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PREFACE

The Golden Ratio is a book about one number—a very special number.

You will encounter this number, 1.61803  , in lectures on art history,

and it appears in lists of "favorite numbers" compiled by mathemati-

cians. Equally striking is the fact that this number has been the subject

of numerous experiments in psychology.

I became interested in the number known as the Golden Ratio fif-

teen years ago, as I was preparing a lecture on aesthetics in physics (yes,

this is not an oxymoron), and I haven't been able to get it out of my

head since then.

Many more colleagues, friends, and students than I would be able

to mention, from a multitude of disciplines, have contributed directly

and indirectly to this book. Here I would like to extend special thanks

to Ives-Alain Bois, Mitch Feigenbaum, Hillel Gauchman, Ted Hill,

Ron Lifschitz, Roger Penrose, Johanna Postma, Paul Steinhardt, Pat

Thiel, Anne van der Helm, Divakar Viswanath, and Stephen Wolfram

for invaluable information and extremely helpful discussions.

I am grateful to my colleagues Daniela Calzetti, Stefano Casertano,
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and Massimo Stiavelli for their help with translations from Latin and

Italian; to Claus Leitherer and Hermine Landt for help with translations

from German; and to Patrick Godon for his help with translations from

French. Sarah Stevens-Rayburn, Elizabeth Fraser, and Nancy Hanks

provided me with valuable bibliographical and linguistic support. I am

particularly grateful to Sharon Toolan for her assistance with the prepa-

ration of the manuscript.

My sincere gratitude goes to my agent, Susan Rabiner, for her re-

lentless encouragement before and during the writing of this book.

I am deeply indebted to my editor at Doubleday Broadway, Gerald

Howard, for his careful reading of the manuscript and his insightful

comments. I am also grateful to Rebecca Holland, Publishing Manager

at Doubleday Broadway, for her unflagging assistance during the pro-

duction of this book.

Finally, it is due only to the continuous inspiration and patient sup-

port provided by Sofie Livio that this book got written at all.
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1

PRELUDE TO A

NUMBER

Numberless are the world's wonders.

-SOPHOCLES (495-405 B.C.)

The famous British physicist Lord Kelvin (William Thomson;

1824-1907), after whom the degrees in the absolute temperature scale

are named, once said in a lecture: "When you cannot express it in num-

bers, your knowledge is of a meager and unsatisfactory kind." Kelvin

was referring, of course, to the knowledge required for the advancement

of science. But numbers and mathematics have the curious propensity

of contributing even to the understanding of things that are, or at least

appear to be, extremely remote from science. In Edgar Allan Poe's The

Mystery of Marie Roget, the famous detective Auguste Dupin says: "We

make chance a matter of absolute calculation. We subject the unlooked

for and unimagined, to the mathematical formulae of the schools." At

an even simpler level, consider the following problem you may have en-

countered when preparing for a party: You have a chocolate bar corn-

posed of twelve pieces; how many snaps will be required to separate all

the pieces? The answer is actually much simpler than you might have

thought, and it does not require almost any calculation. Every time you

make a snap, you have one more piece than you had before. Therefore, if
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you need to end up with twelve pieces, you will have to snap eleven

times. (Check it for yourself.) More generally, irrespective of the num-

ber of pieces the chocolate bar is composed of, the number of snaps is al-

ways one less than the number of pieces you need.

Even if you are not a chocolate lover yourself, you realize that this

example demonstrates a simple mathematical rule that can be applied

to many other circumstances. But in addition to mathematical proper-

ties, formulae, and rules (many of which we forget anyhow), there also

exist a few special numbers that are so ubiquitous that they never cease

to amaze us. The most famous of these is the number pi , which is the

ratio of the circumference of any circle to its diameter. The value of pi,

3.14159 . . , has fascinated many generations of mathematicians. Even

though it was defined originally in geometry, pi appears very frequently

and unexpectedly in the calculation of probabilities. A famous example

is known as Buffon's Needle, after the French mathematician George-

Louis Leclerc, Comte de Buffon (1707-1788), who posed and solved

this probability problem in 1777. Leclerc asked: Suppose you have a

large sheet of paper on the floor, ruled with parallel straight lines spaced

by a fixed distance. A needle of length equal precisely to the spacing be-

tween the lines is thrown completely at random

onto the paper. What is the probability that the

needle will land in such a way that it will intersect

one of the lines (e.g., as in Figure 1)? Surprisingly,

the answer turns out to be the number 2/pi . There-

fore, in principle, you could even evaluate Ai by re-

peating this experiment many times and observing

in what fraction of the total number of throws you

obtain an intersection. (There exist, however, less tedious ways to find

the value of pi.) Pi has by now become such a household word that film

director Darren Aronofsky was even inspired to make a 1998 intellec-

tual thriller with that title.

Less known than pi is another number, phi , which is in many re-

spects even more fascinating. Suppose I ask you, for example: What do

the delightful petal arrangement in a red rose, Salvador Dali's famous

painting "Sacrament of the Last Supper," the magnificent spiral shells of

mollusks, and the breeding of rabbits all have in common? Hard to be-
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lieve, but these very disparate examples do have in common a certain

number or geometrical proportion known since antiquity, a number

that in the nineteenth century was given the honorifics "Golden Num-

ber," "Golden Ratio," and "Golden Section." A book published in Italy

at the beginning of the sixteenth century went so far as to call this ratio

the "Divine Proportion."

In everyday life, we use the word "proportion" either for the com-

parative relation between parts of things with respect to size or quantity

or when we want to describe a harmonious relationship between differ-

ent parts. In mathematics, the term "proportion" is used to describe an

equality of the type: nine is to three as six is to two. As we shall see, the

Golden Ratio provides us with an intriguing mingling of the two defi-

nitions in that, while defined mathematically, it is claimed to have

pleasingly harmonious qualities.

The first clear definition of what has later become known as the

Golden Ratio was given around 300 B.C. by the founder of geometry as

a formalized deductive system, Euclid of Alexandria. We shall return to

Euclid and his fantastic accomplishments in Chapter 4, but at the mo-

ment let me note only that so great is the admiration that Euclid com-

mands that, in 1923, the poet Edna St. Vincent Millay wrote a poem

entitled "Euclid Alone Has Looked on Beauty Bare." Actually, even

Millay's annotated notebook from her course in Euclidean geometry has

been preserved. Euclid defined a proportion derived from a simple divi-

sion of a line into what he called its "extreme and mean ratio." In Eu-

clid's words:

A straight line is said to have been cut in extreme and mean ratio

when, as the whole line is to the greater segment, so is the greater

to the lesser.

A C B

Figure 2

In other words, if we look at Figure 2, line AB is certainly longer than

the segment AC; at the same time, the segment AC is longer than CB.
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If the ratio of the length of AC to that of CB is the same as the ratio of

AB to AC, then the line has been cut in extreme and mean ratio, or in a

Golden Ratio.

Who could have guessed that this innocent-looking line division,

which Euclid defined for some purely geometrical purposes, would have

consequences in topics ranging from leaf arrangements in botany to the

structure of galaxies containing billions of stars, and from mathematics

to the arts? The Golden Ratio therefore provides us with a wonderful

example of that feeling of utter amazement that the famous physicist

Albert Einstein (1879-1955) valued so much. In Einstein's own words:

"The fairest thing we can experience is the mysterious. It is the funda-

mental emotion which stands at the cradle of true art and science. He

who knows it not and can no longer wonder, no longer feel amazement,

is as good as dead, a snuffed-out candle."

As we shall see calculated in this book, the precise value of the

Golden Ratio (the ratio of AC to CB in Figure 2) is the never-ending,

never-repeating number 1.6180339887 . . . , and such never-ending

numbers have intrigued humans since antiquity. One story has it that

when the Greek mathematician Hippasus of Metaporitum  discovered,

in the fifth century B.C., that the Golden Ratio is a number that is nei-

ther a whole number (like the familiar 1, 2, 3, . . .) nor even a ratio of

two whole numbers (like the fractions 1/2, 2/3, 3/4,. ; known collectively

as rational numbers), this absolutely shocked the other followers of the fa-

mous mathematician Pythagoras (the Pythagoreans). The Pythagorean

worldview (which will be described in detail in Chapter 2) was based on

an extreme admiration for the arithmos—the intrinsic properties of

whole numbers or their ratios—and their presumed role in the cosmos.

The realization that there exist numbers, like the Golden Ratio, that go

on forever without displaying any repetition or pattern caused a true

philosophical crisis. Legend even claims that, overwhelmed with this

stupendous discovery, the Pythagoreans sacrificed a hundred oxen in

awe, although this appears highly unlikely, given the fact that the

Pythagoreans were strict vegetarians. I should emphasize at this point

that many of these stories are based on poorly documented historical

material. The precise date for the discovery of numbers that are neither

whole nor fractions, known as irrational numbers, is not known with any
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certainty. Nevertheless, some researchers do place the discovery in the

fifth century B.C., which is at least consistent with the dating of the sto-

ries just described. What is clear is that the Pythagoreans basically be-

lieved that the existence of such numbers was so horrific that it must

represent some sort of cosmic error, one that should be suppressed and

kept secret.

The fact that the Golden Ratio cannot be expressed as a fraction

(as a rational number) means simply that the ratio of the two lengths

AC and CB in Figure 2 cannot be expressed as a fraction. In other

words, no matter how hard we search, we cannot find some common

measure that is contained, let's say, 31 times in AC and 19 times in CB.

