 

2 W422 −0.0016   0.0   0.0   0.0 

3 W222 −2.9922   1.9874   0.0   0.0 

3 W242   0.1652 −0.0095 −0.1007   0.0060 

3 W422 −0.0008 −0.0001   0.0   0.0 

 

 Since the Zernike cap is added to the secondary mirror, which is a conic, it is 

reasoned, as detailed in the previous section (see Eq. (7.12) and Eq. (7.13)), that the field 

dependent vector functions of the terms in the Zernike (in pupil) expansion of the 

wavefront aberration function will have the following form 
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   

     

2 2

3 3 3

m

n j j

j j j

F Sphere Base Asphere Cap

Sphere Base Asphere Cap Zernike

 

  

 

   , (7.41) 

where j = 2 signifies the primary mirror contribution and j = 3 signifies the secondary 

mirror contribution.  The “[Zernike]” refers to only non-rotationally symmetric Zernike 

polynomials as described previously with the development of Eq. (7.12) and Eq. (7.13) 

for the freeform optical surface shape.  The  
3j

Zernike


 contribution to the field 

dependence for the Zernike astigmatism  2

2Z   term, through 6
th

 order, is given by (see 

Eq. (7.22) in the previous section of this Chapter) 

 

        

      
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2 2
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 . (7.42) 

 The FFD data for the Zernike astigmatism term was calculated by using the 

double Zernike aberration function expansion and the 
,

,
H

H

m m

n nU 


 expansion coefficients.  

Using this FFD data, and the proposed field function based on Eq. (7.41) and Eq. (7.42), 

as well as the Wklm values of Table 7.7 and the Ai  decenter vector values of Eq. (7.38) 

through Eq. (7.40), a least squares fit, in 6 variables, was performed to obtain the V222 and 

V422 expansion coefficients shown in Table 7.8.  
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Table 7.8  Least squares fit determined expansion coefficients. (Units = waves) 

 1 2 3 

V222 −0.0055 −0.0055 −0.0055 

V422 −0.1373 −0.1373 −0.1373 

 

 The obtained V222 and V422 expansion coefficient values again confirmed the 

hypothesis that there are actually only 2 coefficients for the additional field dependence 

due to the addition of the Zernike cap. 

 Figure 7.9 provides a comparison of the Zernike astigmatism term of the 

wavefront aberration function expansions.  In Figure 7.9, plot (a) is a FFD plot generated 

by CODE V® version 10.5, plot (b) was generated using the double Zernike expansion of 

the wavefront aberration function and the associated 
,

,
H

H

m m

n nU 


 expansion coefficients, 

while plot (c) was generated by using the single Zernike (in pupil) expansion of the 

wavefront aberration function, the Wklm expansion coefficients, the V222 and V422 

expansion coefficients, and the Ai  decenter vectors.  The difference between the two 

FFD’s data is shown in Figure 7.9(d).  The difference data’s magnitude values have a 

maximum difference value of 0.03 waves, a mean of – 0.0003 waves, and a STD of 0.016 

waves.  The difference data’s angle values have a maximum difference of – 29.2 degrees, 

a mean of – 0.07 degrees, and a STD of 2.4 degrees. 
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Figure 7.9  Comparison of Zernike astigmatism FFDs for two mirror optical system having a 

Zernike freeform surface defined secondary mirror.  (a) Generated by CODE V®.  (b) By 

using real ray tracing, GQ, and double Zernike equation Eq. (4.53).  (c) Plot calculated using 

Wklm , V222 & V422 coefficients, and Ai   decenter vectors.  (d) The difference between the 

Zernike astigmatism FFD data generated by the double Zernike expansion and the single 

Zernike expansion using the calculated Wklm values, (b) – (c). 
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 This lends support to the approach outlined in the previous section for using NAT 

to develop the field dependent contributions due to the addition of Zernike caps to the 

optical elements’ shapes, defining freeform optical elements, has merit.  However, as 

mentioned before, these are only the initial, tentative steps to a complete theory of the 

aberration function’s field dependence for optical imaging systems defined with freeform 

optical elements.   

 An alternative approach, based on utilizing stop shift equations, has been 

presented in the literature [72].  Future research may combine the two approaches and 

may provide a theory having analytic capabilities to provide the additional field 

contributions to the wavefront aberration function expansion terms due to the additional 

of Zernike caps to the base surface shape to define freeform shaped optical elements. 

 

 



  228 

Chapter 8   Conclusion and Future Research 

This work has demonstrated how to form a connection between three forms of the 

wavefront aberration function expansion for rotationally symmetric optical imaging 

systems: 1) the extended H. H. Hopkins’ form, 2) the single Zernike in pupil form, and 3) 

the double Zernike, in field and pupil, form.  Optical designers typically use some form 

the Hopkins’ expansion involving the Wklm expansion coefficients, while for testing and 

measurement the Zernike in pupil form is typically used.  A common feature of these 

expansions, as developed in this research, for rotationally symmetric optical imaging 

systems, is the use of SVP. 

 In this work, SVP has been developed for the first time in terms of GA.  As 

shown, SVP fits naturally into GA and avoids the use of the exponential complex number 

form for the representation of 2D vectors.  An important result of using the GA approach 

is that it explicitly shows how SVP involves three 2D vectors, not just two vectors, thus 

clarifying the nature of SVP.  New notation for SVP has been developed that explicitly 

captures this important fact. 

 The various definitions of the real number Zernike polynomials that occur in the 

literature was briefly reviewed.  An Appendix provided the derivation of the 

orthogonality property for the discrete sampling of the real Zernike polynomials over the 

unit radius disk.  This property has been utilized in this work, together with the double 

Zernike expansion of the wavefront aberration function, to obtain the double Zernike’s 

,

,
H

H

m m

n nU 


 expansion coefficients.  New equations have been developed for calculating the 
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Wklm expansion coefficients from the 
,

,
H

H

m m

n nU 


 coefficients for rotationally symmetric 

optical imaging systems.  It has further been demonstrated how the per surface, 

sphere/asphere, and intrinsic/extrinsic Wklm coefficients can be obtained.   

 A new equation for the expansion of the wavefront aberration function using the 

medial focal surface based expansion coefficients has been developed.  This equation 

explicitly provides the separation of the field and pupil parameters, to any order, into a 

simple form similar to that of the traditional vector form developed by Shack for which 

the field and pupil parameters are not separated (are not factored by a vector dot product).  

Once again, it is seen that SVP plays a crucial role in accomplishing this result. 

 A brief introduction to NAT was presented.  The meaning of the full field 

displays (FFDs), the basic tools for the qualitative and quantitative comparisons 

performed in this work, has been discussed.  The sigma offset vectors were introduced.  

Their meaning, equations for the calculation of their values, and method for introducing 

them into the field functions has been clarified.  It was shown how the equations 

traditionally presented in the literature for the sigma offset vectors can be modified to 

clarify the issue involving their definition in the surface’s local image space and their use 

in the wavefront aberration function expansion defined using either the system’s object 

space field parameters or the total system’s image space field parameters.   

 Validation of the mathematical development has been provided by using two and 

three mirror telescope optical models.  The models were perturbed and the resulting FFDs 

were generated using the Wklm expansion coefficients and sigma offset vectors of nodal 

aberration theory.  Comparison (both qualitative and quantitative) to the FFDs based on 
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real ray trace data and a double Zernike expansion of the wavefront aberration function 

through 12
th

 order has been presented.  In most cases, the two different methods for 

generating the FFDs produced very good matches.  However, for the case of the coma 

free pivot model and for the case of the aperture offset model, the developed equations 

did not produce good matches to the double Zernike generated FFDs.  This indicates that 

there is something new and interesting still to learn in this field. 

 A proposed method for using NAT to obtain the contribution to the field functions 

due to freeform optical elements has been presented.  A property of Zernike polynomials, 

discovered while performing this research and presented in Appendix IV, that they can be 

mathematically represented as a sum of decentered rotationally symmetric terms, was 

used to obtain the contribution to the field functions due to the addition of a Zernike cap 

to an otherwise rotationally symmetric optical surface.  Explicit examples have been 

provided. 

 There are many avenues that could be followed in future work.  Of particular 

necessity for any future research is the need for a more practical way to obtain the Wklm 

expansion coefficients, including their per surface, sphere/asphere, and intrinsic/extrinsic 

values.  The current method developed in this research works well but is far too slow and 

involves too many steps for any interactive optical design work.   

 Additionally, different definitions for the placement of the reference sphere 

should be implemented and results compared.  For example, using the real exit pupil 

location versus the Gaussian exit pupil location, and using the real chief ray intersection 

point in the image plane as the center of ther reference sphere versus the Gaussian image 
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point.  These should be investigated to determine if different definitions of the reference 

sphere make a difference to the higher then 4
th

 order Wklm coefficients, particularly for the 

extrinsic coefficient values.   

 This research has proposed one way to apply NAT to freeform optical elements.  

