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Abstract

It is shown how Shack’s vector product (SVP) can be used to express the expansion of
the monochromatic wavefront aberration function for rotationally symmetric optical
imaging models using the H. H. Hopkins’ expansion coefficients. As a result of this
research it was discovered that SVP fits naturally within the framework of 2-dimensional
Geometric Algebra (GA). It is further shown how SVP can be used to define two-
dimensional vectors in terms of the Zernike polynomials. The wavefront aberration
function expansion is then expressed in terms of these Zernike vectors. A method for
calculating the H. H. Hopkins’ expansion coefficients is described, including the
calculation of the per surface, sphere/asphere, intrinsic/extrinsic expansion coefficient
contributions. Methods for converting the Zernike expansion coefficients into the H. H.
Hopkins’ expansion coefficients have been developed and are presented in this work.
Nodal aberration theory (NAT), now well established in the literature, is presented in
terms of these mathematical developments. As a quantitative validation of the NAT
predications of an optical system’s field dependence, comparisons are made between the
full field displays (FFDs) produced by using a double Zernike expansion of the wavefront
aberration function and by application of NAT to rotationally symmetric optical imaging
systems having one or more surfaces decentered and/or tilted. Validation of these
developments is provided using idealized computer models of several space telescopes
having one or more optical surfaces decentered and/or tilted. Initial steps toward one
approach for extending NAT to include optical imaging systems containing freeform

surface shapes defined by Zernike polynomials is also provided.
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Chapter 1 Introduction

Portions of this Chapter have been taken from the author’s article [2] and appear here in a
slightly revised form.

This research concerns the development of a bridge between the optical design
community’s utilization of the H. H. Hopkins expansion of the monochromatic wavefront
aberration function and the optical testing community’s utilization of a Zernike expansion
of the wavefront aberration function. Although the field dependence of the wavefront
aberrations has been noted and utilized in the optical design community for many years
(hence the development of the Fringe Zernike ordering of the Zernike polynomials), it is
less well known or utilized in the optical testing community. Equations are developed in
this work that explicitly provide the field dependence of the Zernike polynomial
expansion of the wavefront aberration function as well as equations for expressing the
Zernike expansion coefficients in terms of the H. H. Hopkins expansion coefficients.

For aberration theorists working in optical design, a common starting point for
evaluation of aberrations is a form of the wavefront aberration function expansion written
out by H. H. Hopkins [3] in the 1950s. R. V. Shack later wrote the wavefront aberration
function expansion in terms of 2-dimensional (2D) pupil and field vectors [4]. This led
Shack to develop a vector multiplication that has become known in the optics literature as
Shack’s vector multiplication and Shack’s vector product (SVP) [5]. This vector product
is similar to the multiplication of complex numbers [6]. It has also been defined in terms

of the Cartesian components of the two vectors involved. SVP of the two vectors has
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then been defined by converting the vectors into complex numbers, performing the
complex number multiplication, and then converting the result back into a 2D vector.
Using geometric algebra (GA) [7, 8, 9, 10] as the 2D vector algebra eliminates any need
to convert 2D vectors into complex numbers and vice versa. This is because, as the
research to be described in Chapter 2 has demonstrated, SVP is a fundamental construct
of 2D GA.

Zernike polynomials [11, 12, 13] have been adopted by both the optical testing
and the optical design communities and the supporting fields of optical engineering and
optical alignment following the introduction of commercial laser-based interferometers.
They are orthogonal and complete over a unit radius circular pupil and they present the
balance between multiple orders of the aberrations of H. H. Hopkins in the context of
minimizing the RMS wavefront error for optical design. Zernike polynomials provide an
excellent metric basis for describing and understanding errors in the shape of an optical
surface. In the initial application of Zernike polynomials to the testing of individual
optical surfaces there was no motivation to consider field dependence, only aperture
dependence was being sought. With the research described here, the field dependence is
made explicit and may then find useful application in the testing community.

Researchers have used Zernike polynomial fits to the wavefront computed at a
sparse set of field-of-view points in an attempt to characterize the performance of
misaligned optical systems. Specifically, McLeod [14] used Zernike polynomials to
describe characteristics of 4™ order astigmatism within the field of view resulting from

misalignment between the primary and secondary mirrors of a Ritchey-Chrétien



3
telescope. Rakich [15] describes the field dependence of the aberrations using the Burch
plate diagram method [16] for simplifying the fourth-order analysis of optical systems
and uses Zernike polynomials to resolve individual plate contributions to the system
aberration into the coefficients for coma and astigmatism in Zernike terms that arise from
misalignments. Noethe and Guisard [17] present measurements of the astigmatic field
for the European Southern Observatory (ESO) Very Large Telescope (VLT), using
measurements of the coefficients of their Zernike polynomial astigmatic components Z4
and Z5 (Fringe ordering Z5 and Z6). Matsuyama and Ujike [18] have developed
“functions that are orthogonal to each other and expressed by a simple combination of
Zernike function(s) of pupil coordinates and Zernike function(s) of field coordinates.”
Kim, et al. [19] used Zernike coefficients to develop a merit function for a telescope
alignment scheme. Lee, et al. [20] used Zernike polynomials as an orthogonal basis for
decomposing alignment influence functions. Schechter and Levinson [21] studied the
fourth- and sixth-order aberration patterns that arise when small misalignments are
present in a rotationally symmetric telescope system.

In Chapter 3 of this work the real number form (as opposed to the complex
number form) of the Zernike polynomials is defined and it is shown how they can be
written in terms of SVP. It is then shown how to define Zernike vectors that will be used
to express the wavefront aberration function expansion, a new result of this research. An
Appendix (Appendix Il1) to this Chapter is provided giving the details for the discrete
orthogonality relation of the real number Zernike polynomials. The relations developed

are used in a Gaussian Quadrature (GQ) procedure (together with optical path length



4
difference data obtained by real ray tracing for an optical model under consideration) to
calculate the wavefront aberration function expansion coefficients. An additional
Appendix (Appendix 1V) reports on a discovery of this research that the Zernike
polynomials can be written as a sum of decentered, rotationally symmetric terms.

Chapter 4 develops and presents the core results of this research. The H. H.
Hopkins formulation of the wavefront aberration function used by aberration theorists
working in the field of optical design is written in terms of SVP formulated in the context
of GA. In this form, the field dependence and the pupil dependence can be separated,
and the vector nature of the field dependence is made explicit. It is shown that a subset
of the Zernike vectors introduced in Chapter 3 can also be written in terms of SVP. This
subset of Zernike vectors is exactly the collection of Zernike vectors needed for
expressing the wavefront aberration function of rotationally symmetric optical imaging
systems in terms of Zernike vectors. New equations for the wavefront aberration
function expansion having the field and pupil parameters separated, referenced to the
Sagittal and the Medial focal surfaces, are presented. A double Zernike expansion (in
field and in pupil parameters) is also developed. Equations for obtaining the H. H.
Hopkins’ expansion coefficients from the double Zernike expansion coefficients are
determined.

Chapter 5 provides a brief review of nodal aberration theory (NAT) [3]. NAT is
used to investigate the field dependence of the wavefront aberration function expansion
of rotationally symmetric optical imaging systems that have one or more of its surfaces

perturbed (decentered and/or tilted).
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Chapter 6 presents validation of the mathematical development developed in the
preceding Chapters using 2 and 3-mirror telescope models. This Chapter provides
examples of utilizing the developed field dependent equations for rotationally symmetric
optical imaging systems that have at least one surface that is decentered or tilted.
Quantitative and qualitative comparisons between the field dependent display plots
generated by real ray trace data and the double Zernike expansion, and the single Zernike
expansion using NAT’s sigma offset vectors are presented.

Chapter 7 proposes a new method for utilizing NAT to obtain the field
contributions due to freeform optical elements defined using xy polynomials and Zernike
polynomials. Examples of utilizing the new approach are also provided.

Finally, Chapter 8 provides conclusions and comments on future research

directions.



Chapter 2 Shack’s Vector Product (SVP) in the Context of Geometric

Algebra

In this work, geometric algebra (GA) is used primarily as an alternative to using the
complex number algebra for 2D vector calculations. GA is an algebraic system that
includes many other algebraic systems that are traditionally considered separately, such
as vectors, complex numbers, quaternions, differential forms, Dirac and Pauli spinors,
tensors, etc. GA also provides real geometric interpretations of its elements (as opposed
to “imaginary” elements). Additionally, GA does not suffer from the deficiencies
inherent in the traditional vector algebra. For example, in the traditional vector algebra of
Gibbs and Heaviside, the vector cross product is only valid in a 3-dimensional vector
space, it makes no notational distinction between vectors and pseudo-vectors (for
example, torque, angular momentum and the magnetic field pseudo-vectors), and “does
not include a consistent way to represent vector rotations” [22]. Typically, in the vector
algebra approach to vector rotations, the vector would first be converted into a complex
number representation, then multiplied by a phasor, then converted back into a vector.
The matrix formulation of vector rotations again requires objects and an algebra beyond
the vector algebra (the matrix algebra) to accomplish vector rotations. This is what the
authors mean when they say that the vector algebra does not have a consistent way to
represent vector rotations: An additional algebra (the complex number algebra, or matrix

algebra) is required. GA provides a single algebra which overcomes all these
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deficiencies. Finally, since GA is being used in many disciplines, from computer

graphics to theoretical physics, it has the potential to provide a common mathematical
system that will aid cross disciplinary studies.

The goals of this Chapter are to provide a brief introduction to GA at the level
necessary to understand this work, show how Shack’s vector product (SVP) of two 2D
vectors, which is central to this work, can be expressed using the GA vector products and
to illustrate how calculations involving SVP can be performed. It does not assumed that
the reader has been previously exposed to GA. In the next Chapter, it is shown how SVP
in the GA form can be used to define a special set of Zernike polynomial vectors. This
set of Zernike vectors is exactly the collection of Zernike vectors needed for expressing
the expansion of the monochromatic wavefront aberration function for rotationally
symmetric optical imaging systems in terms of Zernike vectors. This will be

demonstrated in a later Chapter.

2.1 Historical Background

The concept of a vector is now so important and basic to the sciences that it is hard to
imagine that there was a time in which vectors, vector algebra and vector calculus were
not known. Vectors had to be invented. This is also true of complex numbers, complex
number algebra, and complex analysis. A fascinating account of the history and
development of vectors can be found in Crowe’s book [23]. In 1545, Gerolamo Cardano
“...acknowledged the existence of what are now called imaginary numbers” in his book
Ars Magna [24]. However, it was not until the work of Cauchy (early to mid-1800’s) that

complex numbers were defined as a pair of real numbers [25]. Hamilton, attempting to
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extend the complex number algebra to two and then to three dimensions, discovered and

developed his quaternions in 1843 [23, 26]. Although well known, but not universally
adopted at the time, quaternions have seen a recent increase in interest largely due to the
fact that it is easier and more efficient to program rotations in 3D Euclidean space about
an arbitrary axis using quaternions than using the Euler angle formalism [27]. Maxwell
used Hamilton’s quaternions, and components, in writing out his equations of
Electrodynamics. It was principally Gibbs and Heaviside who changed Maxwell’s
equations into the vector form that we know today. Maxwell never wrote his equations in
modern vector form. Vectors were being developed at that time as a reduction of
Hamilton’s quaternions.

While this development of quaternions and vectors was underway, Hermann
Grassmann developed and published an alternative algebra in his 1844 book Lineale
Ausdehnungslehre. This algebra includes the complex number algebra, Hamilton’s
quaternion algebra and vector algebra, although this was not appreciated at that time.
Grassmann’s book was not well received so another, refined, edition was published in
1862 called Ausdehnungslehre [28]. But once again, although known, it was not adopted.
William K. Clifford further developed Grassmann’s work in the 1870s and introduced the
term “geometric algebra”. “In 1878, one year after Grassmann’s death, William K.
Clifford (1845-1879) published his ‘Applications of Grassmann's extensive algebra’..., in
which he successfully unified Grassmann’s extensive algebra with Hamilton’s quaternion

... description of rotations. This was the birth of (Clifford) Geometric Algebra...” [29].
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Although additional work in this area of algebra slowly progressed, present day

interest did not significantly increase until David Hestenes saw that the algebras used in
quantum mechanics (the spinor algebra of Pauli and Dirac) were exactly those of Clifford
(Grassmann) algebra [30]. Hestenes continued to develop Clifford (Grassmann)
Geometric Algebra, which is now seen to unify complex numbers, quaternions, vectors,
differential forms, spinors, as well as Pluker coordinates, homogeneous coordinates,
Euclidean geometry, differential geometry, projective geometry, and more, into a unified
geometric algebra and calculus for physics and engineering [7]. Recently, a plethora of
work in the application of GA has occurred in many areas including: rigid body dynamics
(including robotics), computer vision, computer graphics, theoretical and applied physics,

computational engineering, and other areas.

2.2 Introduction to Geometric Algebra

For a Euclidean three dimensional vector space, the orthonormal basis vectors are usually

denoted in GA as €, &,, &;.

Figure 2.1 Basis vector notation.

The wedge product (also called the outer or exterior product), denoted by “A”, of two
basis vectors is defined by the relations

& A8 =& A8, %], (2.1)
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with i, j=1, 2, 3. Note that the new objects € A€, i= j cannot be further reduced. As

relation (2.1) shows, the wedge product is anti-commutative. It is also associative and

A A

distributive over addition. The new objects, é AE,, €, A&,, & A€, like the unit vectors
€, é,, &, (and the unit scalar 1) are members of the basis set for 3D GA. They represent

oriented unit plane elements, analogues to the basis vectors €, €,, & which represent

oriented unit line elements.

€, A 3 /\A/\
€," € e;" &

/\A/\
e1 eQ

Figure 2.2 The unit area basis elements. The orientation of a plane is denoted in the plane,
not perpendicular to the plane.

Additionally, there is a basis object defined by

A

| =€ A6, NG, (2.3)

called the pseudo-scalar. It represents the oriented unit volume element.

Y
X
A
pLisl
f A
A oA A B
e,he, N e,

Figure 2.3 Oriented unit volume basis element: A directional spiral in a unit volume.
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The complete basis set for 3D GA is then given by the set

A A

{L&,6, 6,6 16, 6 N6, & A, E NG NEY. (2.4)

A general element in the 3 dimensional GA can be written as
A=s+aé +heé,+cé,+dé né,+ T € AE +0E AE +hEé AE AE; (2.5)
where s, a, b, ¢, d, f, g, h are real numbers. The s part is called the “scalar” part, the
aé +bé,+cé, part is called the “vector” part, the dé Aé, + f €, AE,+7é AE part is
called the “bi-vector” part, and the hé A€, A€, part is called the “tri-vector” part. This

nomenclature is derived from the number of unit basis vectors needed to define a single
term of the part considered. The object A of Eq. (2.5) is called a multi-vector. This is

similar in structure to complex numbers when written in the form ¢ =real +imaginary .

The complex number ¢ has a real number (scalar) part plus some mathematical object that

is not a real number. The whole cannot be further reduced to a real number. In a similar
way, objects of GA, for example, A=3+5€ A€,, cannot be further reduced to a single

real number.
The geometric product, written as a juxtaposition of symbols, of two vectors (but

not in general between two multi-vectors) is given by

AB=A-B+AAnB . (2.6)

¢ _ 9
L]

where the is the vector inner product, also called the dot or vector scalar product.

Although A and B are vectors, their geometric product, in general, is a multi-vector.
The geometric product is associative, distributive over addition and invertible, but not

commutative nor anticommutative. To define the geometric product for arbitrary multi-
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vectors requires expanding the definition of the vector dot product for objects which are

not simply vectors. The resulting operator is called a “left contraction”. Such an
extension of the vector dot product is not required in this work. The interested reader is

referred to Hestenes [7] and to Dorst, et al. [9] for further details.

Since the dot product between vectors is symmetric (A-é = I§-A) and the wedge

product is antisymmetric (A/\ B=—Bn A) , the following equations are obtained

(AB+EBA), (2.7)

AAB = (AE—EA), (2.8)

N |-

where the juxtaposition of the vectors indicates the geometric product.
Because the basis vectors are orthonormal, so that the dot product between

different basis vectors is zero, a shorthand notation is frequently used in the literature for

i#=j#k
& nE =66 =6, (2.9)
& A6 N6 =666 =6, . (2.10)
The pseudo-scalar can then be written as
| =€ 66, . (2.12)
The inverse of the pseudo-scalar is given by
I =668 . (2.12)

Explicitly, this is shown by



Note that for i j
€68 =—6€ 6 (2.14)

The magnitude of the wedge product of two non-zero vectors is the area of the
parallelogram formed by the two vectors. Additionally, for a 3D vector space only, there

is a relation between the wedge product and the vector cross product given by
AxB=(An é)l-l, (2.15)
Explicitly, for the nonzero vectors A=Ag +Ag, +Ag, and B=B§ +Bé, +Bé, ,

AnB

(A& +AS+AE)A(BE+BE,+BE,), (2.16)

AAB=AG A(BE+BgE, +B&)+AE A(BE+BE +Bé )+

A A (B +B,& +B8,) ,(2.17)
AAB=AB6 A6 +ABE A6 +ABE NG+

ABE, ~nE +ABE NE +ABE AE+

AB& A6 +ABE NG, +ABE AE (2.18)

AAB= ABEE, +ABEE +ABEE +ABEE+ABEE +ABEE, . (219)
Multiplying by the inverse pseudo-scalar, gives
(AAB)I7=(AB &6, +ABEE+ABEE +ABES +ABEE +ABEE )66, (220)

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAA

A,B,8,€,6,6:6 + A B £,£,6,6,6 . (2.21)

By using Eq. (2.14) this simplifies to
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(AAB)I'=AB& -ABE-ABE&+ABE+ABE-ABE . (222

This can be rearranged and written as
(AAB)I7=(AB,~AB,)&+(AB —AB,)§ +(AB,~AB )&,  (223)

which is seen to be the vector cross product of A and B. Therefore, for a 3D vector
space only,

(AAé)H:Axé. (2.24)

2.3 Reflection and Rotation Operators

SVP of two 2D vectors results in a third vector, in the plane defined by the two vectors,
that is a rotated and scaled version of one of the two vectors involved. Therefore,
rotations using 2D GA is here reviewed and illustrated.

The basis set for 2D GA is
{Lé&,6, &ng}. (2.25)
A general multi-vector then has the form
V =s+aé +hbe, +Ccé Aé,, (2.26)
where s, a, b, and c are real numbers.
The reflection operation of a vector A about a unit vector A, in the € A€, plane,
is given by the expression

A'=AAR. (2.27)
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Figure 2.4 Reflection of A about the unit vector N gives A'.

As an example, consider the reflection of A= € about the axis line defined by the vector

é,. This is written as

A'=6,8,. (2.28)
Since the geometric product (indicated by the juxtaposition of the vectors) is associative,

this expression can be evaluated in any order. For example

A'=(8,4)8,. (2.29)
By Eq. (2.9), since the dot product €,+€, =0,
é,. (230)
From Eq. (2.1)

A'=(-6 18,)6,. (2.31)

A'=(—48,)8,. (2.32)

A'=-6(84,). (2.33)
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Finally, using Eq. (2.6) and Eq. (2.2)

A'=-¢, (2.34)
as expected for a reflection of €, about the line defined by &, .
Since any rotation can be decomposed into two reflections, any rotation operator

acting on a vector A can be written as

A" = (i Af ) =rhA A = (hA) A(Ah) = RAR ™, (2.35)
where m and N define the two unit vectors about which the reflections are to be
performed. R is called a rotor and R™ denotes the inverse of the rotor. That is

RR‘lz(rﬁﬁ) (fih) =m(An)mh=rh=1. (2.36)
As Eqg. (2.35) shows, rotors are the geometric product of two unit vectors. To better
understand rotors, their general form as a multi-vector in a 2 dimensional GA vector
space is presented. Let

m=mé&+mé, n=n¢é+né,, (2.37)

where m,,m ,n,,n, are real numbers with the restriction that m and A are unit vectors.
Then

R=mfi=(m & +m, & )(n,é+né,), (2.38)
which can be simplified to

R:(nxmx+ny my)+(ny m, —n, my)é1é2 . (2.39)
Therefore, the rotor can be written as

R=mA=a+bl, (2.40)
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where a=(nm, +nm ), b=(nm—nm ) and | =6¢ =& A&, is the pseudo-scalar

in the 2D GA. Note that

Thus the 2D GA includes the complex number algebra.

By analogy with the exponential expansion

exzii: :

n—o N:

and using the geometric product, the following expansion can be written

o (1) (1x)" (%)
e n; " =1+1x+ PRTRR

Using the property shown in Eq. (2.41) with Eq. (2.43) results in the equations
1>x>  1*x* Px® 1°x°
e'X=(1+ + +...J+(Ix+ + +]

2! 41 3! 5!
2 3

=(1—L+...j+ | ( x—i+..}
2! 3!

© (2n) o (2n+1)
n X n X
= Y (-1 +1 ) | pA—
2 ] (2 )

Recalling the expansion of the sine and cosine functions leads to

e'* =cos(x) + I sin(x) .

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

This is Euler’s equation expressed in 2D GA. One needs to be aware that the pseudo-

scalar | is not the same as the complex number izﬂf—l . The pseudo-scalar | is an

oriented unit area object. Note that Eq. (2.45) is the same form as the rotor in Eq. (2.40)

above. Then let
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R=e'"?, (2.46)

It can be shown that
R1=¢'92 (2.47)
so that RR™ =1. A rotor acting on a general 2D vector A= a6 +ae, is then written as

(note the half-angles)
RAR ! =g'%2 pe'92, (2.48)
It can be shown that this leads to

RAR™ =(a, cos(0)+a,sin(0))é +(-a,sin(#)+a, cos(6))é,, (2.49)
and this is recognized as a rotation of the vector A in the | =€ A€, plane by an angular

amount @ in the clockwise (x-axis toward —y-axis) direction (when & >0). Hence the
name “rotor” for R.

One important property of 2D GA is that the order of the geometric product of
three 2D vectors can be reversed. (This is not necessarily true for vectors of higher
dimensional GAs because then the three vectors need not all lay in the same plane.) For

example, it can be shown that for 2D vectors
ABC =CBA. (2.50)
Using this property, it can be shown that rotations in a plane can also be accomplished
without having to use the half-angle of the rotation amount. By using Eq. (2.50) it can be
shown that
RA=e'"?A=Ae™'?? = AR, (2.51)

and therefore
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A =R ARD = ARTRZ = A% _ Ag " _ AR (2.52)

Similarly, it can be shown that
A'=R AR*=RRA=¢'"%'"2A=¢'"A=R,A. (2.53)
Therefore, rotation of a vector in the plane can be accomplished by the application of (the

geometric product of) a single rotor on the left or the right of the vector.

Consider a rotor of the form R =€, where N is a unit vector in the | =€ A§,

plane.

n
3>

Figure 2.5 An arbitrary unit vector in the | = él A\ éz plane.

Using the angle £ as defined in Figure 2.5, we have

cos(3)6,6, =cos(B)—sin(B)és, , (2.54)
which gives

R=e"’, (2.55)



20
When used as a single sided rotor on the right of a vector this is a clockwise (x-axis

toward —y-axis) rotation (assuming £ is positive) of the vector in the | =€ A€, plane by

the angular amount S that is the signed angle between €, and 1.

In the next section these properties of GA and rotors are used to develop

equations for Shack’s vector product.

2.4 Shack’s Vector Product

This research makes extensive use of SVP, described as follows. Consider two 2D
vectors A and B in the xy-plane such that vector A makes an angle « with respect to
the y-axis, and such that vector B makes an angle [ with respect to the y-axis, both
angles being measured in a clockwise direction from the y-axis toward the x-axis. Let the
vector C be the result of SVP of A and B. Then the vector C will have a magnitude
equal to the product of the magnitudes of A and B, and will make an angle ¥ with
respect to the y-axis equal to the sum of the angles « and £. This is illustrated in

Figure 2.6.
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Y=o +f3

¢

Figure 2.6 Shack's vector product of A and B .

In the Optics literature, SVP is indicated by the juxtaposition of the vectors. This
conflicts with the GA geometric product notation. Therefore the symbol “x” will be
used to denote SVP in this work. Other notation for SVP will be introduced below as

needed.

There are many ways to interpret (and therefore implement) SVP as a procedure

(sequence of calculations). Some examples are:
e First rotate the vector A by the angular amount £ and then multiply the result by
the magnitude of vector B .

e First rotate the vector B by the angular amount & and then multiply the result by

the magnitude of vector A.



22

e First rotate the vector €, by the angular amount « plus the angular amount

and then multiply the result by the magnitude of vector A and by the magnitude of
vector B.

e Since any rotation can be decomposed into 2 sequential reflections, first reflect

vector A about the y-axis (the €, axis) to get a vector A'. Then reflect A" about
a unit vector N halfway between €, and B. Finally, multiply the resulting vector

by the magnitude of vector B. This sequence is shown in Figure 2.7 on the

following page.

Based on the description of the GA equations for reflections and rotations of 2D
vectors provided above, the steps illustrated in Figure 2.7 can be written as the following

equation

C-AxB=|g

(n(e.A¢,)n), (2.56)
where the parentheses have been added for clarity, highlighting the groups of single

reflection operations. This is the starting point for all the other formulations of SVP in

GA.
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Figure 2.7 (1) Defining the vectors and their angles. (2) A s reflected about é2 to produce

A’ . (3) Unit vector A is defined halfway between é2 and B . 4) A’ is reflected about

A and scaled by ||I§|| to produce the resultant vector C .
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For example, by using a different grouping (recall that the geometric product is

associative), SVP can be written as

AxB=[B

(1&,) A(&,1)=|B|RAR™, (2.57)
where the rotor R is given by
R=1é, . (258)
Several different expressions and procedural interpretations for SVP are provided
in Appendix I. The simplest form developed in this research is
AxB=AéB . (2.59)
Recalling the property shown in Eqg. (2.50), that the outer two vectors can be exchanged

in the geometric product of three 2D vectors, shows that SVP, Eqg. (2.59), is a
commutative product,

AxB=B«*A. (2.60)
Eq. (2.59) also shows that SVP of two vectors explicitly depends on three vectors, the
third vector being a unit vector along the line used as the reference axis. Also, an
important property of SVP is that the result is always a 2D vector.

A convention often used in the optical design community is that angles at
measured from the positive y-axis toward the positive x-axis. In the optical testing
community, the x-axis is often chosen as the reference axis. To accommodate both
conventions, the notation and definition of SVP is extended. A subscript on the Shack

vector product symbol “x” will be used to indicate which axis is being used as the
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reference axis. Let Az(& A/) and B :(BX, By) be two arbitrary non-zero 2D vectors.

Then SVP is defined to be

A« B=A&B=(AB -AB, AB +AB,)=C, (2.61)

Ax,B=A&B=(AB +AB, AB —AB =D, (2.62)
where the subscript on the star multiplication symbol indicates which axis is being used
as the reference axis. Note that Eq. (2.61) and Eq. (2.62) show that, depending on which

axis is being used as the reference axis, SVP of two 2D vectors can produce different

results, as Figure 2.8 illustrates.

oy y o
A*B ax+/6)x . Zy .
B B
A 3 LA Cky+#8y
X —
Gy X A*/ B X
(a) (o)

Figure 2.8 Shack's vector product. (a) graphical representation of A*X I§

(b) graphical representation of A*y B.

Also note that Eq. (2.61) and Eqg. (2.62) can be used to show that
C.D=0, (2.63)
and therefore, for non-zero vectors, Ax, B is perpendicular to Ax, B.

When the two vectors are the same vector, so that B=A, Eqg. (2.61) and Eq.
(2.62) form the second power or “square” of the vector with respect to SVP. This can be

extended to include a vector raised to a positive integer power (or zero). Using curly
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braces to indicate powers of a vector with respect to SVP, the following notation is

defined

Ax, Ax -k A:Aélﬁél---élAE{A} :HAn(cos(nax), sin(na, ), (2.64)

n(sin(nay), cos(nay)), (2.65)

where n > 0 and an integer,

AH is the magnitude of the vector, and the subscripts x and y
indicate which axis is used as the reference axis. To check that these definitions are
consistent with Eq. (2.61) and Eq. (2.62), set n = 2, and use the trigonometric relations
cos(26) = cos’ (8)—sin*(8), (2.66)
sin(260) =2cos(6)sin(6). (2.67)
Then
{A}i :HAHZ(COS(ZaX), sin(2a,))
=HAH2(cosz(ax)—sinz(ax), 2c0s (e, )sin(a, )

=(A -4, 284 , (2.69)

and this is the same as Eq. (2.61) for the case B = A. Similarly,

{A}i :HAHZ (sin(Zay), cos(Zay))
=HAH2(2cos(ay)sin(ay), cosz(ay)—sinz(ay))
=(2AA,, A -A) : (2.69)
and this is the same as Eq. (2.62) for the case B=A. The definitions in Eq. (2.64) and

Eq. (2.65) are therefore consistent with the definitions in Eq. (2.61) and Eq. (2.62).
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Further extensions of the definitions of Eq. (2.64) and Eg. (2.65) can be made to

define the n™ root of a 2D vector with respect to SVP as follows

{A}lxm EHAHM (cos(e, /), sin(e, /1)), (2.70)

{A}ﬂn EHA " (sin(ay In), cos(ay/n)), (2.71)

y

where n is a non-zero positive integer.
The cosine of the difference of two angles in terms of SVP has been developed in

this research as follows. Consider the trigonometric identity
cos(noc,7 —n,B,]) :cos(na,])cos(nﬁn)ﬂin(nan)sin(nﬂ,]), (2.72)

where 7 is either x or y indicating which reference axis is used. This can be written in

Cartesian vector component form using the vector dot product as
cos(nan—nﬁn):(cos(n%), sin(nan))-(cos(nﬂn), sin(nﬁﬂ))
:(sin(nan), cos(nan))-(sin(nﬂn), cos(n,b’,])) . (2.73)

And, using Eqg. (2.64) and Eq. (2.65), this can be written in terms of SVP as

cos(na,] - nﬂ,]): {A};{B}z : (2.74)

where A and B are unit vectors having angles «, and g, respectively, with respect to
the reference axis . In writing Eq. (2.74) use of the fact that
AJBL =(A(BY" 2.75
(A]1B], = {A,+18], @2.75)
has been employed. Eq. (2.74) is key to writing the wavefront aberration function

expansion in terms of SVP.
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2.5 Example: The Quadratic Formula for Vectors

As an example of using the above mathematical development, a quadratic formula for
vector calculations using SVP is developed. The resulting equation will be used in the
chapter on nodal aberration theory (NAT).
For the quadratic equation
ax® +bx+c=0, (2.76)
the quadratic formula for the (possibly complex) solutions is given by

1

= o=| (-b) b7 —dac |. @.77)

An alternative expression exists but will not be considered here [31].

X

A quadratic equation for 2D vectors using SVP can be written as

ax, (X} +b, X +¢=0, (2.78)

n
where a, b and € are known constant 2D vectors, and 55(0,0) is the 2D zero vector.
(Recall that the result of SVP is always a vector, never a scalar.) It will be shown that the

vector solutions for the 2D vectors X such that Eq. (2.78) holds are given by the formula

n

X =%a-1* {—6 i{{ﬁ}i—4é* e}m} | 2.79)

In Eq. (2.79) the notation @ is used for the unique vector such that

— 1 —_1 — A
ax a =a *x a=¢€, (2.80)

is the inverse of the non-zero vector a with respect to SVP. An explicit expression for

a isgiven by
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- ||?1q|(cos(t9x), -sin(6,)) n=x
ﬁ(—sin(ey), cos(ey)) n=y, (2.81)

where 6, is the angle that the vector & makes with respect to the x-axis, and 6, is the

angle that the vector a makes with respect to the y-axis.

Let

Y, (-B), (2.82)

b1
Il

N |-
ot

and

12

B=

N~

alx, {{B}i —4ax, 6}” | 089

Then the solutions for X can be written as

X —A+B . (2.84)
This is demonstrated as follows. Since the geometric product is distributive over
addition,
v\’ _(A+B)é (A+B)— Ad A+Ba A+ Ad B Ba B 2.85
{X}n:(AJ_rB) ,(A+B)=A¢ A+B6 A+A¢ B+BEB. (2.85)
Using Eq. (2.50) gives
~-y2 = - = oAz
{x}q = A6 A+2A8 B+BEB. (2.86)

Putting this into the left hand side of Eq. (2.78) gives



Using Eq. (2.82) gives

a*”{i}i+6*n X +é=aé,76a * (-6))@,7

Expanding gives

This can be simplified to

-1

L
7 €,a eﬂb+a ﬂBeﬂB+c.

é*ﬂ{)?}i+5*ﬂ X +C=

Now, using Eq. (2.83), ééné can be written as
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(2.87)

(2.89)

(2.90)

(2.91)



Using this result in Eq. (2.90) gives

= Ak g v — _1_’,\ =—1A Ik . =A 1——_1,\ =-1a ~\ 2 =-1a = —
a*q{x} +b*qX+c:— €déb+aé | —aéaeé {b} —a écC |+C
n 4 n n n 4 n n 7 n
1 oo 1 i i ()2 g eqn .
=——béaeb+=-aéa'ea’d {b} —a8a'éc+c
4 n n 4 n n n n n n
e P e
=—a'ébéb+=-a*ebéb-C+cC
4 n n 4 n n
=0.

Therefore,

are solutions to the equation

é*ﬂ{X}ZJrB*q X +¢=0.

n

For the special case a=¢ , Eq. (2.94) can be written as

{)_(’}2+6*,7 X +¢=0

n

with solutions

31

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)
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Chapter 3 Selected Perspectives on Zernike Polynomials

Zernike polynomials are used extensively in optical design and testing, primarily because
they are orthogonal and complete over a unit radius circular disk and they present the
balance between multiple orders of H. H. Hopkins’ aberrations in the context of
minimizing the root mean square (RMS) wavefront error. (A unit radius circular disk
may represent a normalized circular optical pupil or a normalized circular optical surface
in an optical imaging system.) Zernike polynomials also provide an excellent metric
basis for describing and understanding errors in the shape of an optical surface.
However, multiple definitions of the Zernike polynomials exist, each having different
normalizations and sign conventions, making communication with Zernike polynomials
risky due to improper assumptions regarding which convention is being used. In this
work, the Zernike polynomials are used to express the pupil and field dependence of the
wavefront aberration function expansion and to define the surface shape of a freeform
optical element.

In this Chapter, a review of some of the notation conventions used in the literature
for specifying Zernike polynomials is presented. Explicit definitions and lists of a few
Zernike polynomials using both the zero-to-peak (0-P) and RMS normalizations is given.
A discussion and examples of the Fringe ordering compared to other orderings is also
presented. Then it is shown how to use the properties of Shack’s vector product (SVP),
developed in the previous Chapter, to define Zernike vectors that will be used in the

definition of the wavefront aberration function expansion in the following Chapter.
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Finally, brief comments on the issues of computer implementation and extensions to non-

circular pupil shapes are given. Two interesting properties of the Zernike polynomials
(orthogonality over a discrete set of points and expressions for the Zernike polynomials
as sums of decentered, rotationally symmetric terms) are presented in Appendix Il and

Appendix IV, respectively.

3.1 Introduction to Zernike Polynomials
The Zernike polynomials were developed by Frits Zernike in 1934 [11, 32]. The original
definition of these polynomials used a complex number representation that is still used by
many researchers in different branches of optical sciences [11]. In this work, a real
number representation commonly used in optical engineering is defined and utilized.

The Zernike polynomials are orthogonal and complete over a unit radius disk
[11]. Therefore, they can be used to generate a mathematical expansion of any smooth,
continuous function defined over the unit radius disk. These properties of the Zernike
polynomials make them ideal for fitting interferometric data as well as surface data of
optical elements when dealing with circular shaped pupils and optical elements.

The real circular Zernike polynomials can be written as functions of the form

cos(mp) +m=0

sin(mp) -m<0’ (1)

Z,"(p9)=Z,(p. 9)= N?Rﬁ"(p){

where n and m are positive integers such that 0<m<n and such that n—m is even and

m can change in increments or decrements of 2. N" is a normalization constant that may
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be different for different values of n and m. R (p) is the radial function factor and is

given by [11]

. ~ (n—m)/2 (_1)5 (n B S)! 2)
Ri(p)= 2, S'(n+m—sjl(n_m—s)l P (3:2)
1 e !

with the radius parameter restricted to 0< p<1. A useful relation when calculating the

norm of the Zernike polynomials is [11]

1
m m 1
R ™ R dp=—"—"--6__0. , 3.3
! » (PR (p)pdp S g) e (33)
where
1f =
o ={ P (3.4)
v 10 for n, #n,

is the Kronecker delta. In some references the m value is allowed to be negative,
absorbing the “+” into m itself. In this case the radial function factor given in (3.2) is
defined with the absolute value of m. However, this notation is not universally used in
the literature. The azimuthal factors in Eq. (3.1) are written in the form shown to indicate
that for a given m=0 there is a choice of either a cosine factor or a sine factor in the
azimuthal parameter 0< ¢ < 27.

There are two primary normalization conventions in use. These are called the
zero-to-peak, 0-P, normalization and the root mean square, RMS, normalization. For the

0-P normalization the normalization constant N is set to 1. In this case the squared

norm of a Zernike polynomial is given by
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(1+ 50’m)7z
2(n+1)

me(p,w)\z = [[Z:"(p.0)Z" (p.0) pdpdp= (3.5)

When the wavefront aberration function W(H,@, p,(p), a function of field

parameters H and @, and pupil parameters p and ¢, to be defined in the next Chapter,

is expanded in terms of the Zernike polynomials over the normalized pupil parameters,

the expansion may be written as
W =C,(H,0)Z;(p.¢)+C,(H.,0)Z; (p,0)+C,(H.0)Z* (p.¢)+... ,  (3.6)
where C; (H,8) are the expansion coefficients. Given an interferogram of the wavefront

aberration in the exit pupil of an optical system, the C; can be approximately determined
by a least squares fit of the Zernike polynomials to the interferogram data. The variance
of the fit over the unit radius pupil is given by

27 1

I (p.4)pdpdg— (HW P(p,r/ﬁ)pdpd(/ﬁJ , (3.7)

O'—Nl

where the probability distribution function for a unit radius circular pupil is

P(puf)=—— =, (38)

pupil area 7

Then, for this 0-P normalization, the variance is calculated to be

1+ 6, c? (3.9)
n+1 ' '

=2

Table 3.1 provides a list of 21 Zernike polynomials using the 0-P normalization.
For the RMS normalization convention, employed by Noll [33] and Mahajan, et

al. [12], the normalization constant is given by



Table 3.1 Examples of 0-P normalized Zernike polynomials up to j=21.

Ny = (2= 8,n)(n+1).

ORDER ZERNIKE POLYNOMIAL
PARAMETERS | Z:"(p.p)=Z,(p.0)
i [n m
1 0 0 1
2 [ 1] +1 | poos(e)
31| 1 | psin(e)

41 2| +2 | pPcos(2p)

5 2| 0 |27t

6 | 2 -2 p’sin(2¢)

713 +3 p’cos(3p)

8 | 3 +1 (3,03 —2p)cos((p)
9|3 -1 (3p3—2p)sin(g0)
103 | 3 | psin(3g)

11| 4 +4 o C03(4¢,)

12| 4 +2 (4,04 —-3p? )COS(Z(D)

13| 4 0 6p" —6p> +1

141 4 -2 (4,04 —3p2)sin(2(p)

15| 4 -4 p'sin(4p)

16| 5 | +5 | pcos(50)

1715 +3 (5,05 —4p3)COS(3¢)
1815 +1 (lOp5 -12p° +3p)cos(¢)
1915 -1 (lOp5 -12p° +3p)sin (o)
20| 5 -3 (5p5 —4p3)sin (3p)

21| 5 -5

p°sin(5¢)

The squared norm of an RMS normalized Zernike polynomial is

Z,"(p.9)

‘2

[Z:"(p.8)Z." (p.8) pdpdg=7.
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(3.10)

(3.11)
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When the RMS normalized Zernike polynomials are used to expand the wavefront

aberration function, as in Eqg. (3.6), the variance, Eq. (3.7), of the expansion is calculated

to be [12]

* = Zcf . (3.12)

Table 3.2, presented on the next page, gives 21 examples of the RMS normalized Zernike
polynomials. Note that not only are the normalization constants different, the j-ordering
assigned to the Zernike polynomials are different. This set is popular among astronomers
as it colocates terms with the same ¢ -dependence. It was originally introduced by Noll
in the context of atmospheric turbulence models [34].