Two such lengths that have no common measure are called incommensu-

rable. The discovery that the Golden Ratio is an irrational number was

therefore, at the same time, a discovery of incommensurability. In On

the Pythagorean Life (ca. A.D. 300), the philosopher and historian

Iamblichus, a descendant of a noble Syrian family, describes the violent

reaction to this discovery:

They say that the first [human) to disclose the nature of commen-

surability and incommensurability to those unworthy to share in

the theory was so hated that not only was he banned from [the

Pythagoreans') common association and way of life, but even his

tomb was built, as if [their) former colleague was departed from life

among humankind.

In the professional mathematical literature, the common symbol for the

Golden Ratio is the Greek letter tau (t; from the Greek top.ii, to-mi',

which means "the cut" or "the section"). However, at the beginning of

the twentieth century, the American mathematician Mark Barr gave the

ratio the name of phi (4), the first Greek letter in the name of Phidias,

the great Greek sculptor who lived around 490 to 430 B.C. Phidias'

greatest achievements were the "Athena Parthenos" in Athens and the

"Zeus" in the temple of Olympia. He is traditionally also credited with

having been in charge of other Parthenon sculptures, although it is

quite probable that many were actually made by his students and assis-

tants. Barr decided to honor the sculptor because a number of art histo-
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rians maintained that Phidias had made frequent and meticulous use of

the Golden Ratio in his sculpture. (We shall examine similar claims

very scrupulously in this book.) I will use the names Golden Ratio,

Golden Section, Golden Number, phi, and also the symbol inter-

changeably throughout, because these are the names most frequently

encountered in the recreational mathematics literature.

Some of the greatest mathematical minds of all ages, from Pythago-

ras and Euclid in ancient Greece, through the medieval Italian mathe-

matician Leonardo of Pisa and the Renaissance astronomer Johannes

Kepler, to present-day scientific figures such as Oxford physicist Roger

Penrose, have spent endless hours over this simple ratio and its proper-

ties. But the fascination with the Golden Ratio is not confined just to

mathematicians. Biologists, artists, musicians, historians, architects,

psychologists, and even mystics have pondered and debated the basis of

its ubiquity and appeal. In fact, it is probably fair to say that the Golden

Ratio has inspired thinkers of all disciplines like no other number in the

history of mathematics.

An immense amount of research, in particular by the Canadian

mathematician and author Roger Herz-Fischler (described in his excel-

lent book A Mathematical History of the Golden Number), has been de-

voted even just to the simple question of the origin of the name

"Golden Section." Given the enthusiasm that this ratio has generated

since antiquity, we might have thought that the name also has ancient

origins. Indeed, some authoritative books on the history of mathemat-

ics, like Francois Lasserre's The Birth of Mathematics in the Age of Plato,

and Carl B. Boyer's A History of Mathematics, place the origin of this

name in the fifteenth and sixteenth centuries, respectively. This, how-

ever, appears not to be the case. As far as I can tell from reviewing much

of the historical fact-finding effort, this term was first used by the Ger-

man mathematician Martin Ohm (brother of the famous physicist

Georg Simon Ohm, after whom Ohm's law in electromagnetism is

named), in the 1835 second edition of his book Die Reine Elementar-

Mathematik (The pure elementary mathematics). Ohm writes in a foot-

note: "One also customarily calls this division of an arbitrary line in

two such parts the golden section." Ohm's language clearly leaves us

with the impression that he did not invent the term himself but, rather,



THE GOLDEN RATIO 7

used a commonly accepted name. Yet the fact that he did not use it in

the first edition of his book (published in 1826) suggests at least that

the name "Golden Section" (or, in German, "Goldene Schnitt") gained

its popularity only around the 1830s. The name might have been

used orally prior to that, perhaps in nonmathematical circles. There is

no question, however, that following Ohm's book, the term "Golden

Section" started to appear frequently and repeatedly in the German

mathematical and art history literature. It may have made its debut in

English in an article by James Sully on aesthetics, which appeared in

the ninth edition of the Encyclopaedia Britannica in 1875. Sully refers

to the "interesting experimental enquiry . . . instituted by [Gustav

Theodor] Fechner [a physicist and pioneering German psychologist in

the nineteenth century} into the alleged superiority of 'the golden sec-

tion' as a visible proportion." (I discuss Fechner's experiments in Chap-

ter 7.) The earliest English uses in a mathematical context appear to

have been in an article entitled "The Golden Section" (by E. Acker-

mann) that appeared in 1895 in the American Mathematical Monthly and,

around the same time, in the 1898 book Introduction to Algebra by the

well-known teacher and author G. Chrystal (1851-1911). Just as a cu-

riosity, let me note that the only definition of a "Golden Number" that

appears in the 1900 edition of the French encyclopedia Nouveau Larousse

Illustri is: "A number used to indicate each of the years of the lunar cy-

cle." This refers to the position of a calendar year within the nineteen-

year cycle after which the phases of the Moon recur on the same dates.

Clearly the phrase took a longer time to enter the French mathematical

nomenclature.

But what is all the fuss about? What is it that makes this number,

or geometrical proportion, so exciting as to deserve all of this attention?

The Golden Ratio's attractiveness stems first and foremost from the

fact that it has an almost uncanny way of popping up where it is least

expected.

Take, for example, an ordinary apple, the fruit often associated

(probably mistakenly) with the tree of knowledge that figures so promi-

nently in the biblical account of humankind's fall from grace, and cut

it through its girth. You will find that the apple's seeds are arranged in

a five-pointed star pattern, or pentagram (Figure 3). Each of the five
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isosceles triangles that make the corners of a penta-

gram has the property that the ratio of the length of

its longer side to the shorter one (the implied base) is

equal to the Golden Ratio, 1.618. . . . But, you may

think, maybe this is not so surprising. After all, since
Figure 3

the Golden Ratio has been defined as a geometrical

proportion, perhaps we should not be too astonished to discover that

this proportion is found in some geometrical shapes.

This is, however, only the tip of the iceberg. According to Buddhist

tradition, in one of Buddha's sermons he did not utter a single word; he

merely held a flower in front of his audience. What can a flower teach us?

A rose, for example, is often taken as a symbol of natural symmetry,

harmony, love, and fragility. In Religion of Man, Indian poet and philoso-

pher Rabindranath Tagore (1861-1941) writes: "Somehow we feel that

through a rose the language of love reached our hearts." Suppose you

want to quantify the symmetric appearance of a rose. Take a rose and dis-

sect it, to uncover the way in which its petals overlap their predecessors.

As I describe in Chapter 5, you will find that the positions of the petals

are arranged according to a mathematical rule that relies on the Golden

Ratio.

Turning now to the animal kingdom, we are all familiar with the

strikingly beautiful spiral structures of many shells of mollusks, such

as the chambered nautilus (Nautilus pompilius; Figure 4). In fact, the

dancing Shiva of the Hindu myth holds

such a nautilus in one of his hands, as a

symbol of one of the instruments initiat-

ing creation. These shells also have in-

spired many architectural constructions.

American architect Frank Lloyd Wright

(1869-1959), for example, based the de-

sign of the Guggenheim Museum in

New York City on the structure of the

chambered nautilus. Within the mu-

seum, the visitors ascend a spiral ramp,

moving on, when their imaginative ca-

pacity is saturated by the art they see,
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just as the mollusk builds its spiral chambers when fully occupying its

physical space. We shall discover in Chapter 5 that the growth of spiral

shells also obeys a pattern that is governed by the Golden Ratio.

Figure 5

By now, we do not have to be number mysticists to begin to feel a

certain awe at this property of the Golden Ratio to show up in what ap-

pear to be totally unrelated situations and phenomena. Furthermore, as

I noted at the beginning of this chapter, the Golden Ratio can be found

not only in natural phenomena but also in a variety of human-made ob-

jects and works of art. For example, in Salvador Dali's painting from

1955, "Sacrament of the Last Supper" (in the National Gallery, Wash-

ington D.C.; Figure 5), the dimensions of the painting (approximately

1051" x 65 3/1") are in a Golden Ratio to each other. Perhaps even more

important, part of a huge dodecahedron (a twelve-faced regular solid in

which each side is a pentagon) is seen floating above the table and en-

gulfing it. As we shall see in Chapter 4, regular solids (like the cube)

that can be precisely enclosed by a sphere (with all their corners resting

on the sphere), and the dodecahedron in particular, are intimately re-

lated to the Golden Ratio. Why did Dali choose to exhibit the Golden

Ratio so prominently in this painting? His remark that "the Commu-

nion must be symmetrical" only begins to answer this question. As I
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show in Chapter 7, the Golden Ratio features (or is at least claimed to

feature) in the works of many other artists, architects, and designers,

and even in famous musical compositions. Broadly speaking, the

Golden Ratio has been used in some of these works to achieve what we

might term "visual (or audio) effectiveness." One of the properties con-

tributing to such effectiveness is proportion—the size relationships of

parts to one another and to the whole. The history of art shows that in

the long search for an elusive canon of "perfect" proportion, one that

would somehow automatically confer aesthetically pleasing qualities on

all works of art, the Golden Ratio has proven to be the most enduring.

But why?