The initial success of this approach for both non-decentered freeform surfaces and 

decentered freeform surfaces, as well as when the freeform surface is not the first surface 

in the system, is very encouraging.  The development also suggests that the approach may 

also be suitable for use with other than Zernike definitions for freeform optical surfaces.  

Specifically, the sum of the decentered rotationally symmetric terms need not define a 

single Zernike polynomial.  It may be possible to use the method with other rotationally 

symmetric shaped “caps” for the definition of the freeform surface shapes and for 

determination of their field contributions.  Further testing and evaluation is needed to 

develop these ideas into a reliable approach for the determination of the field contribution 

of freeform optical elements to the wavefront aberration function. 
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Equation Chapter 1 Section 1 

Appendix I.  Geometric Algebra Forms of Shack’s Vector Product 

 

During the initial development of SVP in terms of Geometric Algebra (GA), several 

different procedural interpretations of this vector product were considered and equations 

for each interpretation developed.  This led to many different ways of expressing SVP in 

GA.  Eventually, the simplest form was discovered.  This Appendix provides several of 

the other forms developed during this investigation. 

 In the following equations the y-axis is used as the reference axis.  The vector n̂  

is defined to be a unit vector halfway between 2ê  (the unit vector along the positive y-

axis) and an arbitrary 2D vector B .  The vector â  is a unit vector along the arbitrary 2D 

vector A .  The angles   and   are the angles of the vectors A  and B  with respect to 

the y-axis, respectively.  Assuming all angles are positive, then all rotations indicated in 

the equations below are clockwise (from the y-axis toward x-axis).  
jR  is used to indicate 

different rotors for different values of  j.  The vectors in component form are given by 

 1 2 1 2
ˆ ˆ ˆ ˆ,x y x yA a e a e B b e b e    . (I.1) 

In 2D GA, the pseudoscalar I  is given by 

 1 2
ˆ ˆI e e  . (1.2) 
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The pseudoscalar I  is used in the equations below.  Shack’s vector product, A B , can 

then be interpreted and written as shown below. 

 As vector components: 

    1 2
ˆ ˆ

y x x y y y x xA B a b a b e a b a b e    . (I.3) 

 All vector elements explicitly listed: 

 2 2
ˆ ˆ ˆ ˆ ˆA B A B ne ae n . (I.4) 

 As two reflections of A : 

   2 2
ˆ ˆ ˆ ˆA B B n e Ae n . (I.5) 

 As a double sided rotor rotating A : 

     1

2 2 1 1
ˆ ˆ ˆ ˆA B B ne A e n B R AR  . (I.6) 

 As double sided GA exponentials rotating A : 

 /2 /2I IA B B e Ae  . (I.7) 

 As a single, right sided rotor rotating A : 

    2 2 2
ˆˆ ˆA B A e B A e B B AR B   . (I.8) 

 As a single, left sided rotor rotating B : 

  2 2 3
ˆ ˆA B Ae B Ae B A R B    (I.9) 

 As a single, right sided GA exponential rotating A : 

 IA B B Ae   (I.10) 
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 As a single, left sided GA exponential rotating A : 

 IA B B e A  (I.11) 

 As a single left sided GA rotor rotating B : 

    2 2 3
ˆˆ ˆA B Ae B A Ae B A R B    (I.12) 

 As a single left sided GA exponential rotating B : 

 
IA B A e B  (I.13) 

 As a single right sided GA exponential rotating B : 

 
IA B A Be   (I.14) 

 As a single right sided GA exponential rotating 2ê : 

 
( )

2 2
ˆ ˆI I IA B A B e e e A B e e         (I.15) 

 As a single left sided GA exponential rotating 2ê : 

 
( )

2 2
ˆ ˆI I IA B A B e e e A B e e      (I.16) 

 Simplest GA expressions: 

 2 2
ˆ ˆA B Ae B Be A B A   . (I.17) 
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Equation Chapter (Next) Section 1 

Appendix II. Implementation of Recurrence Relations For Zernike 

Polynomials 

 

The following is an implementation of recurrence relations [36, 38] for the computation 

of the radial factor of the Zernike polynomials.  The function returns the Zernike 

polynomial values at the specified points. 

 

function Zv=calculateZernikeForbes(n,m,rho,phi,NormType) 

  %  Implementation of recursion relations for calculating the 

  %  Zernike Polynomial values.  

  % 

  %  Based on G.W. Forbes, "Robust and fast computation for the polynomials of optics" 

  %  Optics Express, 18(13), 13851-13862, 2010.  See in particular Forbes' 

  %  Eq. (4.1a,b,c) in this paper. 

  % 

  %  Calculate the Zernike polynomial for the rho, phi values specified,  

  %    n = positive integer radial order, 

  %    m = positive or negative or zero azimuthal order 

  %    rho = vector of normalized rho values 

  %    phi = vector of angles (radians) to go with the rho values. 

  %    NormType = '0P' = Zero-to-Peak normalization,  

  %               'RMS' = root-mean-square normalized (optional). 

  % 

  % Updates: 

  %   2014-08-12:  Initially written by Robert W. Gray 

  % 

 

  if nargin < 5 

    NormType = '0P';  % default is zero-to-peak normalization 

  end 

 

  % 0P normalized (default) 

  N = 1; 

     

  if strcmpi(NormType,'RMS') 

    % RMS normalized 

    N = sqrt(2*(n+1)/(1 + (m==0))); 

  end % if statement 

   

  R = calcR(n,abs(m),rho); 

       

  % Calculate the azimuthal factor (cs = cosine or sine factor) 

  cs = ones(size(phi)); 

  if m > 0 

    cs = cos(m.*phi);   

  end 

  if m < 0 

    cs = sin(abs(m).*phi);  
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  end 

     

  Zv =  N * (R .* cs);  

  

end % function calculateZernike2 

 

function R=calcR(n,m,rho) 

  % Use recurrence relations to calculate Zernike radial part 

 

  nf = (n-m)/2; 

  R = rho.^m .* Znf(nf,m,rho.^2) ; 

     

end % calcR 

 

function result = Znf(k, mf, u2) 

 z(1,:) = ones(size(u2)); 

 z(2,:) = (mf + 2) * u2 - (mf + 1);  

 

 if (k >= 2)  

  for nf=1:(k-1) 

          s = mf + 2*nf; 

          a =  -(s+1)*((s-nf)^2 + nf*nf + s)/(s*(nf + 1)*(s - nf + 1)); 

          b =   (s + 1)*(s + 2)/((nf+1)*(s-nf+1)); 

          c =   (s+2)*(s-nf)*nf/(s*(nf+1)*(s-nf+1)); 

          z(nf+2,:) = (a+b*u2).*z(nf+1,:) - c*z(nf,:); 

        end % for statement 

    end % if statement 

     

  result = z(k+1,:); 

 

end  % function Znf 
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Equation Chapter (Next) Section 1 

Appendix III. Discrete Orthogonality of Zernike Polynomials 

 

In a 2005 paper [43], Pap and Schipp published a result showing that a finite set of 

complex number Zernike polynomials are orthogonal over a finite set of discrete points 

across a unit radius disk.  Prior to this work, it was known that the Zernike polynomials 

were orthogonal to one another over the continuous unit radius disk.  This orthogonality 

property is very desirable because it means that the coefficients of the expansion of any 

function defined over the continuous unit disk (wavefront aberration function or an optic 

element’s surface shape, etc.) in terms of the Zernike polynomials would be independent 

of one another, and therefore, would not change if additional terms of the expansion were 

latter included.  It was thought that when only a discrete set of data points over the unit 

radius disk were used (discrete sampling of the function) the Zernike polynomials were 

no longer orthogonal, and the derived coefficients would then not be independent to one 

another.  To overcome this issue, many data points over the disk were typically used in an 

attempt to obtain a good approximation to the exact coefficient values.  With the Pap and 

Schipp result [43, 44, 45], it is possible to select a finite number of data points over the 

unit radius disk such that all the Zernike functions of order maxn  or less remain 

orthogonal over these discrete data points,  provided that the function’s data values can 

be exactly represented by a sum of Zernike polynomials of order less than or equal to 

maxn .  The number of data points needed is dependent on the maximum radial order maxn  
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of the Zernike polynomials needed to exactly define the function over the unit radius 

disk. 

 One drawback to this result is that the value of maxn  that exactly defines the 

function of interest over the disk is not in general known.  With the discrete sampling and 

finite subset of the Zernike polynomials, including the next higher order Zernike 

polynomial will change all the lower order coefficients.  However, the change is of the 

order of the coefficient of the next highest order Zernike polynomial included.  Then, 

assuming the function converges for low values of maxn , only a small number of Zernike 

polynomials need to be considered for an acceptable approximation of the function 

expressed as an expansion in low order Zernike polynomials.  Another potential 

drawback is that the highest order Zernike needed to accurately represent the function (to 

expand a given function) may be so large that the number of data points across the unit 

disk is too large to be practicable.  Additionally, the higher the value of maxn  the more 

concern there is for the numeric accuracy of the calculated Zernike polynomial values.  