As indicated in Eqg. (3.1), there is also the notational convention Z, (p,¢) used in

the literature for specifying the Zernike polynomials. This notation is often employed
when there is need for sequentially ordering the Zernike polynomials or a finite subset of
the polynomials. One such subset ordering of the Zernike polynomials is called the
Fringe Zernike polynomials. Table 3.3 and Table 3.4 provide a list of the Fringe Zernike

polynomials. The ISO specification [35] utilizes the ordering label 0< j<35 while

CODE V®, for example, uses the labeling 1< j <37.



Table 3.2 Examples of RMS normalized Zernike polynomials up to j=21.

[EY
»

*1 | (12 (10p° -12p° +3p)cos(p)
-1 | (12 (10p°-12p° +3p)sin(p)
+3 \/E(Sps —4p3)cos(3¢)

=3 | (12 (5p°-4p°)sin(3p)

+35 \/EpS COS(S(/))

-5 | |12 p°sin(5p)

[
~

=
(0]

=
[(e]

N
o

ORDER ZERNIKE POLYNOMIAL
PARAMETER Z,"(p.0)=2,(p.9)
j | n|m
110 0
2 |1 |+ J4_pcos(¢)
3] 1] -1 \/4_pSin((p)
4 | 2 0 \/5(2102_1)
51 2| 2| [6p*sin(20)
6 | 2 | +2 | 6 p*cos(2¢)
7 3 -1 (Sp Zp)SIn (p
8 |3 |+l \/8_(3,0 —2p)cos(¢))
9 313 \/8_p3sin(3go)
10| 3 | +3 \/§ p°cos(3¢)
111 4 0 \/5_(6p4—6p2 +1)
12 | 4 | +2 \/]3(4p4 —3p2)COS(2(p)
13142 \/]3(4,04 —3p2)sin(2¢)
14| 4 | +4 | 10" cos(4p)
15| 4 | 4 10 p*sin(4¢)
5
5
5
5
5
5

N
[




Table 3.3 Fringe Zernike polynomial orderings (0-P normalization).

Zernike Polynomial
CODEV® | IS0 Z:"(p,0)=2,(p,9)
n m J J
0 0 1 0 1
1 | +1 2 1 pcos(p)
1 | 1 3 2| psin(p)
2 | 0 4 3 [ 2071
2 | +2 5 4 p?cos(2p)
2 | =2 6 5 | p?sin(29)
3 | +1 7 6 | (30°-2p)cos(9)
3 [ 8 7| (3p°-2p)sin(p)
4 0 9 8 6p" —6p° +1
3 | +3 10 9 p’cos(3p)
3 |3 11 10| pisin(3p)
4 | +2 12 111 (4p*~3p")cos(2¢)
4 | 22 13 12 (4p —3p? )sm 2¢)
5 | +1 14 13| (10p°-12p°+3p)cos(p)
5 | -1 15 14 (10p -12p° +3p)sin(¢7)




Table 3.4 Continuation of the list of Fringe Zernike polynomials (0-P normalization).

Zernike Polynomial
CODEV® | 1SO " (p.9)=Z,(p0)
n m J J
6 | 0 16 15 | 20p° —30p" +12p% -1
4 | +4 17 16 | p*cos(4p)
4 | 4 18 17 | p*sin(4p)
5 | +3 19 18 | (50°-4p%)cos(3p)
5 | -3 20 19 | (5p°-4p%)sin(3p)
6 | +2 21 20 | (15p° -20p" +6p° )cos(2¢p)
6 | 2 22 21 | (15p°-20p" +6p° )sin(2¢)
7 | 1 23 22| (350" —60p° +30p° —4p)cos(¢)
7 [ 1 24 23 | (35p" ~60p° +30p° —4p)sin(g)
8 0 25 24 | 70p° -140p° +90p* —20p° +1
5 | +5 26 25 | p°cos(5p)
5 | 5 27 26 | psin(5p)
6 | +4 28 21 | (6p°-5p")cos(4p)
6 | 4 29 28 | (6p°-5p")sin(4p)
7 | +3 30 29 | (219" -30p° +10p°)cos(3p)
7 | -3 31 30 | (21p"-30p° +100° )sin(3p)
g8 | +2 32 31 | (56p° -105p° +60p" ~10p° )cos(2¢
8 | -2 33 32 | (56p°-1050°+60p" ~10p° )sm(Z(p)
9 | +1 34 33 | (126p° —280p" +210p° —60° +5p)cos(¢)
9 | 1 35 34 | (126p° —280p" +210p° —60° +5p)sin(¢)
10 36 35 | 252" —630° +560,0° —210p* +30p* —1
12 37 NA | 924 — 2772 +3150° ~1680p° +
420p" — 427 +1

In CODE V®, an extension of the Fringe Zernike set is extended through j = 49.
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The Fringe convention is the preferred Zernike polynomial ordering for lens design

because it groups terms according to the associated optical wavefront aberration order.

When the wavefront aberration function is expanded in terms of Zernike polynomials, the



41

expansion coefficients are functions of the field parameters (H,8) [1], each having a

factor of the form H™, while the Zernike polynomials are functions of the pupil
parameters (p,), with the pupil dependence of highest exponent value being p". The
wavefront aberration order for a Zernike expansion term is then given by the sum m + n.

As an example, Z, of the CODE V® Fringe set has a p* pupil dependence, whereas
Z,, Z, have a p° pupil dependence. Z, is placed before Z,, Z,, in the Fringe
ordering because Z, has a H°® factor in the associated aberration function’s field
dependence, whereas Z,,, Z,, have a H*® factor in the associated aberration function’s
field dependence. In terms of the optical aberration ordering, Z, corresponds to a 0 + 4
= 4" order aberration whereas Z,,, Z,, correspond to 3 + 3 = 6™ order aberrations.

Therefore, Z, is placed before Z,, Z,, in the Fringe ordering of the Zernike

polynomials.

The selection of the coordinate axis used for angular reference in optical design is
often selected to be the y-axis. In optical testing the x-axis is often employed as the axis
for angular reference. In Chapter 2, SVP has been defined for both the x- and the y-axis
as reference. It will shortly be shown how to define Zernike vectors in terms of SVP. It
is then necessary to specify which axis is being used as the reference axis for the Zernike
polynomial’s azimuthal parameter. Therefore, in this work, a subscript is included on the

angular dependence indicating which reference axis is being used. For example,

Zf:im (/O, ¢n):zj ('0’ ¢W)’ (3.13)
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where 77 €{x,y}. When no such axis is explicitly indicated, the x-axis will be assumed.

The explicit equation for the radial factor of the Zernike polynomials given in Eqg.
(3.2) is sufficient for computing low order (low n value) Zernike polynomials using
standard double precision floating point number representation. But even for moderate
values of n=15 the factorials can quickly produce very large numbers that, when
multiplied by small numbers (the azimuthal factor), can result in numerical inaccuracies
in the computation [36]. It is known that the calculation of Zernike polynomials with
n>25 can lead to significant numerical errors depending on the way that the radial
factor is calculated [37, 38]. The solution is to adapt recurrence relations that do not
suffer from such numerical errors even for high order, n>50, Zernike polynomials. A
Matlab implementation of the recurrence relation [36, 38] is given in Appendix II.
Another approach to the numeric inaccuracy issue is to take advantage of modern
computer programming language number representations and computational methods.
For example, Matlab® has a symbolic toolbox that includes ‘“variable precision
arithmetic” that enables numeric calculations to any specified precision (significant digits
below the decimal point). Mathematica® provides for “arbitrary-precision numbers” that
provides a similar numeric computational ability to any desired precision. These
techniques overcome the numeric accuracy limitations of standard double precision
floating point number representation. However, these alternatives tend to be slower in

computational speed.
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3.2 Defining Zernike Vectors Using SVP

The Zernike polynomials, over a unit radius disk, using the 0-P normalization, Eq. (3.1),

can be rewritten as

p"cos(mg, ) for +m
Zuin (P43 =R (p) (né) , (3.14)

ol sin(m(;ﬁn) for —m

where n and m are positive (or zero) integers, m <n, n—mis even, and R" (p) is given

by
(n-m)/2 s
m (_1) (n—S)! n-2s-m
R (p) = (3.15)
i SZ:(; S!(n;m_SJ!(n—zm_sj!p

The subscript # is used to indicate which axis is the reference axis. The advantage of
pulling out a p™ factor from the radial component of Eq. (3.1) and including it into the

azimuthal factor will be shown below. The “+” superscript is to be considered a
separate parameter and is not to be combined with the integer m. One consequence of

this notational convention is that there is now a Zernike polynomial notation for the

-0

number zero, Z,,,

(p.9,)=0, although zero is not a Zernike polynomial. This is a

useful notational extension to be used in the definition of Zernike polynomial vectors that
follows.

There are different ways in which Zernike vectors have been defined in the
literature [39, 40, 41, 42]. Although the Zernike polynomials are orthogonal to one
another, this property is not used in this research for defining the vector basis set for the

Zernike vectors. Instead, the X,y unit vector basis set of the object (image) and entrance
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(exit) pupil coordinate planes of the optical system are used. Define a 2D vector

consisting of the Zernike polynomials by
Z=aZ, (p.¢,)%+bZ.7 (p.4;)9, (3.16)
where a and b are real constants. Of particular interest to this research is the special

subset of Zernike vectors for whichm; =m,=m, ny =n,=n, and a=b = 1. Denote these

Zernike vectors as follows:

Zyy (p8)=(235 (P, 2,5 (24)), (317)
Zy,(p8)=(25,(p9,). 235 (p.4))): (3.18)
Note that
Zo (P.8)=(Za3y (P.8). Zafy (£4))=(1,0). (3.19)
while
Zay (28,)=(2ay (P.9,). 235 (0.4,))=(0.1).. (3.20)

-0

These illustrate the use of the notational convention Z,,

(. ¢,)=0 mentioned above.

Using Eqgs. (2.64), (2.65) and (3.14), the Zernike vectors in Egs. (3.17) and (3.18)

can be written in terms of SVP as
Zin (08,) =R ()5}, (3.21)
Table 3.5 provides a list of the Zernike vectors that will be used in the next

Chapter to convert the H. H. Hopkins based wavefront aberration function expansion into

an expansion in terms of Zernike vectors.



Table 3.5 Examples of 0-P normalized Zernike vectors written in terms of SVP.
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3.3 Discrete Orthogonality of Zernike Polynomials
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The Zernike polynomials are complete and orthogonal over the unit radius disk. This

means that any continuous function f(p, (p) defined over the unit radius disk can be
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expanded in terms of the Zernike polynomials. The expansion coefficients, for 0-P

normalization, are given by

2z 1

n+1
cim = f( dod 3.22
; (1+5 ﬁol p.9)Z" (p, @) pdpde . (3.22)

'—-

However, it is often the case that the continuous function f(p,¢) is not known in

analytic form, but its values are known, or can be determined, at a finite number of points
over the disk. In such cases, it is still desirable to know the Zernike expansion
coefficients through an upper n and m value to obtain an approximation of the continuous
function as a finite series expansion. Such an approximation to the function will be a
good representation of the function if the function converges within the n and m upper
limits used.

In general, the Zernike polynomials are not orthogonal over a finite, discrete set
of points. However, in a 2005 paper [43], Pap and Schipp published a result showing that
a finite set of complex number Zernike polynomials are orthogonal over a finite set of
discrete points across a unit radius disk. In this way, values for the expansion
coefficients can be obtained by special sampling of the function over the discrete set of
points.

As mentioned above, the original work presented in [43], as well as in [44, 45],
utilized a complex number form of the Zernike polynomials. Appendix Il provides a
derivation of the discrete orthogonality properties and equations for the real number form
of the Zernike polynomials used in this dissertation. The results derived in Appendix 11

were used in this research as part of a Gaussian quadrature (GQ) method for obtaining the
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Zernike expansion coefficients of the wavefront aberration function expansion, to be

explained in the following Chapter.

3.4 Zernike Polynomials for Non-Circular Pupils

Optical systems need not have circular shaped pupils. In such cases, it may still be
desirable to work with orthogonal polynomials over the non-circular pupil shapes.
Zernike polynomials have been used to define sets of orthogonal polynomials over
annular, rectangular, elliptical and hexagonal pupil shapes [46, 47]. Each polynomial is
then a finite weighted sum of the circular Zernike polynomials. These new polynomials
maintain the orthogonality and completeness properties of the circular Zernike
polynomials and can therefore be used to fit data from systems having these non-circular
pupil shapes. During the research described in this dissertation, a Matlab® program was
developed to implement these new polynomials for non-circular pupil shapes. The
program, called ZernikeCalc, is available on the MathWork’s Matlab® Central File
Exchange website [48]. Because the optical models investigated in this research have

circular pupils, use of ZernikeCalc was not directly made.

3.5 Zernike Polynomials as a Sum of Decentered Rotationally Symmetric Terms
During the course of this research, it was discovered that the Zernike polynomials can be

represented as sums of decentered rotationally symmetric terms. A decentered
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rotationally symmetric term is defined here by the sag equation (distance from the xy-

plane to the surface)
z="f(p)=ap", (3.23)
where a is a real number, p is the radial distance from the rotational symmetry z-axis to

the surface given by

,o=4/x2+y2 , (3.24)

and n is a positive integer greater than 1. The details are presented in Appendix IV.
Because this research project utilizes Zernike polynomials, decentering of
rotationally symmetric optical surfaces, and NAT’s method for the mathematical
description of the field dependence of the wavefront aberration function for optical
imaging systems having decentered surfaces (to be described in Chapter 5), finding that
Zernike polynomials can be expressed as a sum of decentered rotationally symmetric
terms was an interesting discovery to make. Pursuing this line of research has led to an
approach for the application of NAT to optical elements having a freeform surface shape
defined by the Zernike polynomials. The mathematical development and examples
utilizing NAT with freeform optical surface shapes made possible by expressing
the Zernike polynomials as decentered rotationally symmetric terms are presented in

Chapter 7.
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Chapter 4 SVP, Zernike Vectors and the Wavefront Aberration

Function Expansions

Like the Zernike polynomial definition, there are different conventions and assumptions
used in the literature resulting in different definitions of the wavefront aberration
function. Each of these satisfies a different need of the researcher employing the
definition. Quoting H. H. Hopkins: “Thus one is led to consider a spherical wave-front as
free from aberration, and to define the aberration of a wave-front as its departure from
any conveniently chosen sphere of reference measured as an optical path length.” [3] In
this Chapter, the definition of the wavefront aberration function is presented that is used
in this research. In presenting the definition, an attempt to explicitly define the terms and
assumptions is made. No attempt is made to reconcile the developed definition with any
other definition used in the literature. The definition used in this work is that
implemented in the optical design software CODE V® and Zemax® that use the real
chief ray to define the reference sphere.

Using an extension of H. H. Hopkins’ expansion of the wavefront aberration
function and his wavefront expansion coefficients as a starting point, it is shown how to
convert the power series expansion into a vector expansion using Shack’s vector product
(SVP). An expansion in terms of Zernike polynomials and in terms of the Zernike
vectors, defined in the previous Chapter, is derived. A way to obtain the Hopkins

expansion coefficients from the Zernike expansion coefficients is also derived. In this
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way, a bridge between the optical design community, using the Hopkins’ expansion

coefficients, and the optical test and measurement communities, using the Zernike
expansion coefficients, can be made.

The method for obtaining the Zernike expansion coefficients used in this research
is presented. It utilizes the Gaussian quadrature (GQ) method associated with the discrete
Zernike orthogonality property mentioned in the previous Chapter and derived in
Appendix I11.

Because several different forms of the wavefront aberration function expansion
will be developed, a labeling of the expansion coefficients has been used to assist in
indicating which expansion is being referred to. The “U” expansion coefficients will be
associated with double Zernike expansions of the wavefront aberration function, the “V”
expansion coefficients will be associated with the single Zernike expansion, and the “W”
expansion coefficients will be associated with expansions involving no Zernike
polynomial. It is hoped that this sequential labeling of the expansion coefficients will
make the reading of this Chapter easier to follow.

The specific wavefront aberration function expansions to be developed are as
follows.

Expansions using Wm coefficients:

1) H. H. Hopkins’ Expansion. For rotationally symmetric optical imaging
systems. Most often used by optical designers. The field parameter
H is restricted to be along the y-axis. No Zernike polynomials

involved.
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2) Shack’s Vector Form. For rotationally symmetric optical imaging

systems. An extension of H. H. Hopkins’ expansion that removes the
restriction on the field parameter. No Zernike polynomials involved.
3) Shack Vector Product Form. For rotationally symmetric optical
imaging systems. The field vector H and pupil vector 5 parameters
are written in terms of SVP. Field and pupil parameters can be
factored by a vector dot product. No Zernike polynomials involved.
This form is used to derive the expansions in terms of Zernike

polynomials.

Expansion using V', coefficients:

1) An expansion where the pupil vector parameter o is expanded in terms
of Zernike polynomial vectors. For rotationally symmetric optical

imaging systems. The V.’ expansion coefficients can be expressed in

terms of the Wy expansion coefficients.

m
Ny N,

Expansion using U coefficients:

1) An expansion where the field vector and pupil vector parameters are
both expanded in terms of Zernike polynomial vectors. For

rotationally symmetric optical imaging systems. The Wy, coefficients

can be expressed in terms of the U™  coefficients.

Ny N,
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Expansion using U ™" coefficients:

1) An expansion where the field and pupil parameters are expanded in
terms of Zernike polynomials (not Zernike vectors). For rotationally

nonsymmetric optical imaging systems. The GQ method uses this

form to obtain the U™™ expansion coefficients. The U™ ™
My p

coefficients reduce to the U n, Coefficients in the rotationally

symmetric optical imaging system case and these Ur’]; " coefficients
are used to calculate the Wym expansion coefficients.
A graphical summary is presented in Figure 4.1.
Expansion Coefficient Exp. Term Form Opt. Sys. Type
¥ sl S (H ) Z,','::‘ (P) Rot. Nonsym.
i, Z']"; (H )-Z,'," (P) Rot. Sym.

v H* {H}m Z"(p) Rot. Sym.

kn
/ I (ﬁ-p’)m p*? and

"

) B o

Rot. Sym.

Figure 4.1 Summary of expansion coefficients U, V and W. “Exp. Term Form” is an
abbreviation for “expansion term form.” “Opt. Sys. Type” is an abbreviation for “optical
system type.” “Rot. Nonsym.” is an abbreviation for “rotationally nonsymmetric.” “Rot.

—3ym
Sym.” is an abbreviation for “rotationally symmetric.” “e” is the vector dot product. {H }

and {p}" are SVPs to the m™ power.

The details of Figure 4.1 are developed in the following sections.
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4.1 The Wavefront Aberration Function Definition

The coordinate systems used in this research are illustrated in Figure 4.2.

Surface Tangent Planes

e

Entrance Pupil +Y Y

) Image Plane
Object Plane v Optical Exit Pupil -
+Y Surfaces =Y
. T
An Object Ray
Field Point { ™ —————— X X X
=X +X +X
1 "2 3 +7
=
Object Space ‘?w face/ Image Space

Vertex
Points

A

Local Coordinate Axes

Figure 4.2 Optical imaging system’s components and local coordinate systems.

The object plane is generally positioned to the left of the other optical system’s elements.
A ray is emitted from an object point in the object plane and travels to the right toward
the entrance pupil. This left to right direction is defined to be the +z-axis direction. Each
of the elements in the optical model, including the object, entrance pupil, optical surfaces
with optical power, exit pupil and image have their own local coordinate systems. These
are all centered on the z-axis and form a right handed coordinate system with the +x-axis
direction considered to be into the page and +y-axis direction considered to be “up” or
toward the top of the page. A reflective surface does not change the local coordinate
system’s orientation of any of the surfaces in the optical model. When it is necessary to
utilize a global coordinate system from which all the other surfaces’ location can be

defined, the entrance pupil’s coordinate system will be used. For optical imaging models
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having the object plane at z = — oo, the entrance pupil will always be to the right of the

object plane. For those optical imaging systems having a finite distance between the
object surface and the entrance pupil, it may occur that the entrance pupil is to the left of
the object plane. Similarly, the exit pupil for an imaging system may occur to the right of

the image plane.

2 ¢ 2 ¢

The terminology “optical imaging system,” “optical system,” “optical imaging
system model,” and “optical model” will all refer to an idealized software model and/or
an idealized mathematical model of the real optical imaging system. As part of this
idealization away from the real optical imaging system, it will be assumed that diffraction
effects can be ignored and that computer ray tracing is sufficient for describing and
analyzing the optical system’s optical aberrations.

The terminology “paraxial imaging” will refer to ray tracing with rays that are
infinitesimally close to the mechanical coordinate axis (MCA) (the symmetry axis for a
rotationally symmetric optical imaging system) having infinitesimally small angles with
respect to the MCA. “Gaussian imaging” will refer to first order ray tracing [49]. This
distinction is not strictly adhered to. Paraxial imaging results in perfect imaging while
Gaussian imaging, an extension to finite angles of the infinitesimal angles of paraxial
imaging, is an approximation to perfect imaging. “Real ray tracing” will refer to
computer ray tracing through an optical model without restrictions to first order
idealizations.

The wavefront aberration function has been defined in several different ways in

the literature [3, 11, 49]. As an initial definition (meaning without details), it can be
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defined to be the optical path difference (OPD) from the ray’s wavefront point (labeled A

in Figure 4.3) when the wavefront is at the system’s exit pupil, to the ray’s intersection

point (labeled B) with the image space reference sphere.

Exit Pupil

Wavefront Ref. Sphere

Gaussian
Image Plane

o tZ-axis
-—

c\ ‘

Figure 4.3 Definition of wavefront aberration function W.

In Figure 4.3 the point labeled “C” is the intersection point of the optical axis with the
image space reference sphere at the center of the exit pupil, the point labeled “D” is the
intersection of the optical axis and the Gaussian image plane, the point labeled “E” is the
center of the image space reference sphere, the point labeled “F” is the intersection point

of the ray being traced with the Gaussian image plane, “R” is the reference sphere’s
radius, “ R 7 is the ray being traced, and “W” is the OPD for the ray being traced.

Although this initial definition seems simple enough, there are many subtleties
that need to be made explicit. For example, there are several choices for the location of
the center of the reference sphere as well as choices for how the exit pupil is to be
located. Additionally, the parameters of the wavefront aberration function have different
meanings depending on the definition used. Therefore, additional details need to be

provided.
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In this work, the image space reference sphere will be centered at the intersection

point of the field point’s chief ray and the Gaussian image plane (labeled “E” in Figure
4.3), determined by real ray tracing. The image space reference sphere’s surface will be
defined to pass through the intersection point of the field point’s chief ray and the optical
axis ray (OAR) in image space (the z-axis in the case shown in Figure 4.3). This is the
center of the real (as opposed to Gaussian) exit pupil. Again, real ray tracing is used to
determine this point along the field point’s chief ray.

The reason that the professional optical design software packages use this
definition for the image space reference sphere is because they are designed to perform
far more than just geometrical ray tracing calculations. Specifically, they are designed to
perform diffraction related calculations and it is known that diffraction effects are
minimal in the real exit pupil.

One consequence of the placement of the image space reference sphere at the
intersection of the field point’s chief ray with the image plane is that it removes distortion
aberrations from the wavefront aberration function even in the case that the final image
has significant distortion. This is often acceptable because the distortion aberration is not
an image quality reducing aberration and it can be computed independently.

The wavefront aberration function, W, for a monochromatic ray being traced
through the optical imaging system model, is a scalar function in four parameters. These
four parameters uniquely define the ray that is being traced. Two parameters are

associated with the object source point (also called the field point) from which the ray
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originates and two parameters specify a point in the optical system through which the ray

passes.
There are different ways to specify the two field parameters as well as different

conventions for choosing the point in the optical system that the ray passes through. For

example, the field parameters, denoted by H :(HX, Hy), could be the x and y Cartesian

coordinates of the object point from which the ray originates, or, when the object is
effectively infinitely far away from the rest to the optical system, they could be the angles
that a line from the center of the entrance pupil to the object point makes with the z-axis
when the line is projected onto the xz- and yz-planes. In this work, the field parameters
are taken to be the Cartesian coordinates of the point in the optical system’s object plane
normalized by the maximum value defining the extent of the object (assumed to be a
circle in the object plane). Since these parameters are normalized, the case of the object
plane being infinitely far away from the entrance pupil presents no difficulties. An

alternative form of the normalized Cartesian coordinates, the polar coordinate form,

H =(H,¢9,7), where 7 is either x or y indicating which axis is used as the reference axis,

may also be utilized.

The ray intersection point often selected in the optical system for the remaining
two (pupil) parameters is the intersection point of the ray with either the (real or
Gaussian) entrance pupil plane or the (real or Gaussian) exit pupil plane [11, 49]. Other
choices that occur in the literature are the intersection point of the ray being traced with
the object space or image space reference spheres [50, 51]. In this work, the Gaussian

entrance pupil plane is chosen. The point through which the ray passes in the Gaussian
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entrance pupil plane will be denoted by jo’:(px, py) and these will be called the pupil

coordinates of the ray traced. These coordinates are normalized with respect to the

pupil’s radial extent. Alternatively, a polar form for these normalized pupil coordinates,

p=(p.@,), may be utilized. The wavefront aberration function is then denoted by,

W =W (H,5)=W(H,H,p.p,)=W(H.0,00,) . (4.1)

The object is idealized and modeled as a finite number of perfect point emitters in
the idealized object plane. From each object’s field point an expanding spherical wave is
imagined. This spherical wavefront, also called the phase front, travels to the Gaussian
entrance pupil of the optical imaging system model. The location of the Gaussian
entrance pupil plane is determined by paraxial imaging and the pupil will be assumed to
have a plane circular shape. Rays are imagined and modeled, in the absence of
diffraction, as vectors normal to the wavefront surface. For any object field point there is
a unique ray that connects the object field point to the center of the Gaussian entrance
pupil. This ray is called the chief ray for that field point, or the field point’s chief ray.
The sphere centered on the field point and passing through the intersection of the field’s
chief ray with the center of the Gaussian entrance pupil is called the object space
reference sphere for that field point.

A real ray trace is performed through the optical imaging system model from the
object plane field point to the Gaussian image plane. The optical path length (OPL) of
the ray from the ray’s intersection with the object space reference sphere to the image

space reference sphere, defined above, is calculated. The optical path difference (OPD)
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is then defined to be the OPL of the ray minus the OPL for the field point’s chief ray.

This means that for any field point’s chief ray, the OPD for that chief ray is always zero.

The wavefront aberration function value W :W(H,ﬁ):W(HX, Hy,px,py) for

the ray specified by the normalized parameters (H,ﬁ):(HX,Hy,pX,py) is the OPD
value for that ray

W (H,,H,,p.p,)=0PD(H H,.p,.p,). (4.2)

There is another aberration used in optical design called the transverse ray
aberration. The transverse ray is the vector, in the Gaussian image plane, from the
Gaussian image point of the ray to the real ray trace intersection point of the ray with the
Gaussian image plane. It is often stated that the relation between the wavefront

aberration function and the transverse ray aberration vector function is given by
- 1
e(HX,Hy,px,py):WVW(Hx,Hy,px,py), (4.3)

where E(Hx, Hy,px,py) is the transverse ray vector function, n' is the image space

index of refraction, u' is the marginal ray’s image space angle with respect to the optical

axis, W(Hx,Hy,pX,py) is the wavefront aberration function and V is the gradient

operator with respect to the pupil parameters. This equation is valid for the 4™ order
wavefront aberration function W but does not hold in general for high order terms of the
wavefront expansion [52]. That is, in the derivation of this equation (see for example
[49]) the approximations used limit its validity to 3" order in transverse ray aberrations.

It can be shown that Eq. (4.3) leads to inconsistent equations for the 6™ order wavefront
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aberration expansion coefficients when used with Cox’s 5™ order equations for the

transverse ray aberration function expansion [53]. (See Appendix V for an example.)
Also, as pointed out previously, there are several different ways to define the wavefront
aberration function. Different meanings of the pupil parameters (defined with respect to
entrance or exit pupil planes, or defined with respect to object or image space reference
spheres) may not be consistent with the derivation of this equation. Lastly, the selection
of which definition of the image space reference sphere to use may result in an
incompatibility with the derivation of Eq. (4.3). Therefore, using Eq. (4.3) as the vehicle
for obtaining wavefront aberration expansion coefficients, or for work involving higher
than 4™ order wavefront expansion terms, is perilous.

Because the exact analytic form of the wavefront aberration function for an
optical model is not in general known, an expansion of the function in terms of a power

series in the ray’s four normalized parameters is made. This is written as

W(H Hyo00,)=2 2 2> ConHIHI o2 00 (4.4)

m=0 n=0 p=0 q=0

where C_ . are the expansion coefficients. It is assumed that this expansion (as well as

all other expansions of the wavefront aberration function to be presented) converges. The
question of the rate of convergence of this expansion is of particular interest for
rotationally non-symmetric optical imaging systems. However, it is an issue not well
addressed in the literature.

The z-axis will be used as the MCA. The optical imaging system models to be

considered will be restricted to be rotationally symmetric about the MCA in the absence
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of any decenters and/or tilts of the model’s surfaces. Consequently, the form of the

wavefront aberration function consists of only terms that are rotationally invariant to a
rotation about the symmetry axis (i.e., MCA). The terms in the expansion Eq. (4.4) are
then restricted to be any one or multiples (including powers) of the following four

rotationally invariant forms

(H7+H?)=H-H (4.5)
(p+py)=pwp (4.6)
(Heoo+H,p,)=Hep, (4.7)
(pry—Hpr)z[Hxﬁ]z , (4.8)

where [-], indicates the z-component of the vector enclosed. Further requiring the

wavefront aberration function to have reflection symmetry through a meridional plane (a
plane containing the field point and the rotational symmetry z-axis) rules out Eq. (4.8).
That is, the wavefront aberration function is not to change sign across the plane
containing the field point and the z-axis. The resulting form of the wavefront aberration
function’s expansion can then be written as

W(Hop) = 233 W (HoHY (H-) (7). 9)

where W, .,

are the expansion coefficients with k=2n+m, | =2p+m. The notation
“{S}” is used to indicate that an additional “S” subscript is appended to Wy, when the
Wim coefficient is associated with the sagittal focal surface. This occurs when, for a

Wiim, both n #0 and p # 0.
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Because the optical system is restricted to be rotationally symmetric, the field

point, in optical design, is often selected to be along the positive y-axis. Using the y-axis

as the reference axis from which angles are measured, the field parameters may be

written as H =(H,6,) with g, =0. Similarly, the pupil parameters may be written as a

vector in the plane of the entrance pupil, 5=(p,¢,). Then the wavefront aberration

function can be written in the form

W(H,p)= ST S Wy o H 2" %™ cos” (o). (4.10)

n=0 p=0 m=0
where H is the magnitude of the normalized field parameter vector H, p is the
magnitude of the normalized pupil parameter vector p and ¢, is the angle that the pupil

parameter vector makes with respect to the positive y-axis. This is the traditional form
presented for the expansion of the wavefront aberration function for rotationally
symmetric optical imaging systems.

To explore the full field parameter dependence of the aberration function the
restriction that the field point selected be along the y-axis is removed. Then from Eq.

(4.9)
w (H , ,3) = iiiwk,m{s}H 2 pPP cos™ (6, - g, ) (4.11)

where @, — ¢, is the angle, in the xy-plane, between the field parameter vector H and the

pupil parameter £, and the subscript 77 €{x,y} is used to indicate which convention is



63
used as the reference axis, either the x-axis or the y-axis, from which the angles are

measured. This is a generalization of the form presented in Hopkins [3].
The wavefront aberration order of a term in Eq. (4.11) is given by the sum
Order=k+l=2n+2p+2m=2(n+p+m), (4.12)
and is therefore always even.
For clarity, it is stated again that the field parameters used in this work are the

normalized Cartesian coordinates of the object point of the ray under consideration.

4.2 Wavefront Aberration Function in Terms of SVP
It is most desirable to write the wavefront aberration function’s terms in such a way that

the two field parameters are factored (separated except by multiplication) from the two

pupil parameters. As the function is written in Eq. (4.11), the factor cos™ (6, -, )

appears to prevent this. However, it has been found in this research that this separation of

field and pupil parameters can be accomplished by using the trigonometry relation

1 m 1 %(m—l—&E(m)) m
cos (Gn—goq)zz—m m 5E(m)+2m—l Z.; (Jcos((m—Zt)(@U—(p”)), (4.13)
2 =
where
5 = 1 for meven (.14
EMm 10  otherwise 14)
Writing

H" =H™*H*, (4.15)
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pm :pm—zt Zt, (416)
the following relation is obtained,
1 m
H”‘pmcosm(eﬂ—%)zz—m m Hmpm(?E(m)
2
1 %(m—l—ﬁam)) m 2t 2 2 2
t t m-2t _m-2t
o ; [JH pH™ p"* cos((m—2t)6, —(m—2t)p, ). (4.17)

Recalling Eq. (2.74), repeated here for convenience,

cos(na,] - n,B,])z {A};{é}; , (4.18)

the cosine terms in Eq. (4.17) can be written as

—y m=2t m—2t

H™ p™ 2 cos((m—2t)6, —(m—2t)g, ) ={H} " +{p}’ (4.19)
n
Then
m _m m 1 m m(51% (=30 m
Hp"cos”(6,~,) = 5| m [H™ (W3} 570,
2
1 %(m_l_‘sE(m) m I
+2W1 ; (t]H Yo {H}” o{p}}7 , (4.20)

(4.11) as
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where the field and pupil parameters have been completely separated by a vector dot

product for all orders of the expansion.

Keeping only through 8" order terms, the wavefront aberration function

expansion can be written as follows.

{
Wy (H) ()5 + W7 (]
H |

NP D N

=

T
2
I,
——

H,
}30{/5};37 pz +%W353H2{|:|}2.{,5}7P4 +W4405H4{|:|

-2 1 -0
WMstz{H}"-{p}f]pz+§W4423H4{H}’7°{p}3p4+

NP, MR NIPFPNRPRPDNENDERE

Collecting like terms in {I:I}u-{[)}: P’ resultsin
n

(4.22)



N
W = {Wogo +WzooH2 +W400H4 +W600H6 +W800H8){H}”°{p}: +

I
(Wlll +Woy, H 2 +Wo H* + W, H 6){H }n.{p}; +
1 1 1 N
(Wozo +_W222H 2+ WiposH? +EW422H W0 H +WeposH® + §W622H GJ{H }q'{p}o P+

n

1 1 2
(szzz"' W422H2+2W622H j{H}”'{P}Z"'

n

3 3 =
(W131 Wi H? + ZW333H Wy H* + ZW533H 4){H }q'{p}i P+
Lw, + W H2 |(H) () +
7' 533 2 WPSy

n

1 3 =10 (- 0 4
Woso + W242H +W2405H +W4405H +2W4423H +8W444H {H}, '{P} p+

W{I—T}{} 24

3
[ 151 +W3518 H + 4W353H j (WOGO +W260H + W262 j

1

o+ g e+ W ]{H‘} A5 W R

J>I|—\

I\)IH

{ﬁ} {B) Pt W, [HY (5! p° Woao{ﬁ} () P

By using the definitions [54]

1
Wooom =Wozos +§W222 '

1
Wosom =Wayos +EW242 '

1
Wigom =Wogos + szez

W,

331IM —

=W,

3318 333 !

3W
4

3
Wosyu =Wisys "'Zwsss '

1
Wioom =Wias +EW422 '
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(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)
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1 3

Wom =Wises +EW4425 +§W444 ) (4.30)

Woiom =Wisps +Woy, (4.31)
3

Waaim =Wesss +ZW533 , (4.32)
1

Wezom =Wezos +§W622 , (4.33)

where the subscript “M” is used to indicate quantities associated with the medial focal

surface, the wavefront imaging aberration function through 8" order can be written as

W= (Wooo +WoeoH ? +WiooH ) +WegoH ° +WaoH 8){|:| }:'{ﬁ}o +
(

n

-1
Wiy + Wy, H ? +Wgy, H * +Woy H 6){H },]°{p}i, +

n

N
(Wozo +Wogop HZ + Wi H* + W H 6){H }”.{p}o P+

1 1 1 2= V5
5+ 30 Mo ) 451

" n
1 13 (- LN
Wagg +ZW533H 2){ H },7'{/0}?, +(W040 FWayo H? + Wy, H 4){H }”.{p}o p'+

Wy +%W442M H 2){ H }’2]'{/—7},2] ,02 "( %WAMJ{H }2'{,5}; +(W151 +Wag H 2){H }i'{/}}i] p4 +

W353j{|:|}3 '{/5}3 pz +(W06O +Woeom H 2){H}Z'{ﬁ}? p6 +

7

7/ N /77N 77N 7\
NI, B NP B

erzj{l:l}i'{ﬁ}j p4 "’(\/\/171){|:|};‘{ﬁ}i7 pG +(Woso){|:|}o ‘{b}o p8 . (434)

n n

A general pattern of the field dependent vector functions is that they factor into a
scalar part, shown in parentheses, containing even powers of H, and a Shack vector

product part, shown as curly braces. For example

Field Dependent Part

1
w :"'+(W131+W331MH2+W531MH4){H},7°{/3}77 p2+... ' (4.35)

Scalar Part Vector
Part
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Of primary interest in this work are the characteristics of the field dependent parts of the

wavefront aberration function expansion terms, called the “field functions”, particularly
when the rotationally symmetric optical system’s elements are perturbed, breaking the
rotational symmetry restriction. This is the subject of NAT, briefly reviewed in the next
Chapter.

From the notational patterns found in Eq. (4.34), a summation equation for the

wavefront aberration function expansion using the medial focus surface W,

coefficients has been developed in this research. The wavefront aberration function

expansion can be written as

_— o0 o0 0 1 m’]-*é‘o.m N o m m
W(H.5)=3>> (Ej Wi " {H} (A1) 07 (4:36)
p=0 m=0 n=0
where
b= "7 4.37
om0 m=0’ (4.37)

and k=2n+m, I=2p+m. The “{M}” subscript indicates inclusion of the “M”

subscript when p=0and n=0 for a given Wy, coefficient. The wavefront aberration
order of a term is, as before, given by

Order =2(n+p+m) . (4.38)

In terms of the Wim¢sy coefficients used in the original expansion, Eq. (4.11), the

following relation has been derived

[k.1]
Wiimm =2 e Z Ku,m Wklu{S} ' (4.39)

u+2
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where
1 u
ov| U ,m=0and u even
K = 2 , (4.40)
' u
1
E! u—m ,m>0
2
and
k for k<l
k,I|= . 4.41
[t {I for 1 <k (4.40)
By defining
1 m-1+3y
Wk,lm{M} E(E) Wklm{M} ’ (4.42)

the wavefront aberration function expansion can be written as
W(H.p)= ZZZ; Wi (H°H)n{ﬁ}:°{ﬁ}:(ﬁ-ﬁ)p : (4.43)
p=0 m=0 n=

Thus by using the medial focal surface based coefficients, W, ,

and SVP, a simple
equation (compared to Eq. (4.21)) for the aberration function expansion with the field and
pupil parameters factored has been achieved.

It is interesting to note the similarities and differences of Eq. (4.43) and Shack’s

vector form of the wavefront aberration function expansion, Eq. (4.9), repeated here for

ease of comparison.

o0

W (H. ﬁFZiinm J(HH) (Hep) " (5+p)" - (4.44)

p: m=0 n=0
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4.3 Wavefront Aberration Function Expansion in Terms of Zernike Vectors

There are several different ways that the pupil dependence of the wavefront aberration
function expansion terms, through 8™ order, Eq. (4.34), can be converted into Zernike
vector functions of the pupil parameters. One way is to simply use algebra. Specifically,
the entries in Table 3.5, listing the Zernike vectors in terms of SVP, can be used to solve

for the pupil dependencies in terms of Zernike vectors. For example, the pupil

dependence { ,5}?7 p° is determined by first noticing that (from Table 3.5)

Zy (B)=3{p}, P*=2{p}, - (4.45)
Then
1 . - 2.
32 (P) =15}, P* =518}, (4.46)
And since (from Table 3.5)
Zy (p)=1}, . (@47)
the following is obtained
- 1 N 25 -
(B P* =5 % (P)+5 75y (5) - (4.48)

Proceeding in a similar way, a tabulation of all the pupil dependencies of Eq. (4.34) in

terms of the Zernike vectors is obtained.



Table 4.1 Pupil dependence in terms of Zernike vectors.