A closer examination of the examples from nature and from the arts

reveals that they raise questions at three different levels of increasing

depth. First, there are the immediate questions: (a) Are all the appear-

ances of phi in nature and in the arts that are cited in the literature real,

or do some of those simply represent misconceptions and crankish

interpretations? (b) Can we actually explain the appearance (if real) of

phi in these and other circumstances? Second, given that we define

"beauty," as, for example, in Webster's Unabridged Dictionary, "the qual-

ity which makes an object seem pleasing or satisfying in a certain way,"

this raises the question: Is there an aesthetic component to mathemat-

ics? And if so, what is the essence of this component? This is a serious

question because, as the American architect, mathematician, and engi-

neer Richard Buckminster Fuller (1895-1983) once put it: "When I

am working on a problem, I never think about beauty. I think only of

how to solve the problem. But when I have finished, if the solution is

not beautiful, I know it is wrong." Finally, the most intriguing question

is: What is it that makes mathematics so powerful and ubiquitous?

What is the reason that mathematics and numerical constants like the

Golden Ratio play such a central role in topics ranging from funda-

mental theories of the universe to the stock market? Does mathematics

exist even independently of the humans who have discovered/invented

it and its principles? Is the universe by its very nature mathematical?

This last question can be rephrased, using a famous aphorism of the

British physicist Sir James Jeans (1847-1946), as: Is God a mathemati-

cian?
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I will attempt to address all of these questions in some detail in this

book, via the fascinating story of phi. The sometimes-tangled history of

this ratio spans millennia as well as continents. Equally important, I

hope to tell a good human-interest story. A part of this story will be

about a time when "scientists" and "mathematicians" were self-selected

individuals who simply pursued questions that kindled their curiosity.

These people often labored and died without knowing whether their

works would change the course of scientific thought or would simply

disappear without a trace.

Before we embark on this main journey, however, we have to famil-

iarize ourselves with numbers in general and with the Golden Ratio in

particular. After all, how did the initial idea of the Golden Ratio arise?

What was it that led Euclid even to bother to define such a line divi-

sion? My aim is to help you glean some insights into the true roots of

what we might call Golden Numberism. To this goal, we will now take

a brief exploratory tour through the very dawn of mathematics.
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THE PITCH AND THE

PENTAGRAM

As far as the laws of mathematics refer to reality, they are not certain;

and as far as they are certain, they do not refer to reality.

-ALBERT EINSTEIN (1879-1955)

I see a certain order in the universe and math is

one way of making it visible.

-MAY SARTON (1912-1995)

No one knows for sure when humans started to count, that is, to mea-

sure multitude in a quantitative way. In fact, we do not even know with

certainty whether numbers like "one," "two," "three" (the cardinal

numbers) preceded numbers like "first," "second," "third" (the ordinal

numbers), or vice versa. Cardinal numbers simply determine the plural-

ity of a collection of items, such as the number of children in a group.

Ordinal numbers, on the other hand, specify the order and succession of

specific elements in a group, such as a given date in a month or a seat

number in a concert hall. Originally it was assumed that counting de-

veloped specifically to address simple day-to-day needs, which clearly

argued for cardinal numbers appearing first. However, some anthropol-

ogists have suggested that numbers may have first appeared on the his-

torical scene in relation to some rituals that required the successive
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appearance (in a specified order) of individuals during ceremonies. If

true, this idea suggests that the ordinal number concept may have pre-

ceded the cardinal one.

Clearly, an even bigger mental leap was required to move from the

simple counting of objects to an actual understanding of numbers as ab-

stract quantities. Thus, while the first notions of numbers might have

been related primarily to contrasts, associated perhaps with survival—Is

it one wolf or a pack of wolves?—the actual understanding that two

hands and two nights are both manifestations of the number 2 probably

took centuries to grasp. The process had to go through the recognition

of similarities (as opposed to contrasts) and correspondences. Many lan-

guages contain traces of the original divorce between the simple act of

counting and the abstract concept of numbers. In the Fiji Islands, for

example, the term for ten coconuts is "koro," while for ten boats it is

"bolo." Similarly, among the Tauade in New Guinea, different words

are used for talking about pairs of males, pairs of females, and mixed

pairs. Even in English, different names often are associated with the

same numbers of different aggregations. We say "a yoke of oxen" but

never "a yoke of dogs."

Surely the fact that humans have as many hands as they have feet,

eyes, or breasts helped in the development of the abstract understand-

ing of the number 2. Even there, however, it must have taken longer to

associate this number with things that are not identical, such as the fact

that there are two major lights in the heavens, the Sun and the Moon.

There is little doubt that the first distinctions were made between one

and two and then between two and "many." This conclusion is based on

the results of studies conducted in the nineteenth century among pop-

ulations that were relatively unexposed to mainstream civilization and

on linguistic differences in the terms used for different numbers in both

ancient and modern times.

THREE IS A CROWD

The first indication of the fact that numbers larger than two were once

treated as "many" comes from some five millennia ago. In the language
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of Sumer in Mesopotamia, the name for the number 3, "es," served also

as the mark of plurality (like the suffix s in English). Similarly, ethno-

graphic studies in 1890 of the natives of the islands in the Torres Strait,

between Australia and Papua New Guinea, showed that they used a

system known as two-counting. They used the words "urapun" for

"one," "okosa" for "two," and then combinations such as "okosa-

urapun" for "three" and "okosa-okosa" for "four." For numbers larger

than four, the islanders used the word "ras" (many). Almost identical

forms of nomenclatures were found in other indigenous populations

from Brazil (the Botocudos) to South Africa (Zulus). The Aranda of

Australia, for example, had "ninta" for "one," "tara" for "two," and then

"tara mi ninta" for "three" and "tara ma tara" for "four," with all other

numbers expressed as "many." Many of these populations were also

found to have the tendency to group things in pairs, as opposed to

counting them individually.

An interesting question is: Why did the languages used in these

and other counting systems evolve to "four" and then stop (even though

three and four were already expressed in terms of one and two)? One ex-

planation suggests that this may simply reflect the fact that we happen

to have four fingers in a similar position on our hands. Another, more

subtle idea proposes that the answer lies in a physiological limit on hu-

man visual perception. Many studies show that the largest number we

are able to capture at a glance, without counting, is about four or five. You

may remember that in the movie Rain Man, Dustin Hoffman plays an

autistic person with an unusual (in fact, highly exaggerated) perception

of and memory for numbers. In one scene, all the toothpicks but four

from a toothpick box scatter all over the floor, and he is able to tell at a

glance that there are 246 toothpicks on the floor. Well, most people are

unable to perform such feats. Anyone who ever tried to tally votes of any

kind is familiar with this fact. We normally record the first four votes as

straight lines, and then we cross those with a fifth line once a fifth vote

is cast, simply because of the difficulty to perceive at a glance any num-

ber of lines that is larger than four. This system has been known in En-

glish pubs (where the barman counts the beers ordered) as the five

barred gate. Curiously, an experiment described by the historian of

mathematics Tobias Dantzig (1884-1956) in 1930 (in his wonderful
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book Number, the Language of Science) suggests that some birds also can

recognize and discriminate among up to four objects. Dantzig's story

goes as follows:

A squire was determined to shoot a crow which made its nest in the

watch-tower of his estate. Repeatedly he had tried to surprise the

bird, but in vain: at the approach of man the crow would leave its

nest. From a distant tree it would watchfully wait until the man had

left the tower and then return to its nest. One day the squire hit

upon a ruse: two men entered the tower, one remained within, the

other came out and went on. But the bird was not deceived: it kept

away until the man within came out. The experiment was repeated

on the succeeding days with two, three, then four men, yet without

success. Finally, five men were sent: as before, all entered the tower,

and one remained while the other four came out and went away.

Here the crow lost count. Unable to distinguish between four and

five it promptly returned to its nest.

More pieces of evidence suggest that the initial counting systems fol-

lowed the "one, two, ... many" philosophy. These come from linguis-

tic differences in the treatments of plurals and of fractions. In Hebrew,

for example, there is a special form of plural for some pairs of identical

items (e.g., hands, feet) or for words representing objects that contain

two identical parts (e.g., pants, eyeglasses, scissors) that is different

from the normal plural. Thus, while normal plurals end in "im" (for

items considered masculine) or "ot" (for feminine items), the plural

form for eyes, breasts, and so on, or the words for objects with two iden-

tical parts, end in "ayim." Similar forms exist in Finnish and used to

exist (until medieval times) in Czech. Even more important, the transi-

tion to fractions, which surely required a higher degree of familiarity

with numbers, is characterized by a marked linguistic difference in the

names of fractions other than a half. In Indo-European languages, and

even in some that are not (e.g., Hungarian and Hebrew), the names for

the fractions "one-third" (A), "one-fifth" (A), and so on generally derive

from the names of the numbers of which these fractions are recip-

rocals (three, five, etc.). In Hebrew, for example, the number "three" is
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"shalosh" and "one-third" is "shlish." In Hungarian "three" is "Harom"

and "one-third" is "Harmad." This is not true, however, for the number

"half," which is not related to "two." In Romanian, for example, "two"

is "doi" and "half" is "jumate"; in Hebrew "two" is "shtayim" and "half'

is "hetsi"; in Hungarian "two" is "ketto" and "half' is "fel." The impli-

cation may be that while the number 'A was understood relatively early,

the notion and comprehension of other fractions as reciprocals (namely,

"one over") of integer numbers probably developed only after counting

passed the "three is a crowd" barrier.