 On the other hand, a significant advantage to the method of Pap and Schipp is that 

there is no data fitting operation involved.  The coefficients are calculated directly from 

the equations to be developed below by use of the Gaussian Quadrature (GQ) technique. 

 In this appendix, the results of Pap and Schipp [43], incorporating an 

improvement pointed out by Shi, et al. [73], are derived for the real number Zernike 

polynomials.  Pap and Schipp used a complex exponential form for the Zernike 

polynomials while the research presented in this dissertation uses the real number form of 

the Zernike polynomials.  Therefore, this derivation, in terms of real number Zernike 
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polynomials, was necessary in order to obtain the equations needed for this research 

project. 

 The notation employed in this Appendix is not necessarily the same as in the main 

text of this dissertation. 

 A Zernike polynomial, using the 0-P normalization, can be defined as two factors: 

1) The radial dependence  m

nR  , and 2) the azimuthal dependence  m  .  Then a 

Zernike polynomial  ,m

nZ    may be written as 

      , ,
mm

n n mZ R      (III.1) 

where n is a positive integer, m is a positive or negative integer, |m| ≤ n and n – |m| is 

even.  The radial dependence is given by 

  
   2

2

0

1 !
.

! ! !
2 2

n m
k

m n k

n

k

n k
R

n m n m
k k k

 







 


     
    

   

  (III.2) 

This can also be written as  

      0, 2

2

2 1 ,
mm m

n n m
R P  

 
  
 

   (III.3) 

where 
   0, 2

2

2 1
m

n m
P 

 
  
 

  are Jacobi polynomials [74].  This is an important relation to be 

used later.  Explicit forms of the Jacobi polynomials will not be needed here.  The 

azimuthal dependence is defined as 

  
 

 
cos 0

sin 0m

m m

m m






  
   

  
. (III.4) 
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 The orthogonality relation for these Zernike polynomials is written as 

 
 

   
2 1

, ,

,0 0 0

2 2
, ,

1

m m

n n n n m m

m

n
Z Z d d



        
 



  




   . (III.5) 

This double integral separates into  

 
 

       
1 2

, ,

,0 0 0

2 2

1

m m

n n m m n n m m

m

n
R R d d



        
 



   


  

   . (III.6) 

Moving the constant factor to the right hand side of the equation, 

        
 1 2

, , ,0

0 0

1

2 2

n n m m mm m

n n m mR R d d
n

   
      

 

 


  

   . (III.7) 

 Consider the integral 

    
2

0

m m d



    . (III.8) 

There are four cases to consider. 

CASE I: m ≥ 0, and 'm  ≥ 0 

          
2 2

, ' ,0 , '

0 0

cos cosm m m m m m md m m d

 

         
      . (III.9) 

CASE II: m ≥ 0, and 'm  < 0 

        
2 2

0 0

cos sin 0m m d m m d

 

     
     . (III.10) 

CASE III: m < 0, and 'm  ≥ 0 

        
2 2

0 0

sin cos 0m m d m m d

 

     
     . (III.11) 

CASE IV: m < 0, and 'm  < 0 
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        
2 2

, '

0 0

sin sinm m m md m m d

 

      
     . (III.12) 

These four cases can be combined into the single equation 

      
2

, ' ,0 , '

0

m m m m m m md



            (III.13) 

The strategy at this point is to develop alternative equations for the Kronecker deltas that 

occur in the above equations in terms of sums.  This is accomplished as follows. 

CASE I: m ≥ 0, and 'm  ≥ 0 

 For this case write 

        
1 1

0 0

2 2
cos cos ,

N N

m j m j j j

j j

m m
N N

 

 

   
 



 

     (III.14) 

where N
 is an integer to be determined below.  Express the cosines in terms of Euler’s 

equations gives 

             
1 1

' ' ' '

0 0

2 1
cos cos

2

j j j j

N N
i m m i m m i m m i m m

j j

j j

m m e e e e
N N

 
   

 

 
 

     

 

      . (III.15) 

A relation from discrete Fourier analysis can now be used, namely 

 

 21

0

1 , integer1

0

i m m jN
N

j

for m m pN where p
e

otherwiseN











 



  
 


 . (III.16) 

Comparing the exponentials in Eq. (III.15) to Eq. (III.16) the following association can 

be made 

 
2

j

j

N


  . (III.17) 

With m  and 'm  maximal when m n  and ' 'm n , set  
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max2 1N n   . (III.18) 

where maxn  is the maximum of  , 'n n .  In this way, the angle 
j  cannot exceed 2 . 

 
   max

max max

2 1 2 22
2

2 1 2 1
j

N nj

N n n





 
 


   

 
. (III.19) 

Then, with (III.18) it follows that the condition for the first relation of (III.16) to hold, 

that is, for m m pN
   to hold, requires that p be zero and therefore that 0m m  .  

With these definitions and restrictions, the following relation is obtained. 

 

 21

, '

0

1
i m m jN

N

m m

j

e
N











 



 . (III.20) 

This can be used to write Eq. (III.15) as 

      
1

,0 , ' , ' , ' ,0 , '

0

2 1
cos cos

2

N

j j m m m m m m m m m m

j

m m
N





       




     . (III.21) 

Then, for this case 

      
1

,0 , ' , '

0

2
N

m j m j m m m m m

jN





    






    . (III.22) 

For cases II and III, it can be shown that 

    
1

0

2
0

N

m j m j

jN





 






   . (III.23) 

And for case IV,  

    
1

, '

0

2
.

N

m j m j m m

jN





  






    (III.24) 

These four cases can be combined to give the relation 
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    
1

, ' ,0 , '

0

2
N

m j m j m m m m m

jN





    






    . (III.25) 

Comparing this result with Eq. (III.13) gives the equation 

          
12

, ' ,0 , '

00

2
.

N

m m m m m m m m j m j

j

d
N






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

 



         (III.26) 

 

 To convert the radial integral into a discrete, finite sum, the Gaussian Quadrature 

theorem can be used.  One form of the theorem is presented in [75] as Theorem 3.4.1 (p. 

47).  The following form of the theorem is from [75] with a few changes of the text, as 

well as notational changes, for clarity.  The changes are not explicitly indicated.  Since 

the space over which the theorem is to be applied is a flat Euclidean space such that the 

measure of the space is  x x  , the integral is changed from the original Stieltjes-

Lebesque integral to a Riemann integral.  From [75] (edited): 

Theorem 3.4.1  If 1 2 ... Nx x x    denote the zeros (roots) of a polynomial function 

 Nf x  of order N, then there exits real numbers 
1 2, , ..., NA A A  (called Christoffel 

numbers) such that 

        1 1 2 2 ... ,

b

N N

a

g x dx A g x A g x A g x     (III.27) 

whenever  g x  is an arbitrary polynomial function of order less than 2N . 

 

In the Pap and Schipp paper [43], the theorem is stated as follows.  The notation and text 

have again been changed from their paper for clarity. 
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Theorem A  Let 
1 2, , ..., N    with  1, 1i   , be the N roots of the Legendre 

polynomial  NP x  of order N.  Define 

  
      

      
1 1 1

1 1 1

i i N

i

i i i i i i N

x x x x
x

   

       

 

 

   
 

   
 (III.28) 

to be the fundamental polynomials of the Lagrange interpolation of the Legendre 

polynomial.  We define the corresponding Christoffel numbers by 

  
1

1

k kA x dx


   (III.29) 

with 1 k N   an integer.  Then for every polynomial  g x  of order less than 2N  

we can write 

    
1

11

N

k k

k

g x dx g A


  (III.30) 

 

Although explicit equations for the Legendre polynomials will not be needed, several 

forms from [76] are provided here as explicit examples. 
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 The next step is to convert the radial integral [11] 
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    
 
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n n n nR R d
n
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  (III.34) 

into a form suitable for application of the above Theorem.  Inserting Eq. (III.3), the 

alternative form for expressing  m

nR   in terms of the Jacobi polynomials, we have 
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which can be written as 
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Performing a change of variables, let 

 
22 1 ,u    (III.37) 

then 

 4 .du d   (III.38) 

For 0  ,  1u    while for 1  , 1u  .  Solving for 
2  gives 
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Using these results in equation (III.36) results in the equation 
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Let  
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then Eq. (III.40) takes the form 
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This is now in the correct form for applying the Gaussian Quadrature Theorem.  This 

results in the equation 
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where k  are the roots of the Legendre polynomial of order N
.  Note that the function 

 g u  is of order  
1

2
n n  in u.  This is from considering the powers of u, which are 
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Since there is a Kronecker delta on the right hand side of Eq. (III.43), the maximum order 

of  g u  is given by  max max max

1

2
n n n  .  The Theorem states that the equality of Eq. 