Pupil

Dependence Equivalent Zernike Vector Combination
{5} Zyyyy (P)

-0 9 1= - 1= -
{p}np Ezg{n}(p)JrEZg{ﬂ}(p)

-0 4 1~ N 1= N 1= -
{p}ryp 622{77} (P)"‘EZS{U} (p)+§Z§{n}(p)

-0 ¢ 1 = . 1= - 9 - - 1= .
WPig P | 55%m (P)+ 32 (P)+ 55 (P)+ 320 (P)

)0 Lo (v, 150 (v 250 (v 250 (o 150
1A}, P° =0 Zoim (P)+ 15 Zetm (P)+5 Zayyy (P)+ £ Zayy (P) +5 Zayy ()

1 1 (=
{P}n Zl{n} (p)

- 1 9 1-= . 2= —
{p}n p 52;{77} (p)+§zll{n} (P)

1l g 1 = _ — 1= -
{p}np EZ;{U} (P)’ngé{n} (p)+521{,7} ('D)

a1 1 - R 6 - 2 - = -
1ol e 35 1t () %Zé{n} (p)+gz?l»{f7} (P)+5 2 (P)
{,5},27 Z5y(P)

N2 9 1= - 35 -
{p}np sz{n}(p)JrZZZm}(p)

- 2 4 1 = _ 1 3= —
(B}, F° Lz Z2 > 72 Z2 (P

n 56 8l (P) g o) (p)+ﬂ 4l (p)+§ {7} ('D)

{ﬁ}f] 233{77} ('5)

) 1= -\ 4= -
{p}np gZ:{ﬂ} (p)+§z33{f7} (P)
{,5}; Z (P
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The pupil dependence of the terms in the wavefront aberration function expansion

of Eqg. (4.34) can now be written in terms of the pupil Zernike vectors. Substituting the

Zernike vector equivalent pupil dependence of Table 4.1 for the pupil dependencies in
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Eq. (4.34) and then collecting terms of like Zernike pupil dependence results in the

wavefront aberration function as shown in Eq. (4.49).

1 1 1 1 1 1 1
W= ((Wooo + EWozo + §Wo4o + Zwoeo + gWoao j + (Wzoo + szzom + §W240M + ZWZGOM j H?+

1 1 1 1 5 -
(WAOO +EW420M + §W440M j H*+ Weoo +§W620M j H + (Wsoo) H 8){H }”'Z(()){n} (p)+

2 1 2 2 1
((Wlll + §W131 + EWISI + gwlnj + E\Nsu + §W331M + EWSSZLM j H ? +

2 - R
(Wsu +§vv53lM ) H* +(W,,, ) H BJ{H} Zy (P)+
2 2 20

1 1 1 10 5 —
(EWMOM +EW440M j H ! +§W620M H GJ{H } '23{77} (p) +

1 3 3 1 3 1 )2 ~
_szz +§W242 +EWZGZJ+(_W4ZZ + §W442M j H”+ EWSZZH AJ{H },,'222{’7} (,D) +

1 2 2 1 2 1 AL -
_W131 + §W151 + gwmj + [§W331M + _W351M ) H”+ §W531M H* j { H },,.Z;{U} (p) +
1 1 % 5 ~
Wi + gW353j + ZW533H ’ j { H },,'Z:{'l} (,D) +

1 2 1 1 1 0 -
W040 + Z\Noeo + 7W080] + (EWMOM + ZWZGOM j H?+ EWMOM H 4}{ H },, °Z£{77} (,D) +

1 1 ~2 = - 1 nd -
gW242 +ngezj+§w442M H ZJ{H },,'Zj{ﬂ} (p)+[§W444j{H },,°Z:{77} (,D)"‘

S R 1 6 1 -1 = -
20W353J{H }”'253{77} (p)+[(EW151 +£W171)+EW351M H ZJ{H} 'Z;{n} (p)+

n

[3_10W262j{ﬁ }i.z‘gm (5)+ (%Wﬂlj{ H }i.z”gm (5)+ (7—10W080){|:| }:.Z;{n} (5). (4.49)

Using a single symbol V", for the expansion coefficient of each term gives,
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W = (V5 + VG H2 + V. H +V HE + V. H ){H} Zoy (P)+

( o
(Vi +VAH? +VAH +VAH ){H}l.z]l{m(ﬁﬁ

(Vo +V3,H? 4V, H* +V62H6){H} Z3 (P)+

(VZ, +V2H2 +VAH){H };-Zj{n} (5)+(Vity +ViH? 4V, H 4){H}i-2;{ﬂ} (5)+
(V&% + Vi H ){”} 22, (B)+(Vi +VEH? 4V H ){H}:-Zi’{ﬂ}(ﬁ)+

)+(V
Vs +VyH? ){ }’Zz (P)+(Voi){H } Z;‘{n}(,3)+(v0?5){ﬁ}i-22{n}(/3)+
)+

(vofe){ H },,’Zezm} (B)+ (Vo ){HY, 2y (5)+ (Vi) {H) +Z5 (5) (4.50)

- © 0 m —m o= _
W(H,5)=>>> ViLH* {H] -Z}, (5) (4.51)
The terms most often of interest are the Zernike astigmatism (Zj{m ( ,5)) , Zernike

coma (z”;{,]} (,5)) , and Zernike spherical (Zf{ﬂ} (,5)) terms. In Chapter 6, the examples

provided will utilize this through 8™ order expansion of the wavefront aberration
function.  Explicit expressions for the V.7, coefficients in terms of the W, .,
coefficients for the through 12" order expansion are presented in Table 4.2 on the
following page.

It is also desirable to write the wavefront aberration function’s field dependence

in terms of Zernike vectors. To write the field dependence in Eq. (4.49) in terms of the
Zernike vectors, the p and p of Table 4.1 are replaced with H and H , respectively.

The field functions in Eqg. (4.49) can then be replaced with field dependent Zernike
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vectors. The idea of expanding both the pupil and the field dependence in terms of
Zernike polynomials for rotationally symmetric optical imaging systems has been
previously suggested in the literature [55, 56, 57, 58]. However, these other double

Zernike expansions have not been in terms of the Zernike vectors nor SVP, a result of

this research.

Table 4.2 Vkr?n expansion coefficients.

v Equivalent W,, .y, Expression
V2 1 3 3 1 3
02 szzz +§W242 +B 262 +Z 282 +ﬁW2,10,2
V2 1 3 3 1
22 §W422 + §W442M + EW%ZM + ZW482M
2 1 3 3
V4'2 Ewszz + §W642M + EWGGZM
V.2 1 3
6.2 E\stz + §W842M
2 1
V8:2 Ewlo,z,z
03 §W131 + §W151 + gwm + ﬁwlgl + ﬂwl,ll,l
1 1 2 2 8
Vaa §W331M +§W351M + gW371M + Z_W391M
Vi 1 2 2
43 §W531M +§W551M + gW571M
A 1 2
63 §W731M + EW751M
A 1
83 §W931M
VO 1 1 2 25 25
0.4 _W040 + _Woeo + _Woao + _WO,10,0 + _W0,12,0
6 4 7 84 84
VO 1 1 2 25
2.4 6W240M +ZW260M +7W280M +QW2,1OVOM
YA 1 1 2
4.4 €W440M + ZW46OM +7W480M
A 1 1
64 €W640M + ZweeoM
A 1
8.4 EW84OM
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For a rotationally symmetric optical imaging model, the double Zernike vector

expansion of the wavefront aberration function is given by

0

w (H’ﬁ):nﬁ:o Z nio U'TH’%Z;:{U} (H)i:l{n} (/3) (4.52)

33

2
where the “m — 2” below the summation is used to indicate decrements of m by 2 rather
than increments of 1.

The preceding development has been for rotationally symmetric optical systems.
For the case of rotationally nonsymmetric optical systems, an expansion in field and pupil

parameters in terms of the Zernike polynomials, in field and pupil, is given by
W(HA)=2 > 20 2 urrzny, (H)Z0, (5) (4.53)

where “m_+2” and “my +2” indicate addition in increments of 2. Note that these are

Zernike polynomials, not the Zernike vectors previously used for the case of rotationally
symmetric optical systems. Recall that the Zernike polynomials are complete over a unit
radius disk (normalized object and pupil) and thus any function defined over the unit
radius object disk and unit radius pupil disk may be so expanded [56, 59, 60]. This, Eq.
(4.53), will be called the double Zernike expansion of the wavefront aberration function.

It is this form of the wavefront aberration function expansion that is used together with

the GQ method to obtain the expansion coefficients U ™™ from which, for rotationally
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symmetric optical imaging systems, the Wyimgwy expansion coefficients of Eq. (4.49) can

be obtained, as will be shown below.

4.4 Method for Obtaining Expansion Coefficients

The U,:"H “"nm*’ expansion coefficients of the general double Zernike expansion of the

wavefront aberration function, Eq. (4.53), may be calculated in the following way. An
optical design, ray tracing software package is used to implement the optical imaging
system models and to perform the real ray tracing. The OPD value for each ray traced
(real ray tracing) is calculated. A data file containing five numerical values for each ray
traced is obtained. These five values are the 2 field and 2 pupil parameter values
identifying the ray traced, and the calculated OPD value for that ray. Using the discrete

Zernike orthogonality properties described in Appendix 111, the GQ method is used twice,

m

once in pupil and once in field parameter values, to obtain the U,:"H“’ » expansion

Ny
coefficients.

For the through 12" order expansion of the wavefront aberration function, the
maximum radial, n, Zernike index is set to n,, =12. Then the number of radial (field

and pupil) values needed to perform the GQ procedure, as calculated by Eq. (111.61), is

N, {”Zax J+1 :L%Jﬂ: 7, (4.54)

while the number of angular values required, as given by Eq. (111.65), is

N, =2 +1=2x12+1=25 . (4.55)

angle
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There are then N, ., xN, .. =7x25=175 field and pupil points required for one

radial angle
application of the GQ method. This means that 175x175+175=230,800 rays need to be

traced, and their OPD values calculated. The “+175” is to account for the chief ray,
which is not one of the rays needed by the GQ method and so must be traced in addition
to the GQ rays. Depending on the implementation of the real ray tracing program, this
can take a long time. Fortunately, the available commercial optical design software
packages today are very fast for tracing rays.

Note that the number of rays to be traced, 30800, is for a single optical model to

determine the optical model’s total W,, .,

| values. As will be detailed in the next
section, to obtain the required per surface, sphere/asphere, and intrinsic/extrinsic

expansion coefficient values, W, requires at most 4 separate optical models per

surface of the original optical model. So, depending on the number of surfaces in the

original optical model, several times this number of rays may need to be traced.

With the double Zernike expansion coefficients Un“:mp of Eq. (4.52) for a

rotationally symmetric optical imaging model known (the Un”;”’mﬂ coefficients reduce the

N,

to U" expansion coefficients for the rotationally symmetric case), a set of equations

can be derived for the calculation of the W,, .., expansion coefficients. The derivation

of these equations has been accomplished for the through 12™ order expansion of the

wavefront aberration function. The method of derivation is here described.
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A Matlab® program, using the add-on symbolic toolbox for symbolic algebraic

manipulation, was written to implement Eq. (4.43), providing the wavefront aberration

function expansion in terms of the W, | expansion coefficients and SVP in field and

Im{M
pupil parameters. Another Matlab® function was written to calculate the conversion of
the pupil and field dependencies occurring in the wavefront aberration function
expansion into the equivalent real number Zernike polynomials. A portion of these

conversions has been presented in Table 4.1. Then, in software, collecting like terms in

the resulting symbolic expression of the W (H, ) expansion provides the Zernike-in-

field, Zernike-in-pupil expansion of the wavefront aberration function in terms of the

W

«imgmy €Xpansion coefficients. Comparison with the double Zernike expression of Eq.

(4.52) provides equations for the Un”;mp expansion coefficients in terms of the Wk,m{M}

expansion coefficients. A sample of these equations is presented here.

Uz, = (&wm ] (4.56)
Ug, = (%W&Z + 4%8W842M + %sz J (4.57)
Ug, = (3—10W622 + 4iOW642M + 5—1OW662M + %WBZZ + %WWM + %szz J (4.58)
u;, = (%Wm + %WWM + 4%W462M + %Wm + %Wm + %WWM

+ %W%ZM + %WSZZ + %WWM + %Wlozz ] (4.59)
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1 3 3 1 3 3 9 9
U22,2 = [E\szz + §W242 + E\Nzez + Z\stz + szmz + §W422 + §W442M + EW%ZM
3 3 9 9 1 3 3
+ EW482M +E\N&z +Eweﬂ,zm + %W662M +ZW822M + EW842M +EW1022M ) (4-60)
1
U;,s = ﬁWQ?)lM j (4-61)
1 2 4
U%,s = E\anm +E\lem +@V\/gsuw j (4-62)
1 1 1 2 12 1
U51,3 = %Wssm +£W551M +£W571M +£W731M +EW751M +ﬁvvgslm j (4-63)
1 2 2 8 2 4
U;s = §W331M +EW351M +EW371M +§W391M +EW531M +2_5W551M
4 2 4 8
+ £W571M + EW731M + £W751M + awgsm ) (4-64)
1 2 2 8 5 2 4 4
Ull,s = [gwlsl + g 1T g T Z_ 1011 ﬁwl,ll,l + §W331M + EW351M + EWSHM (4 65)
16 1 1 1 2 4 1 '
+ @nglM + 6W531M + gW551M + gW571M + EW731M + £W751M +§W931M j

The complete set of such equations through 12™ order (not shown) are then

inverted to provide the W,,,,, coefficients in terms of the U = coefficients. Some of

the resulting equations are provided here.

Woso = 6(U8,4 _5U8,6 +15U((J),8 _35U((>),10 + 7OU(()),12 _U§,4 + 5U§,6
—15U 9, +35U7,, +Ug, —BU, +15U0, Uy, +5Ug, +Uy, ). (4.66)
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Wi, =3(U5 —4U;, +10U}, — 20U}, +35U},, —2U;, +8U;, —20U;, +40U;,
+ 3Ué,3 -12U ;,5 + 30Ué,7 —4u 71,3 +16U%,5 + 5U;,3 ) (4.67)

W,om = 4(U§’2 -3U,;,+6U,, 10U, +15U;,, —3U,, +9U,, —18U 7 + 30U,
+6U, 18U, +36U s —10U;, + 30U, , +15U10012) (4.68)

W,,, =2(U;,-3U7, +6U;, —10U7, +15U7,, —3U;, +9U;, —18U7 +30U ,
+6U¢, —18U7, +36U7; —10U;, +30U;, +15U7, , ). (4.69)

Wy, =3(U;, - 205, +3U5, —4U3, +5U5, - AU}, +8U;, —12U;, +16U;,
+10U7, —20U7 , +30U7, — 203, +40U; , +35U5, ). (4.70)

Woeo =20 (U g,s - 7U(?,8 +238U 8,10 —84U 8,12 _Ug,e +7U 20,8 —28U 2,10
+Ups—7U2,—Ugs ). (4.71)

Wi, =10(U}, —6U}, + 21U}, —56U},, —2U;, +12U;, — 42U},
+3U2, -18U;, —4U; ). (4.72)

W,,, =8(U;, —5U;, +1507, —35U;,, —3U7, +15U7 — 4507,
+6U¢, —30U¢, —10U7, ). (4.73)

W00 =12(u§,4 —5U,, +15U;, —35U;, —3U7, +15U7 — 45U,
+6Ug, —30Ug, —10Uy, ) (4.74)

Wiy =9(U3, —4U;, +10U5, — 20U, —4U;, +16U;, — 40U,
+10U7 ,—40U;, —20U5 ). (4.75)
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W, =4(U3, —4U3, +10U3, — 20U, —4U;, +16U7, —40U2,
+10U7, —40U3; —20U5; ). (4.76)

W0 =12(U7, —3U7, +6U7 —10U7, —5U¢, +15U7, 30U,
+15U,, —45U;, —35Uy5 , ). (4.77)

W,,, =8(U},—3U;, +6U} —10U7; —5UZ, +1507, —30U;,
+15U;, -45U;, 35U, ). (4.78)

W, =10 (U;,l A ;,3 + 3Ué,5 —4U é,7
—6U;, +12U7, —18U7, + 21U, —42U; , —56U;, ). (4.79)

Woso = 70(Ugs —Uj, +UDs =gy, +9U7,, +45U¢ , ). (4.80)

Thus a bridge between the Wym expansion coefficients often used by the optical design

community and the U™  expansion coefficients of the double Zernike expansion has

been established at the total system level. In the following section, the per system Wigm;
expansion coefficients are obtained.

For a rotationally symmetric optical imaging model, some of the expansion

coefficients, U:;“];]Tﬂ, of the general expansion Eq. (4.53) should be zero. The deviation

from zero of such coefficients provides some indication of the accuracy of the method

used to obtain all of the U"  coefficient values.
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Since, for rotationally symmetric systems, the U::{“"nr:” occur in pairs,
(UH*H”T;,:m,U;H"f;,;m), it should be the case that U ™™ =U """ (EUr::,n ) Then the

difference in the pairs’ values is another indication of the accuracy of these coefficients.

This method for estimating the computational error of the U~ values is used in

Chapter 6.

m
Ny,

Using error propagation techniques, and the estimate of the U error, an upper

bound for the estimate of the computational errors in the final W, ., expansion

M}
coefficients can be calculated. Examples will be provided in Chapter 6. Estimations for

the errors in the calculated W, .,

| expansion coefficients appears to be lacking in the

literature. The technique used in this research provides a method to obtain computational
error estimates for the values calculated. These errors occur due to limitations of

numerical representation and error propagation during calculations.

4.5 Per Surface, Sphere/Asphere, and Intrinsic/Extrinsic Contributions

In optical design, and for a large part of the present work, specifically for NAT, it is
desirable to know the contribution that each optical element in the optical model, surface
by surface, makes to the total system’s aberration function. An assumption is made, for
rotationally symmetric optical models, that the contribution each optical element (surface

with optical power) makes to the total system’s aberration function can be summed to
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produce the total system’s aberration function. Therefore a sum over all surfaces is

introduced. For example, Eq. (4.9) is now written as

W(H’ﬁ)z#sfces iiiwklm{s};j<ﬁ'ﬁ)n(ﬁ'/3)m (ﬁ'ﬁ)p ) (4.81)

j=1 n=0 p=0 m=0

where the expansion coefficients now carry the subscript j to indicate the j™"

Wklm{S}:i
surface’s contribution.

When the optical surface j has a rotationally symmetric non-spherical shape, the
surface is considered to be composed of a sphere base shape plus an “aspheric cap” shape
that is added to the sphere base shape. It is then desirable to know the contribution to the
surface’s total aberration contribution provided by the sphere base shape and separately
the contribution attributable to the aspheric cap shape. In this terminology, an asphere is
composed of a sphere base shape plus an “aspheric cap” given by

aspheric cap = asphere —sphere . (4.82)
A conic is one type of asphere.

A spherical wavefront is a wavefront without aberrations. When a spherical
wavefront interacts with (is refracted or reflected by) an optical element, the resulting
wavefront will in general have a nonspherical shape. The difference between the
spherical shape of a nonaberrated incident wavefront and the resulting nonspherical shape
of the wavefront due to aberrations is called the intrinsic aberration contribution.

It is not always the case that the incident wavefront onto an optical surface is free
of aberrations. Then the resulting wavefront, after refracting/reflecting from the optical

surface, will have components due to the aberration free spherical incident wavefront and
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a component due to the aberrations present in the incident wavefront. The contribution

due to the aberrations in the incident wavefront is called the extrinsic aberration
contributions. The total aberration contribution of a surface is the sum of the intrinsic
and the extrinsic aberration contributions.

Because the surface is divided into a sphere base shape plus an aspheric cap

shape, there are four contributions to the surface’s total aberration contribution. These

are denoted by W), WY, WE), and W) where “IS” denotes the intrinsic

contribution from surface j’s sphere base shape, “IA” denotes the intrinsic contribution
from surface j’s aspheric cap shape, “ES” denotes the extrinsic contribution from surface
J’s sphere base shape, and “EA” denotes the extrinsic contribution from surface j’s

aspheric cap shape. Then

W EW(Sul’f Tot) :W(IS)_ +W(IA) +W(ES) +W(EA) (483)

kim; j kim; j kIm; j kim; j kim; j kim; j

where kari‘j? ™ is the total expansion coefficient aberration contribution for surface j.

Figure 4.4 provides an illustration of one example of the hierarchy of

contributions to the surface’s total aberration coefficient value.

1: Wk(zfnu;;ﬂm)
v N
2 W’f(ffﬂ)f * Wk(ijz)J
e N J N
ARG RGN

Figure 4.4 Hierarchy of total surface’s aberration coefficient. The numbers at the left
indicates the level of separation in the hierarchy tree. “S” = sphere, “A” = aspheric cap, “IS”
= intrinsic sphere, “ES” = extrinsic sphere, “IA” = intrinsic aspheric cap, “EA” = extrinsic
aspheric cap.
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There are other ways that this hierarchy can be arranged. For example, at the

second level, the W' ™ could be separated into the total intrinsic contribution W)

and the total extrinsic contribution W7, rather than the sphere and aspheric cap
contributions.

Assuming that the total optical model’s W, values can be obtained, as outlined

in the preceding section or by other means, the following method has been defined and

implemented in this work to obtain the per surface, sphere/asphere cap, and

intrinsic/extrinsic kae) contributions. These expansion coefficients are utilized in NAT

to be described in the next Chapter for the analysis of the wavefront aberration function’s
field dependence.

Assume that the optical model consists of N optical surfaces that have non-zero
optical power. For completeness of the method to be described, assume that all the

surfaces are aspheres. For any surface j <N in the optical system, it is assumed that all

the surfaces preceding surface j form an optical imaging subsystem, denoted by Sj,<j , of

the total optical system S, . Each such subsystem will have its own object, entrance,

exit, and Gaussian image planes. It is further assumed that each individual surface j,
separated from the rest of the original optical system, will form its own optical imaging

subsystem, denoted by S, . These subsystems are defined and modeled such that the

Gaussian entrance pupil for S, is the Gaussian exit pupil of Sj.<j and the Gaussian
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object plane for s, is the Gaussian image plane of Sj.<j. Then the total per surface

expansion coefficients for surface j are defined to be

(Total) _ (Total) __\\/ (Total)
Wiaim; _Wklm;j'sj Wklm;j'<j ' (4.84)

To obtain the four wavefront expansion coefficient types listed above, changes to
both the shape of the wavefront that is incident onto the j™ surface as well as to the shape
of the j™ surface are needed. Additional notation to keep these changes clear will now be

defined. The incident wavefront onto the j" surface will be either the real wavefront

(RW) shape from subsystem Sj.<j or, by constructing a new optical model consisting of

just surface j, an aberration free spherical wavefront (SW). The j™ surface may have
either the real surface (RS) shape of the original surface or it is replaced in the optical
model with just the base sphere shape (SS) component of the j surface’s shape. Then

EQ. (4.84) can be written as

(RWRS) __ (Total) _ (Total)
Wklm;j _Wklm;j'sj Wklm;j'<j’ (4.85)

denoting the aberrations attributable to surface j as a result of the real wavefront incident

onto surface j using surface j’s real surface shape.

By replacing the j optical surface by its spherical base shape in the Sj-Sj model

(RWSS) __\pf(RWSS) _ y\a/(Total)
Wiam: _Wklm;j'sj Wklm;j'<j’ (4.86)

is obtained.
Replacing the incident wavefront onto the j™ surface by a spherical wavefront

originating from the local, surface j’s, object plane, the coefficient values Wk‘,f;\”.ﬁs) are
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obtained. This is accomplished by constructing a separate optical model, S, , consisting

of only one surface with optical power, namely surface j.

Finally, replacing the j™ surface shape in the S, optical model by the sphere base

shape of the j™ surface, WQ,?;]N.SJ.S) is obtained. The four per surface expansion coefficient

types can now be calculated as follows.

Weim i =Widm:; (4.87)

Wi i :Wlflsr%N;RjS) —Wk(frﬁv;sf) , (4.88)

Wkﬁ;) j :Wlfmsjs) _Wk(mst) ' (4.89)

Widm'j =W —Wiam: =W j ~ Wi - (4.90)
Note that by the construction of these equations, it is always the case that

W ToD —\W US) W A\ ES) gy B (4.91)

Kim; j kim; j kim; j kim; j kim; j
This is unfortunate because it does not provide for a way to independently validate the
separation of the total surface contribution into the four component values. However, as

mentioned in other work [50] the 4™ order extrinsic coefficients Wk(l'fs?j and Wlffnﬁ‘?j are

always zero. This has been a valuable debugging condition during the implementation of

this method for calculating the W,j*? coefficients. Using Eq. (4.87) through Eq. (4.90)

for the 4™ order extrinsic coefficients should always produce a number close to zero.

When this does not occur an error in implementation can be assumed. It also provides

some indication of how accurate the calculated W values are. The inaccuracies arise

KIm; j
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from the limitations of the number representation used for the calculations, and from

error propagation associated with the implemented equations. The 4™ order extrinsic
coefficients, being theoretically zero, are not programmed into the generation of any full

field display (FFD) plots to be presented in Chapters 5 through 7.

Although the above method for obtaining the Wlf,Tny]‘;ej) expansion coefficients

appears to be straight forward, there is a subtle point that needs to be made explicit.

Recall that the wavefront aberration function expansion is defined in this dissertation

using the normalized Cartesian coordinate object field parameters H . Not all researchers
may choose to use this parameterization of the wavefront aberration function. It is
possible that some researchers may choose to use a normalized object angle
parameterization. An illustration comparing these choices is given in Figure 4.5.

NOA NCC
H, H, +Y

ENP

L4 +1p4 y>044

0 <o
+Z

G>0

+1 -1 y<0
B B B

Figure 4.5 Field parameterization choice comparison. Points labeled “A” are all the same
point in the object plane along the +y-axis. Points labeled “B” are all the same points in the
object plane along the —y-axis. NCC = normalized Cartesian coordinates. NOA = normalized

object angle. The object point’s angle, along with its sign convention, is shown as 6. ENP =

entrance pupil. +Z is the direction of positive ray translation.
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In Figure 4.5, the normalized field component along the y-axis, Hy , may be either the

normalized Cartesian coordinate H,“° or the normalized object angle H;**. The object

angle to the point (either point “A” or to point “B”) is given by 6. The sign convention

for 6 is indicated in Figure 4.5.

From Figure 4.5 it is seen that the following relation holds between the two
different normalized field choices,

NCC _ _fjNoa (4.92)

Why this matters is because it changes the sign of all the Wy, values with k odd. k is the

power of the field parameter H. As an example, consider the 4™ order coma term

Wepro (H, 5) =W Hep 07 . (4.93)

coma

Explicitly stating that the field parameters are the normalized Cartesian coordinates, this

can be written as

Wipre (H", 5) =WATCH 5 p° . (4.94)

coma

Explicitly stating that the field parameters are the normalized object angles, the coma

term is written as

W (|:| NoA /5) :nglOAH NOA, 5 12 (4.95)

coma

Since the amount of the departure of the wavefront from the reference sphere, the amount

of wavefront aberration, is independent of the choice of field normalization, the relation

Wgre (H", ) =W, (HY%, 5) (4.96)

coma coma
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holds. This implies that

WS HNCE W OAH MoA (4.97)
Using Eq. (4.92) in Eq. (4.97), the following equations are obtained

WA N W0 (—FMee) | (4.98)

Wiy © = -Woi" . (4.99)
Therefore, the sign of the odd k Wy, expansion coefficients is different depending on the
normalized field parameter chosen.

This result may be the cause of a sign issue in the examples of Chapter 6. In that
Chapter, the 4™ order Wiqm values calculated using the GQ method are compared to the
values reported by the CODE V® macros fifthdef and FORDER, which also calculate the
4™ order Wigm values. It is there seen that the Wais; values of fifthdef/FORDER have
opposite signs to that of the GQ calculated values. However, it is not known exactly
what field parameterization the equations implemented in fifthdef/FORDER are for.

The important point of this discovery of this research is that the Wy, values are
not all independent of the choice of the normalized field parameterization used, and it is
therefore critical to report which field normalization is being used when calculating and

reporting Wim expansion coefficient values.
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Chapter 5 Sigma Offset Vectors, Full Field Displays, and Nodal

Aberration Theory’s Nodal Splits

Nodal aberration theory (NAT) was originally developed by Kevin P. Thompson [5, 54,
61, 62, 63, 64], based on early insight into binodal astigmatism from Roland V. Shack. It
builds on the work of Buchroeder, also working with Shack, who determined that when
an optical surface of a rotationally symmetric optical imaging system is tilted, the center
of the field dependence of the wavefront aberration function in the image plane shifts.
[65] The quantification of this shift is denoted by a per surface 2D sigma “offset” vector,

;. If the optical surface is composed of a sphere base shape plus an aspheric cap shape

(which includes the conic shapes), then each of these two component shapes of the
overall surface shape contributes a different shift to the total field dependence.
Therefore, for a single optical surface, there is a sigma offset vector for the sphere base
shape and a different sigma offset vector for the additional aspheric cap shape.

In NAT, a nodal point (a.k.a. node point) for an aberration term in the wavefront

aberration function expansion is the object field point H that makes the field dependent
vector factor (the field function) of the wavefront aberration expansion term zero. Then
the contribution of that aberration term to the total wavefront aberration function at that
object field point will be zero.

The vector valued field dependence of a scalar aberration term of the wavefront

aberration function expansion, either as an expansion in terms of Shack’s vector product
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(SVP), as in Eq. (4.43), or as an expansion in Zernike vectors in pupil coordinates, as in

Eq. (4.51), can be graphically displayed as 2-dimensional plots called full field displays
(FFDs). For a rotationally symmetric optical imaging system, the node points for a field

dependent term in the wavefront aberration function expansion is located at the
coordinate origin H =(0,0). When one or more of the imaging system’s optical surfaces

is perturbed (tilted and/or decentered laterally from the mechanical coordinate axis
(MCA)) then the node points for a field dependent term in the aberration function
expansion may shift away from the coordinate origin, and may also split into multiple
nodes depending on the characteristics of the field dependence of the expansion term.
NAT is the study of these characteristics of the field dependence of the wavefront
aberration function expansion terms.

In this Chapter, a summary of the concepts and equations used in NAT is
presented. A review of the definitions and equations for the 2D field sigma offset vectors
is given and it is shown how these vectors are introduced into the wavefront aberration
function expansion terms. Clarification of previously published work is made. The
development of equations for the sigma offset vectors, correcting for sign issues that have
been identified in this research, is presented.

A global coordinate system will be used to locate surfaces and points of
intersection, e.g. the intersection point of the optical axis ray (OAR) and a surface or the
aberration field axis (AFA) and a surface. A vector may then be formed between two
points as the difference of the two vectors to the points with respect to the global

coordinate system. This is illustrated in Figure 5.1.
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Y Surface
X . ‘4,.,"
S L
R e N A
o=@00 -T2
\ - 7

Entrance Pupil

Figure 5.1 The vector VV is obtained as the subtraction of the two vectors F—’1 and 52

associated with the surface points P, and P,, respectively, and referenced with respect to the
global coordinate system. As an example, P, may be the intersection point of the OAR with
the surface, while P, may be the intersection point of the AFA with the surface.

5.1 Calculating 2D Sigma Offset Vectors

Consider a rotationally symmetric optical imaging system. The axis of symmetry will be
defined to be along the z-axis and it will be called the mechanical coordinate axis (MCA).
Rays travel from the object plane, through the imaging system, to the Gaussian image
plane. The positive direction of a ray will be selected to be in the sense of the positive z-
axis. The ray from the center of the object (the intersection of the negative z-axis with
the object plane) through the center of the entrance pupil and on through the imaging
system, to the Gaussian image plane, is called the optical axis ray (OAR). As shown in
Figure 5.2, this ray is coincident with the MCA for this case of a rotationally symmetric

optical imaging system.
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M Imaging T
L System L
OAR OAR +2z-axis
-
MCA
._f—j—_f____. k—_-_“i_‘ﬁ
Object Plane Entrance Exit Image Plane
Pupil Pupil

Figure 5.2 OAR and MCA coincide for rotationally symmetric imaging system.

But when one or more of the optical system’s surfaces is perturbed by tilts and/or
decenters, the OAR will not coincide with the MCA.. In all cases, the intersection of the
OAR with the Gaussian image plane is defined to be the coordinate origin in the image
plane. Therefore, the coordinate origin in the image plane need not coincide with the
intersection of the MCA with the image plane. The difference between the OAR and the
MCA intersection points with the image plane is called the boresight error of the imaging
system. See Figure 5.3.

— . Imaging : ,
~———— Pupil Pupil —
Center L Systent J‘ Center

Boresight
\ ~ Error

OAR
—T/ +z-axis

OAR
MCA
T 1

,_——’—’_fx |
Object Plane Entrance Exit Image Plane
Pupil Pupil

Figure 5.3 For a rotationally symmetric imaging system with one or more tilted and/or
decentered optical surfaces, the OAR and MCA need not coincide, giving rise to the boresight
error vector.
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When one or more of the optical imaging system’s elements (optical surfaces with
optical power) are perturbed (decentered and/or tilted) the center of the field dependence
of the wavefront aberration function changes. To account for this re-centering of the
field dependence, per surface, normalized, sigma offset vectors are introduced into the

field dependence of the wavefront aberration function. There is one sigma offset vector

associated with the spherical base shape of the surface, 5}5’, and one sigma offset vector
associated with the aspheric cap shape of the surface, 5}“). For both the per surface
normalized sphere sigma offset vector 61(.5’ and the per surface normalized asphere sigma

offset vector 5§A) there is a choice to define them either in the normalized local image

plane or the normalized local object plane. In this work, these vectors will be defined in
the normalized local image plane. Once these normalized sigma vector values have been
obtained with respect to the normalized local image plane of an optical surface j, they

need to be propagated to the system’s normalized object plane so that they may be used

together with (combined with) the normalized field parameters H , defined in this work
in the system’s normalized object plane. This may involve a “sign flip” for the
normalized local sigma offset vector values depending on the orientation of the local
image plane with respect to the system’s object plane. The details are presented below.
Thompson, et al., [66] proposed an equation for the sphere sigma offset vector to
facilitate its calculation irrespective of how the local coordinate system is defined in
optical design software. However, this research has discovered that while the proposed

equation provides the correct magnitude for the sphere sigma vector components there is
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an overall sign issue with the proposed equation for some optical systems. Likewise,

there is a sign issue for the reported [66] equation for the asphere sigma offset vector for
some optical systems. For this reason, tracking the necessary sign flips is made explicit
in the following development.

For the sphere base shape of a refracting/reflecting optical surface j, the center of
the field dependence for an aberration term in the wavefront aberration function
expansion is located in the normalized local image (LI) plane by the 2D normalized

—(s)LI

sphere sigma offset vector & It is defined to be the 2D vector i(f’ in surface j’s

local image plane divided by the absolute value of the chief ray height in the local image
plane for the unperturbed optical model. The vector i(f’ is defined in the local image

plane from the intersection point of the OAR to the intersection point of the AFA. The
AFA passes through the center of the local entrance (and exit) pupil and through the
center of curvature of the surface. This is illustrated in Figure 5.4. Note that the AFA
considered as a ray has an incident and refraction/reflection angle of zero at surface j

because it is perpendicular to the surface at the intersection point by construction.
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Figure 5.4 Definition of the vector Z(J-s) for a sphere base shape surface. (a) The general
setup. (b) Magnified view showing the vector definition. “AFA” is a line through the center

of the entrance pupil and through the center of curvature of the sphere base shape that
intersects with the local image plane.

Based on the definition of the X{” vector shown in Figure 5.4 the following

definition can be written for the local image space, normalized sigma offset vector

o = AFA!" —OAR''
gt = ——| = , (5.1)
: HCY| IHCY|
P ey ! (x.y)

where superscript “LI ” stands for “local image” plane of surface j, AFAJ.LI is the vector

to the intersection point of the AFA with the local image plane of surface j, OARJ.L' is the
vector to the intersection of the OAR with the local image plane of surface j, and

[HCY"| is the absolute value of the height of the maximal chief ray in the local image

plane of surface j for the unperturbed optical imaging system. The [.](X " notation is

used to explicitly indicate that the resulting vector is a 2D vector in the xy-plane.
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For the aspheric cap component of the surface’s overall shape, unlike for the base

sphere, there is a unique surface vertex point, which is labeled “V” in Figure 5.5, about
which the aspheric cap shape is rotationally symmetric. The center of the field
dependence for an aberration term in the wavefront aberration function expansion
associated with the aspheric cap of a surface j is located in the local normalized image

plane by the 2D local image space normalized asphere sigma offset vector 61“)“.

However, to obtain this asphere sigma vector, a vector (V™ is first defined at the

local surface j. Once the (V™) vector value at surface j is obtained it is projected to
the local image plane of surface j and normalized by the absolute value of the maximal
chief ray height at the local image plane of the unperturbed system. The Z{®™ vector

defined at surface j is the vector from the OAR’s intersection point at surface j to the

aspheric cap’s vertex point “V”. See Figure 5.5. As an equation, this can be written as

SO -V -OAR/| (52)

(x,y)

where \7j is a vector to surface j’s vertex point, and OAR; is a vector to the intersection

point of the OAR with surface j. The [] notation is used to explicitly indicate that

(xy)
the resulting vector is a 2D vector in the xy vertex plane of the surface. The surface’s
vertex plane is the plane containing the surface’s vertex point and is perpendicular to the

MCA (the z-axis) regardless of the tilts and decenters applied to the surface.
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Figure 5.5 The Z(jA)(Surf) vector is defined to be the vector from the OAR at surface j to the

aspheric cap’s vertex point “V”. It is to be projected to the local image plane. (a) For the
case that the local exit pupil occurs to the left of the local image plane and the surface j.
(Based on Fig. 2.8 of [54].) (b) For the case that the local exit pupil occurs to the left of the
local image plane but to the right of surface j. Notice the sign flip for case (b) in going from
surface j to the local image plane. CP = center of the exit pupil.

By defining the “Line of Projection” to be the line connecting the center of the

local exit pupil “CP” and the asphere’s vertex point “V”, and extending this line to the
local image plane, similar triangles are formed. In this way, the (V™ vector is

projected to the local image plane. Note that, as shown in Figure 5.5(b), and explicitly

identified in this research, there may be a sign flip associated with this projection. To
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account for this sign flip, the sign of the chief ray height at the local image plane is

multiplied by the sign of the chief ray height at surface j, both for the unperturbed optical
model. This is written as

‘ img ‘
i

(M09 — sgn (HCY[™ )sgn (HCY;™" )—‘ VT
j

i(_A)(surf) ’ (53)

J

where sgn(HCYj‘mg) is the sign of the chief ray at the unperturbed local image plane,

sgn(HCYf“”) is the sign of the chief ray at the unperturbed surface j, ‘HCYJ."“Q‘ is the

absolute value of the chief ray height in the local image plane of surface j for the

unperturbed model, and [HCY;*"

is the absolute value of the chief ray height at surface j

also for the unperturbed model.
The normalized asphere sigma offset vector associated with surface j, in the local

normalized image plane, is then given by

O~_J§A)L| =sgn ( HCinmg )sgn ( HCYjsurf )‘Hcﬁ i(jA)(Surf) ) (5.4)
i

Simplifying gives

v, -0
HCY "

M =sgn(HCY;™) e (5.5)

where the absolute value of the height of the chief ray at surface j, HCYJ.S””, in the

unperturbed system has been removed.
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Note that since neither \7j nor OAR; at surface j depend on the tilt of the aspheric

A)LI

cap (about the surface’s vertex \7j), the 31.( offset vectors are independent of surface

j°s tilt [54].

These per surface normalized sigma offset vectors (sphere Ej(s)“ and asphere

&M are used to identify the center of the field dependence in the optical system’s

normalized local Gaussian image plane for the aberration terms in the wavefront

aberration function expansion. This is illustrated in Figure 5.6.

Y

Center of Field
Dependence
7’
LI
O-J' Conjugate
Field Point

ﬁLI ¥

Intersection
of OAR

Intersection
of MCA

Surface j's normalized local image plane

Figure 5.6 A normalized sigma offset vector (sphere or aspheric cap) signifies a shift in the
center of the field dependence of an aberration term in the normalized local image (LI) plane.
(Based on Fig. 9 of [66].)

The “LI” superscripts in Figure 5.6 are used to emphasize that the parameters
shown are with respect to the local image space of surface j. Recall that the wavefront

aberration function has been defined in this work to be a function of the total system’s
object space normalized Cartesian field parameter H. Because the normalized object

field parameter H and the image conjugate normalized field parameter H"', defined in

the normalized local image plane, are the same up to sign, a sign flip may be necessary
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when introducing the local image space defined sigma offset vectors into the object space

defined wavefront aberration function. The identification of this sign flip is made explicit
in this research and is shown in the following derivation.
Consider the wavefront aberration function expansion written in the following
way
W (H,p)=W (H®, 5) =W (H®, 5% )+W,_, (H®, 5% )+ +W _ (H*, 5 ,(5.6)
where the field and pupil parameters are normalized parameters, and the j subscript is

indicating the surface number. The W, (I:|°bj,,6°bj) are the aberration contributions to

the total wavefront aberration function attributable to surface j. There are two cases to
consider. The first case is that the optical subsystem consisting of all surfaces up to and
including surface j is an image inverting optical subsystem. The second case is that the
optical subsystem consisting of all surfaces up to and including surface j is not an image
inverting optical subsystem.