COUNTING MY NUMBERLESS FINGERS

Even before the counting systems truly developed, humans had to be

able to record some quantities. The oldest archaeological records that

are believed to be associated with counting of some sort are in the form

of bones on which regularly spaced incisions have been made. The ear-

liest, dating to about 35,000 B.C., is a part of a baboon's thigh bone

found in a cave in the Lembedo Mountains in Africa. That bone was

engraved with twenty-nine incisions. Another such "bookkeeping"

record, a bone of a wolf with fifty-five incisions (twenty-five in one se-

ries and thirty in another, the first series grouped in fives), was found by

archaeologist Karel Absolon in 1937 at Dolnê Wstonice, Czechoslova-

kia, and has been dated to the Aurignacian era (about 30,000 years ago).

The grouping into 5, in particular, suggests the concept of a base, which

I will discuss shortly. While we do not know the exact purpose of these

incisions, they may have served as a record of a hunter's kills. The

grouping would have helped the hunter to keep tally without having to

recount every notch. Similarly marked bones, from the Magdalenian era

(about 15,000 years ago), were also found in France and in the Pekarna

cave in the Czech Republic.

A bone that has been subjected to much speculation is the Ishango

bone found by archaeologist Jean de Heinzelin at Ishango near the

border between Uganda and Zaire (Figure 6). That bone handle of a

tool, dating to about 9000 B.C., displays three rows of notches arranged,

respectively, in the following groups: (i) 9, 19, 21, 11; (ii) 19, 17, 13,
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11; (iii) 7, 5, 5, 10, 8, 4, 6, 3. The sum of the numbers in the first two

rows is 60 in each, which led some to speculate that they may represent

a record of the phases of the Moon in two lunar months (with the possi-

bility that some incisions may have been erased from the third row,

which adds up only to 48). More intricate (and far more speculative) in-

terpretations also have been proposed. For example, on the basis of the

fact that the second row (19, 17, 13, 11) contains sequential primes

(numbers that have no divisors except for 1 and the number itself), and

the first row (9, 19, 21, 11) contains numbers that are different by 1

from either 10 or 20, de Heinzelin concluded that the Ishango people

had some rudimentary knowledge of arithmetic and even of prime

numbers. Needless to say, many researchers find this interpretation

somewhat far-fetched.

Figure 6

The Middle East has produced another interesting recording sys-

tem, dating to the period between the ninth and second millennia B.C.

In places ranging from Anatolia in the north to Sudan in the south, ar-

chaeologists have discovered hoards of little toylike objects of different

shapes made of clay. They are in the form of disks, cones, cylinders, pyr-

amids, animal shapes, and others. University of Texas at Austin archae-

ologist Denise Schmandt-Besserat, who studied these objects in the late

1970s, developed a fascinating theory. She believes that these clay ob-

jects served as pictogram tokens in the market, symbolizing the types

of objects being counted. Thus, a small clay sphere might have stood

for some quantity of grain, a cylinder for a head of cattle, and so on.

The mideastern prehistoric merchants could therefore, according to
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Schmandt-Besserat's hypothesis, conduct the accounting of their busi-

ness by simply lining up the tokens according to the types of goods

being transacted.

Whatever type of symbols was used for different numbers—inci-

sions on bones, clay tokens, knots on strings (devices called quipu, used

by the Inca), or simply the fingers—at some point in history humans

faced the challenge of being able to represent and manipulate large

numbers. For practical reasons, no symbolic system that has a uniquely

different name or different representing object for every number can

survive for long. In the same way that the letters in the alphabet repre-

sent in some sense the minimal number of characters with which we can

express our entire vocabulary and all written knowledge, a minimal set

of symbols with which all the numbers can be characterized had to be

adopted. This necessity led to the concept of a "base" set—the notion

that numbers can be arranged hierarchically, according to certain units.

We are so familiar in everyday life with base 10 that it is almost diffi-

cult to imagine that other bases could have been chosen.

The idea behind base 10 is really quite simple, which does not

mean it did not take a long time to develop. We group our numbers

in such a way that ten units at a given level correspond to one unit

at a higher level in the hierarchy. Thus 10 "ones" correspond to 1 "ten,"

10 "tens" correspond to 1 "hundred," 10 "hundreds" correspond to 1

"thousand," and so on. The names for the numbers and the positioning

of the digits also reflect this hierarchical grouping. When we write the

number 555, for example, although we repeat the same cipher three

times, it means something different each time. The first digit from the

right represents 5 units, the second represents 5 tens, or 5 times ten,

and the third 5 hundreds, or 5 times ten squared. This important rule

of position, the place-value system, was first invented by the Babylonians

(who used 60 as their base, as described below) around the second mil-

lennium B.C., and then, over a period of some 2,500 years, was rein-

vented, in succession, in China, by the Maya in Central America, and in

India.

Of all Indo-European languages, Sanskrit, originating in northern

India, provides some of the earliest written texts. In particular, four of

the ancient scriptures of Hinduism, all having the Sanskrit word "veda"
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(knowledge) in their title, date to the fifth century B.C. The numbers 1

to 10 in Sanskrit all have different names: eka, dvau, trayas, catvaras,

sat, sapta, astau, nava, daa.. The numbers 11 to 19 are all simply

a combination of the number of units and 10. Thus, 15 is "parica-daga,"

19 is "ndva-da ga," and so on. English, for example, has the equivalent

"teen" numbers. In case you wonder, by the way, where "eleven" and

"twelve" in English came from, "eleven" derives from "an" (one) and

"lie' (left, or remainder) and "twelve" from "two" and "liF' (two left).

Namely, these numbers represent "one left" and "two left" after ten.

Again as in English, the Sanskrit names for the tens ("twenty," "thirty,"

etc.) express the unit and plural tens (e.g., 60 is sasti), and all Indo-

European languages have a very similar structure in their vocabulary for

numbers. So the users of these languages quite clearly adopted the base

10 system.

There is very little doubt that the almost universal popularity of

base 10 stems simply from the fact that we happen to have ten fingers.

This possibility was already raised by the Greek philosopher Aristotle

(384-322 B.C.) when he wondered (in Problemata): "Why do all men,

barbarians and Greek alike, count up to ten and not up to any other

number?" Base 10 really offers no other superiority over, say, base 13.

We could even argue theoretically that the fact that 13 is a prime num-

ber, divisible only by 1 and itself, gives it an advantage over 10, because

most fractions would be irreducible in such a system. While, for exam-

ple, under base 10 the number 36/00 also can be expressed as 1840 or 9/25,

such multiple representations would not exist under a prime base like

13. Nevertheless, base 10 won, because ten fingers stood out in front of

every human's eyes, and they were easy to use. In some Malay-Polyne-

sian languages, the word for "hand," "lima," is actually the same as the

word for "five." Does this mean that all the known civilizations chose

10 as their base? Actually, no.

Of the other bases that have been used by some populations around

the world, the most common was base 20, known as the vigesimal base.

In this counting system, which was once popular in large portions of

Western Europe, the grouping is based on 20 rather than 10. The

choice of this system almost certainly comes from combining the fin-

gers with the toes to form a larger base. For the Inuit (Eskimo) people,
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for example, the number "twenty" is expressed by a phrase with the

meaning "a man is complete." A number of modern languages still have

traces of a vigesimal base. In French, for example, the number 80 is

"quatre-vingts" (meaning "four twenties"), and an archaic form of "six-

vingts" ("six twenties") existed as well. An even more extreme example

is provided by a thirteenth-century hospital in Paris, which is still

called L'Opital de Quinze-Vingts (The Hospital of Fifteen Twenties),

because it was originally designed to contain 300 beds for blind veter-

ans. Similarly, in Irish, 40 is called "daichead," which is derived from

"da fiche" (meaning "two times twenty"); in Danish, the numbers 60

and 80 ("tresindstyve" and "firsindstyve" respectively, shortened to

"tres" and "firs") are literally "three twenties" and "four twenties."

Probably the most perplexing base found in antiquity, or at any

other time for that matter, is base 60—the sexagesimal system. This

was the system used by the Sumerians in Mesopotamia, and even

though its origins date back to the fourth millennium B.C., this divi-

sion survived to the present day in the way we represent time in hours,

minutes, and seconds as well as in the degrees of the circle (and the sub-

division of degrees into minutes and seconds). Sixty as a base for a num-

ber system taxes the memory considerably, since such a system requires,

in principle, a unique name or symbol for all the numbers from 1 to 60.

Aware of this difficulty, the ancient Sumerians used a certain trick to

make the numbers easier to remember—they inserted 10 as an inter-

mediate step. The introduction of 10 allowed them to have unique

names for the numbers 1 to 10; the numbers 10 to 60 (in units of 10)

represented combinations of names. For example, the Sumerian word

for 40, "nismin," is a combination of the word for 20, "nis," and the

word for 2, "min." If we write the number 555 in a purely sexagesimal

system, what we mean is 5 x (60) 2 + 5 x (60) + 5, or 18,305 in our

base 10 notation.