(III.43) holds when  g u  is a polynomial of order less then 2N
.  Then there is the 

restriction that 

 
max 2 .n N  (III.45) 

This means that 

 max 1 .
2

n
N    (III.46) 

This is important because it specifies the number of radial parameter values,  , needed 

for the fixed but arbitrary maximum order maxn  of the subset of Zernike polynomials 
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involved.  Since maxn  may be an odd integer, the following relation is used, where     

denotes the integer part of the real number   

 max 1 .
2

n
N

 
  
 

 (III.47) 

To summarize,  
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where k  are the roots of the Legendre polynomial of order N
 and kA  are the 

associated Christoffel numbers calculated by Eqs. (III.28) and (III.29).   

 Since u  is replaced with k  in the above equation, and using Eq. (III.39) the 

relation  

 22 1k ku      (III.49) 

is obtained.  This relation defines the discrete radial values to be used to be 

 
1

2

k
k





  . (III.50) 

Eq. (III.49) is used to rewrite Eq. (III.34) into a summation explicitly involving the radial 

function.  Using Eq. (III.41) in Eq. (III.48) gives 
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It then follows that 
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and 
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Therefore, 
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And so the integration over the radial part of the Zernike polynomials is replaced by the 

discrete sum 
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 Combining this result with the sum over the azimuthal factors gives 
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Collecting common factors and distributing the summation over the azimuthal parameters 

gives 
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The final expression for the orthogonality of the Zernike polynomials over a discrete 

sampling of data points can now be written as 
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 To illustrate how these equations are used in the research, and to provide a short 

summary of the important equations, assume that a function  ,f    over the unit radius 

disk can be written as  
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where m

nC  are the expansion coefficients to be determined and  max 1ZO n   signifies the 

order of magnitude of the real Zernike polynomial terms of Zernike order higher than 

maxn .  The expansion coefficients can be determined approximately by 
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where the approximation is good to the order of magnitude of the real Zernike 

polynomial terms of Zernike order higher than maxn .  Note that the expansion coefficients 

are given exactly by Eq. (III.60) when  max 1 0ZO n   .  Continuing with the notation 

used,  
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k  are the roots of the Legendre polynomial of order N
, 1 k N  , and the Christoffel 

numbers kA  are given by 



  253 

  
1

1

,k kA x dx


   (III.63) 
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are the fundamental polynomials of the Lagrange interpolation of the Legendre 

polynomial.  Further, 
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with 0 1j N   .  

 The research conducted in this dissertation used Zernike polynomials through 

n = 12.  Using the above equations, there are then 7N   normalized radial values and 

25N   azimuthal values need for the application of the GQ method.  The actual values 

used in this research, rounded to 20
th

 decimal position, are listed in Table III.1 and Table 

III.2. 

Table III.1  Radial values used with GQ method. 

# Normalized Radial Values 

1 0.15951816143819091089 

2 0.35949187362206503717 

3 0.54504809357643057125 

4 0.70710678118654752440 

5 0.83840478033507095662 

6 0.93314821587982325196 

7 0.98719499399631239331 
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Table III.2  Azimuthal values used with GQ method. 

# Azimuthal Values (Radians) 

1 0.0 

2 0.25132741228718345908 

3 0.50265482457436691815 

4 0.75398223686155037723 

5 1.00530964914873383631 

6 1.25663706143591729539 

7 1.50796447372310075446 

8 1.75929188601028421354 

9 2.01061929829746767262 

10 2.26194671058465113169 

11 2.51327412287183459077 

12 2.76460153515901804985 

13 3.01592894744620150892 

14 3.26725635973338496800 

15 3.51858377202056842708 

16 3.76991118430775188616 

17 4.02123859659493534523 

18 4.27256600888211880431 

19 4.52389342116930226339 

20 4.77522083345648572246 

21 5.02654824574366918154 

22 5.27787565803085264062 

23 5.52920307031803609969 

24 5.78053048260521955877 

25 6.03185789489240301785 

 

 The validation of the above GQ method for obtaining the coefficients of an 

expression comprising a sum of Zernike polynomials through n = 12 was conducted by 

implementing the GQ method as Matlab® functions, presented below.  Random numbers 

were used for the initial Zernike coefficient values.  The GQ method was then used in an 
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attempt to determine the initial random number coefficient values.  The difference 

between the initial coefficient values and the GQ calculated coefficients were calculated 

and was seen to be zero.  That is, the GQ method reproduced the initial random 

coefficient values.   

 The following Matlab® functions are the functions used for the validation testing. 

 

Function: verifyRealZernike 

 This function is the main GQ validation Matlab® function.  It generates random 

coefficient values and calculates an expression of the sum of the Zernike polynomials 

through n = 12.  It then uses the GQ method described above to obtain the coefficients 

from the calculated expression’s values at the GQ prescribed Zernike parameter values.  

The difference between the original random coefficient values and the GQ obtained 

coefficient values is calculated and displayed. 

 

function verifyRealZernike 

% Verifies the real Zernike orthogonality equations by obtaining the 

% random coefficients of a polynomial composed of real Zernike polynomials 

% through 12th order. 

% 

% Written by: R. W. Gray 2014 

% 

  syms R aP W f G coeff real; 

  sym('pi'); 

   

  maxn = 12; % MUST BE EVEN POSITIVE INTEGER. 

   

  NR = maxn/2+1; 

  NA = 2*maxn+1; 

   

  % build the W function with random coefficients. 

  % on interval [a,b] 

  a = -10; 

  b = +10; 

  p = 0; 

  W = sym(0); 

   

  for n=0:maxn 

    for m=n:-2:-n        

      p = p + 1; 

      Wc(p) = a + (b-a).*rand(1,1); 
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      Mn(p) = n; 

      Mm(p) = m; 

      fprintf(1,'P%2d: %2d,%3d: %16.12f \n',p,n,m,Wc(p)); 

       

      Z{p} = makeZernike(n,m,'R','aP'); 

       

      W = W + Wc(p)*Z{p};   % real W  

       

    end % for m 

  end % for n 

  maxp = p; 

  

  % At this point, we have an equation W of thru 12th order Zernikes and 

  % random coefficient values. 

   

  % Now do Gaussian Quadrature (GQ) to retreive the coefficient values. 

   

  % Obtain the Christoffel coefficients and the Legendre roots. 

  [Ak lambdak] = calcAks(NR); 

   

  % Now obtain the coefficients from W. 

  for p=1:maxp 

    coeff = sym('0');   

     

    for k=1:NR 

      for j=0:(NA-1) 

        % evaluate the function at the appropriate GQ prescribed position. 

        f = subs(W,{R,aP},{sqrt((1+lambdak(k))/2),sym(2*pi*j/NA)}); 

         

        % get the Zernike GQ value 

        G = f*subs(Z{p},{R,aP},{sqrt((1+lambdak(k))/2),sym(2*pi*j/NA)})*Ak{k}; 

                      

        coeff = coeff + G; 

      end % for j 

    end % for k 

     

    % Adjust value by the normalization value.  For real zernikes. 

    coeff2 = double(vpa(coeff * (Mn(p) + 1)/((1+(Mm(p)==0))*NA)));   

     

    % Calc and print the difference between original coefficient value and  

    % GQ calculated coefficient value. 

    fprintf(1,'P%2d: %2d,%3d: %30.27f %30.27f %30.27f \n', ... 

               p,Mn(p),Mm(p),Wc(p),coeff2,Wc(p)-coeff2); 

  

  end % for p statement 

   

end % function verifyRealZernike 

 

 

  



  257 

 

Function: calcAks 

 

 The following is a Matlab® function to calculate the N
th

 order roots of the 

Legendre polynomial and the associated Christoffel numbers.  This is called from the 

main validation function presented above. 

 

function [Ak theRoots]=calcAks(N) 

%CALCAKS Roots of the Nth order Legendre polynomial and Christoffel numbers. 

%  To obtain accurate results out to the DIGITS decimal position, Matlab's 

%  symbolic processing is used in the calculations. 

% 

%  INPUT:   

%     N = The order of the Legendre polynomial. 

% 

%  OUTPUT:    

%     Ak       = a Matlab cell containing the symbolic Christoffel numbers. 

%     theRoots = a matrix containing the N roots of the Legendra polynomial.  

% 

%  Written by Robert W. Gray, 08-22-2013 

% 

 

  syms x lk real; 

   

  % Calculate the N roots of Legendre polynomial. 

  % From: http://www.mathworks.com/help/symbolic/mupad_ref/orthpoly-legendre.html 

   

  strEqu = sprintf('QRoots := numeric::gldata(%d, DIGITS)[2]',N); 

  evalin(symengine, strEqu); 

  theRoots = evalin(symengine,'PRoots := map(QRoots, y -> 2*y - 1)');  

 

  % Preallocate the cell 

  Ak = cell(N,1); 

   

  % Form the Legendre interpolation fundamental polynomials 

  % and then calculate the Christoffel numbers by integration. 

  for k=1:N 

    lk = sym(1); 

     

    for j=1:N 

      if j == k 

        % skip the j=k term in the formation of the polynomial.   

        continue; 

      end % if statement 

      lk = lk * (x - theRoots(j)) / (theRoots(k)-theRoots(j));    

    end % for j 

     

    % Do the integeration of the Lagrange polynomial to obtain Ak. 