CASE I

For an arbitrary but fixed j <N, and assuming that subsystem Sj'gj IS an image inverting
optical system defined by the relations, for normalized parameters,
H® =-H" | (5.7)
p =-p", (5.8)
then

W, (H, ) =W, (-H",—"") . (5.9)

]
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Following the NAT prescription to re-center the field dependence for an optical imaging

system having decentered or tilted optical elements, the substitution H"' — H}! [54] is
made, giving
W, (-H"Y, =" ) >W, (-Hyj, ") . (5.10)
Using the vector relation, illustrated in Figure 5.6,
H =HY -5+, (5.11)
gives
W, (—H =" ) =W, (-[H" =6} | -p" ) =W, (-H" +5{' -5") . (612)
Again using Eqg. (5.7) and Eq. (5.8) for an image inverting optical subsystem,
W, (-HY +6{',=p" ) =W, (H" +5}', 5™) . (5.13)

This sequence of relations has shown, for the case that the subsystem S;_; is image

inverting, that the NAT prescription for the re-centering of the field dependence for
rotationally nonsymmetric optical imaging systems is given by

W, (H™, p%) >W, (H® +67', p™) . (5.14)
CASE I

For the case that the subsystem SJ_.SJ_ is not an image inverting optical system,

H =HY (5.15)
o =p" . (5.16)

Then the following relation holds,
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W, (H, g% ) =w (H", 5") . (5.17)
Following the NAT prescription to re-center the field dependence for an optical imaging
system having decentered or tilted optical elements, the substitution H" — I—Tk'j is made,
giving
W, (HY, 5" ) >w; (Hg5, 81 ) . (5.18)
Using the vector relation, illustrated in Figure 5.6,
HY —HY — &Y ’ (5.19)
gives
W, (Hyp, ) =w, ([H" =6} ], 5" )=w, (H" =5}', 5" ) . (5.20)
Again using Eq. (5.15) and Eq. (5.16) for a non-inverting imaging optical subsystem,
Wj (Hu —5‘}" ,,5"') W. (HObJ G- ’ﬁObj) . (5.21)

This sequence of relations has shown, for the case that the subsystem S;._; is not image

inverting, that the NAT prescription for the re-centering of the field dependence for
rotationally nonsymmetric optical imaging systems is given by

W, (H™, p%) >W, (H® —61', 5™) . (5.22)

Then, from these two cases, the re-centering of the field dependence in the

wavefront aberration function is written as

W, (H, 5%) W, (H® +67', p™) (5.23)
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One way to avoid this use of the “+£” symbol, as well as the superscripts “Obj”

and “LI”, while retaining the form previously published in the literature [5] for re-
centering the field dependence, is to change the equations for the sigma offset vectors to
incorporate the potential orientation sign flip of the local image plane with respect to the
total system’s object plane. That is, define

o) =+ (5.24)
and

FN =151 (5.25)

J

where the “+” is used when the optical subsystem S._; is not image inverting, and “~” is

J
used when it is an image inverting subsystem.

By using HCY,2” for the (maximal) chief ray height at the total system’s object

Tot
plane (which may be infinite), and HCYJ.Img for the chief ray height at surface j’s local
image plane, the sphere sigma equation can be written as

5 =sgn(HCY; )sgn(HCY,™ )G . (5.26)
And for the asphere sigma offset vector, it may be written as

" =sgn(HCYY )sgn(HCY,™ )G . (5.27)

Using Eq. (5.1) and Eqg. (5.5) these may be written as

| AFAJT-OAR" |

&* =sgn(HCY " )sgn (HCY") e, (5.28)

\HCYJ.L' \

and
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v, —Wlm

J J

‘ HCYjsurf

&\" =sgn(HCY ! )sgn (HCY*" ) (5.29)

Note that it is customary to use the absolute value of a quantity that is to be used as a
normalization factor so that the direction of the vector to be normalized is not
inadvertently changed. Hence the absolute value is not removed from Eq. (5.28) and Eq.
(5.29). This also helps to keep track of the source of the sign flips.

Explicitly providing the sign flips in equations Eq. (5.28) and Eqg. (5.29) is new to
this research, although their concept (the definitions of the sigma offset vectors) is not.

These equations are to be assumed when referring to the sigma offset vectors o,

throughout the rest of this dissertation unless explicitly stated otherwise. They are
written in this form, using the sgn(.) notation, to keep track of the source of sign flips and
to aid in understanding how they may be implemented in a computer program.

Note that these equations are applicable for the case that the wavefront aberration

function’s normalized field parameters H are the object space normalized Cartesian
coordinate field parameters, as used throughout this dissertation. Some researcher’s may
prefer to use normalized image space field parameters when defining the wavefront
aberration function’s field parameters. Let HCY,° be the chief ray height at the total
system’s image plane. The sigma offset vector equations, when using the total system’s
image plane to define the field parameters of the wavefront aberration function are given
by

G*) =sgn(HCY,q® )sgn(HCY™ )G (5.30)
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and

—>

&% =sgn(HCY,q? )sgn(HCY,™ )5 . (5.31)

Whether the normalized field parameters H are defined using the system’s object
plane or the system’s image plane, the form of the equations for re-centering of the

wavefront aberration function is generally given as [5]

W, (H,p)->W,(H-5,,5) (5.32)
where it is now to be understood that the sigma offset vectors incorporates the possible
sign flips as given in Eq. (5.26) and Eqg. (5.27) or in Eqg. (5.30) and Eqg. (5.31) depending
on the choice of the wavefront aberration function’s field parameterization.

As discussed in the previous Chapter, there are four types of Wkﬂ?f? expansion

coefficients (Type = IS, 1A, ES, EA) and, at this time, only two types of sigma offset
vectors (sphere and aspheric cap). When re-centering the field dependence of the
wavefront aberration function, the IS, ES and EA are to be associated with the sphere
sigma offset vectors, and the IA is to be associated with the aspheric cap sigma vectors.

As an example, consider the through 6" order field dependence for the Zernike

astigmatism term Z2 (p) for arotationally symmetric optical imaging system
ZLS_lL_Jrfaces
= & (1 3 1 2
F= Z (EWZZZ;j +§W242;j +§ 122:5H1 ZJ{H }n - (5.33)
j

Writing the expansion coefficient types explicitly gives
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ES ES ES 2
“Wop i + = Wopo; + Wy H
2 8 2

1 3 1
szgg;j + ngig;j + EW4§§;j H ?

_ # Surfaces 1 s 3 s 1 s ) N2
F=) W+ Wi+ Wogy H {H}n+
J
1 3 1 32
EWz';;;jqung"f;;j+EW4';;;J.H2 {H +
1 3 1 (

(5.34)

For the case of a rotationally nonsymmetric optical system, the re-centering of the field

dependence is accomplished by the NAT prescription described above. This gives

# Surfaces
F= > Gw;;z;j +§w s Iy

242; 422;
; 2

(
1 3 1

EWZ'Z’;; J. +§W2'4’; J. +§W4'2A2; J. (
%w;;; J. +§w es Ly (

242; j 2 422;j

1 3 1
EWZEQ;j + ngig;j + §W4§?;j

where the H?2 have first been replaced by their vector equivalent H+H , and where &js)
is the sigma offset vector associated with the sphere base shape of surface j , Eq. (5.26),
and &}A’ is the sigma offset vector associated with the aspheric cap of surface j , Eq.
(5.27).

Note that once the OAR is deflected from the MCA, for example, by surface |, all

other optical surfaces after surface j may have sigma offset vectors associated with them

even though these surfaces may not be tilted nor decentered. For this reason, the sigma
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offset vectors are not necessarily directly associated with the tilt or decenter parameters

of a surface in the optical model.

It is expected that the magnitude of the normalized sigma offset vectors, for small
perturbations of an optical surface, will be less than or approximately one. For larger
values, it is not clear that the use of the sigma vectors in the wavefront aberration
function expansion doesn’t significantly alter the convergence of the function’s
expansion. In one example to be presented in Chapter 6, the magnitude of a normalized
sigma vector is greater than 20. This, together with the limited accuracy of the Wy
expansion coefficients, and the truncation order of the expansion used, may lead to
inaccuracy in the resulting field dependence for the optical model considered. The range
of acceptability for the magnitude of the sigma offset values has not been formally
addressed here. However, it seems clear that sigma values much greater than one may

present issues in the computational accuracy of the field functions.

5.2 Review of Full Field Displays (FFDs)
FFDs are a graphical way of illustrating the vector field dependence (the field functions)

of the terms in the wavefront aberration function expansion in the field parameter space

(the H :(HX,Hy) space). (Note that this is not the image plane of the system.

Although the normalized field parameters can be mapped to the image plane, the
wavefront aberration function, and hence the field functions, is not defined in the image
plane.) The FFDs are the primary method for quantitatively and qualitatively validating

the mathematical development in this research. They are the primary means for assessing
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the field dependence of the wavefront aberration function for optical imaging systems.

An example of a FFD is shown in Figure 5.7. This FFD was created from real ray trace
data for a 2 mirror Ritchey-Chrétien telescope model. The half-field of view (HFOV) for
the optical model is 0.6 degrees. Other details of the optical model will be presented in

the next Chapter.
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Figure 5.7 Example of a FFD for the Zernike astigmatism term ZZZ (/3) .

Figure 5.7 shows a plot of the field dependence of the wavefront aberration

-2

function expansion for the Zernike astigmatism terms Z;(,a)z(zgz(,a),zz (,5))

through 12" order. Specifically, the double Zernike expansion of the wavefront

aberration function, Eq. (4.53), was used together with the GQ method described in

Appendix 111 to obtain the expansion coefficients U ™™ . The input to the GQ method

was the OPD real ray trace data obtained from CODE V® for the optical model. With

the expansion coefficients determined, the field dependent vector function
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F'(H,.H,)=(F*F") associated with the Z(p5) terms were then known as

functions of the normalized Cartesian object field parameters H :(HX, Hy). From Eq.

(4.53)
12 Ny

F2=> > um?zm(H), (5.36)

Ny =0 my =—ny
my +2

2 0y

2= > um?zm(H) (5.37)

Ny =0 my =—ny
my +2

A grid of 21x21 normalized object field points was used together with the field
dependent vector function F} to calculate the vector value at each of the normalized
field grid points. A symbol was plotted at each of the grid points to represent the vector
values F; of the field dependence of the Z2(p) aberration function’s expansion terms.
In Figure 5.7, the symbol used is a line segment. The length of the line segment

corresponds to the magnitude of the vector’s magnitude,

F7[|. The orientation of the

line segment likewise corresponds to the orientation of the F vector’s orientation in the

field parameter’s space (H ,H ) coordinate plane. It is customary to ignore the “head”
p P xi ' ly

and “tail” aspect of the symbol used to represent the Zernike astigmatism aberration Iff

vector, hence the line segment is used as the symbol plotted. A scale bar is provided in
the lower right hand corner of the plot, in units of waves.
The FFD of Figure 5.7 is presented with two axis scales for both the x- and y-

axes. In this work the field parameters to the wavefront aberration function are the
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normalized Cartesian x and y values (HX, Hy) identifying the object source point for the

ray being traced through the optical system. In optical design it is more common to use
the associated object angles to identify the object source point, particularly when the
object is effectively at (minus) infinity along the z-axis. However, since the relation
between the object angles and the Cartesian coordinate system of the object plane
changes sign depending on whether or not the entrance pupil occurs to the left or to the
right of the object plane, both parameterizations are here shown to avoid any confusion.
In addition to the Zernike astigmatism FFD shown above, two other FFDs are

often produced to display the field dependence of the Zernike coma
Z;(p)=(2;*(p).Z5*(p)) and the Zernike spherical Z{(5)=(Z,°(5).0) aberration

expansion terms. The following FFDs provide examples for these FFD types using the

same telescope model as for the Zernike astigmatism plot above.
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Figure 5.8 Examples of (a) Zernike coma and (b) Zernike spherical FFDs.
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As shown in Figure 5.8, the Zernike coma plots use cone-like symbols ‘. to represent the

Ifs1 field dependent vector function values with the tip of the cone pointing in the vector

direction, while the Zernike spherical plots use a circle symbols to represent the If‘,0 field

dependent vector function values. Other symbols are used in the FFDs associated with

other types of Zernike aberration terms of the wavefront aberration function expansion.
As can be seen in the Zernike coma plot, there is a center nodal point (zero value)

at (0, 0) and a set of field points forming a ring of zeros. In the terminology of NAT, this

ring of zeros is not considered to be “nodal points”. It is simply a ring of zeros. This ring
of zeros in the field dependence of the Zernike coma term Z;(/B) results from the

associated field function (shown here through 6™ order)
. 1 2 -y1 (1 -1
= :(§W131+5W151]{H} +(§W331M HZJ{H} , (5.38)

having a field linear part and a field cubic part. Where the two contributing parts cancel

defines the ring of zeros.

5.3 An Example of Nodal Point Splits and Nodal Locations

When an optical surface in a rotationally symmetric optical imaging system is perturbed
(decentered and/or tilted) the center node point in a FFD may split into multiple nodes.
Thompson [5, 54, 61] originally developed analytic equations for the resulting nodal
point locations using the Shack vector expansion of the wavefront aberration function,

see Eq. (4.9), through 4™ order using a complex number formalism for SVP. Later, in a
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series of papers [62, 63, 64], Thompson extended this to include through 6™ order

aberration terms. For illustrative purposes only, the binodal split of the Zernike
astigmatism term for 4™ order is presented here using the Zernike expansion of the
wavefront aberration function and the GA definition for SVP as developed in this
research.

Continuing with the telescope model of the previous section, the primary mirror

of the model is decenter in the +y-axis direction by 3 mm and the Zernike astigmatism

FFD is again generated. The single nodal point in the Zernike astigmatism FFD,

originally located at the center H =(0,0) of the plot is now seen to split into two nodal

points.
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Figure 5.9 Example of a nodal point split of Zernike astigmatism. Left: Rotationally
symmetric optical imaging system. Right: Primary mirror decentered by y = +3mm.

)
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This behavior can be calculated by considering the Zernike astigmatism vector
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aberrations, the field dependence of Zj([;) for the rotationally symmetric model (see

Eq. (4.49)) can be approximated to be

# Surfaces
& Types 1

-2
F22 A EWZZZ;j {H }77 ' (5.39)
j

For the rotationally nonsymmetric case, this vector function becomes, by NAT

recentering of the field parameter

# Surfaces
& Types l

— ~ . (Tvoe)) 2
Fr= D > 222”.{H—G§Typ>}77 : (5.40)
J

Setting this equal to the zero vector, and recalling the algebraic properties of SVP, the

equation for the nodal points can be written as

# Surfaces

L ik g = (Type) — (Type) | ? 0 5.41
Zj: EWZZZ;J.[{H}U—ZH x, G\ +{5 }J:o. (5.41)
Distributing the summation gives
f; S_l_urfaces Z‘ S_l_urfaces
ypes 1 ) ypes 1 . R .
. EWZZZ;J.{H}ﬁ . Ewm;j(—ZH *, G )+
] J
Zs_rurfaces
ypes 1 P -
= (Type) | © _
2. Wy 1o, =0, (5.42)

And this can be written as
() +B. H+So0, (5.43)
7 A A

where
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# Surfaces

& Types 1
A= EWZZZ;j . a scalar, (5.44)
i
# Surfaces
. & Types
B= > -W,, 5  avector, (5.45)
i
# Surfaces
Cf—myzp?s Lw {*(Type)}z a vector (5.46)
= ~ 2 222,i 19 - : :

Using Eq. (2.96), the vector form of the quadratic equation using SVP, the two nodal

point locations Hﬁlv2 are given by

~ N2 ~ 12
H,, 1B IBL el (5.47)
’ 2 A 2|A A
g n
As Thompson has shown, far more complicated nodal patterns and equations for

the node locations can emerge when higher order aberration terms are considered [62,63].
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Chapter 6 Application of the Theoretical Development

This chapter provides several examples of the application of the material developed in the
previous Chapters to idealized optical imaging system models as a means for validating
the mathematical development. These examples will consist of mirror based telescope
systems. Not all models used as examples will be realizable as actual telescopes. The
goal here is to qualitatively and quantitatively check the mathematical development
previously presented rather than the performance evaluation of any particular telescope
system.

The primary method for qualitatively checking the mathematical development is
the visual comparison of the full field displays (FFDs) calculated using the vector field
function of terms from the wavefront aberration function’s expansions. Two different
expansions, and thus two different processes, are used. These processes are graphically
presented in Figure 6.1.

A B

Rotationally Nonsymmietric
Optical Model

Rotationally Nonsymmetric
Optical Model

Rotationally Symmetric
Optical Model

Real Ray Trace
OPD Data

NAT Sigma Vectors

Real Ray Trace
OPD Data

GQ Method With GQ Method With W Sigma Vectors
Double Zernike Eq. Double Zernike Eq. klm .
o m Field Function Eq.
umEme 21x21 Field Points
ngn Nt
! — =
BT w, =F(U nn ) FFD
Dyl p
21x21 Field Points

FFD

Figure 6.1 Outline of the processes for generating FFDs for rotationally nonsymmetric
optical imaging systems. Process “A” uses the double Zernike expansion of the wavefront
aberration function. Process “B” uses the Wy, values, NAT sigma offset vectors, and the
field functions from the single Zernike expansion.
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The first expansion of the wavefront aberration function used is that of Eq. (4.53)

utilizing the double Zernike form, through 12" order in pupil and field, having the

U™ ™ as expansion coefficients. This expansion is valid for rotationally symmetric and

rotationally nonsymmetric optical models. The expansion coefficients are obtained from
using real ray trace data (OPD values for the rays traced) from CODE V® and the GQ
method described in Appendix Ill. With the expansion coefficients known, and using the

double Zernike expansion, the desired FFDs are produced. Typically the FFDs of the

vector field functions of the Zernike astigmatism Z? (), the Zernike coma Z;(5), and

the Zernike spherical Z(5) terms are used.

The second expansion of the wavefront aberration function used is the single
Zernike (in pupil parameters) expansion given by Eq. (4.51) valid for rotationally

symmetric optical imaging systems only. This expansion is in terms of the Wyn

expansion coefficients. For a rotationally symmetric optical imaging model, the U:;“'nmﬂ

v

expansion coefficients are the U> ~ expansion coefficients. The Wym expansion
e

coefficients are then obtainable by using Eq. (4.66) through Eq. (4.80) that are in terms of

the U as well as additional similar equations for higher order Wy, when needed.

The per surface, sphere/asphere, intrinsic/extrinsic Wy, values are then obtained as
detailed in Chapter 4. After obtaining the Wy, coefficients, the optical model is
perturbed (some of the optical elements are decentered and/or tilted) and the sigma offset

vectors of NAT are calculated. Using the vector field functions of the expansion, Eqg.
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(4.51), the Wy, coefficients, and the sigma offset vectors, the FFDs are again produced.

These FFDs are visually compared to the FFDs produced using the double Zernike
expansion for the same perturbed optical imaging model.

The quantitative check of the mathematical development is performed by

calculating the difference between the two FFD’s plot data generated as described above.

Plots of the differences for each FFD, as well as the numeric value of the mean, standard

deviation, and signed maximum difference of the FFD difference data, are provided.

6.1 Early Development, Early Results
During the early stages of the research described in this dissertation, the wavefront
aberration function expansion in terms of Zernike polynomials in the normalized pupil
parameters, p, for rotationally symmetric optical imaging systems was developed. This
resulted in the publication of the article [1] detailing the results obtained. The material
presented in that paper occurred before the development of the Zernike vector concept as
presented in Chapter 3 as well as many other concepts developed in Chapters 2 through 5.
This also occurred before the quantitative analysis of the FFD comparison was
developed. For this reason, only qualitative comparisons are presented in this section as
they are presented in the original article [1]. Quantitative analyses of FFD comparisons
are presented in section 2 of this Chapter for the optical models presented there.

At the time of the writing of article [1], the wavefront aberration function

expansion was written in the form
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W (H,p)=--+g(H*)H"cos(md)Z;" (p)+g(H?)H"sin(mo)Z,"(5)+- . (6.1)
where H is the magnitude of the normalized field parameter vector, @ is the angle that the

field vector makes with the +x-axis, p is the normalized pupil vector, and

g(k|2)=z_(;cq(H2)q , (6.2)

where Cq are expansion coefficients.

The qualitative check of the expansion, through 6™ order plus 8™ order spherical,
was performed by utilizing CODE V® version 10.4’s FFD capabilities and three optical
models. A modified version of the fifthdef.seq and FORDER.seq CODE V® macros
(modified and provided by Kevin Thompson) for the calculation of the per surface
wavefront aberration expansion coefficients Wim; through 6" order plus 8" order
spherical, but not including the separation of the extrinsic sphere and extrinsic asphere
coefficients, was utilized. The results are described in this section.

The first model presented in the paper [1] is that of a Baker telescope model. The

layout of the model is presented in Figure 6.2.

!

N | R
- /
>

Figure 6.2 Baker model layout. The arrows indicate the location of the aperture stop.
Originally published in [1].



The model has an entrance pupil diameter of 468.75 mm and a half-field of view
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(HFOV) of 1.0°. The surface parameters for the model are presented in Table 6.1.

Table 6.1 Surface definitions for the Baker telescope model. Table generated by CODE V®.

Surface # SIJ;:;:E S-J;j;:e Y Radius Thickness Glass Re;;z:t Serr_i—Ai::ert'.Jre
1 Sphere Infinity 6.4516 Refract 238.7800

Stop Sphere 4177.1900 18.6090 517645 _C Refract 234.3750 ¥
£ Sphere Infinity 392 .8648 Refract 334 _3385 O
4 Sphere -1515.0917 —-392.8648 Reflect 230.0712 ¥
5 Sphere 4594.9085 -25.5000 517645_C Refract 107.6064 ¥
8 Sphere -1378.9582 25.5018 517645 C Reflect 101.4760 ¥
7 Sphere 4594.3095 423.8800 Refract 99.9264 Y
8 Sphere 403.6685 13.8770 SSENE_S5C  Refract 71.4907 ©
9 Sphere -796.0580 3.4500 Refract 71.0183 ©
10 Sphere 175.2720 4.8250 LLFEHT_5 Refract 66.3261 ©
11 Sphere T3.9082 13.7850 WEKT_SCH Refract 59.7542 ©
1z Sphere 117.3800 178.1550 Refract 59.8231 ©
13 Sphere Infinity 69.9987 Refract 36.4116 ©
Image Sphere Infinity -0.0358 Refract 26.3121 O

The FFD comparison is presented in Figure 6.3. It shows that the equations
developed and presented in the paper [1] qualitatively reproduce the FFDs produced by
CODE V® (version 10.4) for this model.

Initially, the Zernike astigmatism FFD, the top row column (b) of Figure 6.3,
calculated by the equations, did not match the CODE V generated FFD shown in column
(a). As a result of this investigation it was found that CODE V® (version 10.4) divides
the azimuthal angular dependence of the field parameters of Zernike astigmatism by % in
order to present the results with respect to the image plane rather than with respect to the
exit pupil where the wavefront aberration function is defined. The other models to be
presented in this section of this Chapter similarly use the reduced angular value to match
CODE V® (v10.4). All other Chapters, and all other sections in this Chapter, restore the

factor of 2 for the azimuthal angle in the field dependence of the Zernike astigmatism

FFDs to be consistent with the definition of the wavefront aberration function.
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Figure 6.3 (a) The left plots are from CODE V (V10.4), while (b) the right plots are based on
analytic calculations using Eq. (12) of paper [1] (wavefront expanded through 6" order plus
8™ order spherical). Top row: Z5 + Z6 (Astigmatism). Middle row: Z7 + Z8 (Coma). Bottom

row: Z9 (Spherical). Originally published in [1].
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The second model presented in paper [1] is that of an imaging system based on

the James Webb telescope. The layout is presented in Figure 6.4.

Figure 6.4 Model based on the James Web telescope. Arrows indicate the location of the
aperture stop. Based on a Figure originally published in [1].

The entrance pupil is defined to have a diameter of 6603.5 mm and the HFOV is
defined to be 0.25°. The surface definitions are presented in Table 6.2. The conic
constant for the primary, secondary, and tertiary mirrors are —0.9967, —1.6598, and

—0.6595, respectively.

Table 6.2 Surface definitions for the James Webb-like model. Table generated by CODE V®.

Surface # SIJ;:;ZE SIJ;f;ZE Y Radius Thickness Glass RE;Z;:TL Serr.i—;;:erture
Chject Sphere Infinitcy Infinity Refract ]
1 Sphere Infinity T7294.,0420 Refract 3333.5765

Stop FRIMARY Conic -15879.7200 -7169.0420 Reflect 3301.7500 ©
2 SECCHNDAR Conic -1778.9130 7965.3130 Reflect 354.8738
4 TERTIARY Conic -3016.2270 -4861.5912 Reflect 468.5729 ©
Image Sphere 3017.5600 0.1170 Refract 570.6737 O

The FFDs generated by CODE V® and by the analytic equations presented in [1]
are reproduced in Figure 6.5. Because the Zernike astigmatism FFD obtained by using
the through 6™ order wavefront aberration function expansion did not reproduce the full

field plot generated by CODE V® (version 10.4), it was hypothesized that the Zernike
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astigmatism for this model had a significant amount of higher than 6™ order astigmatism
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Figure 6.5 Qualitative comparison of CODE V (version 10.4) FFDs to the FFDs produced by the equations
presented in [1] for the wavefront aberration function expansion through 6™ order plus 8" order spherical (a)
The left plots are CODE V generated FFDs (field range + 0.25°), while (b) the center displays are based on
analytic calculations using Eq. (12) of paper [1] (wavefront aberration function expanded through 6™ order)
with a field range + 0.25°. The right display (c) shows the result for an equation for Zernike astigmatism
expanded through 8™ order (Eq. (16) of paper [1]) and a least squares fit to CODE V data providing a far better
qualitative match to the CODE V® results. Top row: Z5 + Z6 (Astigmatism). Middle row: Z7 + Z8 (Coma).
Bottom row: Z9 (Spherical). Originally published in [1].
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To test this hypothesis, and because at the time of this part of the research higher

than 6" order Wy values were not available, a Matlab® function was written to perform
a least squares fit to some of the Zernike astigmatism data used by CODE V® to generate

the CODE V® Zernike astigmatism FFD. The Zernike astigmatism (Fringe Zernike
Z,, Z,) terms of the wavefront aberration function was expanded through 8" order and,
for the field angle 8 =0 , they take the form
W=---+(W512H2+W514H4+W516H6)Zs(,5)+--- (6.3)
where w, ;. are the expansion coefficients to be determined by least squares fit to the

CODE V® full field data. These coefficients are related to the Wiy, coefficients, but do
not provide the Wym coefficients. They are undetermined sums of the Wy, coefficients.
“Undetermined” because it is not known exactly which orders contribute to their values.
With the coefficient values obtained from the least squares fit, the Zernike
astigmatism FFD of Figure 6.5(c) was generated. As can be seen, there is now a very
good match to the CODE V® generated Zernike astigmatism FFD validating the
assumption that higher order contributions contribute significantly to Zernike
astigmatism for this model and that the equations can reproduce the CODE V® results.
The third model presented in [1] is that of a 3-mirror proprietary telescope model.
Therefore, details of the model are not given. The HFOV for the model is 15°. The FFD
comparison between the CODE V® and analytic equations of [1] are presented in Figure

6.6.
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Figure 6.6 Qualitative comparison of CODE V® FFDs for a proprietary telescope model. (a) The left displays
are generated by CODE V® (version 10.4), while (b) the center displays are based on analytic calculations using
Eq. (12) of [1] (wavefront expanded through 6" order). The right plots (c) show the results for the wavefront
aberration function expanded through 8" order (Eq. (16) of [1]) and a least squares fit to CODE V’s display
data. Top row: Z5 + Z6 (Astigmatism). Middle row: Z7 + Z8 (Coma). Bottom row: Z9 (Spherical). The field
range is + 15°. Originally published in [1].

It is seen that the analytic equations for the expansion of the wavefront aberration
function through 6™ order do not reproduce the FFDs produced by CODE V®. The

wavefront aberration function was then expanded through 8™ order for Zernike coma
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(Fringe Z,, Z,) and spherical (Fringe Z,) as well as for astigmatism. For the case
0 =0° these terms then have the form
W o=t (o H 4w H g s HO) Z (5) + (W, H +wy HE +w, (H)Z, (5) +
+(Wo g +Wo ,H? +wy JH*) Zy (5)++- (6.4)
Using this expansion, a least squares fit, and the CODE V® data for the FFDs, as with

the previous model, the w, ; expansion coefficients were obtained. Using the obtained

values and the equations in [1] the FFDs shown in column “c” of Figure 6.6 were
obtained. These plots show good qualitative agreement with the CODE V® generated
FFDs.

The results indicated the need, for some optical models, to include the 8" order
wavefront aberration expansion coefficients. These are not available using the fifthdef
and FORDER CODE V® macros. Therefore, an alternative method for the calculation of
the wavefront aberration expansion coefficients, Wi, that would not be limited to
through 6™ order was sought. Additionally, it was discovered that the equations used in
the CODE V® macros for some of the 6™ order expansion coefficient calculations could
not be reproduced, and that no published detailed documentation of the derivation could
be located [67, 68]. (See Appendix V for an example of the issues found when
attempting one approach to derive the 6" order expansion coefficients.) Finally, it is not
clear what definition (what reference sphere location, what exit pupil (real or Gaussian)
location) is used for the Wim; coefficients calculated by the fifthdef.seq/FORDER.seq
CODE V® macros. The development of the GQ method for the calculation of the Wijm;;

expansion coefficients as described in this dissertation overcomes these limitations.
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In the remainder of this Chapter, the FFDs from CODE V® version 10.5 are used

as part of the qualitative comparisons of the FFDs. As pointed out previously, the CODE

V® version 10.4 Zernike astigmatism FFD has a factor of 2 difference in its azimuthal

angle parameter compared to the equations developed in this dissertation. CODE V®
version 10.5 restored this factor of 2.

The mathematical and other developments detailed in the previous Chapters, will

now be used in the remaining examples of this Chapter. The examples are used to

quantitatively and qualitatively check the mathematical development since the

publication of [1].

6.2 Two Mirror Telescope Model

The first example is a two mirror, rotationally symmetric telescope system. The layout of
the model is presented in Figure 6.7, generated by CODE V®, modified to include the
surface numbers and scale bar. The model started as a Ritchey-Chrétien telescope design
but the surface shapes were then modified. That is, the surface shapes have purposely not
been optimized for minimal optical aberrations so that the sphere and coma FFDs will
show non-negligible aberrations. The purpose here is not to design optical imaging
systems but to check the development detailed in previous Chapters and to illustrate the
information available to a designer by performing similar field analysis during the design

process.
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[ ]

56.82 MM

Figure 6.7 Two mirror telescope. Surface 1 is the aperture stop and entrance pupil. Surfaces
2 and 3 are the primary and secondary mirrors, respectively. Surface 4 is the image plane.

This model is defined to have an entrance pupil diameter of 150 mm, and uses a

wavelength of 632.8nm. The HFOV is 0.6 degrees. The primary mirror has a conic

constant of —1.1 and the secondary mirror has a conic constant of —2.5. Additional

surface and layout data are provided in Table 6.3 from CODE V®.

Table 6.3 Surface data for optical model.

Surface # 5;;:;:5 SJ;:;:e Y Radius Thickness Re;;;:t Serr.i—;;:ert,ure
Object Sphere Infinity Infinity Refract o
Stop Sphere Infinity 10.0000 iRefract 75.0000 ©
2 Conic -T742.8572 —-260.0000 Reflect 75.0650 ©
3 Conic —-290.2328 479.9995 Reflect 25.3524 0
Image Sphere Infinity 0.0000 Refract 16.9108 ©

As described in Chapter 5, and in the introductory comments to this Chapter, two
categories of FFDs are to be generated and used for comparison. The first category of
plots is that based on real ray tracing OPD data (obtained from CODE V®), a GQ
method and the double Zernike expansion of the aberration function through 12" order in

field and pupil parameters, Eq. (4.53). The results of applying the GQ method are the

U™ ™ expansion coefficients for the double Zernike expansion of the wavefront

Ny,

aberration function. These coefficients, together with the double Zernike expansion
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equation, are used to generate the data to be displayed in the first category of FFDs. The
second category of FFDs are generated by use of the H. H. Hopkins’ Wy, expansion
coefficients, the single Zernike expansion of the wavefront aberration function (usually
through 6™ or 8" order) and, if the optical system is not rotationally symmetric, the sigma
offset vectors. The FFDs from these two categories are displayed side by side so that a
visual qualitative comparison can be made. The goal is to determine if the single Zernike
expansion using the Hopkins’ Wy, expansion coefficients, commonly used by optical
designers, together with the sigma offset vectors for rotationally nonsymmetric optical
models, can reproduce the FFDs of the double Zernike expansion. The double Zernike
expansion is considered by the author to be a closer representation to the true field
dependence of the optical model and so it is used as the basis for the comparison.
Quantitatively checking the mathematical development is performed by calculating the
difference between these two categories of FFD plot data.

The Wium; expansion coefficients were calculated as described in Chapter 4 and

will be tabulated below. An estimate of the computational error in the U  coefficient

M,
values used to calculate the Wy values was performed. Absent from the literature is a
discussion of estimations of the error in the calculation of the Wyn expansion
coefficients. It was found that the method used in this research allows for the calculation

of an upper bound for the estimate of the computational error by the relation

u: ™ =y-mm=y"  The symbol “=” is to be read as “is defined to be.” This
H N, H N,

follows by considering both double Zernike expansions for the wavefront aberration

function; for the rotationally symmetric case, Eq. (4.52), and for the rotationally
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nonsymmetric case, Eq. (4.53). For example, for the rotationally nonsymmetric case, the

aberration function expansion will contain the terms Z;*(p) and Z;*(p) with field
functions shown here as,
W:---+(---+U;§'*125*1(I:|)+---)Zgl(ﬁ)+(---+U;§”1Z;1(H)+---)Z§1([))+---. (6.5)

However, when the optical system is rotationally symmetric, Eq. (6.5) will reduce to the

form, according to Eq. (4.52),
W =---+[---+U5f§*1zgl(|3|)+-~-,~-+U5j;flz5*1(ﬁ)+---}[z;1([)),Z;l(ﬁ)]+-~- (6.6)
W=---+(---+u;,3[zgl(ﬁ),z;l(ﬁ)]+---)-[z;1(,3),z;l(,a)]+--- L6
m/:.“+(“.+L@32;(g)+.“>2g(5)+.“. (6.8)
Eq. (6.7) is obtained because it is a requirement that U, ;" =U;5 ™ =U;, in order to form

the Zernike vector Z;(I-T) in Eg. (6.8). So, in general, for a rotationally symmetric

optical imaging system, an estimation of the computational error is given by the

difference
A=U, " -y e (6.9)
The following chart shows that the worst error A in any of the U™ ™ coefficient values

for this optical model is approximately 1.2x10'° waves.
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Figure 6.8 Estimated error values for the double Zernike expansion coefficients calculated as
the difference A=U_ ™ "™ -U ™"

Using this value for the error estimation of the double Zernike expansion
coefficients, the equations Eg. (4.66) through Eq. (4.80) for the Wy, expansion
coefficients, and the equations for error propagation, an estimate for the upper bound of

the computational error in the Wym values was calculated and is displayed in Figure 6.9

for the through 8™ order coefficients.
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The bar chart of Figure 6.9 shows that the 4™ order Wim values have an upper
bound error estimate of approximately +5x10° waves while most of the 6™ order

coefficients have an upper bound error estimate of approximately +10~" waves or less.
These error estimates provide some confidence that the Wy, values used in checking the
theoretical development (the resulting values calculated using the Wy values) will not be
undermined by their computational error values. From a practical point of view, recalling
that values of the Wiym coefficients less than about 1/100™ of a wave are negligible, it is

then confirmed that the values reported have calculation errors well below this criteria.

The through 6" order Wiam coefficients for the Zernike astigmatism term Z2 ( ,5)

are presented in Table 6.4 and Table 6.5, rounded to the 4™ decimal position. Although
not used in this research, the CODE V® fifthdef/FORDER calculated values are provided

for comparison.



Table 6.4 Through 6™ order intrinsic Wy, coefficients for the Zernike astigmatism term.
GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves.)
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Surface Intrinsic (GQ Intrinsic (FF)

Number | Wim | Sphere | Asphere | Total Sphere | Asphere | Total
2 Wag, 1.2772 —0.0003 1.2769 1.2770 | -0.0003 1.2767
2 Wy, | —0.0251 -0.0002 | -0.0253 | 0.0354 | -0.0028 0.0326
2 Wy, | —0.0002 0.0 -0.0002 | 0.0 0.0 0.0
3 W, | —1.0676 0.6206 | —0.4470 | -1.0676 0.6206 | —0.4470
3 Waq, 0.0587 —0.0034 0.0553 0.0046 | —0.0203 | —0.0157
3 Wy, | —0.0001 0.0 —0.0001 | —0.0004 0.0008 0.0004

Table 6.5 Through 6" order extrinsic W, coefficients for the Zernike astigmatism term.

GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves.)

Surface Extrinsic(GQ) Extrinsic(FF)
Number | Wy, | Sphere | Asphere Total Total

2 W,z 0.0 0.0 0.0 0.0

2 Wogo 0.0 0.0 0.0 0.0

2 W,z 0.0 0.0 0.0 0.0

3 W,z 0.0 0.0 0.0 0.0

3 W, |-0.0360 | 0.0019 —0.0341 —0.0184

3 W,z 0.0 0.0 0.0 0.0009

As seen in Table 6.4 and Table 6.5, there is a good match between the GQ Wgin

values and the CODE V® fiftndef/FORDER calculated values for the 4™ order

coefficients, but there are differences for the 6™ order coefficients. Attempts to reconcile

these differences were not performed.

Figure 6.10 provides the comparison of the Zernike astigmatism term’s FFDs.

Figure 6.10(a) is a FFD plot for the optical model generated by CODE V® version 10.5

and is included for visual comparison with the FFD plot Figure 6.10(b) generated by

using the double Zernike expansion and GQ method for determining the expansion

coefficients U,:"H“”nr:" . The FFD plot Figure 6.10(c) was generated using the single Zernike

expansion and the Wy, expansion coefficients. The difference between the two FFD’s
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data, (b) — (c), is also shown in Figure 6.10(d). The difference data’s magnitude values
have a maximum difference of 0.00002 waves, a mean of 0.000009 waves and a standard
deviation (STD) of 0.000005 waves. The difference data’s angle values have a maximum

difference of 26.8 degrees, a mean of 0.06 degrees and a STD of 1.28 degrees.
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Figure 6.10 Comparison of Zernike astigmatism FFDs. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 6" order and the W, expansion coefficients. (d) The difference between the
Zernike astigmatism FFD data generated by the double Zernike expansion and the single
Zernike expansion using the calculated W, values, (b) — (c).
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The through 6™ order Wiym expansion coefficients for the Zernike coma term

Z:(p) are presented in Table 6.6 and Table 6.7.

Table 6.6 Through 6™ order intrinsic W, coefficients for the Zernike coma term.
GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves.)

Surface Intrinsic(GQ) Intrinsic(FF)

Number | Wy, | Sphere | Asphere | Total Sphere | Asphere | Total
2 Wiy | 124815 | 0.1873 12.6688 | —12.4815 | —0.1873 | —12.6688
2 W5 | —0.0903 | —0.0427 —0.1330 | —0.2347 | 0.1448 —0.0899
2 Wazm | —0.0026 | -0.0 -0.0026 | —0.0019 | 0.0 -0.0019
3 W3 | —6.7483 | —5.0697 |-11.8180 | 6.7483 | 5.0697 11.818
3 Wy | 0.3409 | 0.1494 0.4903 | —0.1045 | —0.1523 —0.2568
3 Wasm | 0.0004 | —0.0030 -0.0026 | 0.0062 | 0.0008 0.0070

Table 6.7 Through 6™ order extrinsic Wy, coefficients for the Zernike coma term.
GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves.)