Many speculations have been advanced as to the logic or circum-

stances that led the Sumerians to choose the unusual base of 60. Some

are based on the special mathematical properties of the number 60: It is

the first number that is divisible by 1, 2, 3, 4, 5, and 6. Other hypothe-

ses attempt to relate 60 to concepts such as the number of months in a

year or days in a year (rounded to 360), combined somehow with the
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numbers 5 or 6. Most recently, French math teacher and author Georges

Ifrah argued in his superb 2000 book, The Universal History of Numbers,

that the number 60 may have been the consequence of the mingling of

two immigrant populations, one of which used base 5 and the other

base 12. Base 5 clearly originated from the number of fingers on one

hand, and traces for such a system can still be found in a few languages,

such as in the Khmer in Cambodia and more prominently in the Sar-

aveca in South America. Base 12, for which we find many vestiges even

today—for example, in the British system of weights and measures—

may have had its origins in the number of joints in the four fingers (ex-

cluding the thumb; the latter being used for the counting).

Incidentally, strange bases pop up in the most curious places. In

Lewis Carroll's Alice's Adventures in Wonderland, to assure herself that she

understands the strange occurrences around her, Alice says: "I'll try if I

know all the things I used to know. Let me see: four times five is twelve,

and four times six is thirteen, and four times seven is—oh dear! I shall

never get to twenty at that rate!" In his notes to Carroll's book, The An-

notated Alice, the famous mathematical recreation writer Martin Gard-

ner provides a nice explanation for Alice's bizarre multiplication table.

He proposes that Alice is simply using bases other than 10. For exam-

ple, if we use base 18, then 4 x 5 = 20 will indeed be written as 12, be-

cause 20 is 1 unit of 18 and 2 units of 1. What lends plausibility to this

explanation is of course the fact that Charles Dodgson ("Lewis Carroll"

was his pen name) lectured on mathematics at Oxford.

OUR NUMBERS, OUR GODS

Irrespective of the base that any of the ancient civilizations chose, the

first group of numbers to be appreciated and understood at some level

was the group of whole numbers (or natural numbers). These are the fa-

miliar 1, 2, 3, 4, . . . Once humans absorbed the comprehension of

these numbers as abstract quantities into their consciousness, it did not

take them long to start to attribute special properties to numbers. From

Greece to India, numbers were accredited with secret qualities and

powers. Some ancient Indian texts claim that numbers are almost di-
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vine, or "Brahma-natured." These manuscripts contain phrases that are

nothing short of worship to numbers (like "hail to one"). Similarly, a fa-

mous dictum of the Greek mathematician Pythagoras (whose life and

work will be described later in this chapter) suggests that "everything

is arranged according to number." These sentiments led on one hand to

important developments in number theory but, on the other, to the

development of numerology—the set of doctrines according to which

all aspects of the universe are associated with numbers and their

idiosyncrasies. To the numerologist, numbers were fundamental reali-

ties, drawing symbolic meanings from the relation between the heavens

and human activities. Furthermore, essentially no number that was

mentioned in the holy writings was ever treated as irrelevant. Some

forms of numerology affected entire nations. For example, in the year

1240 Christians and Jews in Western Europe expected the arrival of

some messianic king from the East, because it so happened that the year

1240 in the Christian calendar corresponded to the year 5000 in the

Jewish calendar. Before we dismiss these sentiments as romantic naïveté

that could have happened only many centuries ago, we should recall the

extravagant hoopla surrounding the ending of the last millennium.

One special version of numerology is the Jewish Gematria (possibly

based on "geometrical number" in Greek), or its Muslim and Greek

analogues, known as Khisab al Jumal ("calculating the total"), and

Isopsephy (from the Greek "isos," equal, and "pse-phizein," to count),

respectively. In these systems, numbers are assigned to each letter of the

alphabet of a language (usually Hebrew, Greek, Arabic, or Latin). By

adding together the values of the constituent letters, numbers are then

associated with words or even entire phrases. Gematria was especially

popular in the system of Jewish mysticism practiced mainly from the

thirteenth to the eighteenth century known as cabala. Hebrew scholars

sometimes used to amaze listeners by calling out a series of apparently

random numbers for some ten minutes and then repeating the series

without an error. This feat was accomplished simply by translating

some passage of the Hebrew scriptures into the language of Gematria.

One of the most famous examples of numerology is associated with

666, the "number of the Beast." The "Beast" has been identified as the

Antichrist. The text in the Book of Revelations (13:18) reads: "This
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calls for wisdom: let anyone with understanding calculate the number

of the beast, for it is the number of a man. Its number is six hundred

and sixty-six." The phrase "it is the number of a man" prompted many

of the Christian mystics to attempt to identify historical figures whose

names in Gematria or Isopsephy give the value 666. These searches led

to, among others, names like those of Nero Caesar and the emperor Dio-

cletian, both of whom persecuted Christians. In Hebrew, Nero Caesar

was written as (from right to left): xqw clay, and the numerical values

assigned in Gematria to the Hebrew letters (from right to left)-50,

200, 6, 50; 100, 60, 200—add up to 666. Similarly, when only the let-

ters that are also Roman numerals (D, I, C, L, V) are counted in the

Latin name of Emperor Diocletian, DIOCLES AVGVSTVS, they also

add up to 666 (500 + 1 + 100 + 50 + 5 + 5 + 5). Clearly, all of these

associations are not only fanciful but also rather contrived (e.g., the

spelling in Hebrew of the word Caesar actually omits a letter, of value

10, from the more common spelling).

Amusingly, in 1994, a relation was "discovered" (and appeared in

theJournal of Recreational Mathematics) even between the "number of the

Beast" and the Golden Ratio. With a scientific pocket calculator, you

can use the trigonometric functions sine and cosine to calculate the

value of the expression [sin 666° + cos (6 x 6 x 6)1. Simply enter 666

and hit the [sin] button and save that number, then enter 216 (= 6 x 6

x 6) and hit the [cos] button, and add the number you get to the num-

ber you saved. The number you will obtain is a good approximation of

the negative of phi. Incidentally, President Ronald Reagan and Nancy

Reagan changed their address in California from 666 St. Cloud Road to

668 to avoid the number 666, and 666 was also the combination to the

mysterious briefcase in Quentin Tarantino's movie Pulp Fiction.

One clear source of the mystical attitude toward whole numbers

was the manifestation of such numbers in human and animal bodies and

in the cosmos, as perceived by the early cultures. Not only do humans

have the number 2 exhibited all over their bodies (eyes, hands, nostrils,

feet, ears, etc.), but there are also two genders, there is the Sun-Moon

system, and so on. Furthermore, our subjective time is divided into

three tenses (past, present, future), and, due to the fact that Earth's ro-

tation axis remains more or less pointed in the same direction (roughly
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toward the North Star, Polaris, although small variations do exist, as

described in Chapter 3), the year is divided into four seasons. The sea-

sons simply reflect the fact that the orientation of Earth's axis relative to

the Sun changes over the course of the year. The more directly a part of

the Earth is exposed to sunlight, the longer the daylight hours and the

warmer the temperature. In general, numbers acted in many circum-

stances as the mediators between cosmic phenomena and human every-

day life. For example, the names of the seven days of the week were

based on the names of the celestial objects originally considered to be

planets: the Sun, the Moon, Mars, Mercury, Jupiter, Venus, and Saturn.

The whole numbers themselves are divided into odd and even, and

nobody did more to emphasize the differences between the odd and

even numbers, and to ascribe a whole menagerie of properties to these

differences, than the Pythagoreans. In particular, we shall see that we

can identify the Pythagorean fascination with the number 5 and their

admiration for the five-pointed star as providing the initial impetus for

the interest in the Golden Ratio.

PYTHAGORAS AND THE PYTHAGOREANS

Pythagoras was born around 570 B.C. in the island of Samos in the

Aegean Sea (off Asia Minor), and he emigrated sometime between 530

and 510 to Croton in the Dorian colony in southern Italy (then known

as Magna Graecia). Pythagoras apparently left Samos to escape the sti-

fling tyranny of Polycrates (died ca. 522 B.C.), who established Samian

naval supremacy in the Aegean Sea. Perhaps following the advice of his

presumed teacher, the mathematician Thales of Miletus, Pythagoras

probably lived for some time (as long as twenty-two years, according to

some accounts) in Egypt, where he would have learned mathematics,

philosophy, and religious themes from the Egyptian priests. After

Egypt was overwhelmed by Persian armies, Pythagoras may have been

taken to Babylon, together with members of the Egyptian priesthood.

There he would have encountered the Mesopotamian mathematical

lore. Nevertheless, the Egyptian and Babylonian mathematics would



THE GOLDEN RATIO 25

prove insufficient for Pythagoras' inquisitive mind. To both of these

peoples, mathematics provided practical tools in the form of "recipes"

designed for specific calculations. Pythagoras, on the other hand, was

one of the first to grasp numbers as abstract entities that exist in their

own right.

In Italy, Pythagoras began to lecture on philosophy and mathemat-

ics, quickly establishing an enthusiastic crowd of followers, which may

have included the young and beautiful Theano (daughter of his host

Milo), whom he later married. The atmosphere in Croton proved ex-

tremely fertile for Pythagoras' teachings, since the community there

was composed of a plethora of semimystic cults. Pythagoras established

a strict routine for his students, paying particular attention to the hour

of waking and the hour of falling asleep. Students were advised upon

rising to repeat the verses:

As soon as you awake, in order lay

the actions to be done the coming day.