    Ak{k} = int(lk,x,-1,1); 

    %fprintf(1,'%d: %s \n',k,char(Ak{k}));   % Optional printing of values 

  end % for k 

   

end % function calcAks 
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Function: makeZernike 

 

 This function returns a Matlab® symbolic expression for the specified Zernike 

polynomial.  Using symbolic expressions for the Zernike polynomials avoids 

computational inaccuracies in the numerical representation of the Zernike polynomials.  

This is called from the main validation function presented above. 

 

 

function Znm = makeZernike(n,m,sR,sA) 

% Returns a symbolic express for the specified real Zernike polynomial 

% INPUT: 

%  n  = positive integer or zero, order of the Zernike polynomial. 

%  m  = integer (positive or negative or zero), azimuthal parameter. 

%       m >= 0 will ALWAYS mean the cosine factor. 

%       m  < 0 will ALWAYS mean the sine factor. 

%  sR = string containning the radial variable name. 

%       For example 'H' or 'R', etc. 

%  sA = string containning the angle variable name. 

%       For example 'aPx' or 'aPy' etc.   

%       aPx = angle, Phi, x-axis reference 

%       aPy = angle, Phi, y-axis reference 

%       aTx = angle, Theta, x-axis reference 

%       aTy = angle, Theta, y-axis reference 

% 

% OUTPUT: 

%  Znm  = symbolic expression of the specified Zernike polynomial. 

% 

  

  syms Znm R aP numerator denominator real; 

   

  if n == 0 

    Znm = sym(1); 

    return 

  end % if statement 

   

  R = sym(sR); 

  aP = sym(sA); 

   

  Rnm = sym(0); 

  positivem = abs(m); 

  for k=0:((n-positivem)/2) 

    numerator = sym((-1)^k*factorial(n-k)); 

    denominator = sym(factorial(k)*factorial((n+positivem)/2-k)*factorial((n-

positivem)/2-k)); 

    Rnm = Rnm + numerator/denominator * R^(n-2*k); 

  end % for k statement 

       

  % Put in the real azimuthal dependence. 

  

  if m >= 0 

    Znm = Rnm * cos(positivem*aP); 

  else 

    Znm = Rnm * sin(positivem*aP); 

  end % if statement 

  

end % function makeZernike 

 

 



  259 

 

Equation Chapter (Next) Section 1 

Appendix IV. Zernike Polynomials as Decentered Rotationally 

Symmetric Terms 

 

While working with the real number Zernike polynomials and aspheric optical element 

definitions, it was discovered that the low order Zernike polynomials could be expressed 

as a sum of decentered rotationally symmetric terms.  A literature search did not reveal 

any reference to this property of Zernike polynomials.  Since one way to define freeform 

surface shaped optical elements is by the Zernike polynomials, and since NAT can be 

used to analyze the field dependence of decentered optical elements (including aspheres), 

one wonders if there might be a way to use this sum of decentered rotationally symmetric 

term composition property of the Zernike polynomials to include surfaces defined by 

Zernike polynomials (or by sums of monomials) into NAT. 

 Consider the following sag equation for a component of a surface 

    
2 2

n

z c x x y y     
 

, (IV.1) 

where x  and y  are fixed but arbitrary real constants and where n is a positive integer 

and c is a real constant.  This describes a rotationally symmetric shape (called a 

decentered rotationally symmetric shape term) that is decentered to the position  ,x y   

in the 0z   plane.  The case for (δx=0,  δy=0), c = 1, and n = 1,2,3,4 are shown in Figure 

IV.1. 
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Figure IV.1  Cross-section of several rotationally symmetric forms. 

 

Hypothesis: Any xy-polynomial surface having a component sag equation of the 

form 

 
m nz x y , (IV.2) 

where m and n are positive (or zero) integers, can be written as 
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where imax is a finite integer, in  are positive integers, ic  are real constants and  
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A general proof of this hypothesis has not been found.  However, several explicit 

examples have been worked out and are tabulated below. 
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 If the hypothesis is true, then since any Zernike polynomial is a finite sum of 

monomials of the form 
m nx y , the following Corollary is implied. 

Corollary I:  The Zernike polynomials are composed of finite sums of decentered 

rotationally symmetric shape terms. 

 

Note that a decenter amount of zero is allowed.  This is needed for the Zernike 

polynomials that have no azimuthal angle dependence. 

 A few monomials and their decentered shape term equivalence are tabulated in 

Table IV.1 and Table IV.2.  The only reason that the table stops at the point shown is 

because of the time involved in working out the correct decenter values.  Aside from 

time, there appears to be nothing limiting the table from being expanded to any monomial 

required.  Table IV.1 and Table IV.2 are suggestive that all monomials can be 

represented as sums of decentered shape terms. 

 A potential down side to expressing the Zernike polynomials as sums of 

decentered shape terms is that the higher the order of the Zernike polynomial, the more 

decentered shape terms required for its equivalent expression.  
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Table IV.1  Monomials and their decentered shape term equivalent. 

Monom. Sum of Decentered Shape Terms 

1  0 0,0P  

x 
    

1
1,0 1,0

4
P P   

y 
    

1
0, 1 0,1

4
P P   

 

x
2
            2 2 2 21 1

0,0 1,0 1,0 0, 1 0,1
2 16

P P P P P       

 

xy 2 2 2 21 1 1 1 1 1 1 1 1
, , , ,

16 2 2 2 2 2 2 2 2
P P P P
           

          
        

 

 

y
2
            2 2 2 21 1

0,0 0, 1 0,1 1,0 1,0
2 16

P P P P P       

 

x
3
          

   

2 2

3 3 3 3 3 3

3 3
1,0 1,0 1,0 1,0

16 32

1 1 3 1 3 1 3 1 3
1,0 1,0 , , , ,

48 2 2 2 2 2 2 2 2

P P P P

P P P P P P

    

           
                      

        

 

 

x
2
y          

   

2 2

3 3 3 3 3 3

1 1
0,1 0, 1 0, 1 0,1

16 32

1 3 1 3 1 3 1 3 1
0,1 0, 1 , , , ,

48 2 2 2 2 2 2 2 2

P P P P

P P P P P P

    

           
                      

        

 

 

xy
2
          

   

2 2

3 3 3 3 3 3

1 1
1,0 1,0 1,0 1,0

16 32

1 1 3 1 3 1 3 1 3
1,0 1,0 , , , ,

48 2 2 2 2 2 2 2 2

P P P P

P P P P P P

    

           
                      

        

 

 

y
3
          

   

2 2

3 3 3 3 3 3

3 3
0,1 0, 1 0, 1 0,1

16 32

1 3 1 3 1 3 1 3 1
0, 1 0,1 , , , ,

48 2 2 2 2 2 2 2 2

P P P P

P P P P P P

    

           
                      

        
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Table IV.2  Monomials and their decentered shape term equivalent, cont. 

Monom. Sum of Decentered Shape Terms 

 

x
4
           

        

       

2 2 2 2 2

3 3 3 3

4 4 4 4

4 4 4 4

3 1
0,0 0, 1 0,1 1,0 1,0

8 16

1
1,0 1,0 0, 1 0,1

48

1
0, 1 0,1 1,0 1,0

128

1 1 1 1 1 1 1 1
, , , ,

2 2 2 2 2 2 2 2

P P P P P

P P P P

P P P P

P P P P

     

     

     

          
           

       

 

 

x
3
y 

2 2 2 2

3 3 3 3

4 4 4

1 1 1 1 1 1 1 1 1
, , , ,

32 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1
, , , ,

96 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 21
, , ,

128 2 2 2 2 2

P P P P

P P P P

P P P

           
           

        

           
           

        

             
      
    

   

4

4 4 4 4

2 2 2 2 2
,

2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
, , , ,

2 2 2 2 2 2 2 2

P

P P P P

      
   
   
   

                
          
       

       

 

 

x
2
y

2
          2 4 4 4 4

4 4 4 4

1 1
0,0 1,0 1,0 0, 1 0,1

8 128

1 1 1 1 1 1 1 1
, , , ,

2 2 2 2 2 2 2 2

P P P P P

P P P P

      

          
           

       

 

 

xy
3
 

2 2 2 2

3 3 3 3

4 4 4

1 1 1 1 1 1 1 1 1
, , , ,

32 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1
, , , ,

96 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 21
, , ,

128 2 2 2 2 2

P P P P

P P P P

P P P

           
           

        

           
           

        

             
      
    

   

4

4 4 4 4

2 2 2 2 2
,

2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
, , , ,

2 2 2 2 2 2 2 2

P

P P P P

      
   
   
   

                
          
       

       

 

 

y
4
           

        

       

2 2 2 2 2

3 3 3 3

4 4 4 4

4 4 4 4

3 1
0,0 1,0 1,0 0, 1 0,1

8 16

1
0, 1 0,1 1,0 1,0

48

1
1,0 1,0 0, 1 0,1

128

1 1 1 1 1 1 1 1
, , , ,

2 2 2 2 2 2 2 2

P P P P P

P P P P

P P P P

P P P P

     

     

     

          
           

       

 

 

 

 



  264 

 Table IV.3 lists the Zernike polynomials that have been expressed using the 

monomials listed in Table IV.1 and Table IV.2.   