Surface Extrinsic(GQ) Extrinsic(FF)
Number | Wy, | Sphere | Asphere Total Total

2 Wiz 0.0 0.0 0.0 0.0

2 Wis, 0.0 0.0 0.0 0.0

2 Wazim 0.0 0.0 0.0 0.0

3 Wia 0.0 0.0 0.0 0.0

3 Wi | -0.25119 | —0.11103 0.36222 0.3702

3 Waay | 0.00019 0.00198 | -0.00217 | -0.0119

Of particular interest, note that the W3, value from the GQ method has the

opposite sign to the values calculated by fifthdef/FORDER. One possible explanation for

this has been offered at the end of Chapter 4. That is, fifthdef/FORDER may be defined

to use the normalized object angle field parameters rather than the normalized Cartesian

field parameters.

normalized field parameters.

There is a sign difference between these two ways of defining the
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Figure 6.11 Comparison of Zernike coma FFDs. (a) Generated by CODE V®. (b) Generated
from real ray tracing OPD data from CODE V®, double Zernike expansion through 12"
order, and the GQ method. (c) Generated by using the single Zernike expansion through 6™
order and the W, expansion coefficients. (d) The difference between the Zernike coma FFD
data generated by the double Zernike expansion and the single Zernike expansion using the

calculated Wy, values, (b) — (c).

Figure 6.11 provides the comparison of the Zernike coma term’s FFDs. Figure

6.11(a) is a FFD plot generated by CODE V® version 10.5. Figure 6.11(b) is generated
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by using the double Zernike expansion and the GQ method for determining the expansion

coefficients U::{“"nr:f’ . The FFD plot Figure 6.11(c) was generated using the single Zernike

expansion and the Wy, expansion coefficients. The difference between the two FFD’s
data, (b) — (c), is also shown in Figure 6.11(d). The difference data’s magnitude values
have a maximum difference of 0.00009 waves, a mean of 0.00005 waves and a STD of
0.00002 waves. The difference data’s angle values have a maximum difference of — 158
degrees, a mean of — 0.36 degrees and a STD of 7.5 degrees. The large maximum angle

difference occurs near the node where the data values are very small.
The through 6™ order Wim coefficients for the Zernike spherical term Zf (,5) are

presented in Table 6.8 and Table 6.9.

Table 6.8 Through 6" order intrinsic W,y coefficients for the Zernike spherical term.
GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves.)

Surface Intrinsic(GQ Intrinsic(FF)

Number | Wy, | Sphere | Asphere | Total | Sphere | Asphere | Total
2 Wos | 30.4932 | —33.5425 | —3.0493 | 30.4932 | —33.5425 | —3.0493
2 Woeo | —0.1470 | 0.1798 | 0.0328 | 0.4662 | —0.4958 | —0.0296
2 Woom | —0.0107 | 0.0018 | -0.0089 | 0.0030 | 0.0001 | 0.0031
3 Woy | —10.6642 | 10.3539 | —0.3103 | —10.6642 | 10.3539 | —0.3103
3 Wogo 0.5566 | —0.5406 | 0.0160 | 0.2377 | —0.2285 | 0.0092
3 Waom | 0.0053 | —0.0020 | 0.0033 | —0.0117 | —0.0089 | —0.0206

Table 6.9 Through 6" order extrinsic Wym coefficients for the Zernike spherical term.

GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves.)

Surface Extrinsic(GQ) Extrinsic(FF)
Number | Wy | Sphere Asphere Total Total

2 Wouo 0.0 0.0 0.0 0.0

2 Woso 0.0 0.0 0.0 0.0

2 Wouow | 0.0 0.0 0.0 0.0

3 Woso 0.0 0.0 0.0 0.0

3 Woso | —0.43422 0.42159 ~0.01263 0.0518

3 Wowom | —0.00181 0.00191 0.0001 0.0002
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Figure 6.12 Comparison of Zernike spherical FFDs. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12™ order, and the GQ method. (c) Generated by using the single Zernike expansion
through 6 order and the Wy, expansion coefficients. (d) The difference between the
Zernike spherical FFD data generated by the double Zernike expansion and the single
Zernike expansion using the calculated W, values, (b) — (c).

Figure 6.12 provides the comparison of the Zernike spherical term’s FFDs.

Figure 6.12(a) is a FFD plot generated by CODE V® version 10.5. Figure 6.12(b) is



140

generated by using the double Zernike expansion and the GQ method for determining the

expansion coefficients U:;“"nr:f’. The FFD plot Figure 6.12(c) was generated using the

single Zernike expansion and the Wy, expansion coefficients. The difference between
the two FFD’s data, (b) — (c), is also shown in Figure 6.12(d). The difference data’s
magnitude values have a maximum difference of 0.0002 waves, a mean of 0.00014 waves

and a STD of 0.00001 waves. The angular data is not reported because the y-component
of the Zernike vector Z{ () is zero by construction.

Figure 6.10 through Figure 6.12 and the quantitative data all show good
agreement between the double Zernike generated FFDs and the single Zernike generated
displays using the Wy, values provided in Table 6.4 through Table 6.9.

The optical model was perturbed to produce a rotationally nonsymmetric case.
Specifically, the primary mirror was decentered along the y-axis by +0.05 mm and the
secondary mirror was decentered along the x-axis by +2 mm. The sigma offset vectors

were calculated using Eq. (5.26) and Eq. (5.27) and their values are shown in Table 6.10.

Table 6.10 Normalized sigma offset vector values.

i S S A A
Mirror # o o, ol o,
1 0.0 0.006515 0.0 —0.477447
2 —0.350143 0.012968 —0.726156 0.012708

The FFDs for the Zernike astigmatism term comparison for this rotationally
nonsymmetric optical model are presented in Figure 6.13. Figure 6.13(a) is a FFD plot
generated by CODE V® version 10.5. Figure 6.13(b) is generated by using the double

Zernike expansion and the GQ method for determining the expansion coefficients
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u™™  The FFD plot Figure 6.13(c) was generated using the single Zernike expansion

and the Wy expansion coefficients. The difference between the two FFD’s data, (b) —
(c), is also shown in Figure 6.13(d). The difference data’s magnitude values have a
maximum difference of — 0.01 waves, a mean of — 0.001 waves and a STD of 0.0046
waves. The difference data’s angle values have a maximum difference of — 13.89
degrees, a mean of 0.008 degrees and a STD of 1.38 degrees.

As can be seen in Figure 6.13, the difference data shows a good agreement
between the two FFDs. The binodal split of the original single node of the rotationally
symmetric case, as discussed in Chapter 5, is clearly observed in Figure 6.13. Due to the
decenter of the secondary mirror along the x-axis, the nodes are also seen to be shifted
slightly to the right in the plots.

The FFDs for the Zernike coma term comparison for this rotationally
nonsymmetric optical model are presented in Figure 6.14. Figure 6.14(a) is a FFD plot
generated by CODE V® version 10.5. Figure 6.14(b) is generated by using the double

Zernike expansion and the GQ method for determining the expansion coefficients

u™™  The FFD plot Figure 6.14(c) was generated using the single Zernike expansion

and the Wy expansion coefficients. The difference between the two FFD’s data, (b) —
(c), is also shown in Figure 6.14(d). The difference data’s magnitude values have a
maximum difference of — 0.016 waves, a mean of 0.014 waves and a STD of 0.001
waves. The difference data’s angle values have a maximum difference of — 0.31 degrees,

a mean of — 0.22 degrees and a STD of 0.04 degrees.
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Figure 6.13 Comparison of Zernike astigmatism FFDs. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 6™ order the Wy expansion coefficients, and the sigma offset vectors. (d) The
difference between the Zernike astigmatism FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).
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Figure 6.14 Comparison of Zernike coma FFDs. (a) Generated by CODE V®. (b) Generated
from real ray tracing OPD data from CODE V®, double Zernike expansion through 12"
order, and the GQ method. (c) Generated by using the single Zernike expansion through 6™

order the Wy, expansion coefficients, and the sigma offset vectors.

(d) The difference

between the Zernike coma FFD data generated by the double Zernike expansion and the
single Zernike expansion using the calculated W,,, values, (b) — (c).

It is seen that the perturbations of the mirrors in this model produce a constant

coma field dependence.
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The FFDs for the Zernike spherical term comparison for this rotationally
nonsymmetric optical model are presented in Figure 6.15. Figure 6.15(a) is a FFD plot
generated by CODE V® version 10.5. Figure 6.15(b) is generated by using the double

Zernike expansion and the GQ method for determining the expansion coefficients

u™™  The FFD plot Figure 6.15(c) was generated using the single Zernike expansion

and the Wy expansion coefficients. The difference between the two FFD’s data, (b) —
(c), is also shown in Figure 6.15(d). The difference data’s magnitude values have a
maximum difference of 0.003 waves, a mean of 0.001 waves and a STD of 0.001 waves.
From the plots in Figure 6.15 it is seen that the perturbed optical model’s
spherical field dependence is also dominated by a constant spherical dependence across

the field.
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Figure 6.15 Comparison of Zernike spherical FFDs. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 6™ order the Wy expansion coefficients, and the sigma offset vectors. (d) The
difference between the Zernike spherical FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).
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Figure 6.13 through Figure 6.15 and the quantitative difference data show that
there is a good agreement between the double Zernike expansion of the wavefront
aberration function and the single Zernike expansion using the calculated Wy, values
through 6™ order, and the NAT sigma offset vectors of Table 6.10, for this perturbed
optical model case.

As another check of the mathematical development, the optical model was again
perturbed to include tilts. In this case, the primary mirror was decentered along the x-axis
by +0.1 mm, and along the y-axis by +0.1 mm, and tilted by alpha = +0.25 degrees and
beta = — 0.1 degrees. An alpha tilt is a rotation of the mirror about the x-axis. Looking
from the negative x-axis toward the positive x-axis, a positive alpha tilt is a counter
clockwise rotation. A beta tilt is a rotation about the y-axis. Looking from the negative
y-axis toward the positive y-axis, a positive beta tilt is a counter clockwise rotation. The
secondary mirror was decentered along the y-axis by — 0.2 mm, and tilted by an alpha
amount of — 0.15 degrees. The sigma offset vectors were calculated using Eqg. (5.26) and

Eqg. (5.27) and their values are shown in Table 6.11.

Table 6.11 Normalized sigma offset vector values.

i S S A A
Mirror # o o, ol o,

1 -0.155915 | —0.409326 -0.954895 —0.954895

2 -0.310435 | —0.913054 -0.304113 —0.725789

The FFDs for the Zernike astigmatism term comparison for this rotationally
nonsymmetric optical model are presented in Figure 6.16. Figure 6.16(a) is a FFD plot
generated by CODE V® version 10.5. Figure 6.16(b) is generated by using the double

Zernike expansion and the GQ method for determining the expansion coefficients
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u™™  The FFD plot Figure 6.16(c) was generated using the single Zernike expansion

and the Wy expansion coefficients. The difference between the two FFD’s data, (b) —
(c), is also shown in Figure 6.16(d). The difference data’s magnitude values have a
maximum difference of — 0.017 waves, a mean of 0.004 waves and a STD of 0.006
waves. The difference data’s angle values have a maximum difference of — 16.53
degrees, a mean of — 0.17 degrees and a STD of 2.13 degrees. The maximum angle
difference occurs near the lower nodal point where the data values are very small.

The FFDs for the Zernike coma term comparison for this rotationally
nonsymmetric optical model are presented in Figure 6.17. Figure 6.17(a) is a FFD plot
generated by CODE V® version 10.5. Figure 6.17(b) is generated by using the double

Zernike expansion and the GQ method for determining the expansion coefficients

u™™  The FFD plot Figure 6.17(c) was generated using the single Zernike expansion

and the Wy expansion coefficients. The difference between the two FFD’s data, (b) —
(c), is also shown in Figure 6.17(d). The difference data’s magnitude values have a
maximum difference of — 0.020 waves, a mean of — 0.018 waves and a STD of 0.001
waves. The difference data’s angle values have a maximum difference of 0.37 degrees, a

mean of 0.27 degrees and a STD of 0.06 degrees.
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Figure 6.16 Comparison of Zernike astigmatism FFDs.
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion

through 6™ order the Wy, expansion coefficients, and the sigma offset vectors.
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(a) Generated by CODE V®. (b)

(d) The

difference between the Zernike spherical FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).
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Figure 6.17 Comparison of Zernike coma FFDs. (a) Generated by CODE V®. (b) Generated
from real ray tracing OPD data from CODE V®, double Zernike expansion through 12
order, and the GQ method. (c) Generated by using the single Zernike expansion through 6™

order the Wy, expansion coefficients, and the sigma offset vectors.

(d) The difference

between the Zernike spherical FFD data generated by the double Zernike expansion and the
single Zernike expansion using the calculated W, values, (b) — (c).
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Figure 6.18 Comparison of Zernike spherical FFDs.
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(b)

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12 order, and the GQ method. (c) Generated by using the single Zernike expansion
through 6™ order the Wy, expansion coefficients, and the sigma offset vectors. (d) The
difference between the Zernike spherical FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).

The FFDs for the Zernike spherical term comparison for this rotationally

nonsymmetric optical model are presented in Figure 6.18. Figure 6.18(a) is a FFD plot

generated by CODE V® version 10.5. Figure 6.18(b) is generated by using the double
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Zernike expansion and the GQ method for determining the expansion coefficients

u™™  The FFD plot Figure 6.18(c) was generated using the single Zernike expansion

and the Wy expansion coefficients. The difference between the two FFD’s data, (b) —
(c), is also shown in Figure 6.18(d). The difference data’s magnitude values have a
maximum difference of 0.006 waves, a mean of 0.002 waves and a STD of 0.002 waves.
Figure 6.16 through Figure 6.18 and the quantitative difference data show that
there is a good agreement between the double Zernike expansion of the wavefront
aberration function and the single Zernike expansion using the calculated Wy, values
through 6" order, and the NAT sigma offset vectors in this perturbed optical model case.
Therefore, this initial example has produced some confidence in the development

presented in Chapters 2 through 5.

6.3 A Three Mirror Anastigmat Telescope

A three mirror anastigmat (TMA) telescope model was used to further test the
developments detailed in Chapters 2 through 5. The model is defined to have a HFOV of
0.1 degrees, and uses a wavelength of 632.8nm. The entrance pupil is defined to have a
diameter of 6603.5 mm. All three mirrors are defined to be conics. The primary,
secondary, and tertiary mirrors have conic constants —0.99666, -1.65981, and
—0.65954, respectively. Figure 6.19 from CODE V® (modified) provides an illustration

of the layout.
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Figure 6.19 TMA model. Surface 1 is the aperture stop and entrance pupil. Surface 2 is the
primary mirror. Surface 3 is the secondary mirror. Surface 4 is the tertiary mirror. Surface
5 is the image plane. All mirrors are conics.

Additional model data are provided in Table 6.12 generated by CODE V®.

Table 6.12 Additional surface and model definitions for the TMA.

. Surface Surface Refract ¥
Surface # Name Type Y Radius Thickness Mode S P
Cbhbject Sphere Infinity Infinity Refract O
Stop Sphere Infinity 2200.0000 Refract 3301.7500 ©
2 PRIMARY Conic -1.5880e+004 -7169.0420 Reflect 3304.0894 ©
3 SECCNDAR Conic -1778.9130 T965.3130 Reflect 335.6752 Y
4 TERTIARY Conic -3016.2270 -4861.5912 Reflect 25o,7528 Y
Image Sphere Infinity 0.0000 Refract 231.4716 O

The Wim;j expansion coefficients were calculated as described in Chapter 4. An

estimate of the computational error in the U;”H ””m" coefficient values used to calculate the

Ny

Wiam Values was performed. Figure 6.20 shows that the worst error is approximately

2.9x107° waves.
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Figure 6.20 Double Zernike expansion coefficient error estimate.

Using this value for the computational error estimation of the double Zernike
expansion coefficients, an estimate for the error in the calculated Wy, expansion

coefficients was made and these are summarized in the bar chart of Figure 6.21.

5
* 10

0.8

0.6

0.4

Error Estimation (VWaves)

0.2

0
Figure 6.21 Computational error estimation for the W, expansion coefficients.
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From this bar chart it can be seen that most of the Wi, values are good to about +3x10°°
waves. Although not as good as the previous model, it is still well below any threshold
for concern.

The Wim expansion coefficients associated with the Zernike astigmatism term

222(,5) are provided in Table 6.13 and Table 6.14 through 8" order, rounded to the 4"

decimal position.

As mentioned previously, the fifthdef/FORDER CODE V® macros do not
provide 8" order Wqnm expansion coefficients. Therefore, the GQ derived Wigm
coefficients for 8" order Zernike astigmatism are listed separately in Table 6.14.

Using these expansion coefficient values the FFD for Zernike astigmatism was
generated and is compared to the FFD generated by using the real ray trace OPD data, the
double Zernike expansion, and the GQ method. The FFD plots are shown in Figure 6.22.
Figure 6.22(a) is a FFD plot generated by CODE V® version 10.5. Figure 6.22(b) is

generated by using the double Zernike expansion and the GQ method for determining the

expansion coefficients U:;“”n”jp. The FFD plot Figure 6.22(c) was generated using the

single Zernike expansion and the Wy, expansion coefficients. The difference between

the two FFD’s data, (b) — (), is also shown in Figure 6.22(d).



Table 6.13 Wy, expansion coefficients for Zernike astigmatism through 6™ order.
GQ = values from Gaussian quadrature. FF = values from fifthdef/FORDER.

(Units = waves)

Wim | GQ/FF | Primary | Secondary | Tertiary
W GQ 2.4525 —6.6022 6.9863
FF 2.4525 —6.6023 6.9863
WA GQ | -0.0632 7.9483 ~10.6876
FF ~0.0632 7.9482 ~10.6876
Wt GQ 2.3896 1.3461 —3.7013
222 FF 2.3893 1.3459 -3.7013
WES GQ 0.0 0.0 0.0
WE GQ 0.0 0.0001 0.0
W,ET™ GQ 0.0 0.0001 0.0
WS GQ | -0.1423 0.9288 —0.0066
FF 0.2568 —0.2144 —0.0027
WA GQ 0.0149 —0.7030 0.0153
FF 0.0409 ~1.3301 0.0305
VLot GQ | -0.1274 0.2258 0.0093
242 FF 0.2977 —1.5445 0.0278
WES GQ 0.0 ~0.7031 0.0216
242
WEA GQ 0.0 0.5447 0.0481
242
WETet GQ 0.0 —0.1584 0.0697
242 FF 0.0 1.2530 ~0.0154
WS GQ 0.0 —0.0004 -0.0133
422 FF 0.0 —0.0001 0.0118
WA GQ 0.0 0.0005 0.0115
FF 0.0 0.0021 —0.0471
VLot GQ 0.0 0.0001 —0.0018
422 FF 0.0 0.0020 —0.0353
WES GQ 0.0 0.0 0.0022
WEA GQ 0.0 0.0 0.0069
\WETet GQ 0.0 0.0 —0.0048
422 FF 0.0 0.0003 0.0352
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Table 6.14 8™ order Wy expansion coefficients for Zernike astigmatism calculated by the

GQ method.

Wiim Primary | Secondary | Tertiary
W, —0.0003 -0.1931 0.0
W,A 0.0024 -0.1131 0.0003
W,.To 0.0021 -0.3062 0.0003
WS 0.0 0.2005 —0.0001
W2 0.0 0.1038 —0.0005
WET 0.0 0.3043 —0.0006
WS, 0.0 0.0001 0.0
WA, 0.0 —0.0006 0.0006
w,.Jo 0.0 —0.0005 0.0006
WE, 0.0 —0.0002 —0.0004
WEA, 0.0 0.0006 —0.0001
WET 0.0 0.0004 —0.0005
W, 0.0 0.0 0.0
WA 0.0 0.0 0.0
WL 0.0 0.0 0.0
WSS 0.0 0.0 —0.0001
WA 0.0 0.0 0.0001
0.0 0.0 0.0
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waves, a mean of — 0.00004 waves and a STD of 0.00002 waves. The difference data’s
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Figure 6.22 Comparison of Zernike astigmatism FFDs. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8" order and the W, expansion coefficients. (d) The difference between the
Zernike astigmatism FFD data generated by the double Zernike expansion and the single
Zernike expansion using the calculated W, values, (b) — (c).

The difference data’s magnitude values have a maximum difference of — 0.00007
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angle values have a maximum difference of 0.93 degrees, a mean of 0.002 degrees and a

STD of 0.04 degrees.
The Wim expansion coefficients associated with the Zernike coma term Z;( p)

are provided in Table 6.15 and Table 6.16 below, through 8™ order, rounded to the 4"

decimal position.

Table 6.15 Wy, expansion coefficients for Zernike coma through 6™ order. GQ = value
calculated by Gaussian quadrature. FF = fifthdef/FORDER value. (Units = waves)

Wim | GQ/FF | Primary Secondary | Tertiary
W, GQ 339.1506 | —182.9330 —3.5408
FF —339.1506 182.9350 3.5408
WA GQ 54.3607 | —197.7262 —9.3698
FF —54.3607 197.7269 9.3698
VLot GQ 3935113 | —380.6592 ~12.9106
131 FF —393.5113 380.6592 12.9106
W,E GQ 0.0 0.0020 0.0
W,EA GQ 0.0 0.0008 0.0
WET GQ 0.0 0.0028 0.0
WS GQ —4.9026 35.1951 0.0106
FF —26.1816 —9.6005 —0.0045
WA GQ —12.0678 31.1538 0.0176
FF 125177 —25.8990 —0.0256
VLTt GQ ~16.9704 66.3489 0.0282
151 FF ~13.6639 35.4995 —0.0301
\W\ES GQ 0.0 —25.5605 ~0.0064
151
VWV EA GQ 0.0 —23.8655 0.0194
151
VI E-Tot GQ 0.0 —49.4260 0.0130
151 FF 0.0 49.1674 0.0324
WS GQ —0.0013 —0.0061 0.0032
33IM FF —0.0003 0.0527 0.0253
WA GQ ~0.0001 —0.0408 —0.0080
FF 0.0 —0.0224 —0.0058
LTt GQ —0.0014 —0.0469 —0.0048
$IM FF —0.0003 0.0303 0.0195
\\/ES GQ 0.0 0.0037 —0.0123
331M
VWEA GQ 0.0 0.0088 0.0844
331M
WETet GQ 0.0 0.0125 0.0721
331M FF 0.0 —0.0792 —0.0059




Table 6.16 8" order Wy, expansion coefficients for Zernike coma. (Units = waves)

Wim Primary | Secondary | Tertiary
W,S -0.0621 —6.5288 0.0
WA 0.7929 -4.2792 0.0001
W, 0.7308 10.8080 0.0001
WS 0.0 6.2872 0.0001
e 0.0 3.7902 —0.0002
WET™ 0.0 10.0774 —0.0001
WS, 0.0 0.0019 0.0
WA, 0.0 0.0285 0.0009
WL 0.0 0.0304 0.0009
WE, 0.0 -0.0029 —0.0001
WEA 0.0 —0.0273 —0.0009
WET 0.0 —0.0302 —0.0010
WS, 0.0 0.0 0.0
WA, 0.0 0.0 0.0003
W5|31T'3|t 0.0 0.0 0.0003
WES 0.0 0.0 —0.0002
WEA 0.0 0.0 —0.0001
WET 0.0 0.0 —0.0003
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It is again seen that the Wy3; values from GQ have an opposite sign from those

values calculated by fifthdef/FORDER. (See Chapter 4 for a possible explanation.)

The FFD comparison for Zernike coma terms is provided in Figure 6.23. Figure

6.23(a) is a FFD plot generated by CODE V® version 10.5. Figure 6.23(b) is generated

by using the double Zernike expansion and the GQ method for determining the expansion
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my,m,

coefficients U . The FFD plot Figure 6.23(c) was generated using the single Zernike

Ny.n,
expansion and the Wy, expansion coefficients. The difference between the two FFD’s

data, (b) — (c), is also shown in Figure 6.23(d).
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Figure 6.23 Comparison of Zernike coma FFDs. (a) Generated by CODE V. (b) Generated from real
ray tracing OPD data from CODE V®, double Zernike expansion through 12" order, and the GQ
method. (c) Generated by using the single Zernike expansion through 8" order and Wy, expansion
coefficients. (d) The difference between the Zernike coma FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).
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Figure 6.24 Plot line tilts are artifacts of plotting function and not a result of the plot data.
(a) The difference plot appears to show large angular deviations (highlighted box). (b)
Zooming in on the highlighted boxed area shows these angular deviations are artifacts of the
plot and not an accurate portrayal of the angular difference data.

The difference data’s magnitude values have a maximum difference of 0.001
waves, a mean of 0.0007 waves and a STD of 0.0003 waves. The difference data’s angle
values have a maximum difference of — 96.8 degrees, a mean of — 0.2 degrees and a STD
of 4.6 degrees.

Figure 6.24 shows that the plot of the FFD data difference has lines that appear to
have significant amounts of tilt. By zooming in on one area of the plot that has tilted
lines (shown as a box in (a)), it is seen in (b) that the amount of tilt of the lines is much
less than suggested by the plot (a). These lines are tilted, but not to the extent suggested
by the plot (a).

As can be seen from Figure 6.23 and the quantitative data, there is good
agreement using the Wi, expansion coefficients compared with the plot generated by

using the double Zernike expansion through 12" order.
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Reviewing the Wy values of Table 6.15, it is seen that for the secondary mirror

W,E* =—0.002 waves. This, being a 4" order expansion coefficient, should have a zero

value. Although this and all other 4™ order extrinsic Wium coefficients are not included in
the equations used to generate the FFDs, it is still concerning. (Recall from Chapter 4, 4™
order extrinsic Wym values are calculated in this work only as a debugging aid and they
are not used in any of the wavefront aberration expansions programmed to generated the
FFD plots. See the discussion immediately after Eq. (4.91).) This may be an indication
of the size of the error in the other, higher order, extrinsic coefficient values.

The Wim expansion coefficients for the Zernike spherical term are presented in
Table 6.17 and Table 6.18, rounded to the 4™ decimal position.

The FFDs for the Zernike spherical term of the wavefront aberration function
expansion are presented in Figure 6.25. Figure 6.25(a) is a FFD plot generated by CODE

V® version 10.5. Figure 6.25(b) is generated by using the double Zernike expansion and
the GQ method for determining the expansion coefficients Un”;”y;f*’ . The FFD plot Figure
6.25(c) was generated using the single Zernike expansion and the Wy, expansion

coefficients. The difference between the two FFD’s data, (b) — (c), is also shown in

Figure 6.25(d).



Table 6.17 Wy, expansion coefficients for Zernike spherical through 6" order. GQ = values

from Gaussian quadrature. FF = values from fifthdef/FORDER. (Units = waves)

Wium | GQ/FF Primary Secondary | Tertiary
WS GQ 11725.2406 —1267.1479 0.4486
FF 11725.2406 —1267.1890 0.4486
WA GQ | —11686.0841 1229.6641 —2.0536
FF | —11686.0842 1229.7039 —2.0536
VLot GQ 39.1565 —37.4838 —1.6050
040 FF 39.1564 —37.4851 —1.6050
WE GQ 0.0 0.0412 0.0
WA GQ 0.0 0.0398 0.0
WET! GQ 0.0 0.0014 0.0
W GQ —112.9970 296.1752 —0.0019
FF 760.3538 128.1879 —0.0009
WA GQ 111.3086 —288.0319 0.0065
FF —758.6582 —123.3859 0.0050
Vet GQ ~1.6884 8.1433 0.0046
060 FF 1.6956 4.8020 0.0041
\WES GQ 0.0 —218.9996 0.0002
060
VW EA GQ 0.0 212.5216 —0.0011
060
W ETot GQ 0.0 —6.4781 0.0008
060 FF 0.0 —6.5161 —0.0051
WS GQ —0.0373 —0.8171 0.0075
240M FF 0.0042 —0.5117 0.0042
WA GQ 0.0388 —0.4058 0.0048
FF 0.0042 —0.4873 0.0124
VLot GQ 0.0015 —1.2229 0.0123
240M FF 0.0084 —0.9990 0.0166
\V/ES GQ 0.0 0.5726 0.0197
240M
W.EA GQ 0.0 0.5445 0.0488
240M
WET! GQ 0.0 1.1171 0.0685
FF 0.0 0.9618 —0.0278
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Table 6.18 8" order Wy expansion coefficients for Zernike spherical. (Units = waves)

Wim | Primary | Secondary | Tertiary
s | -1.0735 —57.3475 0.0
WOSO
1A 1.1462 55.8761 0.0
WOSO
ITot | 0.0727 -1.4714 0.0
VVOBOO
ES 0.0 52.6173 0.0
W080
EA 0.0 —51.2179 0.0
WOBO
ETot | 0.0 1.3994 0.0
W080
IS -0. .0792 .
W,s, | ~0.0006 0.079 0.0
WA -0.0023 -0.1157 0.0003
260M
WLt [ —0.0029 —0.0365 0.0003
260M
ES ) —0. —0.0001
WE, | 00 0.0679 0.000
EA 0.0 0.1076 —0.0005
WZGOM
E.Tot 0.0 0.0397 —0.0006
WZGOI\?I
IS 0.0 0.0 0.0
W44OM
1A —
WA, | 00 0.0005 0.0005
I.Tot 0.0 —0.0005 0.0005
W440ﬁll
ES 0.0 0.0 —0.0001
W44OM
EA ) .0004 —0.
WEA, | 00 0.000 0.0003
WET | 0.0 0.0004 —0.0004
440M
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Figure 6.25 Comparison of Zernike spherical FFDs.
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The difference data’s magnitude values have a maximum difference of 0.00002

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion

through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8™ order and Wy, expansion coefficients. (d) The difference between the Zernike

spherical FFD data generated by the double Zernike expansion and the single Zernike

expansion using the calculated Wy, values, (b) — (c).
waves, a mean of — 0.000007 waves and a STD of 0.000004 waves.
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These FFDs and difference plot of Figure 6.25 and the difference data show a
good match between the double Zernike full field display and the FFDs calculated using

the Wiym expansion coefficients.
As can be seen from Table 6.17, for the secondary mirror, W, =—0.0412 waves.

Being a 4™ order expansion coefficient its value should be zero. This is another
indication that the calculation of the extrinsic values for this optical model may require
further investigation.

It is not clear what the cause of these non-zero extrinsic Wim values for the 4™
order coefficients is. Since the estimated errors in the calculated Wy, values is at most
+107° waves, and the extrinsic values are calculated (see Chapter 4) by subtraction
involving at most 4 Wy, values, the error due to error propagation in the calculation is
only +2x10°°. It is therefore suggested that the large error estimate of the extrinsic
values compared to the intrinsic Wy, error estimates may be due to small mismatches in
setting up the necessary optical subsystems (individual surfaces as independent optical
models) as outlined in Chapter 4 for the calculation of the per surface, intrinsic and
extrinsic Wym coefficients.

For a first rotationally nonsymmetric test case using this TMA model, the tertiary
mirror was decentered along the x-axis by +5 mm, and along the y-axis by the amount
+1.0 mm and tilted by alpha = +0.0025 degrees, beta = +0.001 degrees. (Only the 3"
mirror was decentered and tilted at this point to provide a less complicated perturbed
optical system for debugging purposes. A more complicated set of perturbations will be

presented in the next example.) Because the decenters and tilts only concern the last
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mirror, only the tertiary mirror will have non-zero sigma vector values. These are shown

in Table 6.19.
Table 6.19 Sigma values for mirror #3.
Mirror # Sphere Sigma Asphere Sigma
X Y X Y
3 —0.055631 —0.009561 | —0.036147 —0.007229

Using these sigma offset vector values, and the Wy, values listed in Table 6.13
through Table 6.18 above, the Zernike astigmatism FFD was generated and compared to
the FFD generated from the double Zernike expansion and the GQ method, as shown in
Figure 6.26. Figure 6.26(a) is a FFD plot generated by CODE V® version 10.5. Figure

6.26(b) is generated by using the double Zernike expansion and the GQ method for

determining the expansion coefficients U,:"H“’Hr:". The FFD plot Figure 6.26(c) was

generated using the single Zernike expansion and the Wym expansion coefficients. The
difference between the two FFD’s data, (b) — (C), is also shown in Figure 6.26(d). The
difference data’s magnitude values have a maximum difference of —0.001 waves, a
mean of — 0.00006 waves and a STD of 0.0009 waves. The difference data’s angle
values have a maximum difference of 163.43 degrees, a mean of — 1.25 degrees and a

STD of 9.46 degrees.
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Figure 6.26 Comparison of Zernike astigmatism FFD data. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8™ order, the Wy expansion coefficients and the sigma vectors of Table 6.19. (d)
The difference between the Zernike astigmatism FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).

The comparison of the Zernike coma FFD data is shown in Figure 6.27. Figure
6.27(a) is a FFD plot generated by CODE V® version 10.5. Figure 6.27(b) is generated

by using the double Zernike expansion and the GQ method for determining the expansion
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coefficients U::{“"nr:f’ . The FFD plot Figure 6.27(c) was generated using the single Zernike

expansion and the Wy, expansion coefficients. The difference between the two FFD’s
data, (b) — (c), is also shown in Figure 6.27(d). The difference data’s magnitude values
have a maximum difference of 0.007 waves, a mean of 0.002 waves and a STD of 0.001
waves. The difference data’s angle values have a maximum difference of — 0.80 degrees,
a mean of — 0.01 degrees and a STD of 0.21 degrees.

The comparison of the Zernike spherical FFD data is shown in Figure 6.28.
Figure 6.28(a) is a FFD plot generated by CODE V® version 10.5. Figure 6.28(b) is

generated by using the double Zernike expansion and the GQ method for determining the

expansion coefficients U* ™. The FFD plot Figure 6.28(c) was generated using the

single Zernike expansion and the Wy, expansion coefficients. The difference between
the two FFD’s data, (b) — (), is also shown in Figure 6.28(d). The difference data’s
magnitude values have a maximum difference of 0.001 waves, a mean of — 0.0003 waves
and a STD of 0.0006 waves.

Although this may be considered a simple case, it was instrumental in debugging
both the mathematical development presented in the previous Chapters and the computer

programs used to implement the mathematical development.
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Figure 6.27 Comparison of Zernike coma FFD data. (a) Generated by CODE V®.
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(b)

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8™ order, the Wy expansion coefficients and the sigma vectors of Table 6.19. (d)
The difference between the Zernike coma FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).



Object Space Normalized Cartesian Y Value

-1.00+

1.00}

degrees

Y Field Angle in Object

Object Space Y Field Angle {degrees)

0.1000

© s esso0e000 68 e o .
+ « s e 2 0000000GD0O0CGO0C ¢ » - -
~ « » o 00 0000DO0CO0OO0D0O0O0 e ¢ = « =«
- 88 0000000000000 9 0 « - -
- 200000000000 00000 8 » -

0.0800 © 000000000000 0C00O0D0 0 = »
© 000000000000 C0O000 D0 o =
©000000000000OQC0D0OQ0 0008 ¢
0090000000000 OC0O00CCECDO P =
0000000000 QQO0C0O0O0ODO OO

0.0000 0009000000000 QOCO00O0COD 0
0000000000000 Q00C0C0O OO DS
0 0000000000000 00COCODD O o
0000000000000 C0QC000 0=
©c000000000000C0OC0BGO0O0 G =

0.0800 2000000000000 00C0CO0O0©
“ 200000000000 0006 00 o =
+ +2DD0D0O00CO0OODO0OO0ODO0OT a0 «

o000 0DOCODOCOOD0O0GO0 0 ¢ .
= ¢ 2 0000000O0CUO0O0OC S ’

%.3000L.. = - & s = & © 0 0 0 0 0 & = & -

0.05waves
ST ~o.0%0 0.0000 o050 o.1000
X Field Angle in Object Space - degrees
(@)
0AF = o e WEIeISeE B ¥ B 0 5 e
¢4 66 CCOCCOCOCer s s s
+r £ c0000C00000CO &+ ¢ « =«
20 000C000VO000D0SG 20« - - -
¢c00000CQ00COCO0OCCECOTSY» - -
005 ¢cccOo0O0CO000000CCE «+ -
0000000000000 00002 e »
00000CO0CQO0000C 000« -
090000Q0CO0Q0C0Q0000Cc ¢ « -
00000000000 C00C00c e -
0f 9000000000000C00CC ¢ « «
0000000000000 C00000 ¢ -~
00000000000CO0CCO0OCTE r -
00000000000C00000Qc ¢ « «
0000000000000V 0000 @ ¢ -
005F cccc0O00000CQCO0OCCETE ¢ »
ccCc00000000000C00C e + »
€ccCcCCCO0000000CCE » »
t4¢6C¢C000CO0CO0CO00OC e« - - v
©#40000000000000 0 s » CH
01+ rreveecteiec s - °
: , , 0.05 Waves _
0.1 -0.05 0 0.05 0.1
Object Space X Field Angle (degrees)
" " L s '
1.00 0.50 -0.00 -0.50 -1.00

Object Space Normalized Cartesian X Value

©

Object Space Normalized Cartesian Y Value

Object Space Normalized Cartesian Y Value

-1.00+

-0.50

-0.00

0.50

1.00}

-1.00+

-0.50

-0.00

1.00

Object Space Y Fiéld Angle (degrees)

Object Space Y Fiéld Angle (degrees)

01 PRSI W ST S T R N N N O NE MR R
o 0 0 PO OB OCLCOOPO I P
¢ s 8¢ CCO00CO0O00CO0C € ~ » «
* e P 00000000000 COOCTP® ¢ -

s reC0O000CO0CO000CE + » +

0.05 1c0000C00000000C004 « ¢
9000000000000 00000 20 -
t0000000000000C0O0C T «
2¢c¢ 0000000000000 C0OOQ «
e0000000CO00O0C000CC e »

0 ¢c¢cc0000000CO0C00OCOO0 0 »
20C00000090C0OC0O0CO0 0 s
©0000000CO00C0O0C000CEECE «
#»00600000C00000000C O« «
©00000000000000000CC 0 -

005f «¢c000CCO00000000COO0 GO ««
1+t £0CCO000CO0000C00OCDOLES S -
re00CO0CCO0O0OCOCOCCO TS+ ~
*t s ECCCO000O0COO0C £ s o
* e 2000000006086 00 ¢

-0.1 o R RRTOTBIBIS. B, 6 W e W
. ] . 0.05 Waves
0.1 -0.05 0 0.05 0.1

Object Space X Field Angle (degrees)
1.00 0.50 -0.00 -0.50 -1.00
Object Space Normalized Cartesian X Value
01f =-==-- - -
0.05f =======--- cem-

Ok resrsisinans Bosiews e

0.05F - o s =

01 = iyl el g iy e A
A 2 5 0.01 Waves
0.1 -0.05 0 0.05 0.1

Object Space X Field Angle (degrees)

1.00 0.50 -0.00 -0.50 -1.00
Object Space Normalized Cartesian X Value

@

Figure 6.28 Comparison of Zernike spherical FFD data. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8™ order, the Wy, expansion coefficients and the sigma vectors of Table 6.19. (d)
The difference between the Zernike spherical FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated W, values, (b) — (c).
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The next case to be used to check the theoretical development decenters and tilts
all the surfaces of the optical model. The primary mirror was decentered along the x-axis
by — 0.5 mm, along the y-axis by + 0.01 mm, and tilted by alpha = — 0.001 degrees. The
secondary mirror was decentered along the x-axis by + 0.005 mm, and tilted by beta =
— 0.001 degrees. The tertiary mirror was decentered along the y-axis by 1.0 mm, and
tilted by alpha = — 0.001 degrees. The resulting sigma offset vectors are shown in Table

6.20.

Table 6.20 The sigma offset vectors.

Mirror # Sphere Sigma Asphere Sigma
X Y X Y

1 —0.020942 0.012027 0.130218 | —0.002604

2 —0.035522 0.021389 | —0.035425 0.020122

3 —0.034464 0.009120 | —0.034431 0.013513

The FFD comparisons for this perturbed model are now presented. Using the
sigma offset vector values in Table 6.20, and the Wy, values listed in Table 6.13 through
Table 6.18, the Zernike astigmatism FFD was generated and compared to the FFD
generated from the double Zernike expansion and the GQ method, shown in Figure 6.29.
Figure 6.29(a) is a FFD plot generated by CODE V® version 10.5. Figure 6.29(b) is

generated by using the double Zernike expansion and the GQ method for determining the

expansion coefficients U:HH,ET”- The FFD plot Figure 6.29(c) was generated using the

single Zernike expansion and the Wy, expansion coefficients. The difference between
the two FFD’s data, (b) — (c), is also shown in Figure 6.29(d). The difference data’s

magnitude values have a maximum difference of 0.003 waves, a mean of 0.001 waves
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and a STD of 0.0005 waves. The difference data’s angle values have a maximum

difference of — 2.6 degrees, a mean of — 0.54 degrees and a STD of 0.83 degrees.
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Figure 6.29 Comparison of Zernike astigmatism FFD data. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8™ order, the Wy, expansion coefficients and the sigma vectors of Table 6.20. (d)
The difference between the Zernike astigmatism FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).
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(b)

Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12™ order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8™ order, the Wy, expansion coefficients and the sigma vectors of Table 6.20. (d)
The difference between the Zernike coma FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).
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The Zernike coma FFDs are presented in Figure 6.30. Figure 6.30(a) is a FFD
plot generated by CODE V® version 10.5. Figure 6.30(b) is generated by using the

double Zernike expansion and the GQ method for determining the expansion coefficients

u™™  The FFD plot Figure 6.30(c) was generated using the single Zernike expansion

and the Wy expansion coefficients. The difference between the two FFD’s data, (b) —
(c), is also shown in Figure 6.30(d). The difference data’s magnitude values have a
maximum difference of 0.5344 waves, a mean of 0.5335 waves and a STD of 0.0005
waves. The difference data’s angle values have a maximum difference of 1.61 degrees, a
mean of 1.59 degrees and a STD of 0.01 degrees.