Similarly, at nightfall, they were to recite:

Allow not sleep to close your eyes

Before three times reflecting on

Your actions of the day. What deeds

Done well, what not, what left undone?

Most of the details of Pythagoras' life and the reality of his mathemati-

cal contributions remain veiled in uncertainty. One legend has it that he

had a golden birthmark on his thigh, which was taken by his followers

to indicate that he was a son of the god Apollo. None of the biographies

of Pythagoras written in antiquity have survived, and biographies writ-

ten later, such as the Lives of the Eminent Philosophers, written by Di-

ogenes Laertius in the third century, often rely on many sources of

varying reliability. Pythagoras apparently wrote nothing, and yet his

influence was so great that the more attentive of his followers formed a
secretive society, or brotherhood, and were known as the Pythagoreans.
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Aristippus of Cyrene tells us in his Account of Natural Philosophers that

Pythagoras derived his name from the fact that he was speaking

(agoreuein) truth like the God at Delphi (tou Pythiou).

The events surrounding Pythagoras' death are as uncertain as the

facts about his life. According to one story, the house in which he was

staying at Croton was set on fire by a mob, envious of the Pythagorean

elite, and Pythagoras himself was murdered during his escape, upon

reaching a place full of beans on which he wouldn't trample. A different

version is provided by the Greek scientist and philosopher Dicaearchus

of Messana (ca. 355-280 B.C.), who states that Pythagoras managed to

escape as far as the Temple of the Muses at Metapontum, where he died

following forty days of self-imposed starvation. A completely different

story is told by Hermippus, according to which Pythagoras was slain

by the Syracusans in their war against the Agrigentine army, which

Pythagoras joined.

Even though it is almost impossible to attribute with certainty any

specific mathematical achievements either to Pythagoras himself or to

his followers, there is no question that they have been responsible for a

mingling of mathematics, philosophy of life, and religion unparalleled

in history. In this respect it is perhaps interesting to note the historical

coincidence that Pythagoras was a contemporary of Buddha and Con-

fucius.

Pythagoras is in fact credited with having coined the words

"philosophy" ("love of wisdom") and "mathematics" ("that which is

learned"). To him, a "philosopher" was someone who "gives himself up

to discovering the meaning and purpose of life itself . . . to uncover the

secrets of nature." Pythagoras emphasized the importance of learning

above all other activities, because, in his words, "most men and women,

by birth or nature, lack the means to advance in wealth and power, but

all have the ability to advance in knowledge." He was also famous for

introducing the doctrine of metempsychosis—that the soul is immortal

and is reborn or transmigrated in human and animal incarnations. This

doctrine resulted in a strong advocacy of vegetarianism, since animals to

be slaughtered could represent reincarnated friends. To purify the soul,

the Pythagoreans established strict rules, which included, for example,

a prohibition on eating beans and an extreme emphasis on the training
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of the memory. In his treatise On the Pythagoreans, the famous Greek

philosopher Aristotle gives several possible reasons for the abstention

from beans: They resemble genitals; being plants without parts they are

like the gates of hell; beans were supposed to arise simultaneously with

humans in the act of universal creation; or beans were used in elections

in oligarchical governments.

Pythagoras and the Pythagoreans are best known for their pre-

sumed role in the development of mathematics and for the application

of mathematics to the concept of order, whether it is musical order, the

order of the cosmos, or even ethical order. Every child in school learns

the Pythagorean theorem of a triangle that has a right (90-degree) an-

gle (a right triangle). According to this theorem (Figure 7, on the

right), the area of the square constructed on the longest side (the hy-

potenuse) equals the sum of the areas of the squares constructed on the

two shorter sides. In other words, if the length of the hypotenuse is c,

then the area of the square constructed on it is c2 ; the areas of the squares

constructed on the other two sides (of lengths a and b) are a 2 and b2 re-

spectively. The Pythagorean theorem can therefore be stated as: c2 = a2+
b2 in every right triangle. In 1971, when the republic of Nicaragua se-

lected the ten mathematical equations that changed the face of the

Earth as the theme for a series of stamps, the Pythagorean theorem ap-

peared on the second stamp. The numbers 3, 4, 5, or 7, 24, 25, for ex-

ample, form Pythagorean triples, because 3 2 + 4 2 = 5 2 (9 + 16 = 25);

7 2 + 24 2 = 252 (49 + 576 = 625), and they can be used as the lengths

of the sides of a right triangle.

Figure 7
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Figure 7 also suggests what is perhaps the easiest proof of the

Pythagorean theorem: On one hand, when one subtracts from the

square whose side equals a + b the area of four identical triangles, one

gets the square built on the hypotenuse (middle figure). On the other,

when one subtracts from the same square the same four triangles in a

different arrangement (left figure), one gets the two squares built on the

shorter sides. Thus, the square on the hypotenuse is clearly equal in area

to the sum of the two smaller squares. In his 1940 book The Pythagorean

Proposition, mathematician Elisha Scott Loomis presented 367 proofs of

the Pythagorean theorem, including proofs by Leonardo da Vinci and

by the twentieth president of the United States, James Garfield.

Even though the Pythagorean theorem was not yet known as a

"truth" characterizing all right-angle triangles, Pythagorean triples ac-

tually had been recognized long before Pythagoras. A Babylonian clay

tablet from the Old Babylonian period (ca. 1600 B.c.) contains fifteen

such triples.

The Babylonians discovered that Pythagorean triples can be con-

structed using the following simple procedure, or "algorithm." Choose

any two whole numbers p and q such that p is larger than q. You can now

form the Pythagorean triple of numbers p2 —
 
q2 ; 2pq; p2 q2. For exam-

ple, suppose q is 1 and p is 4. Then p2 — q2 = 42 — 1 2 = 16 — 1 = 15; 2pq

= 2 x 4 X 1 = 8; p2 q2 = 42 + 1 2 = 16 + 1 = 17. The set of numbers

15, 8, 17 is a Pythagorean triple because 15 2 + 8 2 = 17 2 (225 + 64 =

289). You can easily show that this will work for any whole numbers p

and q. (For the interested reader, a brief proof is presented in Appendix

1.) Therefore, there exists an infinite number of Pythagorean triples (a

fact proven by Euclid of Alexandria).

However, in the Pythagorean world, orderly patterns were far from

being restricted to triangles and geometry. Pythagoras is traditionally

said to have discovered the harmonic progressions in the notes of the

musical scale, by finding that the musical intervals and the pitch of the

notes correspond to the relative lengths of the vibrating strings. He ob-

served that dividing a string by consecutive integers yields (up to a

point) harmonious and pleasing (consonant) intervals. When two arbi-

trary musical notes are made to sound together, the resulting sound is

usually harsh (dissonant) to our ear. Only a few combinations produce
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pleasant sounds. Pythagoras discovered that these rare consonances are

obtained when the notes are produced by similar strings whose lengths

are in ratios given by the first few whole numbers. Unison is obtained

when the strings are of equal length (a 1:1 ratio); the octave is obtained

by a 1:2 ratio of string lengths; the fifth by 2:3; and the fourth by 3:4.

In other words, you can pluck a string and sound a note. If you pluck

an equally taut string that is one-half the length, you will hear a note

that is precisely one harmonic octave above the first. Similarly, 'A of a

C-string gives the note A, of it gives G, 'A of it gives F, and so on.

These remarkable early findings formed the basis for the more advanced

understanding of musical intervals that developed in the sixteenth

century (in which, incidentally, Vincenzo Galilei, Galileo's father, was

involved). A wonderful illustration by Franchinus Gafurius, which ap-

peared as a frontispiece in Theorica Musice in 1492, shows Pythagoras ex-

perimenting with the sounds of various devices, including hammers,

strings, bells, and flutes (Figure 8; the upper left depicts the biblical

figure of Jubal or Tubal, "the father of all such as handle the harp and

organ"). But, wondered the Pythagoreans, if musical harmony can be

expressed by numbers, why not the entire cosmos? They therefore con-

cluded that all objects in the universe owed their characteristics to the

nature of number. Astronomical observations suggested, for example,

that the motions in the heavens also were extremely regular and sub-

ject to a specific order. This led to the concept of a beautiful "harmony

of the spheres"—the notion that in their regular motions, heavenly

bodies also create harmonious music. The philosopher Porphyry (ca.

A.D. 232-304), who wrote more than seventy works dealing with his-

tory, metaphysics, and literature, also wrote (as a part of his four-volume

work History of Philosophy) a brief biography of Pythagoras entitled

Life of Pythagoras. In it, Porphyry says about Pythagoras: "He himself

could hear the harmony of the Universe, and understood the music of

the spheres, and the stars which move in concert with them, and which

we cannot hear because of the limitations of our weak nature." After

enumerating more of Pythagoras' exquisite qualities, Porphyry contin-

ues: "Pythagoras affirmed that the Nine Muses were constituted by

the sounds made by the seven planets, the sphere of the fixed stars,

and that which is opposed to our earth, called the 'counter-earth' "
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(the latter, according to the

Pythagorean theory of the

universe, revolved in opposi-

tion to Earth, around a central

fire). The concept of the "har-

mony of the spheres" was

elaborated upon again, more

than twenty centuries later,

by the famous astronomer Jo-

hannes Kepler (1571-1630).