 

 

Table IV.3  0-P normalized Zernike polynomials and their binomial representation. The y-

axis is being used as the reference axis for the Zernike azimuthal parameter. 

Stnd. Polar Form Sum of Monomials 

0

0Z  1 1 

1

1Z    sin   
x  

1

1Z   cos   
y  

2

2Z    2 sin 2   
2xy  

0

2Z  22 1   
2 22 2 1x y   

2

2Z   2 cos 2   
2 2x y   

3

3Z    3 sin 3   
3 23x xy   

1

3Z      33 2 sin    
3 23 2 3x x xy   

1

3Z     33 2 cos    
3 23 2 3y y x y   

3

3Z   3 cos 3   
2 33x y y   

4

4Z    4 sin 4   
3 34 4x y xy   

2

4Z      4 24 3 sin 2    
3 38 6 8x y xy xy   

0

4Z  4 26 6 1    
4 2 2 2 2 46 6 6 12 6 1x x y x y y      

2

4Z     4 24 3 cos 2    
4 2 2 44 3 3 4x x y y     

4

4Z   4 cos 4   
4 2 2 46x x y y   

 

 

 Table IV.4 gives explicitly the Zernike polynomials in terms of the decentered 

shape terms.  Table IV.4 uses the y-axis as the Zernike reference axis. 
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Table IV.4  0-P normalized Zernike polynomials composed of decentered shape terms.  The y-

axis is the reference axis. 

Stnd. Sum of Decentered Shape Terms 

0

0Z   0 0,0P  
1

1Z       
1

1,0 1,0
4

P P   

1

1Z  
    

1
0, 1 0,1

4
P P   

2

2Z   2 2 2 21 1 1 1 1 1 1 1 1
, , , ,

8 2 2 2 2 2 2 2 2
P P P P
           

          
        

 

0

2Z     0 0,0 2 0,0P P   
2

2Z  
        2 2 2 21

1,0 1,0 0,1 0, 1
8

P P P P       

3

3Z   
   3 3 3 3 3 31 1 3 1 3 1 3 1 3
1,0 1,0 , , , ,

12 2 2 2 2 2 2 2 2
P P P P P P
           

                     
        

 

1

3Z            2 25 3
1,0 1,0 1,0 1,0

4 8
P P P P      

1

3Z           2 25 3
0,1 0, 1 0, 1 0,1

4 8
P P P P      

3

3Z  
   3 3 3 3 3 31 3 1 3 1 3 1 3 1
0, 1 0,1 , , , ,

12 2 2 2 2 2 2 2 2
P P P P P P
           

                     
        

 

4

4Z   4 4 4 4

4 4 4 4

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21
, , , ,

16 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
, , , ,

2 2 2 2 2 2 2 2

P P P P

P P P P

                     
          
        

       

                
          
       

       

 

2

4Z   3 3 3 3

2 2 2 2

1 1 1 1 1 1 1 1 1
, , , ,

6 2 2 2 2 2 2 2 2

7 1 1 1 1 1 1 1 1
, , , ,

8 2 2 2 2 2 2 2 2

P P P P

P P P P

           
          

        

           
            

        

 

0

4Z       2 06 0,0 6 0,0 0,0P P P   
2

4Z                   3 3 3 3 2 2 2 21 7
1,0 1,0 0, 1 0,1 1,0 1,0 0,1 0, 1

6 8
P P P P P P P P             

4

4Z          4 4 4 4 4 4 4 41 1 1 1 1 1 1 1 1
0,1 0, 1 1,0 1,0 , , , ,

16 2 2 2 2 2 2 2 2
P P P P P P P P

          
                

       

 

 

 Table IV.5 provides the same decentered shape term tabulation of the Zernike 

polynomials now using the x-axis as the reference axis. 
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Table IV.5  0-P normalized Zernike polynomials composed of decentered shape term using 

the x-axis as reference axis. 

Stnd. Decentered Shape Term Equivalent 

0

0Z   0 0,0P  
1

1Z       
1

0, 1 0,1
4

P P   

1

1Z      
1

1,0 1,0
4

P P   

2

2Z   2 2 2 21 1 1 1 1 1 1 1 1
, , , ,

8 2 2 2 2 2 2 2 2
P P P P
           

          
        

 

0

2Z     0 0,0 2 0,0P P   

2
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 Note that for each case shown in Table IV.4 and Table IV.5 either 2 2 1x y    

or 2 2 0x y   .  That is, the decentered shape terms are all decentered to the perimeter 

of a unit radius disk, or are not decentered at all.  This is shown in Figure IV.2. 

 

 
Figure IV.2  The small circles indicate the positions of the decentered shape terms for the 

Zernike Polynomials listed in Table IV.4. 

 

 

 Upon further investigation, it has been found that the position of the decentered 

shape terms need not be restricted to the perimeter of a unit radius disk.  It appears that 

any convenient radial position can be selected.  For example, selecting a radial 

decentering of 1/10
th

 of the unit radius results in the following decentered shape term 

sums for the Zernike polynomials of Table IV.6. 

 

 

 

 



  268 

 

 
Table IV.6  0-P normalized Zernike polynomials composed of decentered shape terms using 

the x-axis as reference axis, and a decenter amount of 1/10. 

Stnd. Decentered Shape Terms Equivalent 
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 An example of utilizing this property of the Zernike polynomials together with 

NAT to describe the field dependence of the wavefront aberration function for optical 

elements having a freeform surface shape defined by the Zernike polynomials is 

presented in Chapter 7. 
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Equation Chapter (Next) Section 1 

Appendix V.   Wavefront and Transverse Ray Coefficients 

 

In his book [53] Cox provides a derivation for the expansion of the transverse ray 

aberration function, , through 5
th

 order that is independent of the wavefront aberration 

function.  Buchdahl [67] provides a method for calculating the resulting transverse ray 

aberration function’s expansion coefficients.  In an attempt to obtain equations for the 6
th

 

order wavefront aberration function’s expansion coefficients, Wklm, it might be thought 

that the equation 

    ,

1
, , , , , ,

' ' x yx y x y x y x yH H W H H
n u

       , (V.1) 

may be used to obtain expressions for the transverse ray aberration function expansion in 

terms of the wavefront aberration function expansion.  One would then only have to 

associate Cox’s results with the gradient equation results to obtain equations for the Wklm 

expansion coefficients in terms of the transverse ray expansion coefficients.  However, it 

is shown here that this approach leads to inconsistent equations for some of the 6
th

 order 

Wklm coefficients. 

 Cox’s equations can be stated as follows 

 

     

     

       

3 2 2

1 2 3

5 4 2 3

1 2 3

2 3 2 3 2 4

4 5 6

sin sin 2 sin

sin sin 2 sin

cos sin sin 2 sin

x A A H A H

B B H B H

B H B H B H

     

     

      

  

  

    , (V.2) 
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      

     

    

   

     

3 2 2 3

1 2 4 5

5 4 4

1 2 1 22

2 3 2

4

2 3 2 3

3 1 4 32

3 2 3 2

5 7 5 7 2 4 32

4

8

cos 2 cos 2 cos

3 1
cos cos 2

2 2 '

cos 1 cos

1 1 1
cos cos

' 2 2

1 1 1
2 cos 2

' 2 2

y A A H A H A H

B B H A A H
d

B H

B H A A A H
d

B B B B H A A A H
d

B H

     

    

  

   

  



    

 
     

 



 
    

 

 
          

 

   5

9cos ,B H    (V.3) 

where Ai are the 3
rd

 order transverse ray expansion coefficients, Bi are the 5
th

 order 

transverse ray expansion coefficients,    , ,x y       are the pupil parameters with 

the angle φ measured from the y-axis, H is the field parameter, and 'd  is the distance 

from the exit pupil to the Gaussian image plane.  The notation used for Eq. (V.2) and Eq. 

(V.3) is substantially different from that employed by Cox in order to match the notation 

used throughout this dissertation. 