The Zernike spherical FFDs are presented in Figure 6.31. Figure 6.31(a) isa FFD
plot generated by CODE V® version 10.5. Figure 6.31(b) is generated by using the

double Zernike expansion and the GQ method for determining the expansion coefficients

u™™  The FFD plot Figure 6.31(c) was generated using the single Zernike expansion

and the Wy expansion coefficients. The difference between the two FFD’s data, (b) —
(c), is also shown in Figure 6.31(d). The difference data’s magnitude values have a
maximum difference of 0.001 waves, a mean of — 0.0003 waves and a STD of 0.001
waves.

All these comparisons of the TMA’s FFDs and quantitative data show reasonably
good agreement in all cases. Further investigation and refinement to the implementation
may be needed to better understand the non-zero 4™ order extrinsic expansion coefficient

values for the secondary mirror of this model.
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Figure 6.31 Comparison of Zernike spherical FFD data. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12™ order, and the GQ method. (c) Generated by using the single Zernike expansion

(©)

The difference between the Zernike spherical FFD data generated by the double Zernike

through 8™ order, the Wy, expansion coefficients and the sigma vectors of Table 6.20. (d)
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).
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6.4 TMA With Coma Free Pivot
This example investigates a TMA optical imaging model having a coma free pivot of the
secondary mirror. A coma free pivot is a decenter and tilt that keeps the coma of the total
imaging system very small. The TMA of the previous section is used and so its
unperturbed data (the Wim expansion coefficients and FFDs for the unperturbed system)
will not be repeated here.
The secondary mirror is decentered along the y-axis by +0.59255 mm and tilted by
alpha = +0.041666 degrees. The sigma offset vectors for this configuration are calculated

to be as shown in Table 6.21.

Table 6.21 Sigma offset vectors for coma free pivot model.

Mirror # Sphere Sigma Asphere Sigma
X Y X Y
1 0.0 0.0 0.0 0.0
2 0.0 0.046339 0.0 —0.045987
3 0.0 0.042951 0.0 0.045389

The FFD comparisons for this model are now presented. Using the sigma offset
vector values of Table 6.21, and the Wy, values listed in Table 6.13 through Table 6.18
of the previous section, the Zernike astigmatism FFD was generated and compared to the
FFD generated from the double Zernike expansion and the GQ method. The FFDs are
presented in Figure 6.32. Figure 6.32(a) is a FFD plot generated by CODE V® version

10.5. Figure 6.32(b) was generated by using the double Zernike expansion and the GQ

method for determining the expansion coefficients U.*" . The FFD plot Figure 6.32(c)

was generated using the single Zernike expansion and the Wy, expansion coefficients.

The difference between the two FFD’s data, (b) — (c), is also shown in Figure 6.32(d).
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The difference data’s magnitude values have a maximum difference of 0.08 waves, a
mean of 0.04 waves and a STD of 0.02 waves. The difference data’s angle values have a

maximum difference of — 0.1 degrees, a mean of — 0.000002 degrees and a STD of 0.06

degrees.
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Figure 6.32 Comparison of Zernike astigmatism FFD data. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8™ order, the Wy, expansion coefficients and the sigma vectors of Table 6.21. (d)
The difference between the Zernike astigmatism FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated Wy, values, (b) — (c).
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The Zernike coma and Zernike spherical FFDs were generated and compared to

the FFDs generated from the double Zernike expansion and the GQ method. These FFD

comparisons are presented in Figure 6.33 and Figure 6.34,
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Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8™ order, the Wy, expansion coefficients and the sigma vectors of Table 6.21.
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Figure 6.34 Comparison of Zernike spherical FFD data. (a) Generated by CODE V®. (b)
Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8™ order, the Wi expansion coefficients and the sigma vectors of Table 6.21.

Clearly there is not an agreement between the double Zernike and single Zernike
calculated Zernike coma and Zernike spherical FFDs. Since all the preceding examples

gave reasonable agreements to the FFDs, including the Zernike astigmatism of this
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example shown in Figure 6.32, it is unlikely that these mismatches are due to incorrect
sigma offset vector values. As pointed out earlier, it was observed that the 4™ order
extrinsic Wy, values for the secondary mirror were not zero, as they should be. See
Table 6.15 and Table 6.17. This may be an indication that some of the greater than 4™
order extrinsic Wym values are sufficiently different from their correct values and are the
cause of the FFD mismatch issue.

A series of least squares fits were performed using the Zernike coma data of the
FFD shown in Figure 6.33(b) with the single Zernike expansion’s Zernike coma field
function through 8" order, Eq. (4.49), the Wiam;j values of Table 6.15 and Table 6.16, and
the sigma offset values of Table 6.21, in order to determine what changes to the Wyjm;
values would correct this FFD mismatch issue. Explicitly, the Zernike coma field

function programmed for the least squares fit is given by
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where the sum over j is a sum over each of the 3 mirrors of the optical system. Different
combinations of the Wim; expansion coefficients in Eq. (6.10) were selected to be
determined by the least squares fit, keeping the original values for all other Wigm;

coefficients as listed in Table 6.15 and Table 6.16. In this way, it was discovered that
only two Wiim; coefficient values, W,2; and W,c7', needed to be changed to produce a FFD

plot similar to Figure 6.33(b). The two new values, together with their original values,

are presented in Table 6.22.

Table 6.22 New asphere Wy, values for secondary mirror obtained by least squares fit (LSF)
of FFD data of Figure 6.33(a) and the field function through 8" order. (Units = waves.)

i 1A 1A EA EA
error # WlSl W151 W151 WlSl
(Original) (LSF) (Original) (LSF)

2 31.1538 12.77773 —23.8655 —5.49191

The FFD comparison using the two new Wy, values listed in Table 6.22, and all of the

other values listed in Table 6.15 and Table 6.16, is shown in Figure 6.35.
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Figure 6.35 Zernike coma FFD comparison using new Wy, values. (a) Generated from real
ray tracing OPD data from CODE V®, double Zernike expansion through 12" order, and the
GQ method. (b) Generated by using the single Zernike expansion through 8™ order, the new
Wiam expansion coefficients and the sigma vectors of Table 6.21.
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For the Zernike spherical term, a similar least squares fit process was used to
search for the minimum number of Wym; values that needed to be changed, and their
values, that would result in a FFD similar to Figure 6.34(b). It was found that changing
the following Wiym;j values in Table 6.17 to the values shown in Table 6.23 produced a

similar FFD to that of Figure 6.34(b).

Table 6.23 New asphere W, values for secondary mirror obtained by least squares fit (LSF)
of FFD data of Figure 6.34(a) and the field function through 8" order. (Units = waves.)

Mirror# | Wogs Woeo Woso Wogo
(Original) (LSF) (Original) (LSF)

2 —288.0319 — 37.7553 212.5216 — 37.7553
WZTO M W2I4A(\) M WZEQM WZEQM
(Original) (LSF) (Original) (LSF)

2 —0.4058 0.1440 0.5445 —0.0053

Table 6.18, is shown in Figure 6.36.

The FFD comparison using these Wym values, and the other values in Table 6.17 and
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Figure 6.36 Zernike spherical FFD comparison. (a) Generated from real ray tracing OPD
data from CODE V®, double Zernike expansion through 12" order, and the GQ method. (b)
Generated by using the single Zernike expansion through 8™ order, the new Wiy expansion
coefficients and the sigma vectors of Table 6.21.

It should be pointed out that the Wim; values reported in Table 6.22 and Table
6.23 should not be taken literally. Consider one part of the wavefront expansion’s field
function used in the least squares fit of Zernike coma (the sum over j and sigma vectors

are omitted to keep the equation simple),

= 1 2 2 1 2 1 1
Fom =[S0t Bt Bt o Dot + 2wt Joe it )+
W+ WS || SWE, +WE, [HE WL H () e D)
5 5 3 5 3
By replacing W,?; and W, by variables C, and C,, to be determined by the least

squares fit, the equation becomes
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coma

For = (o oDt vty 2o, Jr Bt vy

2 1 2 1
[(Cz + ngEfJ + (gwsgfrw + EWSE/:M J H?+ §W5§?M H 4} { H }l B , (6.12)

effectively, as far as the fit is concerned, resulting in the equation

IE.coma = (Cll + (%W;I?lM + %W?:I;:LM j H ? + %WSI;iM H 4J{H }l +

(e + 2w, e e ) (629

Therefore, from performing this least squares fit, it cannot be determined if W3}, W3,

W, are also incorrect or if some combination of these are incorrect. Nor can it be

determined by how much these coefficients are incorrect. Similarly for the Zernike
spherical Wy values listed in Table 6.23. Therefore, the values listed in Table 6.22 and
Table 6.23 cannot be said to be the true values of the Wy, coefficients listed.

One question to be asked is: Why didn’t this issue manifest with the other TMA
models shown previously? The answer may be that the other models were dominated by
4™ order coma and spherical aberrations while this model, due to the coma free pivot
perturbation, reduces (or eliminates) the 4™ order coma and spherical aberration
contributions to very small values, resulting in 6™ order coma and spherical values being
on a par with or greater than 4™ order. Thus the issue is seen in this coma free pivot
model but not in the preceding models.

The other question to be asked is: What is the cause of the incorrect Wym values

for the secondary mirror? It is hypothesized that this is most likely due to a mismatch in
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the subsystem and per surface optical models created out of the original optical model
that are necessary for the calculation of the per surface, per sphere/asphere,
intrinsic/extrinsic Wym values as described in Chapter 4. This mismatch may be due to
the way that the OPD values used in the GQ method are calculated for the subsystems
and per surface models needed for the calculation of the Wim; expansion coefficient
values. Recall that the OPD values are calculated based on the placement of the image
space reference sphere. CODE V® uses the real ray trace of the chief ray intersection
with the real ray traced OAR for the location of the exit pupil rather than using the
idealized, static, Gaussian exit pupil location. Then, when an aspheric surface is changed
from an aspheric shape to a sphere shaped surface, the real chief ray will intersect the
OAR ray at a different position. Thus the reference sphere is different for the two surface
shapes (asphere and sphere). Additionally, the intersection of the real ray traced chief ray
with the image plane will be different. Thus the center of the reference sphere will also
be different for the asphere and sphere cases. Because of these differences in the
reference sphere for the asphere and sphere cases, the resulting Wy, values will not be
referenced to the same reference sphere and it may therefore not be appropriate to
subtract the asphere and sphere Wym values. It is therefore suggested that the Wy, issue
may be resolved by defining the OPD calculations (and thus defining the wavefront
aberration function) to be based on reference spheres defined by the Gaussian exit pupil
location and the Gaussian location of the chief rays’ intersection points in the Gaussian

image plane. In this way, the reference spheres are not altered when going from an
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aspheric shape to a sphere shape. The Wy, values will then be well defined and will

have a common basis for their subtraction.

6.5 A Three Mirror Anastigmat Telescope with Decentered Aperture Stop
This example investigates an optical imaging model having a decentered aperture stop as
the entrance pupil. The model is based on that presented by Forbes and Menke [69]. The
purpose of this example is to determine whether the mathematical formulation presented
in Chapter 5 is suitable for application to decentered aperture optical imaging models, or
if some other component or parameterization needs to be added.

Figure 6.37 from CODE V® (modified) presents the layout of the optical model

used.

Figure 6.37 Layout of optical imaging model having a decentered aperture stop as entrance
pupil.
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The model is defined to have a HFOV of 1 degree. The wavelength used with the

model is 500 nm. The entrance pupil has a diameter of 100 mm and is decentered from
the MCA along the positive y-axis by +70 mm. All three mirrors are conics. The
primary, secondary and tertiary mirrors have conic constants —0.792, —6.1 , and —0.135,
respectively. The other parameters for the optical model are presented in Table 6.24
generated by CODE V®. Surface #1 is a dummy surface (having no optical power) used

to define the global coordinate system of the model.

Table 6.24 Layout parameters for the optical imaging model.

.| Surface Surface Refract ¥ Hon-Centered

SR Hame Type ¥ Radius Thiclkness Mode Semi-Aperture Data
Cbject Sphere Infinity Infinity Refract o

1 Sphere Infinity 0.0000 Refract 120.0000 ©

Stop Sphere Infinity 140.0000 Refract 50.0000 Y Decenter & Return
3 Conic -300.0000 -135.0000 Reflect 122.0069 ©

4 Conic -82.5000 150.0000 Reflect 14,7131 9

3 Conic —-130.0000 -133.7791 Reflect 77.4170

Image Sphere Infinity 0.0000 Refract 4.3745 ©

For the rotationally symmetric case (the aperture stop is not decentered) the Wiim
expansion coefficients were calculated. The resulting values are presented in Table 6.25
for the Zernike astigmatism term of the wavefront aberration function expansion through

8" order, rounded to the 5™ decimal position.



Table 6.25 Per surface expansion coefficients. IS = intrinsic sphere, 1A = intrinsic asphere,
ES = extrinsic sphere, EA = extrinsic asphere. GQ = values from Gaussian quadrature. FF =

values from fifthdef/FORDER. (Units = waves.)

Wum | GQ/FF | Primary Secondary Tertiary
WS GQ 1.44441 —0.64760 9.88228
FF 1.4444 —0.6476 9.8823
WA GQ ~0.87585 3.67412 ~13.22655
FF ~0.8759 3.6741 ~13.2265
VLot GQ 0.56825 3.02652 —3.34427
222 FF 0.5686 3.0265 —3.3443
WES GQ 0.0 0.0 0.0
WEA GQ 0.0 0.0 0.00002
W,ET! GQ 0.0 0.0 0.00002
WS GQ ~0.01837 0.02611 ~0.33636
FF 0.0324 ~0.1058 ~0.1010
WA GQ 0.18643 —0.39656 1.24415
FF 0.0896 —0.2750 0.4604
VLot GQ 0.16806 —0.37045 —0.90779
242 FF 0.1220 —0.3807 0.3594
W.ES GQ 0.0 ~0.05981 0.04781
242
\WEA GQ 0.0 0.18864 -1.01611
242
VW ETot GQ 0.0 0.12883 —0.96830
242 FF 0.0 0.7861 -1.0185
W GQ —0.00044 —0.00344 —0.20483
422 FF —0.0004 0.0160 0.0025
WA GQ 0.00064 0.00520 0.26627
422 FF 0.0004 -0.0103 -0.0415
VLot GQ 0.00019 0.00175 0.06144
422 FF 0.0 0.0057 ~0.0390
\WES GQ 0.0 ~0.00178 0.10669
422
VW EA GQ 0.0 —0.00242 —0.17188
422
\/ E-Tot GQ 0.0 —0.00420 —0.06520
422 FF 0.0 —0.0027 0.0356
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Table 6.26

Per surface expansion coefficients. IS = intrinsic sphere, IA = intrinsic asphere,
ES = extrinsic sphere, EA = extrinsic asphere. (Units = waves.)
Wiim Primary Secondary Tertiary
WZIGSZ 0.00059 —0.00064 0.01086
WzleAz —0.00752 0.04553 0.00589
Wzlégot —0.00693 0.04489 0.01675
Wziég 0.0 0.02038 —0.03829
Wzlezs/; 0.0 —0.04128 —0.00699
Wzlé.zTot 0.0 —0.02090 —0.04528
W4|232 —0.00044 —0.00344 —0.20483
W4'2A2 0.00064 0.00520 0.26627
WAIZ.;ot 0.00020 0.00176 0.06144
W‘ég 0.0 —0.00178 0.10669
W4§§ 0.0 —0.00242 —0.17188
WAI;.ZTot 0.0 —0.00420 —0.06519
W4I452M —0.00001 0.00005 0.02884
W4|fz|v| —0.00022 —0.00442 —0.03278
W4'4'§i’,f —0.00023 —0.00437 —0.00394
W4E§M 0.0 0.00082 —0.03858
W4E§M 0.0 0.01016 0.03321
W4I‘51.2T’\L;|t 0.0 0.01098 —0.00537
WGIZSZ 0.0 0.00001 0.00291
Welez 0.0 —0.00020 —0.00328
W6I2 .2Tot 0.0 —0.00019 —0.00037
Wﬁgg 0.0 0.0 —0.00244
WGS/; 0.0 0.00005 0.00336
0.0 0.00005 0.00092

190



191

The following graph shows the estimate of computational error for the Ur::“,’n";ﬂ

expansion coefficients is at most +9x10™" waves.
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Figure 6.38 Upper bound error estimate of the double Zernike expansion coefficients.

Using this value, the estimate of error for the Wym expansion coefficients was
calculated and is presented in the bar chart of Figure 6.39.
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Figure 6.39 Estimate of errors in the Wy, expansion coefficient values.
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With some exceptions the through 8" order Wim coefficients have an estimated
computational error of approximately +10~" waves or less.

Note that the value of W, a 4™ order extrinsic expansion coefficient, is not

exactly zero, as it theoretically should be. (As mentioned in Chapter 4, all 4™ order
extrinsic Wy, values should be identically zero.) This suggests that the accuracy of the
calculated extrinsic Wy values may not be better than 10~ waves.

With the aperture decentered, the sigma offset vectors were calculated. Since the
decentering is along the positive y-axis, all the x components of the sigma vectors will be

zero and are therefore not listed.

Table 6.27 Normalized sigma offset vectors’ y components.

Mirror oS o’
# y y
1 —26.8322 28.6450
2 —11.8987 2.6975
3 0.2823 —3.2057

It is concerning that most of the normalized sigma offset vectors’ y-components
are greater than one in absolute value. It may be that the convergence of the aberration
function expansion significantly changes when the sigma offset vectors have magnitudes
greater than one. Or, due to the limited accuracy of the Wym expansion coefficients, the

resulting numeric value of the field terms may be significantly different from their true
values. For example, for the Zernike astigmatism term, 222(/3), the field dependent

factors are all of the form

'EZWkleZS{H}Z ’ (6.14)

n
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where s is a positive integer or zero. The magnitude of the term goes as 2s+2. For the
through 8" order expansion being used, s is at most 2 and so the maximum power of H is

6. When following the NAT prescription for introducing the sigma offset vectors,
H—-H -0,
— . . S — . )2
F=W,,((H-6,}{H-5,)) {H-5,] . (6.15)
Expanding the resulting equation, a term of the form Wklzoj25 {51.}?] will appear. Fors =

2, the sigma vector magnitude will then also have a power of 6. Using o, =28, from

Table 6.27 of sigma values, the sigma factor will have an order of magnitude of
0=(28)" ~10° . (6.16)

If the Wim values are accurate out to the 7" decimal position, then the resulting

contribution to the overall field dependence may be off by tens of waves. A similar result

is obtained when using the estimate of error for the extrinsic Wym values (10 waves)
and mirror #2’s sigma y-component value (—12). For such cases, when the sigma offset
vector components are large, the practical rule of thumb that 1/100™ waves is sufficient

for Wym values is not valid. Even if the rounded to 51 order Wim Vvalues in Table 6.25

are used with the o, =28 value, the resulting error is of the order of 10° waves. That is,
thousands of waves in error.
A comparison of the Zernike astigmatism 222(/3) FFDs shows a significant

mismatch.
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Figure 6.40 Comparison of Zernike astigmatism 222 (,5) FFDs. (a) Generated by CODE V®.

(b) Generated from real ray tracing OPD data from CODE V®, double Zernike expansion
through 12" order, and the GQ method. (c) Generated by using the single Zernike expansion
through 8™ order, Wi expansion coefficients, and sigma offset vectors.

Whether the mismatch is due to a convergence issue and/or an accuracy issue, or

some other factor, is not clear. Note that the Wy values actually used in creating the

FFDs were calculated to the 8" decimal position.
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A modification to the mathematical framework of Chapter 5 such that two
additional sigma offset vectors are defined was investigated. There would then be a total
of four sigma offset vectors, one for each type of Wy, expansion coefficient (intrinsic
sphere, intrinsic asphere, extrinsic sphere, and extrinsic asphere). A Matlab® function
was written, utilizing the built-in nonlinear least squares fit function provided with
Matlab®, to obtain values for the new per surface extrinsic sphere and extrinsic asphere
sigma offset vectors. The input to the fit was the FFD data that produced the FFD shown
in Figure 6.40(b), the original Wym values (not the rounded values of Table 6.25), the two
known sigma offset values of Table 6.27 used as the intrinsic sphere and intrinsic asphere

sigma vectors, and the single Zernike wavefront aberration function expansion through
8" order for the Zernike astigmatism term, 222( p) . A parameter to the fit program

specified the interval within which to search for the 6 new y-component extrinsic sigma
values (3 surfaces x 2 new sigma vectors = 6 component values to find). The fit was run
many times, varying the search interval from 1 to +300, in various increments ranging
from 0.1 to 10 depending on the interval specified. No values were found that
significantly improved the FFD comparison shown in Figure 6.40.

Another attempt was made using the nonlinear least squares fit program, but this
time without using any of the known sigma values. That is, the program was modified to
find all 12 y-components of the sigma vectors (3 surfaces x 4 different sigma types = 12).
In this case, values for the sigma vectors that produced better matches to the FFD shown
in Figure 6.40(b), were obtained. However, the resulting sigma values were not unique.

That is, varying the fit interval parameters resulted in greatly differing sigma values while
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still producing better FFD matches than that shown in Figure 6.40. Because unique
(stable) values could not be determined the resulting sigma values where considered to be
unreliable, and so they could not be used to relate the new values obtained to the optical
model in any meaningful way. Further investigation concerning the introduction of new
sigma vectors was then abandoned.

An alternative approach that has had some success in addressing the issue of
optical systems with a decentered pupil has been published in the literature [70, 71]. In
their approach, a new decentered pupil vector is introduced into the pupil parameters of
the wavefront aberration function expansion rather than attempting to adjust the field

parameters. Further details can be found in the papers cited.
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Chapter 7 Extending NAT For Freeform Optical Elements

An approach for the development of mathematical expressions for the field dependence
associated with freeform optical elements, a result of this research, using the techniques
of NAT is proposed in this Chapter. Examples will be shown that utilize the derived
expressions and qualitative and quantitative comparisons of the FFDs are made. Early
results sufficient to suggest that this approach may be useful are provided leaving a more
detailed and exhaustive analysis for future research.

In this work, a freeform optical element will mean a circular optical element that
has a rotationally nonsymmetric smooth surface shape beyond the anamorphic shape.
Since the Zernike polynomials are complete over a unit radius disk, the mathematical

description of such a surface can be represented by a sum of Zernike polynomials.

7.1 NAT and Freeform Optical Surfaces

An asphere is defined by the sag equation

2

cp
1+ 1-(1+x)c?p”

z + AP + AP (7.0)

Asphere =

1. . .
where c = = is the curvature of the surface, r being the radius of curvature for the surface
r

at the surface’s vertex point, « is the conic constant, o> =x’+y*, and A,, A, etc. are

constant coefficients.
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In NAT, the contribution to the field dependence of a term in the expansion of the

wavefront aberration function due to an aspheric surface is separated into the contribution

due to a base sphere shape of the optical element plus the field dependence due to the

remaining aspheric cap terms. The sag of a spherical surface (x =0) is given by

. (7.2)

ZS ere
"1 i-c?p?

Using Eq. (7.2) in Eqg. (7.1), the base sphere shape of the asphere can be separated from

the aspheric terms as follows,

2 2 2
cp + cp - cp +AP H AP+ (7.3)
1+y1-c?p" 1+ \[1-(L+x)c*p?  1+1-C?p?

ZAsphere =

Using the expansion

cp’ c ) N1 on-1 2n
1 , 7.4
1+ 1-(1+x)c?p” Z (2n- 1( )(4")(K+) o 79

the second and third terms of Eq. (7.3) can be written as

2

Co S ) 1 n—lczn—1 2n
1+ 1-(1+x)c?p” 1+\/1 c?p? nzﬂl(Zn 1)( )(4“)(K )

_ < ) 2n-1 _2n
nz 2n- 1) )(4”)C 7 (7.5)

Matching like terms on the right hand side gives

Cp2 i (2n) - _1)C2n—1p2n_ (7.6)

1+ 1-(1+x)c?p” 1+1/1 c?p?  wz(2n-1)(n! )(4”)((K+1)

The asphere sag equation can then be written as
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_ N )I P n-1 g2t H2n 7.7
ZAsphere_l \/1 Cp +nZ:; n— 1 )(4n)(( +l) 1) P +A4,0 +A%p ( )

This can be written as

C p n=2

_ < ) P n-1 2n-1 2n
ZAsphere - 1+ 1— +z 2n 1)( ) (4n)(( +1) 1)0 + AZn ' (78)

and as

sz S ! 2n
Z sphere = + Aan 1 (7'9)
e =2’ 22:

where

(2n)!
(2n-1)(n1)* (4"

Since Eq. (7.9) has no azimuthal angle dependence it can also be written as

A, = )((K+1)“ —1)c2“-l +A, . (7.10)

z

prere = ===+ D C5.25. (P! Prrex)) (7.11)
o 1+«[1 2 p? Z; ’ )

where CJ are the Zernike polynomial expansion coefficients, and p, ., is the maximum

radial extent of the surface. Note that because only the m = 0 Zernike polynomials are
used in Eq. (7.11), there is no azimuthal angle dependence.
For a freeform optical element, the remaining Zernike polynomials, those having

an azimuthal angle dependence, are added to either Eq. (7.9) or to Eq. (7.11). That is

z = + + Clz'(pl , 7.12
freeform 1+\/]T ZAzp ;m%z /0 pmax) ( )

m=0

or



200

sz " 0 50 IR mom(~
Z reerorm = + C nZ n / max + Cn Zn / max 1 (7'13)
1 ime?p? 2,CnZan (01 ) 72, 2. (P )

m=m+2
m=0

where the summation over m is such that —n<m<n, m=0, and m changes in
increments of +2.

To aid in the description of the method to be presented in the remainder of this

section, and for explicit illustration purposes, the field function for the Zj([y) term in

the wavefront aberration function expansion Eq. (4.49) will be used, through 6™ order.
(The “through 6™ order” restriction is too restrictive for some calculations, as will be
pointed out below.) The field function is then written, for some fixed but arbitrary
optical element in the optical imaging system (suppressing the surface number “j”

subscript), as

= 1 3 1 2
= :((EWHZ +§W24ZJ+EW4ZZH 2]{H }n . (7.14)
After relabeling the expansion coefficients and distributing the Shack vector product, this

can be written as

= :vl{ﬁ}i HVH2(H (7.15)

n
If the surface is an asphere, then, according to NAT, the field function is given in two
parts, one for the base sphere shape contribution and one for the aspheric cap shape

contribution,

F? :[vf{ﬁ}i +V25H2{I:I}j+[vf{ﬁ}i +v2AH2{H”}j . (7.16)
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Continuing in a similar way to separate out different surface shape contributions

to the field function, an assumption is made that the field contribution due to any number

of rotationally symmetric terms added to the base sphere shape can be separated into their

individual term’s field contributions. See Figure 7.1 where terms of the form A, p?,
Ap*, and Ap° are added to the base sphere. Any rotationally symmetric term of the

form p" where n is a real number, n>2 could be added to the base sphere.

6

Azpz Aﬁp A4p4

Sphere base

Figure 7.1 Separation of the surface shape into a sphere base shape plus individual
rotationally symmetric terms. The additional terms will contribute different amounts to the
wavefront aberration function for the surface considered. The A, A, A are the shape

coefficients used to defined the additional term shapes. (/0 =X+ yz)

Each separate additional term will contribute a different amount to the overall surface’s
field function, and each term having its own expansion coefficient. Assuming that the
surface has been defined with n additional terms, there are then n rotationally symmetric

term contributions to the field function. The field function is then written as
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n

FE= e A svin ()
2

[VZZZ(l) {H },27 +Vig)H {H} }+"'+|:V222(n) {H}j +VizamH’ {H}j , (7.17)

n
where the n Voxa’s and N Vapp’s are new expansion coefficients. The subscript

notation for the expansion coefficients V,, ., is such that k is the total power of the field

parameter H, | is the total power of the pupil parameter p for which, in this example, F}

is its field function, m is the power of SVP in field and pupil parameter and i is a
sequential numbering of the rotationally symmetric additional terms being added to the
sphere base shape. Note that there may be multiple copies of terms having the same p
dependence. For example, the additional terms may include two separate surface shape
contributions, 2p* —p*, or even 2p* —2p*. In the latter case, there is no net surface
shape change, but each term is still to be considered as a separate surface added to the
base sphere and contributing equal but opposite amounts to the field function.

It is known from NAT that if an aspheric cap is decentered, the resulting field
function is obtained by introducing a ¢ offset vector, defined in the total system’s object
plane, into the field dependence of the vector field function. The decenter vector of the
aspheric cap at surface j is denoted by the £ symbol. The & offset vector is obtained by
normalizing and projecting the = decenter vector to the local image plane of surface j
and then potentially adjusting the sign to account for the possible orientation difference
between the system’s object plane and the local image plane. This potential sign
adjustment moves the offset vector to the total system’s object plane. See Chapter 5 for

details.
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It is now assumed that the individual additional surface shape terms being added

to the sphere base shape may be separately and independently decentered radially away
from the MCA (the z-axis) in a similar way that an aspheric cap is decentered in NAT.
That is, the vertex of each of the additional terms may be decentered away from the

MCA, remaining in the xy-plane, by different amounts and in different directions given

by I, decenter vectors in the surface’s vertex plane. Note that the case that one or more

of the additional terms are not decentered is allowed by setting the corresponding ii

decenter vectors to be zero vectors. This is illustrated in Figure 7.2.

2 6
4 Pn-;m; p Ap

Vertex Point
________ Y 4
Parallel to A4,0. o
Z - axis — i ceesmE=
¥,
Vertex Point
| -~ z
Parallel to EE ES - (0’ 0)
- axis
————————— —q
Vertex Point

Figure 7.2 Some, not all, of the additional surface shape terms, considered as individual
surface contributions, are decentered in the xy-plane. The amount of and direction of the

decentering is specified by the Zi offset vectors, which is the zero vector for the additional
surface shape terms that are not decentered.

Letting o, represent the normalized offset vector in the total system’s object plane for

additional surface shape term i, the field function can then be written as



204

n

|:V222(n) {l:' ~Op }727 Vi) (|:| — O )'(H — O ){H —5An}2} . (7.18)

|:V222(1) {|:| —5A1}j Vi (H —5A1)o(|:| —5A1){H —5'A1}2}+...+

n
Eq. (7.18) describes the field dependent contribution of a surface having multiple
additional surface shape terms, some of which may be individually decentered from the
MCA, some of which may not be decentered, but for which as a whole the optical
element is not decentered from the MCA.

As a specific example, consider a sphere shaped surface defined with an

additional Z;°(p) “cap”, where p=(x,y) is the normalized radial vector from the z-

axis to the surface. The 23*3( ,5) cap may represent the effect of a 3 point mechanical

mounting system’s deformation of an optical element’s surface shape as described in
[72]. Using the x-axis as the axis of reference, and from Table IV.5 in Appendix IV, this
Zernike polynomial can be written as a sum of decentered rotationally symmetric surface

shape terms as follows.
Zf(F):%(P%—LO)—P3(1,0)+P3(%,§J—P3(;,;\2/§J+P{%,§J—P3(%1,§D , (7.19)

where, as discussed in Appendix IV,

P" (5%, 5y)z[(x—5x)2+(y—5y)z}n , (7.20)

is the equation for the decentered shape terms. There are then 6 decentered terms to

define the Zernike polynomial Z,°(/). Note that because this decomposition of the
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Zernike polynomial decenters each term radially out to the perimeter of the Zernike

polynomial’s unit radius disk, that is, because ox*+0Jy® =1, then =(5x,5y) are

norm
normalized decenter vectors at the optical surface. The position of each of the 6

decentered terms that defines this Zernike polynomial is illustrated in Figure 7.3.

Y Vertex position of
decentered additional
shape term

Zernike's unit radius disk

X

Figure 7.3 Position of 6 decentered additional shape terms around the unit radius Zernike
disk to define Z;°(p) .

To calculate the decentered additional shape terms’ normalized sigma vectors to be used
in the wavefront aberration function’s expansion field functions, the sign of the chief ray
height at the surface with respect to the sign of the chief ray height at the system’s object
plane needs to be taken into consideration. Then, as with NAT’s sigma offset vectors

described in Chapter 5,

&Ai;j =sgn ( HCYT(gtbj )Sgn(HCYjsurf )inorm
=sgn(HCY, )sgn(HCY* )(5x,8Y) » (7.21)

where subscript “i”” identifies which decentered additional term, subscript “jJ” identifies

the surface, HCY Y is the chief ray height at the total system’s object plane (which may

be infinite) and HCY™" is the chief ray height at surface j.
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Further noticing that the decentered additional surface shape terms occur in

diametrically opposite positions around the perimeter of the unit radius disk, there are

then only 3 &,; offset vectors up to sign. All the o, offset vectors are known from Eq.

(7.19) and Eq. (7.21). Not only are the positions of the decentered additional term pairs
positioned diametrically opposite from one another, they have opposing sag shapes due to
the alternating “+” and “—" signs in front of the terms in Eq. (7.19). Since the shapes are
otherwise the same, for the specific example of Eq. (7.19), their contributions to the field

dependence is assumed to be the same up to sign. The field function then becomes

|f;=[vf{ﬁ} +VSH {H};}

_V222(1) {H GAl} +V422(1) (H _6A1).(H _6A1){H _5A1}2 } +

‘_szz(l) {|:| +6A1}127 Vi (I:I +G ) (I:I +&Al) H +5A1},j+
( }

e
V222(3){H O-AS} +V422(3)<H4_5-A3).(4_&A3) |:|_6A3}2j|+
7ia)

i } (122
L n
where, for this specific example, from Eq. (7.19),
Gy =sgn(HCY;2! )sgn (HCY;* )(~1,0) , (7.23)
_ 13
=sgn(HCY Y Jsgn(HCY > )| =, — |, 7.24
Op2 =59 ( Tot ) 9 ( j ){2 5 } (7.24)
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G r3 =590 (HCY 5 )sgn (HCY " )L%_—;ﬂ : (7.25)

In this, Eq. (7.22), form, there are 6 unknown expansion coefficients, V)
through Va2u3) and Vazory through Vago3). A least squares fit to FFD data obtained by real
ray tracing has been performed to obtain these 6 coefficients for the example being
described. Prior to performing the fit, and for this specific case of Eq. (7.19) defining the
6 additional decentered surface shape terms, it was hypothesized that all the V)
coefficients should be the same and all the Va2, coefficients should be the same. This
again is based on the idea that each of the 6 decentered surface shape terms are the same
shape and should therefore contribute the same amount to the field dependence, up to
sign. The resulting 6 values obtained from the least squares fit for the coefficients

confirmed this hypothesis. (Explicit results will be shown in the next section.)
Therefore, the field dependent vector function for the Z? (p) pupil term of the wavefront
aberration function expansion for a sphere shaped optical element having an additional

Z,%(p) cap shape is given by,
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N {H 46} Vi (H+ G ] H + 6, ) (H +5A3ﬂ . (7.26)

This equation has only 2 unknown expansion coefficients Vo, and V4. These 2
coefficients are related to the strength (a.k.a. amplitude or amount) of the Zernike
polynomial that is added to the base sphere surface. An explicit equation for coefficients
Va2, and Vgp; in terms of the Zernike polynomial strength (and other system and surface
specific parameter values) would be very useful, allowing for the determination of the
coefficients without the need for additional ray tracing and fitting. The determination of
coefficients V,2», and Va4, may be incorporated into the determination of the Wim
expansion coefficients since both, in this work, require real ray tracing data and some
form of data fitting. Alternatively, the paper by Fuerschbach, et al., [72] provides an
alternative way to calculate the coefficients. This then allows for the quantitative
prediction of the change in the aberration function’s field dependence when one or more
Zernike polynomials are added to the shape of an optical element. Even without knowing
the values of the V,,, and V4, coefficients, the form of the contribution to the field

dependence due to an additional Zernike cap has here been determined.
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When the surface to which the Zernike polynomial is to be added is not a

spherical shape, i.e. aspheric shape, then the field dependence for the Z" (p) aberration
expansion term would be written as

F." =([Sphere Base]+[ Aspheric Cap]) +[Zernike] , (7.27)

original surface
where the [Sphere Base] + [Aspheric Cap] components are treated as in previous

Chapters and the [Zernike] component is treated as described in this section, adapted for

the specific field function of the Z" (p) aberration expansion term of interest. It is to be

understood that the [Zernike] component does not include the rotationally symmetric
Zernike polynomials. The rotationally symmetric Zernike polynomials are included in
the [Aspheric Cap] as discussed during the development of Eq. (7.12) and Eq. (7.13).

It may be the case that the change in the field dependence due to the added
Zernike polynomial(s) is not well reproduced by the through 6™ order of the total

wavefront aberration limitation imposed in the above example (the field function of the
222(,5) term). In that case, the next higher order field dependent term can be included

into the field function just for the Zernike surface shape contributions. This would, for
example, introduce a third expansion coefficient, “Ve2,”, into the above example.

When the freeform optical element as a whole is decentered (meaning the base
sphere, aspheric terms, and the additional non-rotationally symmetric Zernike polynomial
terms are decentered as a single element) the field dependence of the field function is

shifted, as prescribed by NAT, by the sigma offset vectors. The sphere sigma offset

vector, 6°, is used for the base sphere’s field terms and the aspheric cap sigma offset
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vector, 6", is used for the aspheric caps and for the decentered term’s field contributions

associated with the Zernike caps written as decentered surface shape terms. Continuing

with the example above, Z;° ( ,5) added to a base sphere shaped element, this gives

n

F? =[v1S [H-5°)" +VSH?{H —55};}

Note that in writing Eq. (7.28) a restriction was implicitly made that the surface to
which the Zernike cap is being added to is the first optical surface in the optical system.
This was done to keep the example simple at this point. That is, all the extrinsic
contributions are zero. Including the extrinsic contributions is mentioned later in this
section.

These developments should, at present, be considered speculative rather than
rigorously derived. However, as the examples in the next section of this Chapter will
show, the resulting FFDs using the above development match the FFDs obtained by real

ray tracing to a high degree.
This example (adding a 23*3(,5) surface shape to a base sphere shaped optical

element) also illustrates a potential practical limitation to this method. Each additional
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non-rotationally symmetric Zernike polynomial used to define the optical surface will

add additional decentered terms and new expansion coefficients. The number of terms
could become overwhelming quickly for surfaces requiring several Zernike polynomials

for their shape description. However, by using GA of Chapter 2, and for this specific
case of adding a Z3+3( ,13) cap shape to an optical surface, it can be shown (see Appendix

VI) that Eq. (7.26) greatly simplifies because

V222{H _&A?:}i _szz{ﬁ +6_A3}727i|:0' (7.29)

H E(HX,—Hy). (7.31)
That is, Eq. (7.26) reduces to

F2= [vf (A} +vsH (A }2}+6V422H ‘ (7.32)
n n
This field dependence due to the addition of a Z;° (,5) cap shape onto an optical element

has been named “field linear, field conjugate astigmatism” in the literature [72]. In the

2D vector plane, a vector of the form as given in Eq. (7.31) is simply a reflection of the
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vector H :(HX, Hy) about the x-axis, accomplished using GA, as shown in Chapter 2,
by

=& Hé, . (7.33)
In a similar way, the field contribution to the Zernike astigmatism term’s field

dependence for other Zernike cap shapes can be calculated. A small selection is

presented in Table 7.1.

Table 7.1 Field contributions to Zernike astigmatism term due to Zernike cap.