Having witnessed in his own

life much agony and the hor-

rors of war, Kepler concluded

that Earth really created two

notes, mi for misery ("miseria"

in Latin) and fa for famine

("fames" in Latin). In Kepler's

words: "the Earth sings MI FA MI, so that even from the syllable you

may guess that in this home of ours Misery and Famine hold sway."

The Pythagorean obsession with mathematics was mildly ridiculed

by the great Greek philosopher Aristotle. He writes in Metaphysics (in
the fourth century B.C.): "The so-called Pythagoreans applied them-

selves to mathematics, and were the first to develop this science; and

through penetrating it, they came to fancy that its principles are the

principles of all things." Today, while we may be amused by some of the

Pythagorean fanciful ideas, we have to recognize that the fundamental

thought behind them is really not very different from that expressed by

Albert Einstein (in Letters to Solovine): "Mathematics is only a means for

expressing the laws that govern phenomena." Indeed, the laws of

physics, sometimes referred to as the "laws of nature," simply represent

mathematical formulations of the behavior that we observe all natural

phenomena to obey. For example, the central idea in Einstein's theory of

general relativity is that gravity is not some mysterious, attractive force

that acts across space but rather a manifestation of the geometry of the

inextricably linked space and time. Let me explain, using a simple ex-

ample, how a geometrical property of space could be perceived as an at-
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tractive force, such as gravity. Imagine two people who start to travel

precisely northward from two different points on Earth's equator. This

means that at their starting points, these people travel along parallel

lines (two longitudes), which, according to the plane geometry we learn

in school, should never meet. Clearly, however, these two people will

meet at the North Pole. If these people did not know that they were

really traveling on the curved surface of a sphere, they would conclude

that they must have experienced some attractive force, since they ar-

rived at the same point in spite of starting their motions along parallel

lines. Therefore, the geometrical curvature of space can manifest itself

as an attractive force. The Pythagoreans were probably the first to rec-

ognize the abstract concept that the basic forces in the universe may be

expressed through the language of mathematics.

Due perhaps to the simple harmonic ratios found in music, 1:2, 2:3,

3:4, the Pythagoreans became particularly intrigued by the differences

between the odd and even numbers. They associated with the odd

numbers male attributes and, rather prejudiciously, also light and

goodness, while they gave the even numbers female attributes and asso-

ciated with them darkness and evil. Some of these prejudices toward

even and odd numbers persisted for centuries. For example, the Roman

scholar Pliny the Elder, who lived A.D. 23 to 79, wrote in his Historia

Naturalis (a thirty-seven-volume encyclopedia on natural history):

"Why is it that we entertain the belief that for every purpose odd num-

bers are the most effectual?" Similarly, in Shakespeare's Merry Wives of

Windsor (Act V, Scene I), Sir John Falstaff says: "They say there is divin-

ity in odd numbers, either in nativity, chance or death." Mideastern re-

ligions produced a similar attitude. According to the Muslim tradition,

the prophet Muhammad ate an odd number of dates to break his fast,

and Jewish prayers often have an odd number (3, 7) of repetitions asso-

ciated with them.

Besides the roles that the Pythagoreans assigned to the odd and

even numbers in general, they also attributed special properties to some

individual numbers. The number 1, for example, was considered the

generator of all other numbers and thus not regarded as a number itself.

It was also assumed to characterize reason. Geometrically, the number 1

was represented by the point, which in itself was assumed to be the gen-
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erator of all dimensions. The number 2 was the first female number and

also the number of opinion and of division. Somewhat similar senti-

ments are expressed in the yin and yang of the Chinese religious cos-

mology, with the yin representing the feminine and negative principle,

like passivity and darkness, and the yang the bright and masculine

principle. The number 2 is associated to this very day in many lan-

guages with hypocrisy and unreliability, as manifested by such expres-

sions as "two-faced" (in Iranian) or "double-tongued" (in German and

Arabic). The original identification of the number 2 with feminine and

of 3 with masculine may have been inspired by the configurations of fe-

male breasts and male genitalia. This tentative conclusion is supported

by the fact that the Konso of East Africa make the same identification.

In everyday life, division into two categories is the most common: good

and bad, up and down, right and left. Geometrically, 2 was expressed by

the line (which is determined by two points), which has one dimension.

Three was supposed to be the first real male number and also the num-

ber of harmony, since it combines unity (the number 1) and division

(the number 2). To the Pythagoreans, 3 was in some sense the first real

number because it has a "beginning," a "middle," and an "end" (unlike

2, which does not have a middle). The geometrical expression of 3 was

the triangle, since three points not on the same line determine a trian-

gle, and the area of the triangle has two dimensions.

Interestingly, 3 was also the basis for the construction of military

units in the Bible. For example, in 2 Samuel 23, there is a story on the

very basic unit, the "three warriors" that King David had. In the same

chapter, there is a detailed count of the "thirty chiefs" who "went down

to join David at the cave of Adulam," but at the end of the count the

biblical editor concludes that they were "thirty-seven in all." Clearly,

"thirty" was the definition of the unit, even if the actual number of

members was somewhat different. In Judges 7, when Gideon needs to

fight the Midianites, he chooses three hundred men, "all those who lap

the water with their tongues." Moving to yet larger units, in 1 Samuel

13, "Saul chose three thousand out of Israel" to fight the Philistines,

who at the same time "mustered to fight with Israel, thirty thousand

chariots." Finally, in 2 Samuel 6, "David again gathered all the chosen

men of Israel, thirty thousand" to fight the Philistines.
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The number 4, for the Pythagoreans, was the number of justice and

order. On the surface of Earth, the four winds or directions provided the

necessary orientation for humans to identify their coordinates in space.

Geometrically, four points that are not in the same plane can form a

tetrahedron (a pyramid with four triangular faces), which has a volume

in three dimensions. Another consideration that gave the number 4 a

somewhat special status for the Pythagoreans was their attitude toward

the number 10, or the holy tetractys. Ten was the most revered number,

because it represented the cosmos as a whole. The fact that 1 + 2 + 3

+ 4 = 10 generated a close association between 10 and 4. At the same

time, this relation meant that 10 not only united the numbers repre-

senting all dimensions but also combined all the properties of unique-

ness (as expressed by 1), polarity (expressed by 2), harmony (expressed

by 3), and space and matter (expressed by 4). Ten was therefore the

number of everything, with properties best expressed by the Pythagorean

Philolaus around 400 B.C.: "sublime, potent and all-creating, the be-

ginning and the guide of the divine concerning life on Earth."

The number 6 was the first perfect number, and the number of

creation. The adjective "perfect" was attached to numbers that are

precisely equal to the sum of all the smaller numbers that divide into

them, as 6 = 1 + 2 + 3. The next such number, incidentally, is 28 = 1

+2+4+7+ 14, followed by 496= 1 +2+4+8+ 16 + 31 +

62 + 124 + 248; by the time we reach the ninth perfect number, it

contains thirty-seven digits. Six is also the product of the first female

number, 2, and the first masculine number, 3. The Hellenistic Jewish

philosopher Philo Judaeus of Alexandria (ca. 20 B.C.—ca. A.D. 40),

whose work brought together Greek philosophy and Hebrew scrip-

tures, suggested that God created the world in six days because six was

a perfect number. The same idea was elaborated upon by St. Augustine

(354-430) in The City of God: "Six is a number perfect in itself, and not

because God created the world in six days; rather the contrary is true:

God created the world in six days because this number is perfect, and it

would remain perfect, even if the work of the six days did not exist."

Some commentators of the Bible regarded 28 also as a basic number of

the Supreme Architect, pointing to the 28 days of the lunar cycle. The

fascination with perfect numbers penetrated even into Judaism, and
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their study was advocated in the twelfth century by Rabbi Yosef ben

Yehudah Aknin in his book, Healing of the Souls.

I have deliberately left the number 5 for last in giving these exam-

ples of the Pythagoreans' attitude to numbers, because this number also

leads us to the origins of the Golden Ratio. Five represented the union

of the first female number, 2, with the first male number, 3, and as such

it was the number of love and marriage. The Pythagoreans apparently

used the pentagram—the five-pointed star (Figure 3)—as the symbol of

their brotherhood, and they called it "Health." The second-century

Greek writer and rhetorician Lucian writes (in In Defense of a Slip of the

Tongue in Greeting):

At any rate all his [Pythagoras'} school in serious letters to each

other began straightway with "Health to you," as a greeting most

suitable for both body and soul, encompassing all human goods. In-

deed the Pentagram, the triple intersecting triangle which they

used as a symbol of their sect, they called "Health."

An imaginative (though perhaps not altogether sound) explanation for

the association of the pentagram with health was suggested by A. de la

Fuye in his 1934 book, Le Pentagramme Pythagoricien, Sa Diffusion, Son

Emploi dans le Syllabaire Cuneiform (The Pythagorean pentagram, its dis-

tribution, its usage in the cuneiform spelling book). De la Fuye pro-

posed that the pentagram symbolized the Greek goddess of health,

Hygeia, through a correspondence of the five points of the star to a

cartoon-like representation of the goddess (Figure 9).