 Buchdahl [67, 68] employs a different set of expansion coefficients.  He uses i  

for the 3
rd

 order coefficients and i  for the 5
th

 order coefficients.  The conversions are as 

follows: 

 1 1A   ,  (V.4) 

 2 2A   ,  (V.5) 

 
 3 4 3

1

2
A A   ,

  (V.6) 

 
 4 3 4

1
3

2
A A   ,

  (V.7) 
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 5 5A   ,  (V.8) 

 1 1B   ,  (V.9) 

  2 2 1 22

3 1

2 2 '
B A A

d
     , (V.10) 

 3 2B   ,  (V.11) 

 4 4 3 1 4 32

1 1 1

' 2 2
B B A A A

d


 
     

 
 , (V.12) 

 5 3B   ,  (V.13) 

 6 4B   ,  (V.14) 

 
7 5 7 2 4 32

1 1 1
2

' 2 2
B B A A A

d


 
     

 
 , (V.15) 

  8 5 7B B    , (V.16) 

 9 5B   ,  (V.17) 

 10 8B   ,  (V.18) 

 11 6B   ,  (V.19) 

 12 9B   .  (V.20) 

 It is important to note that some of the 5
th

 order expansion coefficients of 

Buchdahl depend on 3
rd

 order expansion coefficients. 

 Using Buchdahl’s expansion coefficients, the transverse ray aberration expansion 

functions can be written as [67, 68, 77]  
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      (V.22) 

 For a rotationally symmetric optical imaging system, restricting the field 

parameter to be along the y-axis, the wavefront aberration function expansion through 6
th

 

order can be written as 
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      (V.23) 

where 

 
2 2 2

x y     . (V.24) 

 The derivatives of W with respect to x  and y  can be calculated to be 
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   


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    (V.25) 

and 
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     (V.26) 

Using these results in Eq. (V.1) gives 
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  (V.27) 

and 
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  (V.28) 

Comparing like terms in Eq. (V.21) and Eq. (V.27) as well as in Eq. (V.22) and Eq. 

(V.28), for the case of W151 the following associations are made 

    4 4

3 151

2
sin 2 sin 2 y

k k

H W H
n u

    
 

 , (V.29) 
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      4 4

2 3 151

1
cos 2 3 2cos 2 y

k k

H W H
n u

       
 

 . (V.30) 

From the first equation, the following relation is obtained,  

 151 3
2

k kn u
W 

 
  . (V.31) 

The second equation can be written as 

    151 151 2 3

3 2
cos 2 cos 2y

k k k k

W W
n u n u

     
   

 . (V.32) 

It then follows that 

 151 2
3

k kn u
W 

 
  . (V.33) 

Combining Eq. (V.31) and Eq. (V.33) leads to  

 2 3

3

2
   . (V.34) 

This relation is only true for special cases and is not true in general.  Therefore, the 

equations developed for W151 above only hold for special cases and are not consistent 

generally.  Buchdahl, p. 47 [67] writes: 

“If the primary coefficients are negligible, we have 

 

2 3

4 5 6

7 8 9

3

2
 

  

  


 


  

 



 (31.81) 

and these identities will be approximately valid for well-corrected 

systems.” 
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By “primary coefficients” Buchdahl is referring to the 3
rd

 order transverse ray aberration 

coefficients.  From Eq. (V.10) and Eq. (V.11) it can be seen that when the 3
rd

 order 

coefficients A1 and A2 are zero then Eq. (V.34) will hold.  However, this is a special case 

and is not true for all optical imaging systems. 

 In a similar way, equations for other 6
th

 order Wklm coefficients can be derived 

that lead to inconsistent equations.  Therefore, this approach for obtaining equations for 

the 6
th

 order Wklm expansion coefficients cannot be used. 
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Equation Chapter (Next) Section 1 

Appendix VI.  Calculating Field Linear, Field Conjugate Astigmatism 

 

In this Appendix, the derivation of field linear, field conjugate astigmatism is presented.  

This field dependence for the Zernike astigmatism term of the wavefront aberration 

function’s expansion occurs when a  3

3Z 
 cap shape is added to a spherical shaped 

optical element, as discussed in Chapter 7.  Additionally, it is shown that  

 * *

422 4226 6 xV H V H C H   , (VI.1) 

where 
*

4226V H  is the field contribution due to adding a  3

3Z 
 shape to an optical 

element’s surface, 4226V H  is the field contribution due to adding a  3

3Z 
 shape to an 

optical element’s surface, and where  * ,x yH H H  ,  ,y xH H H , and 

 422 4226 ,6C V V  .  This provides a connection to the form for field linear, field conjugate 

astigmatism reported in [72]. 

 It is first shown that 
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   

 

        


   


  (VI.2) 

and  
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,  (VI.3) 

where  

  *

1 1
ˆ ˆ,x yH H H e He    , (VI.4) 

(juxtaposition of vectors indicates the geometric product of GA) and where 

  1 1,0A    , (VI.5) 

 
2

1 3
,

2 2
A

 
   
 

 , (VI.6) 

 
3

1 3
,

2 2
A

 
   
 

 . (VI.7) 

 In the derivations below, the following 2D GA relations are often used without 

explicitly indicating when they are used: 

 1 1 2 2
ˆ ˆ ˆ ˆ 1e e e e   , (VI.8) 

 1 2 2 1
ˆ ˆ ˆ ˆe e e e   . (VI.9) 

 By Eq. (2.64) and Eq. (2.65) 

      
2

ˆ
Ai Ai AiH H e H


       , (VI.10) 

where 1 or 2   specifying which axis is used as the reference axis.  This can be written 

as 



  279 

 

     
2

ˆ ˆ

ˆ ˆ ˆ ˆ

Ai Ai Ai Ai

Ai Ai Ai Ai

H He H e H

He H He e H e

 


   

   

   

    

     . (VI.11) 

Since SVP is commutative,  

  
2

ˆ ˆ ˆ2Ai Ai Ai AiH He H e H e  


        . (VI.12) 

Letting A  stand for the left hand side of Eq. (VI.2), and using Eq. (VI.12), Eq. (VI.2) can 

now be written as 
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Eq. (VI.13) reduces to  
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Regrouping the terms, Eq. (VI.14) can be written as 

  222 1 2 3
ˆ4 A A AA V e H       . (VI.15) 

And by Eq. (VI.5) through Eq. (VI.7) 

 1 2 3 0A A A      . (VI.16) 

Therefore, by using Eq. (VI.16) in Eq. (VI.15), 
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 (VI.17) 

 

 To derive Eq. (VI.3), let B  stand for the left hand side of the equation and write 

out the dot products as 

     2Ai Ai i AiH H D H       , (VI.18) 

where 

 i Ai AiD H H     . (VI.19) 

To simplify a little, Eq. (VI.12) is written as 
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where 

 ˆ ˆ
i Ai AiE He H e     . (VI.21) 

Then 
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Expanding gives 
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And simplifying gives 
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Rearranging gives 
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and 
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Because the Ai  are unit vectors, (see Eq. (VI.5) through Eq. (VI.7)) 

 1i Ai AiD H H H H      . (VI.27) 

Then 
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and 
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By Eq. (VI.16) this is  

      422 1 1 2 2 3 34 A A AB V H E H E H E      
 

 . (VI.31) 

Inserting the iE  gives 

 

     

  

422 1 1 1 2 2 2

3 3 3

ˆ ˆ ˆ ˆ4

ˆ ˆ

A A A A A A

A A A

B V H He H e H He H e

H He H e

   

 

     

  

    


 
  , (VI.32) 

 

       

   

422 1 1 1 1 2 2 2 2

3 3 3 3

ˆ ˆ ˆ ˆ4

ˆ ˆ

A A A A A A A A

A A A A

B V H He H H e H He H H e

H He H H e

   

 

       

   

    


 
  . (VI.33) 

Rearranging gives 

 

     

     

422 1 2 3

1 1 1 2 2 2 3 3 3

ˆ ˆ ˆ4

ˆ ˆ ˆ

A A A

A A A A A A A A A

B V H He H H He H H He H

H e H e H e

  

  

  

        

   


  
  , (VI.34) 

 

   

     

422 1 2 3

1 1 1 2 2 2 3 3 3

ˆ4

ˆ ˆ ˆ

A A A

A A A A A A A A A

B V H He H

H e H e H e



  

  

        

   

  
  , (VI.35) 

      422 1 1 1 2 2 2 3 3 3
ˆ ˆ ˆ4 A A A A A A A A AB V H e H e H e              

 
 . (VI.36) 

Using the GA relation Eq. (2.7) to write the dot products as 
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  
1

2
Ai Ai AiH H H     , (VI.37) 

Eq. (VI.36) can then be written as 

 

   

 

422 1 1 1 1 2 2 2 2

3 3 3 3

1 1
ˆ ˆ4

2 2

1
ˆ

2

A A A A A A A A

A A A A

B V H H e H H e

H H e

 



       

   


    




  

  , (VI.38) 

 

   

 

422 1 1 1 1 1 1 2 2 2 2 2 2

3 3 3 3 3 3

ˆ ˆ ˆ ˆ2

ˆ ˆ

A A A A A A A A A A A A

A A A A A A

B V H e H e H e H e

H e H e

   