Zernike Cap Vector Field Contribution To Shorthand Notation
Z:"(p) Zernike Astigmatism Term
Z3(P) | 4(Vagp Vi, 0)+12V,5 (HZ +HZ,0) |V, +12V,,H % H
ZZ_Z (/5) 4(0 V222 +V422 ) +12V422 (O H +H ) \7const +12V422 l:l*x |:|*
Z;S (ﬁ) 6V422(HX’_HY) 6V422|:i* :6\/422 ({H}l )*
Z;? (/3) Vo2 ( ) 6V, H = 6V422{|:| }1
Z,'(P) | &Vp(HI—HZ,—2H,H,) SVGZZ({H}Z -
Z:‘(ﬁ) 8\/622 (ZH H H2 ) 8\/622{H}2

In Table 7.1, the notation H E(Hy,HX) has been used. Note that for Z,*(p) and

z,! (,5) the restriction of using through 6™ order expansion needed to be removed to

obtain a non-zero field contribution. The through 8™ order Zernike astigmatism
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expansion term has been used for Z,*(5) and Z,*(p), hence the appearance of the

expansion coefficient “Vg,,” mentioned previously.

Note that the coefficients in each row of Table 7.1 are independent of any

coefficients in any of the other rows in the Table. That is “Vap,” in the Z; 3 ( ,5) row is not
the same as the “V42,” coefficient in the Z3_3 ( ,5) row. Therefore, if both Z; 3 ( ﬁ) and

2;3(13) Zernike caps are to be added to the shape of an optical element, then the
resulting additional field contribution should be written using an apostrophe on one of the
“V42” coefficients. For example, this could be written as
Fycap = Vi H 46V H (7.34)
where V,,, would not necessarily have the same value as V,,,. Of course, any other
notational device could be employed to make it clear that the coefficients in one row of
Table 7.1 are not the same as the coefficients in any other row.
By defining the vector
C =(6V,y, 6V,5,) (7.35)
it can be shown that (see Appendix V1)
Fycap = VppH +6V,H=Cx H" . (7.36)
This is the form of the field linear, field conjugate astigmatism field contribution

presented in [72]. However, in [72] the y-axis is used as the reference axis for SVP

whereas Eq. (7.36) is written using the x-axis as the reference axis.
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The approach being described in this Chapter may not be limited to using Zernike

polynomials for the description of the freeform surface shape. It may be that any
rotationally symmetric shape could be utilized as the surface shape terms added to the
sphere base shape of the optical element. However, at this point, this is only speculation
and left for future research to explore.

It may be the case that there is an extrinsic aberration contribution to be
considered due to the Zernike cap added to an otherwise rotationally symmetric optical
element. This may occur when the optical element to which the Zernike cap is to be
added is not the first optical element in the imaging system. Following the NAT
treatment of an aspheric cap leads to the possibility that the Zernike cap aberration
contribution may split into an intrinsic and an extrinsic contribution. Then the
application of NAT’s sphere and aspheric sigma offset vectors may be grouped as
Extrinsic

Intrinsic Extrinsic

FrM= ([Sphere Base] +

]Extrinsic )Sphere Sigma

+[Sphere Base] +[ Aspheric Cap] +[Zernike

Original

Intrinsic

([Aspheric Cap] +[Zernike]

Intrinsic )Asphere Sigma

(7.37)

originl
It is to be understood that the “[Zernike]” mentioned in Eq. (7.37) excludes any of the
rotationally symmetric Zernike polynomials because the rotationally symmetric Zernike
polynomials are to be considered part of the surface’s aspheric cap. See the discussion
associated with the development of Eq. (7.12) and Eq. (7.13) for a freeform optical
surface. The implementation of Eq. (7.37) would require repeating the terms associated

with the Zernike cap in the field function and additional coefficients for the

[Zernike

]E“”"Sic contributions that are obtained during the fit for the other Zernike-as-

decentered-terms expansion coefficients.
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7.2 Examples of NAT and Zernike Defined Freeform Optical Surfaces

In this section, several examples introducing a new way of applying NAT to optical
imaging systems having an optical element with a Zernike freeform surface definition are
provided. It is suggested that this may be a fruitful way to determine the form of the field

functions for freeform optical elements.

Two Mirror Optical System with a Zernike Primary
Figure 7.4 from CODE V® (modified) shows the configuration of the two mirror

telescope model used. The model is initially rotationally symmetric. A Fringe Zernike

polynomial Z,, (,5) = Z3*3(,5) is added to the spherical primary mirror, surface #2. The

Zernike coefficient is 0.075 mm and the Zernike normalization radius is 75 mm.

56.82 MM

Figure 7.4 Two mirror system with Fringe Zernike surface on primary mirror. Surface 2 is
the primary mirror having a base sphere shape plus a Zernike polynomial cap, surface 3 is
the secondary mirror, and surface 4 is the image plane.
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The entrance pupil has a diameter of 150 mm. The HFOV is 0.6 degrees. The secondary

mirror is a conic with a conic constant —2.915. The wavelength is 632.8 nm. Table 7.2

produced by CODE V® presents the other system parameters.

Table 7.2 Two mirror optical system's parameters.

Surface # 5'1;":;:& SJEE:E Y Radius Thickness RE;EZZE Serr.i—;;:erture
OCbject Sphere Infinity Infinity Refract ]
Stop Sphere Infinity S.0000 Refract 75.0000 ©
2 Fringe Zer | -742.8572 -260.0000 Reflect 75.0134 ©
3 Conic -290.2328 479,3935 Reflect 26.5895 Y
Image Sphere Infinity Q.0000 Refract 28,0919 ©

The resulting Zernike astigmatism, (Zz+2 (p).Z2,° (,5)) FFD is presented in Figure

7.5.

-1.33¢ 08¢
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Figure 7.5 FFD of Zernike astigmatism term created by using real ray tracing, GQ, and
double Zernike equation Eq. (4.53).

Removing the Zernike cap from the primary mirror, the Wy, coefficients were

calculated for the rotationally symmetric optical model. Those associated with the
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Zernike astigmatism term through 6™ order are given in Table 7.3 showing that only the

4" order coefficient values are significant for this model.

Table 7.3 Zernike astigmatism related Wy, coefficients through 6" order. (Units = waves.)

Surface Intrinsic Extrinsic
Number | Wy, | Sphere | Asphere | Sphere | Asphere

2 Wazo 1.2947 0.0 0.0 0.0

2 Wasz ~0.0260 0.0 0.0 0.0

2 W2z ~0.0002 0.0 0.0 0.0

3 Wz, ~1.0770 0.7154 0.0 0.0

3 Was 0.0595 | —0.0034 ~0.0364 0.0023

3 Wiz ~0.0001 0.0 0.0 0.0

The normalized &,; decenter vectors, introduced in the preceding section, for

z? (/3) using the x-axis as the reference axis, are obtained from Table IV.5 in Appendix

IV and are
G4 =(-10), (7.38)
On2 {l,ﬁ} : (7.39)
2' 2
& s :(1,_—‘5) . (7.40)
2" 2

Using the plot data that produced the FFD of Figure 7.5 and a least squares fit

with Eq. (7.26) for the field dependent vector function for a sphere surface having an
additional Zf(,b) cap shape provided, as explained in previous section, the six total

Va226i), Va2o(iy €xpansion coefficients. As can be seen in Table 7.4, there are actually only
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2 different coefficient values, providing some confirmation of the development presented

in the previous section.

Table 7.4 Least squares fit determined expansion coefficients. (Units = waves)

=1 =2 i1=3
V222 0.0197 0.0197 0.0197
Va2 0.0493 0.0493 0.0493

Using the field vector function Eq. (7.26) developed in the previous section of this
Chapter for the application of NAT to optical systems with Zernike defined freeform
optical surfaces, the FFD shown in Figure 7.6(c) was produced. Figure 7.6(a) is a FFD
plot generated by CODE V® version 10.5. Figure 7.6(b) is generated by using the

double Zernike expansion and the GQ method for determining the expansion coefficients

My 'mp

My.n, -
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Figure 7.6 Comparison of Zernike astigmatism FFDs for two mirror optical system having a
Zernike freeform surface defined primary mirror. (a) Generated by CODE V®. (b) Repeat

of Figure 7.5, (c) Plot calculated by Eq. (7.26) using Wy, and 5'Ai decenter vectors. (d) The

difference between the Zernike astigmatism FFD data generated by the double Zernike
expansion and the single Zernike expansion using the calculated W, values, (b) — (c).

This plot, Figure 7.6(c), visually matches the FFD of Figure 7.5 (repeated as plot

(b) in Figure 7.6). For a quantitative comparison, the difference between the two FFD’s
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data is also shown in Figure 7.6(d). The difference data’s magnitude values have a

maximum difference value of — 0.003 waves, a mean of 0.00003 waves, and a STD of
0.0001 waves. The difference data’s angle values have a maximum difference of — 5.5

degrees, a mean of 0.01 degrees, and a STD of 0.27 degrees.

Two Mirror Optical System with a Zernike Primary and Decentered
The primary mirror of the previous optical model, having a Z,°(p) defined shape, was

decentered as a whole optical element along the y-axis by an amount + 0.025 mm. The
NAT sigma offset vectors were calculated by Eq. (5.28) and Eq. (5.29) presented in

Chapter 5 and their values are given in Table 7.5.

Table 7.5 Sigma offset vector values.

Surf.# &Sphere &Asphere
X Y X Y
2 0.0 0.003235 0.0 —0.477447
3 0.0 0.006455 0.0 0.00639

With these sigma offset values, and Eq. (7.28), the FFD for the Zernike
astigmatism term of the wavefront aberration function expansion was recreated and
presented in Figure 7.7. Figure 7.7(a) is a FFD plot generated by CODE V® version

10.5. Figure 7.7(b) is generated by using the double Zernike expansion and the GQ
method for determining the expansion coefficients U:;“,hT” . Figure 7.7(c) is generated by
using the Wim expansion coefficients, the o,, vectors of Eq. (7.38) through Eq. (7.40),

the sigma offset vectors of Table 7.5, and the single Zernike expansion.
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Figure 7.7 FFD comparison for decentered primary mirror case. (a) Generated by CODE
V®. (b) By using real ray tracing, GQ, and double Zernike equation Eq. (4.53). (c) By using

Eq. (5.43), Wyym values, 5‘Ai decenter and sigma offset vectors. (d) The difference between

the Zernike astigmatism FFD data generated by the double Zernike expansion and the single
Zernike expansion using the calculated Wy, values, (b) — (c).

The difference between the two FFD’s data is also shown in Figure 7.7(d). The
difference data’s magnitude values have a maximum difference value of 0.09 waves, a

mean of 0.04 waves, and a STD of 0.06 waves. The difference data’s angle values have a
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maximum difference of — 175.9 degrees, a mean of 1.3 degrees, and a STD of 18.9

degrees. The large maximum angle difference occurs near the node locations where the
data values are very small.
Further research into the field contribution due to decentering of freeform

surfaces in an optical imaging system is left for future research to address.

Two Mirror Optical System with a Zernike Defined Secondary

In this next example, a two mirror telescope model is used onto which an additional

Z§3(/3) cap is added to the secondary mirror. This example was investigated to

determine if the success of the previous examples in which the Zernike cap was added to

a spherical primary mirror could be repeated for the original aspheric secondary mirror.
For this model, the entrance pupil has a diameter of 150 mm. The HFOV is 1.0

degree. The primary mirror is a conic with a conic constant of —1.046192. The

secondary mirror is a conic with a conic constant —2.915.

56.82 MM

Figure 7.8 Two mirror telescope model with Zernike cap added to the secondary mirror.
Surface 2 is the primary mirror having a conic shape, surface 3 is the secondary mirror
having a conic shape plus a Zernike polynomial cap, and surface 4 is the image plane.
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The Zernike strength coefficient is 0.00075 mm and the Zernike normalization radius is
27.1573 mm. The wavelength for the model is 632.8 nm. Table 7.6 produced by

CODE V® presents the other system parameters.

Table 7.6 The two mirror optical system's parameters.

) Surface Surface Refract ¥
Surface # Hame Type Y Radius Thickness Mode e
OCbject Sphere Infinity Infinity Refract =
Stop Sphere Infinity S5.0000 Refract 75.0000
2 Conic -742,8572 -260.0000 Reflect 75.0000
3 Fringe Zer | -290.2328 479.9985 [Reflect 27.1575 ©
Image Sphere Infinity 0.0000 Refract 28,1628 @

The rotationally symmetric version of this optical imaging system (removal of the

Zernike cap) was used to obtain the Wym expansion coefficients. Table 7.7 provides the
Wiam Values though 6™ order associated with the Zernike astigmatism 72 (p) term.

Table 7.7 Zernike astigmatism related W, coefficients through 6th order. (Units = waves)

Surface Intrinsic Extrinsic
Number | Wy, | Sphere | Asphere | Sphere | Asphere

2 Wazo 3.5969 | —0.0002 0.0 0.0

2 Wasy -0.0721 | —-0.0002 0.0 0.0

2 Way, -0.0016 0.0 0.0 0.0

3 Way, —2.9922 1.9874 0.0 0.0

3 Wagy 0.1652 | —0.0095 -0.1007 0.0060

3 Wiz -0.0008 | —0.0001 0.0 0.0

Since the Zernike cap is added to the secondary mirror, which is a conic, it is
reasoned, as detailed in the previous section (see Eq. (7.12) and Eq. (7.13)), that the field
dependent vector functions of the terms in the Zernike (in pupil) expansion of the

wavefront aberration function will have the following form
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F." =[Sphere Base], , +[ Asphere Cap] |,

[Sphere Base]j=3 +[ Asphere Cap]j=3 +[Zernike] (7.41)

i3
where j = 2 signifies the primary mirror contribution and j = 3 signifies the secondary
mirror contribution. The “[Zernike]” refers to only non-rotationally symmetric Zernike
polynomials as described previously with the development of Eq. (7.12) and Eq. (7.13)

for the freeform optical surface shape. The [Zernike]j=3 contribution to the field

dependence for the Zernike astigmatism Z2 (p) term, through 6" order, is given by (see

Eqg. (7.22) in the previous section of this Chapter)

[Zernike], = Vo {F =G, +Vioay (H =G o(F =G ) {(H =G}
_V222(1) |:| +6—Al 727 _V422(1) H +6—A1).< g +6—Al g + &Al}; +

+ szz(s)

{H+6n}, Vi

{H =Gal, Vi (H =G0 o
Vasoy {H 4G5} Vi) (H+G Jo(H 46,
{H =G}, +Vaao

Ve { } ( J . (142
The FFD data for the Zernike astigmatism term was calculated by using the

double Zernike aberration function expansion and the Uan”’m

n,

» expansion coefficients.
Using this FFD data, and the proposed field function based on Eq. (7.41) and Eq. (7.42),
as well as the Wiy, values of Table 7.7 and the &,, decenter vector values of Eq. (7.38)

through Eq. (7.40), a least squares fit, in 6 variables, was performed to obtain the V,», and

V422 expansion coefficients shown in Table 7.8.
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Table 7.8 Least squares fit determined expansion coefficients. (Units = waves)

1 2 3
V222 —0.0055 —0.0055 —0.0055
Va2 —0.1373 —0.1373 —0.1373

The obtained V2, and V4, expansion coefficient values again confirmed the
hypothesis that there are actually only 2 coefficients for the additional field dependence
due to the addition of the Zernike cap.

Figure 7.9 provides a comparison of the Zernike astigmatism term of the
wavefront aberration function expansions. In Figure 7.9, plot (a) is a FFD plot generated

by CODE V® version 10.5, plot (b) was generated using the double Zernike expansion of

the wavefront aberration function and the associated U:;”’m

a, €xpansion coefficients,
while plot (c) was generated by using the single Zernike (in pupil) expansion of the
wavefront aberration function, the Wy, expansion coefficients, the Vi, and Vi

expansion coefficients, and the o,, decenter vectors. The difference between the two

FFD’s data is shown in Figure 7.9(d). The difference data’s magnitude values have a
maximum difference value of 0.03 waves, a mean of — 0.0003 waves, and a STD of 0.016
waves. The difference data’s angle values have a maximum difference of — 29.2 degrees,

a mean of — 0.07 degrees, and a STD of 2.4 degrees.
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Figure 7.9 Comparison of Zernike astigmatism FFDs for two mirror optical system having a
Zernike freeform surface defined secondary mirror. (a) Generated by CODE V®. (b) By
using real ray tracing, GQ, and double Zernike equation Eq. (4.53). (c) Plot calculated using

Wim , V2o & V4o coefficients, and 5‘Ai decenter vectors. (d) The difference between the

Zernike astigmatism FFD data generated by the double Zernike expansion and the single
Zernike expansion using the calculated W, values, (b) — (c).
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This lends support to the approach outlined in the previous section for using NAT

to develop the field dependent contributions due to the addition of Zernike caps to the
optical elements’ shapes, defining freeform optical elements, has merit. However, as
mentioned before, these are only the initial, tentative steps to a complete theory of the
aberration function’s field dependence for optical imaging systems defined with freeform
optical elements.

An alternative approach, based on utilizing stop shift equations, has been
presented in the literature [72]. Future research may combine the two approaches and
may provide a theory having analytic capabilities to provide the additional field
contributions to the wavefront aberration function expansion terms due to the additional

of Zernike caps to the base surface shape to define freeform shaped optical elements.
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Chapter 8 Conclusion and Future Research

This work has demonstrated how to form a connection between three forms of the
wavefront aberration function expansion for rotationally symmetric optical imaging
systems: 1) the extended H. H. Hopkins’ form, 2) the single Zernike in pupil form, and 3)
the double Zernike, in field and pupil, form. Optical designers typically use some form
the Hopkins’ expansion involving the Wy, expansion coefficients, while for testing and
measurement the Zernike in pupil form is typically used. A common feature of these
expansions, as developed in this research, for rotationally symmetric optical imaging
systems, is the use of SVP.

In this work, SVP has been developed for the first time in terms of GA. As
shown, SVP fits naturally into GA and avoids the use of the exponential complex number
form for the representation of 2D vectors. An important result of using the GA approach
is that it explicitly shows how SVP involves three 2D vectors, not just two vectors, thus
clarifying the nature of SVP. New notation for SVP has been developed that explicitly
captures this important fact.

The various definitions of the real number Zernike polynomials that occur in the
literature was briefly reviewed. An Appendix provided the derivation of the
orthogonality property for the discrete sampling of the real Zernike polynomials over the
unit radius disk. This property has been utilized in this work, together with the double

Zernike expansion of the wavefront aberration function, to obtain the double Zernike’s

U™ ™ expansion coefficients. New equations have been developed for calculating the

Ny N,
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Wim expansion coefficients from the U™ ™ coefficients for rotationally symmetric

HoNp,
optical imaging systems. It has further been demonstrated how the per surface,
sphere/asphere, and intrinsic/extrinsic Wy, coefficients can be obtained.

A new equation for the expansion of the wavefront aberration function using the
medial focal surface based expansion coefficients has been developed. This equation
explicitly provides the separation of the field and pupil parameters, to any order, into a
simple form similar to that of the traditional vector form developed by Shack for which
the field and pupil parameters are not separated (are not factored by a vector dot product).
Once again, it is seen that SVP plays a crucial role in accomplishing this result.

A brief introduction to NAT was presented. The meaning of the full field
displays (FFDs), the basic tools for the qualitative and quantitative comparisons
performed in this work, has been discussed. The sigma offset vectors were introduced.
Their meaning, equations for the calculation of their values, and method for introducing
them into the field functions has been clarified. It was shown how the equations
traditionally presented in the literature for the sigma offset vectors can be modified to
clarify the issue involving their definition in the surface’s local image space and their use
in the wavefront aberration function expansion defined using either the system’s object
space field parameters or the total system’s image space field parameters.

Validation of the mathematical development has been provided by using two and
three mirror telescope optical models. The models were perturbed and the resulting FFDs
were generated using the Wym expansion coefficients and sigma offset vectors of nodal

aberration theory. Comparison (both qualitative and quantitative) to the FFDs based on
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real ray trace data and a double Zernike expansion of the wavefront aberration function

through 12" order has been presented. In most cases, the two different methods for
generating the FFDs produced very good matches. However, for the case of the coma
free pivot model and for the case of the aperture offset model, the developed equations
did not produce good matches to the double Zernike generated FFDs. This indicates that
there is something new and interesting still to learn in this field.

A proposed method for using NAT to obtain the contribution to the field functions
due to freeform optical elements has been presented. A property of Zernike polynomials,
discovered while performing this research and presented in Appendix 1V, that they can be
mathematically represented as a sum of decentered rotationally symmetric terms, was
used to obtain the contribution to the field functions due to the addition of a Zernike cap
to an otherwise rotationally symmetric optical surface. Explicit examples have been
provided.

There are many avenues that could be followed in future work. Of particular
necessity for any future research is the need for a more practical way to obtain the Wym
expansion coefficients, including their per surface, sphere/asphere, and intrinsic/extrinsic
values. The current method developed in this research works well but is far too slow and
involves too many steps for any interactive optical design work.

Additionally, different definitions for the placement of the reference sphere
should be implemented and results compared. For example, using the real exit pupil
location versus the Gaussian exit pupil location, and using the real chief ray intersection

point in the image plane as the center of ther reference sphere versus the Gaussian image
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point. These should be investigated to determine if different definitions of the reference

sphere make a difference to the higher then 4™ order Wiy, coefficients, particularly for the
extrinsic coefficient values.

This research has proposed one way to apply NAT to freeform optical elements.
The initial success of this approach for both non-decentered freeform surfaces and
decentered freeform surfaces, as well as when the freeform surface is not the first surface
in the system, is very encouraging. The development also suggests that the approach may
also be suitable for use with other than Zernike definitions for freeform optical surfaces.
Specifically, the sum of the decentered rotationally symmetric terms need not define a
single Zernike polynomial. It may be possible to use the method with other rotationally
symmetric shaped “caps” for the definition of the freeform surface shapes and for
determination of their field contributions. Further testing and evaluation is needed to
develop these ideas into a reliable approach for the determination of the field contribution

of freeform optical elements to the wavefront aberration function.
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Appendix I. Geometric Algebra Forms of Shack’s Vector Product

During the initial development of SVP in terms of Geometric Algebra (GA), several
different procedural interpretations of this vector product were considered and equations
for each interpretation developed. This led to many different ways of expressing SVP in
GA. Eventually, the simplest form was discovered. This Appendix provides several of
the other forms developed during this investigation.

In the following equations the y-axis is used as the reference axis. The vector A
is defined to be a unit vector halfway between €, (the unit vector along the positive y-
axis) and an arbitrary 2D vector B. The vector & is a unit vector along the arbitrary 2D

vector A. The angles « and S are the angles of the vectors A and B with respect to

the y-axis, respectively. Assuming all angles are positive, then all rotations indicated in

the equations below are clockwise (from the y-axis toward x-axis). R, is used to indicate
different rotors for different values of j. The vectors in component form are given by

A=aé+aé,, B=bé+bé,. (1.1)

| =66, . (1.2)
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The pseudoscalar | is used in the equations below. Shack’s vector product, AxB, can

then be interpreted and written as shown below.

As vector components:

AxB=(ab, +ab )é +(ab,—ab)e,.

All vector elements explicitly listed:

Ax B =|A||B]ne, a6,n.

As two reflections of A;

ArB=B

As a double sided rotor rotatinqé;

AxB-[B

(Re,) A&, )= B[R AR"

As double sided GA exponentials rotating A

Ax B =[B]e2Ae 7.

As a single, right sided rotor rotating A:

AxB=A(6,B)=A(¢,8)

|- 8]

As a single, left sided rotor rotating E;

AxB=AgB=(A¢,)B=|A|R,B

As a single, right sided GA exponential rotating A;

Ax B =[B] Ae

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)



As a single, left sided GA exponential rotating A;

fix B =Bl A

As a single left sided GA rotor rotating E;

A B=(e,)B=[A](Ae,)B=[4]R.8

As a single left sided GA exponential rotating B :

Ax I§=HA e'“B

As a single right sided GA exponential rotating B :

A 8= ] Be

As a single right sided GA exponential rotating €,:

A6 e e -|efes

As a single left sided GA exponential rotating é,:

Ax B8 e,

e, = A]|8]

Simplest GA expressions:

AxB=A6B=B6A=BxA.
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(1.12)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)
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Appendix II. Implementation of Recurrence Relations For Zernike
Polynomials

The following is an implementation of recurrence relations [36, 38] for the computation
of the radial factor of the Zernike polynomials. The function returns the Zernike

polynomial values at the specified points.

function Zv=calculateZernikeForbes (n,m,rho,phi,NormType)
Implementation of recursion relations for calculating the
Zernike Polynomial values.

o0 o o

o°

Based on G.W. Forbes, "Robust and fast computation for the polynomials of optics"
Optics Express, 18(13), 13851-13862, 2010. See in particular Forbes'
Eg. (4.la,b,c) in this paper.

o0 o o

o°

Calculate the Zernike polynomial for the rho, phi values specified,
n = positive integer radial order,
m = positive or negative or zero azimuthal order
rho = vector of normalized rho values
phi = vector of angles (radians) to go with the rho values.
NormType = 'OP' = Zero-to-Peak normalization,
'RMS' = root-mean-square normalized (optional).

00 o2 d° d° d° o° o°

oe

Updates:
2014-08-12: Initially written by Robert W. Gray

oe

o

if nargin < 5
NormType = 'OP'; % default is zero-to-peak normalization
end

% 0P normalized (default)
=1;

=z

if strcmpi (NormType, 'RMS'")
RMS normalized

N = sqrt (2% (n+l) /(1 + (m==0)));
end % if statement

oe

R = calcR(n,abs (m), rho);

% Calculate the azimuthal factor (cs = cosine or sine factor)
cs = ones(size(phi));
if m >0
cs = cos(m.*phi);
end
ifm< O

cs = sin(abs(m).*phi);



end
Zzv = N * (R .* cs);
end % function calculateZernike?2

function R=calcR(n,m, rho)
% Use recurrence relations to calculate Zernike radial part

nf = (n-m)/2;
R = rho.”m .* Znf (nf,m,rho.”2) ;

end % calcR

function result = Znf(k, mf, u2)

z(1l,:) = ones(size(u2));
z(2,:) = (mf + 2) * u2 - (mf + 1);
if (k >= 2)
for nf=1:(k-1)
s = mf + 2*nf;
a= =-(s+l1)*((s-nf)"2 + nf*nf + s)/(s*(nf + 1)*(s - nf + 1));
b = (s + 1)*(s + 2)/((nf+1l)* (s-nf+1));
c = (s+2)* (s=nf) *nf/ (s* (nf+1) * (s—=nf+1));
z(nf+2,:) = (atb*u2).*z(nf+l,:) - c*z(nf,:);
end % for statement

end % if statement
result = z(k+1,:);

end % function Znf
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Appendix III.  Discrete Orthogonality of Zernike Polynomials

In a 2005 paper [43], Pap and Schipp published a result showing that a finite set of
complex number Zernike polynomials are orthogonal over a finite set of discrete points
across a unit radius disk. Prior to this work, it was known that the Zernike polynomials
were orthogonal to one another over the continuous unit radius disk. This orthogonality
property is very desirable because it means that the coefficients of the expansion of any
function defined over the continuous unit disk (wavefront aberration function or an optic
element’s surface shape, etc.) in terms of the Zernike polynomials would be independent
of one another, and therefore, would not change if additional terms of the expansion were
latter included. It was thought that when only a discrete set of data points over the unit
radius disk were used (discrete sampling of the function) the Zernike polynomials were
no longer orthogonal, and the derived coefficients would then not be independent to one
another. To overcome this issue, many data points over the disk were typically used in an
attempt to obtain a good approximation to the exact coefficient values. With the Pap and

Schipp result [43, 44, 45], it is possible to select a finite number of data points over the
unit radius disk such that all the Zernike functions of order n_, or less remain

orthogonal over these discrete data points, provided that the function’s data values can

be exactly represented by a sum of Zernike polynomials of order less than or equal to

N - 1he number of data points needed is dependent on the maximum radial order n_,,
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of the Zernike polynomials needed to exactly define the function over the unit radius

disk.
One drawback to this result is that the value of n_, that exactly defines the

function of interest over the disk is not in general known. With the discrete sampling and
finite subset of the Zernike polynomials, including the next higher order Zernike
polynomial will change all the lower order coefficients. However, the change is of the

order of the coefficient of the next highest order Zernike polynomial included. Then,

assuming the function converges for low values of n__ , only a small number of Zernike

max
polynomials need to be considered for an acceptable approximation of the function
expressed as an expansion in low order Zernike polynomials. Another potential
drawback is that the highest order Zernike needed to accurately represent the function (to

expand a given function) may be so large that the number of data points across the unit
disk is too large to be practicable. Additionally, the higher the value of n_, the more

concern there is for the numeric accuracy of the calculated Zernike polynomial values.
On the other hand, a significant advantage to the method of Pap and Schipp is that
there is no data fitting operation involved. The coefficients are calculated directly from
the equations to be developed below by use of the Gaussian Quadrature (GQ) technique.
In this appendix, the results of Pap and Schipp [43], incorporating an
improvement pointed out by Shi, et al. [73], are derived for the real number Zernike
polynomials. Pap and Schipp used a complex exponential form for the Zernike
polynomials while the research presented in this dissertation uses the real number form of

the Zernike polynomials. Therefore, this derivation, in terms of real number Zernike
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polynomials, was necessary in order to obtain the equations needed for this research

project.
The notation employed in this Appendix is not necessarily the same as in the main
text of this dissertation.

A Zernike polynomial, using the 0-P normalization, can be defined as two factors:

1) The radial dependence RLm‘(p), and 2) the azimuthal dependence CDm((p). Then a
Zernike polynomial Z"(p,¢) may be written as
27 (p.9) =R (P) @, (0), (1.1)

where n is a positive integer, m is a positive or negative integer, [m| < n and n — |m| is

even. The radial dependence is given by

k
\m\ i (-1) (n-k)! o (1n.2)
[n+|m| kj.[n—|m|_kj!
2 2
This can also be written as
R (p)= "Rl (202 -1), (11.3)

7

where P (2p* ~1) are Jacobi polynomials [74]. This is an important relation to be

.

used later. Explicit forms of the Jacobi polynomials will not be needed here. The

azimuthal dependence is defined as

cos(me) mzo} 1.4

P (9)= {sin(|m|gp) m<O0[’



The orthogonality relation for these Zernike polynomials is written as

2n+2 1
Z, (p9)pdpdp=6,,6, ..
1+5 -([-!. )

This double integral separates into

2n+2 m |
1n++5 IR” )R ( pdpfq) )P, (9)d@ =5, 5y

Moving the constant factor to the right hand side of the equation,

76, o O (14 G0 )

R\m\ R\m d CD (D, d nn “mm
j p)p pf )@, (¢)de= —

Consider the integral

There are four cases to consider.

CASEl:m>0,and m' >0
2z

I@m((p)q)m,(¢)d¢= fcos(m(p)cos(m’(p)dgo:n(dmm§m0+5 -

0

CASE Il:m>0,and m' <0

[@,(p)®, (p)dp= 2fcos(mgo)sin(|m'|go)dgp= 0.

0

CASE lll: m<0,and m' >0
27

I D, ()P, (¢)dp= Tsin(|m|(p)cos(m’(p)d(p: 0.

0

CASE IV:m<0,and m' <0
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(111.5)

(111.6)

(11.7)

(111.8)

(IN.9)

(11.10)

(111.11)
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27

[@, ()@ (0)dp= fsin (Jm|@)sin(Im|e)de =75, (11.12)

0

These four cases can be combined into the single equation
2
jq>m(¢)q>m,(¢)d¢=n(5mm5mo+5 ) (111.13)
0
The strategy at this point is to develop alternative equations for the Kronecker deltas that
occur in the above equations in terms of sums. This is accomplished as follows.
CASEl:m>0,and m' >0
For this case write
—Z(D (¢,) @0 (2;)= ~ Zcos(mg)cos(m o). (111.14)

€0JO e =0

where N_ is an integer to be determined below. Express the cosines in terms of Euler’s

equations gives

Ni Z cos(mgoj )cos(m’gpj)zm » (ei(m+m')¢j 4 elMmmey | gi-mem)e; +ei(7m,m-)¢,~)_ (111.15)
¢ =0 i=0

4

N,-1 1 N,-1

A relation from discrete Fourier analysis can now be used, namely

—Ze No _ (111.16)
0 otherwise

<pJ°

1 H(m-m)2zj _{1 for m—m’ = DNW where p =integer

Comparing the exponentials in Eq. (111.15) to Eq. (I11.16) the following association can

be made

g, =1 (111.17)

With m and m' maximal when m=n and m'=n", set
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N =2n_ +1. (111.18)

@ max

where n_. is the maximum of {n, n'}. In this way, the angle ¢, cannot exceed 27 .

aX

i 27(N, -1
@_zzmg (N, )32”(2”max)<2,[_ (111.19)
TN 2n. +1  2n. +1

1) max

Then, with (111.18) it follows that the condition for the first relation of (111.16) to hold,

that is, for m—m’ = pN,, to hold, requires that p be zero and therefore that m-m'=0.

With these definitions and restrictions, the following relation is obtained.

*i(m-m')27j

N,-1 Hm-m)ez)
2 ¥e " =g, (111.20)
N, =
This can be used to write Eq. (111.15) as
N,-1
[ , 1
N ,Z(; cos(m(p,- )cos(m 9, ) :E(ém,()&mym. + O + O + OO ). (111.21)
o -
Then, for this case
2 Nw—l
N - CDm (¢i)q)m' (goj):(é‘m,oé‘m,m' +5m,m') . (|“22)
Ncﬂ j=0
For cases Il and Ill, it can be shown that
2 Nq,—l
N_Z(Dm(¢i)q)m’((oj):0' (111.23)
p 1=0
And for case 1V,
2 N¢,—1
N (Dm(goj)q)m'((”j):%,m' : (111.24)
N, =

These four cases can be combined to give the relation
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N,-1

2

— > O . )P (@ )=, 1 Ono+ O 111.25

N(/, ~ m(¢1) m ((0]) m,m'~"m,0 m,m ( )
Comparing this result with Eq. (111.13) gives the equation

27 o Nl

[ @, ()@ ()dp=7(8n o +Onm) =< 2 P (2)) O (0)) - (111.26)

0 ¢ =0

To convert the radial integral into a discrete, finite sum, the Gaussian Quadrature
theorem can be used. One form of the theorem is presented in [75] as Theorem 3.4.1 (p.
47). The following form of the theorem is from [75] with a few changes of the text, as
well as notational changes, for clarity. The changes are not explicitly indicated. Since

the space over which the theorem is to be applied is a flat Euclidean space such that the
measure of the space is ,u(x)zx, the integral is changed from the original Stieltjes-
Lebesque integral to a Riemann integral. From [75] (edited):

Theorem 3.4.1 If X <X, <...<Xy denote the zeros (roots) of a polynomial function

fy (x) of order N, then there exits real numbers A , A, ..., A, (called Christoffel

numbers) such that

b

[a(x)dx=Ag(x)+Ag(%)++Ag(x), (111.27)

a

whenever ¢ (x) is an arbitrary polynomial function of order less than 2N .

In the Pap and Schipp paper [43], the theorem is stated as follows. The notation and text

have again been changed from their paper for clarity.
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Theorem A Let 4, 4,,.., 4, with A, (-1 1), be the N roots of the Legendre

polynomial Py (x) of order N. Define

(A (A A (6
4 )4 4 .

A (X)E(ﬁ,l /11) (,1| — ,1)(1. _/1+1)"'(/?" _/1”)

(1.28)

to be the fundamental polynomials of the Lagrange interpolation of the Legendre

polynomial. We define the corresponding Christoffel numbers by
1

A= [ A (x)dx (111.29)

-1
with 1<k <N an integer. Then for every polynomial g(x) of order less than 2N

we can write
fg(x)dX=Zg(ﬂk)Ak (111.30)

-1 1

Although explicit equations for the Legendre polynomials will not be needed, several

forms from [76] are provided here as explicit examples.

053] o] (0™ ey ()

k=0

Pn(X)=§(EJ(_nk_1J(1_TXJK (111.32)
P”(X):an[m n+;<—1 X" (111.33)

The next step is to convert the radial integral [11]
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jR,{“(p)Rn“,“(p)pdpz Sy (111.34)

0

into a form suitable for application of the above Theorem. Inserting Eq. (111.3), the

alternative form for expressing R‘nm‘ ( p) in terms of the Jacobi polynomials, we have

m| ~(0,/m 2 m| ~(0,/m 2 5n,n’
ILP F:E( m)](zp l)}[p p[( zm)](zp ]_)dep:zn_'_z, (111.35)

0 2

which can be written as

0,
2Jm| O ‘m (0,\m\) 2 _ n,n’
jp P[ \m\) 1)P[n’m](2p 1)pdp—2n+2. (111.36)
2
Performing a change of variables, let
u=2p°-1, (111.37)
then
du=4pdp. (111.38)

For p=0, u=-1 whilefor p=1, u=1. Solving for p* gives

pr=—". (111.39)

1 1" 0m oJm| 5n,n’

Let

2 2

g(u)= (“”] ?m)j(u)?mj(u) (111.41)
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then Eq. (111.40) takes the form

ue 5[1 n’
[ g (u)du=_tT. (111.42)
u=-1

NP

This is now in the correct form for applying the Gaussian Quadrature Theorem. This

results in the equation

u=l Ny Op
oo tbin-ds we

where A, are the roots of the Legendre polynomial of order N . Note that the function

g (u) is of order 1(n + n’) inu. This is from considering the powers of u, which are

|m|+£n—|m|}+[n’—|mlJZ%(nm). (111.44)

2 2

Since there is a Kronecker delta on the right hand side of Eq. (111.43), the maximum order

of g(u) is given by %(nmaX +Na ) =Ne - The Theorem states that the equality of Eq.

(111.43) holds when g(u) is a polynomial of order less then 2N . Then there is the

restriction that

n. <2N . (111.45)

max P

This means that

N =”mTaX+1. (111.46)

P
This is important because it specifies the number of radial parameter values, o, needed

for the fixed but arbitrary maximum order n_, of the subset of Zernike polynomials
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involved. Since n,, may be an odd integer, the following relation is used, where | « |

denotes the integer part of the real number
n
Np{ﬂJﬂ. (111.47)

To summarize,

udt l 5n,n’
_j du=7> > a(4)A = T ()

1
[RY(P)RY () pdp=
0 :
where A, are the roots of the Legendre polynomial of order N, and A  are the
associated Christoffel numbers calculated by Eqgs. (111.28) and (111.29).

Since u is replaced with 4, in the above equation, and using Eq. (111.39) the
relation

U—A =2p7-1 (111.49)

is obtained. This relation defines the discrete radial values to be used to be

. = /lk;l . (111.50)

Eq. (111.49) is used to rewrite Eq. (I11.34) into a summation explicitly involving the radial

function. Using Eq. (111.41) in Eq. (111.48) gives

iRﬁ”(p)RJP( )pdp—4;(‘k;1jmP["Tﬂ)](ﬂk)?‘n‘??}(ﬂkm:;“” (1n151)

n+2
2

It then follows that

1 N, 2 ]
!R?(P)R?(p)pdp=32(2'0k7mj thj”n)j(pr—l)th](zpf ~1)A,, (I11.52)

k=1 2 2
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and

l.Rrr]n(p)RrT(p)pdpiNZ:(pkmFE(OTn)J(ZpE—l)}{p mp((o:m)](zpf_l)% . (111.53)

k=1 2

Therefore,

(11.54)

—Z[pkmp[‘”;] (26 1)}{/)0 P[‘° T,R] (26 1)} A = ;” :

2 2

And so the integration over the radial part of the Zernike polynomials is replaced by the

discrete sum

1& o ~ .
T2 R (PIRT () A =5 2 (111.55)
k=1

Combining this result with the sum over the azimuthal factors gives

[ ZR'“ 2)RY (pe) J( Zcp (o) @ (J)J [2(:1+2J(5“‘m5“‘°+5 ). (111.56)

e J=0
Collecting common factors and distributing the summation over the azimuthal parameters

gives

2 2 1 Ny, N,—1 m .
B [(1+5m,o)NJ( 2, R (2201 (Pk)q)mr(%)ﬂ} Sn 0 - (11157)

The final expression for the orthogonality of the Zernike polynomials over a discrete

sampling of data points can now be written as

((“?1) }[222 (Pe9))Z; (Pk,(/),-)ﬁy}&n,n,&m,m,. (111.58)

k=1 j=0



252
To illustrate how these equations are used in the research, and to provide a short

summary of the important equations, assume that a function f (p, (p) over the unit radius

disk can be written as

Nimax n

f(p.@)=DY. D CrZY(p.@)+0, (N +1) (111.59)

n=0 m=-n
m=m+2

where C are the expansion coefficients to be determined and O, (n,,, +1) signifies the

order of magnitude of the real Zernike polynomial terms of Zernike order higher than

N - The expansion coefficients can be determined approximately by

. (n+1) Np N(pfl
Clm——
(1+3,0)N, & =

4

t(p02)Z0 (Poo)) A (111.60)

where the approximation is good to the order of magnitude of the real Zernike

polynomial terms of Zernike order higher than n,_, . Note that the expansion coefficients

are given exactly by Eq. (111.60) when O, (n,, +1)=0. Continuing with the notation

used,
nmax
Np={ - J+1, (11.61)
. = 1+2’1k . (111.62)

A, are the roots of the Legendre polynomial of order N/, 1<k <N , and the Christoffel

numbers A, are given by
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A=A (x)dx, (111.63)
where

(oA A A) - () 1160

(A=A ) (A=A (A = Aa) (A=A )

are the fundamental polynomials of the Lagrange interpolation of the Legendre

polynomial. Further,

N, =2n,, +1, (111.65)
27| 27|

27 _ | 111.66
YiITN, Ton 41 (111.66)

with 0< j<N_ -1.
The research conducted in this dissertation used Zernike polynomials through

n=12. Using the above equations, there are then N =7 normalized radial values and
N, =25 azimuthal values need for the application of the GQ method. The actual values

used in this research, rounded to 20™ decimal position, are listed in Table 111.1 and Table

11.2.