 

           

     

    


 
  , (VI.39) 

Since  

 1 0 1Ai Ai Ai Ai Ai Ai            , (VI.40) 

Eq. (VI.39) can be written as 

 

422 1 1 1 1 2 2 2 2

3 3 3 3

ˆ ˆ ˆ ˆ2

ˆ ˆ

A A A A A A A A

A A A A

B V H e He H e He

H e He

   

 

       

   

    

    . (VI.41) 

Regrouping the terms gives 

 

422 1 1 1 2 2 2 3 3 3

1 2 3

ˆ ˆ ˆ2

ˆ ˆ ˆ

A A A A A A A A A

A A A

B V H e H e H e

He He He

  

  

        

  

   

     , (VI.42) 

  422 1 1 1 2 2 2 3 3 3 1 2 3
ˆ ˆ ˆ ˆ2 A A A A A A A A A A A AB V H e H e H e He                      

 , (VI.43) 

  422 1 1 1 2 2 2 3 3 3
ˆ ˆ ˆ2 A A A A A A A A AB V H e H e H e               , (VI.44) 

  422 1 1 1 2 2 2 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 A A A A A A A A AB V e e H e e e H e e e H e                     , (VI.45) 

  422 1 1 1 2 2 2 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 A A A A A A A A AB V e H e e e H e e e H e e                     , (VI.46) 
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  422 1 1 1 2 2 2 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 A A A A A A A A AB V e He e e e e He e e e e He e e e                           . (VI.47) 

The reference axis selected in this dissertation is the x-axis, so ê  is set to 1̂e .  Then 

  * * *

422 1 1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 A A A A A A A A AB V H e e e H e e e H e e e             . (VI.48) 

Since the Ai  are known explicitly, the following calculations can be performed to show 

that 

 1 1 1 1 1 1
ˆ ˆ ˆ

A A Ae e e      , (VI.49) 

 2 1 2 1 2 1
ˆ ˆ ˆ

A A Ae e e      , (VI.50) 

and 

 3 1 3 1 3 1
ˆ ˆ ˆ

A A Ae e e      . (VI.51) 

Explicitly, the calculations are 

  1 1̂1,0A e      , (VI.52) 

      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

A A Ae e e e e e e e e e e e e            , (VI.53) 

 

Next, 

 2 1 2

1 3 1 3
ˆ ˆ,

2 2 2 2
A e e

 
    
 

 , (VI.54) 
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2 1 2 1 2 1 2 1 1 2 1 1 2

1 1 2 1 1 1 2 1 1 2

2 1 2 1 2 1

1 3 1 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 2 2 2 2 2

1 3 1 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 2 2 2 2 2

1 1 3 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ

2 2 2 2 2 2

A A Ae e e e e e e e e e

e e e e e e e e e e

e e e e e e

  
     

             
     

   
         
   

   
       

   
1 2

2 1 2 1 2 1 2 1 1 2

1 3
ˆ ˆ

2 2

1 3 3 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

4 4 4 4 2 2

e e

e e e e e e e e e e

  
      

  

  
        
    , (VI.55) 

 

2 1 2 1 2 1 2 2 1 1 2 2 1 1 2

2 1 2 1 1 2

1 2 2 1 1 2 1 2 2 1 1 2 1 2

2 1

1 1 3 3 1 3 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

4 2 2 4 2 2 4 2 2

3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ

4 2 2

1 3 3 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

8 8 8 8 8 8

3
ˆ ˆ ˆ

8

A A Ae e e e e e e e e e e e

e e e e e e

e e e e e e e e e e e e e e

e e

  
     

               
     

 
   

 

     

 2 1 1 2 1 2 1 2

3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

8
e e e e e e e e

 
  

   , (VI.56) 

 2 1 2 1 2 1 2 2 1 2 1 1 2

1 3 3 3 3 3 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

8 8 8 8 8 8 8 8
A A Ae e e e e e e e e e            , (VI.57) 

 2 1 2 1 2 1 1 1 1

1 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ

8 8 8 8
A A Ae e e e e e        , (VI.58) 

 2 1 2 1 2 1
ˆ ˆ ˆ

A A Ae e e      . (VI.59) 

And for Eq. (VI.51) 

 
3 1 2

1 3 1 3
ˆ ˆ,

2 2 2 2
A e e

  
    
 

  (VI.60) 

So, 

 3 1 3 1 3 1 2 1 1 2 1 1 2

1 3 1 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 2 2 2 2 2
A A Ae e e e e e e e e e  

       
             
     

 , (VI.61) 
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3 1 3 1 3 2 1 2 1 2 1 1 2

1 1 3 3 1 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 2 2 2 2 2 2 2
A A Ae e e e e e e e e e  

         
                

      

 , (VI.62) 

 
3 1 3 1 3 2 1 2 1 2 1 2 1 1 2

1 3 3 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

4 4 4 4 2 2
A A Ae e e e e e e e e e e e  

    
        
  

 , (VI.63) 

 
3 1 3 1 3 1 2 2 1 1 2 2 1 2 1 1 2

1 1 3 3 1 3 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

4 2 2 2 2 2 4 2 2
A A Ae e e e e e e e e e e e e e  

         
                 

      

 ,(VI.64) 

 
3 1 3 1 3 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 1 2

1 3 2 3 6 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

8 8 8 8 8 8
A A Ae e e e e e e e e e e e e e e e e e e e  

   
       
 

 ,(VI.65) 

 
3 1 3 1 3 1 2 2 1 1 2

1 3 2 3 6 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

8 8 8 8 8 8
A A Ae e e e e e e e  

  
       
 

 , (VI.66) 

 3 1 3 1 3 1 1 1

1 6 3
ˆ ˆ ˆ ˆ ˆ

8 8 8
A A Ae e e e e       , (VI.67) 

 3 1 3 1 3 1
ˆ ˆ ˆ

A A Ae e e      . (VI.68) 

Then Eq. (VI.48) can be written as 

       * * *

422 1 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ2B V H e e H e e H e e        , (VI.69) 

  * * *

422 1 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ2B V H e e H e e H e e    . (VI.70) 

And finally,  

 
*

4226B V H  . (VI.71) 

This is the field linear, field conjugate field contribution described in Chapter 7 for the 

case that a  3

3Z 
 Zernike cap shape is added to an optical element.   
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 When the Zernike cap shape added to an optical element’s shape is of the form 

   3 3

3 3aZ bZ    where a and b are real constants, then the field contribution to the 

Zernike astigmatism term of the wavefront aberration function expansion takes the form 

(see Table 7.1) 

 
*

. 422 4226 6Z CapF V H V H   , (VI.72) 

where 

  ,y xH H H  . (VI.73) 

It is here shown that (VI.72) can be written as  

 
* *

. 422 4226 6Z Cap xF V H V H C H    , (VI.74) 

where  422 4226 ,6C V V  . 

 From Table 7.1 

  *

422 4226 6 ,x yV H V H H   , (VI.75) 

and 

  422 4226 6 ,y xV H V H H   . (VI.76) 

Then 

    *

. 422 422 422 4226 6 6 , 6 ,Z Cap x y y xF V H V H V H H V H H       . (VI.77) 

Combining into a single vector, this becomes 

  . 422 422 422 4226 6 ,6 6Z Cap x y x yF V H V H V H V H      (VI.78) 

Define 
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  422 4226 ,6C V V   . (VI.79) 

Then 

        *

422 422 422 1 422 2 1 1 2
ˆ ˆ ˆ ˆ ˆ6 ,6 , 6 6x x x y x yC H V V H H V e V e e H e H e       . (VI.80) 

Expanding gives 

    *

422 1 2 422 2 1 1 2
ˆ ˆ ˆ ˆ ˆ ˆ6 6x x y x yC H V H e H e V e e H e H e     , (VI.81) 

 *

422 1 422 2 422 2 1 1 422 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ6 6 6 6x x y x yC H V H e V H e V H e e e V H e e e      , (VI.82) 

 *

422 1 422 2 422 2 422 1
ˆ ˆ ˆ ˆ6 6 6 6x x y x yC H V H e V H e V H e V H e      , (VI.83) 

    *

422 422 1 422 422 2
ˆ ˆ6 6 6 6x x y x yC H V H V H e V H V H e      , (VI.84) 

  *

422 422 422 4226 6 , 6 6x x y x yC H V H V H V H V H     . (VI.85) 

The right hand side of Eq. (VI.85) is the same as the right hand side of Eq. (VI.78).  

Therefore,  

 
* *

. 422 4226 6Z Cap xF V H V H C H    . (VI.86) 

This 
*

xC H  form is the field linear, field conjugate astigmatism field contribution 

reported in [72].  However, in [72] the y-axis is used as the reference axis for SVP 

whereas Eq. (VI.86) is written using the x-axis as the reference axis. 

 