Table I11.1 Radial values used with GQ method.
# Normalized Radial VValues

0.15951816143819091089
0.35949187362206503717
0.54504809357643057125
0.70710678118654752440
0.83840478033507095662
0.93314821587982325196
0.98719499399631239331

N OO B W N




Table 111.2 Azimuthal values used with GQ method.

#

Azimuthal Values (Radians)

0.0

0.25132741228718345908

0.50265482457436691815

0.75398223686155037723

1.00530964914873383631

1.25663706143591729539

1.50796447372310075446

1.75929188601028421354

OO N OO B~ W N

2.01061929829746767262

[EEN
o

2.26194671058465113169

[EEN
[EEN

2.51327412287183459077

[EEN
N

2.76460153515901804985

[EEN
w

3.01592894744620150892

[EEN
IS

3.26725635973338496800

[EEN
a1

3.51858377202056842708

[EN
[op}

3.76991118430775188616

[EEN
~

4.02123859659493534523

[EEN
oo

4.27256600888211880431

[EEY
O

4.52389342116930226339

N
o

4.77522083345648572246

N
[

5.02654824574366918154

N
N

5.27787565803085264062

N
w

5.52920307031803609969

N
S

5.78053048260521955877

N
o1

6.03185789489240301785
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The validation of the above GQ method for obtaining the coefficients of an

expression comprising a sum of Zernike polynomials through n = 12 was conducted by

implementing the GQ method as Matlab® functions, presented below. Random numbers

were used for the initial Zernike coefficient values. The GQ method was then used in an
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attempt to determine the initial random number coefficient values. The difference

between the initial coefficient values and the GQ calculated coefficients were calculated
and was seen to be zero. That is, the GQ method reproduced the initial random
coefficient values.

The following Matlab® functions are the functions used for the validation testing.

Function: verifyRealZernike

This function is the main GQ validation Matlab® function. It generates random
coefficient values and calculates an expression of the sum of the Zernike polynomials
through n = 12. It then uses the GQ method described above to obtain the coefficients
from the calculated expression’s values at the GQ prescribed Zernike parameter values.
The difference between the original random coefficient values and the GQ obtained

coefficient values is calculated and displayed.

function verifyRealZernike

% Verifies the real Zernike orthogonality equations by obtaining the
random coefficients of a polynomial composed of real Zernike polynomials
through 12th order.

o° oo

oe

oe

Written by: R. W. Gray 2014

o°

syms R aP W £ G coeff real;
sym('pi');

maxn = 12; $ MUST BE EVEN POSITIVE INTEGER.

NR
NA

maxn/2+1;
2*maxn+1;

% build the W function with random coefficients.
on interval [a,b]

-10;

+10;

0;

sym(0) ;

=0 O oe

for n=0:maxn
for m=n:-2:-n

p=p+ 1;
Wc(p) = a + (b-a).*rand(1l,1);
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Mn(p) = n;
Mm(p) = m;
fprintf (1, 'P%2d: %2d,%3d: %16.12f \n',p,n,m,Wc(p));

Z{p} = makeZernike(n,m,'R','aP");

W =W+ Wc(p)*Z{p}; % real W

% At this point, we have an equation W of thru 12th order Zernikes and
% random coefficient values.

o

Now do Gaussian Quadrature (GQ) to retreive the coefficient values.

% Obtain the Christoffel coefficients and the Legendre roots.
[Ak lambdak] = calcAks (NR) ;

% Now obtain the coefficients from W.
for p=1:maxp
coeff = sym('0"');

for k=1:NR
for j=0: (NA-1)
% evaluate the function at the appropriate GQ prescribed position.
f = subs (W, {R,aP}, {sqgrt ((l+lambdak(k))/2),sym(2*pi*j/NA)});

% get the Zernike GQ value
f*subs (Z{p}, {R,aP}, {sqgrt ((1+lambdak (k))/2),sym(2*pi*j/NA) }) *Ak{k};

(9]
Il

o

% Adjust value by the normalization value. For real zernikes.
coeff2 = double (vpa(coeff * (Mn(p) + 1)/ ((1+(Mm(p)==0))*NA)));

% Calc and print the difference between original coefficient value and
% GQ calculated coefficient value.
fprintf (1, 'P%2d: %2d,%3d: %$30.27f %30.27f %$30.27f \n',

P, Mn (p),Mm(p),Wc (p),coeff2,Wc(p)-coeff2);

end % for p statement

o

end % function verifyRealZernike



Function: calcAks
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The following is a Matlab® function to calculate the N™ order roots of the

Legendre polynomial and the associated Christoffel numbers. This is called from the

main validation function presented above.

function [Ak theRoots]=calcAks (N)
$CALCAKS Roots of the Nth order Legendre polynomial and Christoffel numbers.

00 0P d° d° d° o P d° d° d° o

o°

To obtain accurate results out to the DIGITS decimal position, Matlab's
symbolic processing is used in the calculations.

INPUT:
N = The order of the Legendre polynomial.

OUTPUT:
Ak = a Matlab cell containing the symbolic Christoffel numbers.
theRoots = a matrix containing the N roots of the Legendra polynomial.

Written by Robert W. Gray, 08-22-2013

syms x lk real;

% Calculate the N roots of Legendre polynomial.
% From: http://www.mathworks.com/help/symbolic/mupad ref/orthpoly-legendre.html

strEqu = sprintf ('QRoots := numeric::gldata(%d, DIGITS) [2]',N);
evalin (symengine, strEqu);
theRoots = evalin (symengine, 'PRoots := map (QRoots, y -> 2*y - 1)");

% Preallocate the cell
Ak = cell(N,1);

% Form the Legendre interpolation fundamental polynomials
% and then calculate the Christoffel numbers by integration.
for k=1:N

1k = sym(1l);

for j=1:N
if j ==
% skip the j=k term in the formation of the polynomial.
continue;
end % if statement
1k = 1k * (x - theRoots(j)) / (theRoots (k)-theRoots(j)):;
end % for jJ
% Do the integeration of the Lagrange polynomial to obtain Ak.
Ak{k} = int(lk,x,-1,1);
$fprintf (1, '$d: %$s \n',k,char (Ak{k})); % Optional printing of values

[

end % for k

end % function calcAks
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Function: makeZernike

This function returns a Matlab® symbolic expression for the specified Zernike

polynomial.

Using symbolic expressions for the Zernike polynomials avoids

computational inaccuracies in the numerical representation of the Zernike polynomials.

This is called from the main validation function presented above.

function Znm =

o°

makeZernike (n,m, sR, sA)
Returns a symbolic express for the specified real Zernike polynomial

% INPUT:

% n = positive integer or zero, order of the Zernike polynomial.
% m = integer (positive or negative or zero), azimuthal parameter.
% m >= 0 will ALWAYS mean the cosine factor.

% m < 0 will ALWAYS mean the sine factor.

% sR = string containning the radial variable name.

% For example 'H' or 'R', etc.

% sA = string containning the angle variable name.

% For example 'aPx' or 'aPy' etc.

% aPx = angle, Phi, x-axis reference

% aPy = angle, Phi, y-axis reference

% aTx = angle, Theta, x-axis reference

% aTy = angle, Theta, y-axis reference

% OUTPUT:

% Znm = symbolic expression of the specified Zernike polynomial.

o°

syms zZnm R aP numerator denominator real;

if n == 0
Znm = sym(1l);
return
end % if statement
R =
abP =

sym(sR) ;
sym(sA) ;

Rnm = sym(O0);
positivem = abs (m);

for k=0: ((n-positivem)/2)
sym((-1) "k*factorial (n-k));
sym(factorial (k) *factorial ((n+positivem) /2-k) *factorial ((n-

numerator =
denominator =
positivem)/2-k));
Rnm =

end % for k statement

o

Rnm + numerator/denominator * R” (n-2*k);

% Put in the real azimuthal dependence.

ifm >= 0

Znm = Rnm * cos (positivem*aP);
else

Znm = Rnm * sin(positivem*aP);
end % if statement

o

end % function makeZernike
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Appendix IV. Zernike Polynomials as Decentered Rotationally
Symmetric Terms

While working with the real number Zernike polynomials and aspheric optical element
definitions, it was discovered that the low order Zernike polynomials could be expressed
as a sum of decentered rotationally symmetric terms. A literature search did not reveal
any reference to this property of Zernike polynomials. Since one way to define freeform
surface shaped optical elements is by the Zernike polynomials, and since NAT can be
used to analyze the field dependence of decentered optical elements (including aspheres),
one wonders if there might be a way to use this sum of decentered rotationally symmetric
term composition property of the Zernike polynomials to include surfaces defined by
Zernike polynomials (or by sums of monomials) into NAT.

Consider the following sag equation for a component of a surface
n

z:c[(x—éx)2+(y—5y)2] (IV.1)

where ox and Sy are fixed but arbitrary real constants and where n is a positive integer

and c is a real constant. This describes a rotationally symmetric shape (called a

decentered rotationally symmetric shape term) that is decentered to the position (5x, o y)

in the z=0 plane. The case for (6x=0, dy=0), c =1, and n = 1,2,3,4 are shown in Figure

V.1
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Rotationally Symmetric Forms

Figure IV.1 Cross-section of several rotationally symmetric forms.

Hypothesis: Any xy-polynomial surface having a component sag equation of the

form
z=x"y", (IV.2)

where m and n are positive (or zero) integers, can be written as

Imax

7= cP" (5%,5Y,), (IV.3)

i=0

where imax is a finite integer, n, are positive integers, c, are real constants and

P (5.9, =[ (x-x +(y—oy Y |". (V4

A general proof of this hypothesis has not been found. However, several explicit

examples have been worked out and are tabulated below.



261
If the hypothesis is true, then since any Zernike polynomial is a finite sum of

monomials of the form x"y", the following Corollary is implied.

Corollary I: The Zernike polynomials are composed of finite sums of decentered

rotationally symmetric shape terms.

Note that a decenter amount of zero is allowed. This is needed for the Zernike
polynomials that have no azimuthal angle dependence.

A few monomials and their decentered shape term equivalence are tabulated in
Table IV.1 and Table IV.2. The only reason that the table stops at the point shown is
because of the time involved in working out the correct decenter values. Aside from
time, there appears to be nothing limiting the table from being expanded to any monomial
required. Table IV.1 and Table IV.2 are suggestive that all monomials can be
represented as sums of decentered shape terms.

A potential down side to expressing the Zernike polynomials as sums of
decentered shape terms is that the higher the order of the Zernike polynomial, the more

decentered shape terms required for its equivalent expression.



Table IV.1 Monomials and their decentered shape term equivalent.
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Monom. Sum of Decentered Shape Terms
1 P°(0,0)
© | P(L0)-P@0)
Y 4(PO-)-P(01)
] 5(P0.0)+ (P (-10)+ P*(1L0)-P*(0,-2)-P* 02
Y i[ (FaEeF ) (% TD
Y’ ( 0))+ i( (0,-1)+P(0.1)— P*(~1,0)— P*(1,0))
X3 1:;(P(10) P(-10))+ 332(P (-10)-P?(1,0))
o) £y 14
Y ~(P(0.)-P(0,-1))+ 312(P2(o.—1>—
+%(P3(0,1)—P3(0,—1)+P (%,%1}—P3(§,%J+P3(§,%J—P{_—fén
Xy’ %(P(Lo)-P(-l,o))+3—12(P2(-1,0)-P2(1,o))
Al paoreioer( 28] w1 E )2 2E) (1 8)
y? %(P(O,l)—P(O,—l))+3—32(PZ(O ~1)-P?(0,1))

afosror( 5[ (5 (5]




Table V.2 Monomials and their decentered shape term equivalent, cont.
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Monom.

Sum of Decentered Shape Terms
3

§P2(0,0)+% P?(~1,0)-P?(L0))

+%(P3 (-1,0)+P*(L0)~P*(0,-1)-P*(0.1))

(P*(0,-1)+P?(0,)-

+%(P4(0 -1)+P*(0,1)+P*(~1,0)+P*(1,0)
*zaleE e w3
¥y e r@erlEerE) e ]
wrFe)leslEa) (34
+1[P [m 2\/5] o [ 2 2 JE]+P [Jz N3 \/2+\/§JP4{\/2+\/§ ’\/2\15]
128 2 2 2 2 2 2
A5 ) ) )
X2y Ipz(0 0)+%(,P4 (~1,0)~P*(L,0)— P*(0,-1)~ P*(0,1)
Gl (d)
xy3 312(7P {%%}P (% %}PZ{%’% +Pz[i2';lj]
Pl =, pp[ L L) ps P

-2 22
o

2

4[—\/2+\/§ 'JZ_JEJ_PA[
+p4[J22J5,~/2+2J5]PA[JHZJ?JZ;ﬁ] [JZN' JZ ] A[JZZJ?JZWED

2

|

3p2(0,0)+

o %(PZ(—1,0)+ P?(1,0)-P?(0,-1)-P

*(0.))

418(P (0,-1)+P*(0,1)-P*(- 1,0)—P3(1,O))

L P*(0,1)
1 1

+@(P4(—10)+P4( 0)+P*(0,-1)+
~FaEE " EE (G E)
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Table V.3 lists the Zernike polynomials that have been expressed using the

monomials listed in Table IVV.1 and Table IV.2.

Table 1V.3 0-P normalized Zernike polynomials and their binomial representation. The y-

axis is being used as the reference axis for the Zernike azimuthal parameter.

Stnd. Polar Form Sum of Monomials
z0 |1 1
. osin (0) X
Z, | pcos(0) y
z,* | p’sin(20) 2xy
z7 | 2p*-1 2x% +2y% -1
z; | p’cos(20) —x*+y?
z;* | p’sin(30) —x° +3xy°
Z;" | (3p°-2p)sin(0) 3x* — 2x+3xy?
Z; | (3p°—2p)cos() 3y’ -2y +3x%y
z; | pcos(30) -3x°y+y°
z,* | p'sin(40) —4x%y +4xy®
2,7 | (4p"=3p%)sin(20) | 8x’y—6xy +8xy’
Z; | 6p*—6p°+1 6x* —6x% -6y +12x°y? +6y* +1
z; (4,0“ —3p2)cos(2¢9) —A4x* +3x* —3y* +4y*
z; | p'cos(46) x* —6x2y° +y*

Table V.4 gives explicitly the Zernike polynomials in terms of the decentered

shape terms. Table V.4 uses the y-axis as the Zernike reference axis.



Table 1V.4 0-P normalized Zernike polynomials composed of decentered shape terms. The y-

axis is the reference axis.

Stnd. Sum of Decentered Shape Terms

zg | P°(0,0)

20| AP(10)-Po)

2 3(PoAY-P)

= rEerEE e

zZ; | -P°(0,0)+2P(0,0)

Z; %(—Pz(—l,o) ?(1,0)+P?(0,1)+ P(0,-1))

Zy® 112[P3(1,0) ( 10)+P3[_21 _—23 —P{i,‘f]w{jfj—w[;,_fﬂ

z;! %(P(l,o)—P(—l,O))+§(P2(—:LO)—Pz(l0))

Z; %(P(O,l)—P(O,—l))+g(P2(O,—l)—Pz(O,l))

il F e e )

RE e e
AT EE| | B £) BT LE {57 £

TG G )
AFze P EE G (EE)

Z7 | 6P*(0,0)-6P(0,0)+P°(0,0)

Z; %( *(-1,0)-P*(1,0)+P*(0,-1)+P*(0,1))+ ;(P2(1,0)+PZ(—LO)—PZ(O,l)—PZ(O,—l))

2w ewnecn (g 3] o3 ) () ~(aa)
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Table 1V.5 provides the same decentered shape term tabulation of the Zernike

polynomials now using the x-axis as the reference axis.



Table V.5 0-P normalized Zernike polynomials composed of decentered shape term using

the x-axis as reference axis.

Stnd. Decentered Shape Term Equivalent
28 [ P°(0,0)
z; %(P(O,—l)—P(O,l))
Z; 4(P(-£0)-P(10))
N s
z7 | -P°(0,0)+2P(0,0)
Z; %(PZ (~1,0)+P?(1,0)—P*(0,2)P? (0,-1))
| dfrwrer (2 (E ()
77 % (P(Oll)_P(o,_l))+g(P2(0,—1)—P2(O,1))
Z; %(P(l,o)_P(—l,o))Jr:( 2(-1,0)-P*(1, 0))
% | Hreo-reoe 38w 2E w3 e (22
z:* [ [w V- ] [Jz 7z J2+4']+p[J2;v’55J2;ﬁJ p[JM S ]
[P AR T BT B o T
“ @ EE T EE R
A EaEwtEE) e (F2)
z? 6P?(0,0)-6P(0,0)+P°(0,0)
z; 6(_p3(0,1)_p3(0,—1)+P3(:LO)+PS(—l,O))+g(P2(0,—1)+PZ(O,l)—PZ(—l,O)—PZ(l,O))
z, %(PA(—1,0)+P“(LO)+P“(O,—l)+P"(O,l)—P“[_—;,_T;j—P"[%,%]—P{%x%j—w[%v%])

266
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Note that for each case shown in Table V.4 and Table IV.5 either 6x° +5y* =1

or 5x*+35y* =0. That is, the decentered shape terms are all decentered to the perimeter

of a unit radius disk, or are not decentered at all. This is shown in Figure IV.2,

Figure 1V.2 The small circles indicate the positions of the decentered shape terms for the
Zernike Polynomials listed in Table 1V.4.

Upon further investigation, it has been found that the position of the decentered
shape terms need not be restricted to the perimeter of a unit radius disk. It appears that
any convenient radial position can be selected. For example, selecting a radial
decentering of 1/10™ of the unit radius results in the following decentered shape term

sums for the Zernike polynomials of Table 1V.6.



Table 1V.6 0-P normalized Zernike polynomials composed of decentered shape terms using

the x-axis as reference axis, and a decenter amount of 1/10.
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An example of utilizing this property of the Zernike polynomials together with

NAT to describe the field dependence of the wavefront aberration function for optical
elements having a freeform surface shape defined by the Zernike polynomials is

presented in Chapter 7.
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Appendix V. Wavefront and Transverse Ray Coefficients

In his book [53] Cox provides a derivation for the expansion of the transverse ray
aberration function, €, through 5™ order that is independent of the wavefront aberration
function. Buchdahl [67] provides a method for calculating the resulting transverse ray
aberration function’s expansion coefficients. In an attempt to obtain equations for the 6"
order wavefront aberration function’s expansion coefficients, Wym, it might be thought

that the equation

€(Hx,Hy,px,py)=n.iV W(H H,.p.0,) . (V.1)

u ' Px vpy

may be used to obtain expressions for the transverse ray aberration function expansion in
terms of the wavefront aberration function expansion. One would then only have to
associate Cox’s results with the gradient equation results to obtain equations for the Wyn
expansion coefficients in terms of the transverse ray expansion coefficients. However, it
is shown here that this approach leads to inconsistent equations for some of the 6™ order
Wim coefficients.
Cox’s equations can be stated as follows
e, = A p’sin(¢)+ AH p?sin(2¢)+ AH?psin(p)

+B,p°sin(@)+B,H p*sin(2¢)+B,H?p’sin(p)
+B,H?p’ cos® (¢)sin(¢)+B,H’p?sin(2¢) + B;H psin(p) | (V.2)
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¢, = Ap’ cos(p)+ A, (2+cos(2p))H p* + AH?pcos(p) + AH’

1B’ cos((p)+ B, (%+cos(2¢)) Hp* - 2dl'2 (A1+ AZ)Hp4
B,H?p*(cos () +1)cos(p)
1

1 1
+B,H?p’ cos(go)+F(Ai—§A4 +EA3szp3 cos(p)

+[(285+B7)+(BS+B7)cos(2go)}H3p2+d—1'2(A2 +%AA—%A3JH3,02

+B,H*pcos(¢p)+B,H® , (V.3)
where A; are the 3" order transverse ray expansion coefficients, B; are the 5™ order
transverse ray expansion coefficients, p=(p,¢)= ( o py) are the pupil parameters with
the angle ¢ measured from the y-axis, H is the field parameter, and d' is the distance
from the exit pupil to the Gaussian image plane. The notation used for Eq. (V.2) and Eq.

(V.3) is substantially different from that employed by Cox in order to match the notation

used throughout this dissertation.

Buchdahl [67, 68] employs a different set of expansion coefficients. He uses o,

for the 3" order coefficients and u for the 5" order coefficients. The conversions are as

follows:
o=A, (V.4)
o,=A, (V.5)
V.6
o= (A -A), o

(V.7)
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o;=A, (V.8)
=8, (V.9)
3 1
1y =EBZ_W(A1+A2) : (V.10)
=B, , (V.11)
0 =B4+Bs+d—1.2[a—§A4+§A3] , (V.12)
Hs =By, (V.13)
My =B, (V.14)
1 1. 1
ﬂ7:285+B7+F(A2+EA4_§A%J , (V.15)
s =(Bs+B;) , (V.16)
1, =B, , (V.17)
Mo =By, (V.18)
ty=Bg (V.19)
th, =By . (V.20)

It is important to note that some of the 5" order expansion coefficients of
Buchdahl depend on 3™ order expansion coefficients.
Using Buchdahl’s expansion coefficients, the transverse ray aberration expansion

functions can be written as [67, 68, 77]
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e, =0,5in(p) p° +0,sin(2¢) p°’H + (0, + 0, )sin (@) pH?
+445in (@) p° + g, 8in (290) p*H +(,u5 + 4, COS® (@))Sin(go)/fH 2

+ 14y 5IN (200) p*H* + 11, sin (@) pH? (V.21)
e, =0,05(p) p° +0,(2+c0s(2¢p)) p’H +(30, + 0, ) cos () pH? + 5, H*
+44,c08(p) p° + (,uz A COS(2¢)))p4H +(,u4 + 11, COS° ((0))COS(¢),03H 2
+( 1t + 15,€08 (290)) p*H® + 115, c0S () pH* + 11, H® . (V.22)
For a rotationally symmetric optical imaging system, restricting the field
parameter to be along the y-axis, the wavefront aberration function expansion through 6™

order can be written as

W =Wp,0p0" +WygH p° €08 (@, ) +W,p,H? o €05 (9, ) +Wopos H p° + W, H p oS (9, )
+Wogo0° +Wig,H p° COS((Dy ) +W,,,H ?p" cos® ((Py ) +Whyo5 H p* +WyigH * p* cos? ((Py)
2

+W,H® 0% €08 (@, ) + W05 H* p° +W,5,H p° cOS* (0, ) +Wey H pcos (0, ) (V.23)
where
p=p+py (V.24)
The derivatives of W with respectto p, and p, can be calculated to be
2\"’ = Wy 5in (9, ) P° +Wog, 5in (20, ) p°H + W5 sin (0, ) pH
Py

+BWoe, Sin (@, ) p° + 2Wig, sin (29, ) p*H +(4W2405 +2W,,, cos’ (g, ))sin (,)p°H?
+W,y, 8in (20, ) p"H® + 2,5 sin (g, ) pH* | (V.25)

and



2% = MWy €05( g2, ) p° + Wiy, (2 +cos(2¢, ))sz +2(Wi, +Wopes ) 00S(9, ) pH
y

+ Wy, H® + BWyg, €03 (9, ) p° + W, (3+ 203 (299, )) p*H

+(2W24z + AW, 05 + 20, cos’ (¢y ))COS(;Dy )’03H ’

3 3
+ [EWm +2W,,, + (EW?’SS +W331j CoS (2¢y )J pz H?3

+2(W,0 +W422)cos(goy) pH W, H®.

Using these results in Eq. (V.1) gives

€ :n’_ll,l’[4W04oSin(¢y)p3 +W1315in(2¢y)p2H + 2Wo505 Sin((oy)sz
k Uk
+6W0603in((0y)p5+2W1513in(2(0y)P4H
+(4Wz4os + 2W,,, cos” (¢Y))Sin(¢y)p3H2

Wi Sin (20, ) p7H + 2W 06 sin(goy)qu,

and

&= nllw [4W040 COS(¢y)p3 Wiz (2 + COS(Z(OV ))'DZH +2(Whgp +Woges )COS(% )pH 2
k Yk
+ W, H +6W,,, cos(goy)p5 +W, (3+ 2cos(2(py ))p4H

+ (ZW242 + AW 05 + 2W,y, cos’ ((py))COS(goy)psH i

3 3
+ (Ewm +2W,,;, + (Ewm +W331)cos( 2¢y )] pz H?

+2(W,06 +W422)cos(goy) pH* +W,  H 5].
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(V.26)

(V.27)

(V.28)

Comparing like terms in Eqg. (V.21) and Eq. (V.27) as well as in Eq. (V.22) and Eq.

(\V.28), for the case of W;s; the following associations are made

. 2 .
18I (2¢) p*H = n'—u'W151 sin (2¢y)p4H :

k 2k

(V.29)



1
(,u2 + 44 COS(2¢>))p4H = WW151(3+ ZCOS(Zgoy ))p4H

Uy
From the first equation, the following relation is obtained,

Ny Uy
Wi, = 5 H

The second equation can be written as
3
My Uy My U

It then follows that

Ny Uy
W5, = 3 Hy -

Combining Eqg. (V.31) and Eq. (V.33) leads to

3

H :E/us :

This relation is only true for special cases and is not true in general.

2
Wigy +——Wig, C0S( 20, ) = 11, + 14,C05(2¢0) .
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(V.30)

(V.31)

(V.32)

(V.33)

(V.34)

Therefore, the

equations developed for Wys; above only hold for special cases and are not consistent

generally. Buchdahl, p. 47 [67] writes:

“If the primary coefficients are negligible, we have

3
IUZZEIU3
Hy = Hs T Hg
Hoy = Hg + Hy

and these identities will be approximately valid for well-corrected

systems.”

(31.81)
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By “primary coefficients” Buchdahl is referring to the 3" order transverse ray aberration

coefficients. From Eg. (V.10) and Eq. (V.11) it can be seen that when the 3" order
coefficients A; and A; are zero then Eq. (V.34) will hold. However, this is a special case
and is not true for all optical imaging systems.

In a similar way, equations for other 6" order Wi coefficients can be derived
that lead to inconsistent equations. Therefore, this approach for obtaining equations for

the 6™ order Wigm expansion coefficients cannot be used.
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Appendix VL. Calculating Field Linear, Field Conjugate Astigmatism

In this Appendix, the derivation of field linear, field conjugate astigmatism is presented.

This field dependence for the Zernike astigmatism term of the wavefront aberration

function’s expansion occurs when a Z;° ( p) cap shape is added to a spherical shaped
optical element, as discussed in Chapter 7. Additionally, it is shown that

6V,,,H +6V,,H=Cx H", (V1.1)
where 6V,,,H" is the field contribution due to adding a Z,*(5) shape to an optical
element’s surface, 6V,,, H is the field contribution due to adding a Z,*(5) shape to an
optical element’s surface, and where H” E(HX,—Hy), H E(Hy, HX), and

C= (6V,,,.6V,,, ). This provides a connection to the form for field linear, field conjugate

astigmatism reported in [72].

It is first shown that

Vi {H _&As}j ~V,, {H +&As}j -0, (V1.2)

and
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* —

H"=(H,,—H,)=6Hg (V1.4)

(juxtaposition of vectors indicates the geometric product of GA) and where

G =(-1,0), (VI.5)

G2 {E,QJ : (V1.6)
2 2

s :(l,lgj . (VL.7)
2" 2

In the derivations below, the following 2D GA relations are often used without

explicitly indicating when they are used:

€6 =66,=1, (V1.8)
66, =68 . (V1.9)

By Eg. (2.64) and Eq. (2.65)
{H”i&Ai}i:(Hi*Ai)én(H”ﬁAi), (V1.10)

where 7 =1 or 2 specifying which axis is used as the reference axis. This can be written

as
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{H i5Ai}i =Hg, (H +6, )64, (H*6,)
=HE,H £ HE 6 +5,6,H +6548,5, . (VI.11)

Since SVP is commutative,
— 2 — —
{H6,| =HeH+26,6 H+5,6,5, . (VI.12)
n

Letting A stand for the left hand side of Eq. (VI.2), and using Eq. (VI1.12), Eq. (VI.2) can

now be written as

I,
D>
T,
+
)
Q.
&
D>
I,
+
Q.
3
D>
=
Q.
b
S—
—~
<
N
w
N

)
Vo5 (2646, H) —Voy (26,56, H ) (V1.14)
Regrouping the terms, Eq. (V1.14) can be written as
A=—2,, (G + Gy +Ga)6,H . (V1.15)
And by Eg. (VI.5) through Eq. (V1.7)
G +Gpy+6,,=0 . (V1.16)

Therefore, by using Eg. (V1.16) in Eq. (V1.15),
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szz{F| _&AS}i _szz{ﬁ +&A3}’27:|:0' (V1.17)

To derive Eq. (VI1.3), let B stand for the left hand side of the equation and write

out the dot products as
(H+6,)(H+6,)=D,+26,+H , (V1.18)
where

D_ :l:lol:i +5—Ai.5-Ai . (Vllg)

(H i&Ai}i —E +25,6,H , (V1.20)
where
E =HéH+5,6,6, - (VI1.21)
Then
é:[vm(ﬁ G (=G ) {H =), Vi (F+ G J(H +6) (A 6] +
Voo (H =6, )o(H —6 ) {H —&Az}i Vi (H 46, )o(H +6,,){H +&A2}i n
Vi (F =G Jo(F =G, ){F =G}’ ~Vaga (F 460 ] 46 {m%ﬂ
=V (D, =26 4+H ) (E, ~ 26 48, H ) Vi, (D, + 26 °H ) (E, + 25 46, H ) +
(
(

~Viy ( Dy +26 4°H )(E; +26 46, H ) L (V1.22)

Expanding gives



E§=V422(DE ~2D,6,48,H ~2(Gy+H ) E, +4(GyoH ) ,6 H)

+v422( DE, - 2D,5,,6 H - 2( H”)}—4(5A1.H)6A1éﬂﬁ)
(

+V422(—D2E2 2025A2énH”—2(*A2.H E, ~4(GpH) G408, H)
Vs ( DyEg ~2D;5 o8, H =2(G g H ) Ey +4(G 0 H ) 5,8, H |
Vs (D 2055458, H —2(G g H ) By —4(G o H ) 58, H )

And simplifying gives

B =V, (-4D,6,6,H —4(GuoH ) B, )+Vip, (-4D,6,,6, H —4(5,H ) E,

Vs (4D,G 8, H ~4(G°H ) E; )

Rearranging gives
B =-4V,,D,6,6, H - 4V,,,D,6,,6 H —4V,,,D,6,,6, H
- W (G e (G ) E, - e (51 ),
and

B= —4V422(Dl5'Al +D,0,,+D 5‘A3) € H
-, |:(6-A1.|:i) (O-AZ ) ( H) *3] )

Because the &, are unit vectors, (see Eq. (V1.5) through Eq. (V1.7))

Then

and
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(V1.25)

(V1.26)

(VI1.27)

(V1.28)
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-4V, [(5A1-H E+<&A2'H)E2+ &AS.H)E3:|’ (V1.29)

AN, [(&Al.ﬁ) 1+(5A2'H ) E, +(&A3'|:i ) Es] - (V1.30)

B =V, | (G ) B, +(GooH ) B, +(G0°H ) Es | (V1.31)

o
Il
A
=<
L
—_—
Qi
s
T,
I
)
T,
+
Qi
s
D
Qi
b=
SN
+
Qi
5
Ix
SN
—_
I
R
I
+
Q
'
o
“Q
5

n
+(G e H ) (He, H +6A3é,76A3)] | V1.32)
n + 6-
+(6’A3-|:|)|:|é,]|:| +(6’A3-|:|)6'A3é”6'A3J . (VI.33)

E:—4v422[(& +H ) HE, H + (G H ) HE, H + (5 5+ H ) H6, H

Al 7
+(GueH )&Aléna-Al + (GAZ.I:I )GAzquAz + (&AS'H )&Aséq&As] : (V1.34)

B =4V, | (G + Gy + Gy o H (HiE,H)
( )GAzén6A2 +(5'A3’H )&Aséqa-As] , (V|35)

+(GpH )58, G +

B =V, | (Gp1H ) 58,50 +(GnoH ) 608,z +(GgtH ) 5y s | (V1.36)

Using the GA relation Eqg. (2.7) to write the dot products as
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GpoH =3(5Ai|:| +Ha,) | (V1.37)
2
Eq. (V1.36) can then be written as

= 1/ 5 5= V= ~- 1/ N
B=-4V,, |:§(O'A1H +H aAl)aAlenaAl +§(0A2H + HaAZ)GAZe,?aA2

+%( 5 poH + H &As)&méﬁm} | (V1.38)
B =y, | (61HG W8, G + H5 618,50 )+ (GroH 51, + HE105108,5 )
+(GpsH Gy s + HE sG5| , (V1.39)
Since
GpiGas = G oGy +Ga AGy =140=1 (V1.40)
Eq. (V1.39) can be written as
B =, | GyHGuE 50+ HE Gy + 5, HG 8,5, + HE G,
+ &A3H5A3é,]5A3 + |:|é,]5'A3] ] (V1.41)
Regrouping the terms gives
B =y, | GyHGWE, G + 5 HG8,5, + G rsH 58,5
+Hé Gy, + HE, G, + HE G | , (V1.42)

B=-2V,, (GAlH 0 x€,0n +0A2H0'Aze770A2 +0o,H O'AgenO'A3) , (V1.44)
B=-2,, (e,]e,IO'AlH Op OmtE, UO'AZH 726,082 + ,7e,7O'A3H O'AsenO'A3) , (V1.45)
B =V, (6,H518,516,00 +6,HG518,60,6,50, +6,H5 18,548,5s ) (V1.46)
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B =—2V,, (6,H6,6,548,58,5x +8,H6,6,50,6,51,6,5 5, +6,HE 6,516,508, ) - (V1.47)

The reference axis selected in this dissertation is the x-axis, so € issetto €. Then

n

6,610 1105 ) - (V1.48)

Since the o, are known explicitly, the following calculations can be performed to show

that
Onbon€onm =6 , (V1.49)
G100 n =€ (V1.50)
and
G b5 r Gy =6, . (VI1.51)
Explicitly, the calculations are
G =(-10)=—¢, (V1.52)
G800 =(-6)& (-8)8(-8) = e&8es =& , (V1.53)

Next,

&AQ:(E,Q}%@—S@ | (V1.54)
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A A 1, 3. 1, 3, 1.1, 3.
00260060, = Eeﬁ'?ez € Eel"'?ez € E 1+7ez
1., 3., [1.. 3..11. 3.
= E 1l+7e2el Eelel+7€zel Eel-i'?ez
= l 1+—3éé +—3éA l+£éA 1é +—3é
2222122912221 ST,
= l+—3é2”1+£é2"1+§é2élé; 1éﬁﬁé2
4 4 4 4 2 2 , (V1.55)
0,80 ,,6,0 1 1”+—3é +—3éA 1A+—3é +ﬁe” lA+—3é
A2~1~ A2~ A2 42 22 421 2e1 22 421 21 22
Bageq[Le B
4 2¥1v2~1 2 1 2 2
1. B, B, 3. B 3...
:g 1+?ez +?ezel 1+§ezelez +?ezelel '|'§e2 1ez
AAAAA N3, .. A
+ (— ezelez elel +— ezelez elez ] (Vl 56)
o .. 1. 3. B. 3. 3. 3. 3. 33,
aAzelaAzelaAz:§e1+?e2+?e2—§e1+?e2—§e1—§el—?ez, (VI1.57)
. 1, 3, 3, 3,
O-AZElaAZelGA2:§el_§el_§ 1_§e1 , (V1.58)
6-A2é15-A2é15-A2 = _él . (V|-59)
And for Eq. (V1.51)
5A3=(1,—_J§]=£é1+—_45é2 (V1.60)
2 2 2 2

So,

N |-
D>
+
|
N %
w
D>
N
N——
D>
7~ N\

s oas 1, 3, )(1, -3,
O 38102360 3 :( > 1+TE‘2JE‘1[§91 +_EZJ , (V1.61)
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G365 ps€.6 85 = l(ljt_—ﬁézél}t_—Béz][%+jé2éljj(lél+_—;/§e] (V1.62)

. (1B B 3, 1, B,
O ps€0 ps€0 a3 = Z+ 2 6,6 + e2e1+ze2ele2elj 5e1+—e2J , (V1.63)

2

e a1y B B (1 B ) B aaa(Lls . B,
O ps€10 03810 3 z(_(_el"‘_ez}"_e el(_e]_ +—ezJ+Zezelezel(§el +Tezj] ,(V1.64)

o J’ 6405 .3
G ps€10 €10 3 = ( &+— Tezeleﬁge 66, + 68006 +—— ezele &g, | (V1.65)

oo (1. B, 2B, 6, 3. 33,
GA3610-A3elO-A3=(§e1+ 3 e, + 3 ez_gel_gel+Te2]' (V1.66)
A oA 1, 6, 3.
O 3810 a310 p3 =§e1_§el_§ 1 (V1.67)
6-A3é16A3é16-A3 :_é1 . (V1.68)

Then Eq. (V1.48) can be written as

B=—2V,,(H'¢ (-6)+H¢(-6)+H"¢(-4)), (V1.69)
B=2V,,(Hé6+He6 +Hé4) . (V1.70)

And finally,
B=6V,H" . (VI.72)

This is the field linear, field conjugate field contribution described in Chapter 7 for the

case that a Z3+3 (,5) Zernike cap shape is added to an optical element.



287
When the Zernike cap shape added to an optical element’s shape is of the form

aZ,>(p)+bZ;%(p) where a and b are real constants, then the field contribution to the

Zernike astigmatism term of the wavefront aberration function expansion takes the form

(see Table 7.1)
Fycop = VioH +6V), H (V1.72)
where

H=(H,.H,) . (VI.73)

It is here shown that (\VV1.72) can be written as

F, cap =V H +6V),H=Cx H", (V1.74)
where C =(6V,,,,6V,,,).
From Table 7.1
6V, H =6V, (H,,—H, ) , (VI.75)
and
6V, H =6V, (H, . H,) . (V1.76)
Then
Fy cap = Vi H 6V, H =6V, (H,,—H, )+ 6V, (H, H, ) . (V1.77)

Combining into a single vector, this becomes
IEZ.Cap = (6\/422Hx + 6\/4,22H y! 6\/4'22Hx _6\/422H y) (V|-78)

Define
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C =(6V,,,,6V,,) - (V1.79)

Then

Cox H™ =(6V,0,6V,0 ) %, (Hyo —H, ) = (6V,58, +6V,1,6, )6, (H,6, — H 6, ) .(V1.80)

X

Expanding gives

Cox H =6V, (H& —H 8, )+6V,;,6,6 (H & —HE,) (V1.81)
Cx H" =6V,,H,8 —6V,,,H 6, +6V,,H 6,66 —6V,,H 6,686, , (VI.82)
Cx H" =6V,,H,& —6V,,,H &, +6V,,H,&, +6V,,H & , (V1.83)
Cx H =(6V,,H, +6V,,,H, )& +(6V,,,H, —6V,,,H, )¢, , (V1.84)
Cx H =(6V,5,H, + 6V, H,, 6V, H, —6V,,,H, ) . (V1.85)

The right hand side of Eq. (V1.85) is the same as the right hand side of Eq. (VI1.78).

Therefore,

— — % —

F; cap = Vi, H +6\/422H:C* H . (V1.86)

X

This (f*x H™ form is the field linear, field conjugate astigmatism field contribution

reported in [72]. However, in [72] the y-axis is used as the reference axis for SVP

whereas Eq. (V1.86) is written using the x-axis as the reference axis.