THE GOLDEN RATIO 35

The pentagram is also closely related to the regular pentagon—the

plane figure having five equal sides and equal angles (Figure 10). If you

connect all the vertices of the pentagon by diagonals, you obtain a pen-

tagram. The diagonals also form a smaller pentagon at the center, and

the diagonals of this pentagon form a pentagram and a yet smaller pen-

tagon (Figure 10). This progression can be continued ad infinitum, cre-

ating smaller and smaller pentagons and pentagrams. The striking

property of all of these figures is that if you look at line segments in or-

der of decreasing lengths (the ones marked a, b, c, d, e, f in the figure),

you can easily prove using elementary geometry that every segment is

smaller than its predecessor by a factor that is precisely equal to the Golden Ra-

tio, cb. That is, the ratio of the lengths of a to b is phi; the ratio of b to c

is phi; and so on. Most important, you can use the fact that the process

of creating a series of nested pentagons and pentagrams can be contin-

ued indefinitely to smaller and smaller sizes to prove rigorously that the

diagonal and the side of the pentagon are incommensurable, that is, the

ratio of their lengths (which is equal to phi) cannot be expressed as a ra-

tio of two whole numbers. What this means is that the diagonal and the

side of the pentagon cannot have any common measure, such that the

diagonal is some integer multiple of that measure and the side is also an

integer multiple of the same measure. (For the more mathematically in-

clined reader, the proof is presented in Appendix 2.) Recall that num-

bers that cannot be expressed as ratios of two whole numbers (namely as

fractions, or rational numbers) are known as irrational numbers. This

proof therefore establishes the fact that phi is an irrational number.

Several researchers (including Kurt von Fritz in his article entitled

"The Discovery of Incommensurability by Hippasus of Metapontum"

published in 1945) suggested that the Pythagoreans are the ones who

first discovered the Golden Ratio and incommensurability. These histo-

rians of mathematics argued that the Pythagorean preoccupation with

the pentagram and the pentagon, coupled with the actual geometrical

knowledge in the middle of the fifth century B.C., make it very plausi-

ble that the Pythagoreans, and in particular perhaps Hippasus of

Metapontum, discovered the Golden Ratio and, through it, incommen-

surability. The arguments appear to be at least partially supported by

the writings of the founder of the Syrian school of Neoplatonism,
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Iamblichus (ca. A.D. 245-325). According to one of Iamblichus' ac-

counts, the Pythagoreans erected a tombstone to Hippasus, as if he were

dead, because of the devastating discovery of incommensurability. In

another place, however, Iamblichus reports that:

It is related of Hippasus that he was a Pythagorean, and that, owing

to his being the first to publish and describe the sphere from the

twelve pentagons, he perished at sea for his impiety, but he received

credit for the discovery, though really it all belonged to HIM (for in

this way they refer to Pythagoras, and they do not call him by his

name).

In the phrase "describe the sphere from the twelve pentagons,"

Iamblichus refers (somewhat vaguely, since the figure is not really a

sphere) to the construction of the dodecahedron, a solid with twelve

faces, each of which is a pentagon, which is one of the five solids known

as Platonic solids. The Platonic solids are intimately related to the

Golden Ratio, and we shall return to them in Chapter 4. In spite of the

somewhat mythical flavor of these accounts, the mathematical historian

Walter Burkert concludes in his 1972 book Lore and Science in Ancient
Pythagoreanism that "the tradition about Hippasus, though surrounded

by legend, makes sense." The main reason for this statement is provided

by Figure 10 (and Appendix 2). The conclusion that the diagonal and

the side in a regular pentagon are incommensurable is based on the very

simple observation that the construction of smaller and smaller pen-

tagons can be continued indefinitely. The proof therefore would have

definitely been accessible to the fifth-century B.C. mathematicians.

TO THE RATIONAL BEING ONLY THE

I RRATIONAL IS UNENDURABLE

While it is certainly possible (and perhaps even likely) that incommen-

surability and irrational numbers were first discovered via the Golden

Ratio, the more traditional view is that these concepts were discovered

through the ratio of the diagonal and the side of the square. Aristotle
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writes in Prior Analytics: "the diagonal [of a square] is incommensurable

[with the side] because odd numbers are equal even if it is assumed to

be commensurate." Aristotle alludes here to a proof of incommensura-

bility, which I now present in full detail, because it is a beautiful exam-

ple of a proof by the logical method known as reductio ad absurdum

(reduction to absurdity). In fact, when in 1988 the journal The Mathe-

matical Intelligencer invited its readers to rank a selection of twenty-four

theorems according to their "beauty," the proof I am about to present

was ranked seventh.

The idea behind the ingenious method of reductio ad absurdum is

that you prove a proposition simply by proving the falsity of its contra-

dictory. The most influential Jewish scholar of the Middle Ages, Mai-

monides (Moses Ben Maimon; 1135-1204), even attempted to use this

logical device to prove the existence of a creator. In his monumental

work, Mishne Torah (The Torah reviewed), which attempts to encompass

all religious subject matter, Maimonides writes: "The basic principle is

that there is a First Being who brought every existing thing into being,

for if it be supposed that he did not exist, then nothing else could pos-

sibly exist." In mathematics, reductio ad absurdum is used as follows.

You start by assuming that the theorem you seek to prove true is in fact

false. From that, by a series of logical steps you derive something that

represents a clear logical contradiction, such as 1 = 0. You thus conclude

that the original theorem could not have been false; therefore, it must

be true. Note that for this method to work, you have to assume that a

theorem or statement has to be either true or false—you are either read-

ing this page right now or you are not.

Examine first the square in Figure 11,

in which the length of the side is one unit.

If we want to find the length of the diago-

nal, we can use the Pythagorean theorem in

any of the two right triangles into which

the square is divided. Recall that the theo-

rem states that the square of the hypot-

enuse (the diagonal) is equal to the sum of

the squares of the two shorter sides of the

triangle. If we call the length of the hy-
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potenuse d, we have that: d2 = 1 2 + 1 2 , or d 2 = 1 + 1 = 2. If we know

the square of a number, we find the number itself by taking the square

root. For example, if we know that the square of x is equal to 25, then x

= 5 = From d2 = 2 we therefore find that d = The ratio of the

diagonal to the side of a square is therefore the square root of 2. (A

pocket calculator will show you that the value of the latter is equal to

1.41421356 . . . .) What we want to show now is that 42 cannot be ex-

pressed as a ratio of any two whole numbers (and therefore that it is an

irrational number). Think about this for a moment: What we are about

to prove is that even though we have an infinite collection of whole

numbers at our disposal, no matter for how long we will search, we will

never find two of them that have a ratio that is precisely equal to -d

Isn't this mind-boggling?

The proof (by reductio ad absurdum) goes as follows: We start by

assuming the opposite of what we want to prove, namely, we assume

that is actually equal to some ratio of two whole numbers a and b,

= a/b. If a and b happen to have some common factors (as the num-

bers 9 and 6 both have a common factor of 3), then we would simplify

the fraction by dividing both numbers by those factors until we get two

numbers, p and q, which have no common factors. (In the above exam-

ple, this will turn 94 into 'A.) Clearly, p and q cannot both be even. (If

they were, they would contain a common factor 2.) Our assumption is

therefore that p/q = Ali, where p and q are whole numbers that have no

common factors. We can take the square of both sides to obtain: p 2/q2 =

2. We will now multiply both sides by q2 to obtain: p2 = 2q 2 . Notice that

the right-hand side of this equation is clearly an even number, since it

is some number (q 2) multiplied by 2, which always gives an even num-

ber. Since p2 is equal to this even number, p2 is an even number. But if

the square of a number is even, then the number itself also must be

even. (The square is simply the number multiplied by itself, and if the

number were odd, its multiplication by itself would also be odd.) We

therefore find that p itself must be an even number. Recall that this

means that q must be odd, because p and q had no common factors. If,

however, p is even, then we can write p in the form p = 2r (since any even

number has 2 as a factor). The previous equation p' = 2q 2 can therefore
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be written as (simply substituting 2r for p): (2r)2 = 2q2 , which is [since

(2r) 2 = (2r) x (2r)) 4r2 = 2q2 . Dividing both sides by 2 gives: 2r2 = q2.

By the same arguments we used before, this says that q2 is even (since it

is equal to 2 times another number) and therefore that q must be even.

Note, however, that above we showed that q must be odd! Thus we have

reached something that is clearly a logical contradiction, since we

showed that q must be odd and even at the same time. This fact demon-

strates that our initial assumption, that there exist two whole numbers,

p and q, the ratio of which is equal to 4i, is false, thus completing the

proof. Numbers like represent a new kind of number—irrational

numbers.

We can prove in a very similar way that the square root of any num-

ber that is not a perfect square (such as 9 or 16) is an irrational number.

Numbers like -g, are irrational numbers.

The magnitude of the discovery of incommensurability and irra-

tional numbers cannot be overemphasized. Before this discovery, math-

ematicians had assumed that if you have any two line segments, one of

which is longer than the other, then you can always find some smaller

unit of measure so that the lengths of both segments will be exact

whole-number multiples of this smaller unit. For example, if one seg-

ment is precisely 21.37 inches long and the other is 11.475 inches long,

then we can measure both of them in units of one thousandth of an inch,

and the first one will be 21,370 such units and the second 11,475 units.

Early scholars therefore believed that finding such a common smaller

measure was merely a matter of patient search. The discovery of incom-

mensurability means that for the two segments of a line cut in a Golden

Ratio (such as AC and CB in Figure 2), or for the diagonal and the side

of a square, or for the diagonal and side of the pentagon, a common

measure is never to be found. Steven Cushing published in 1988 a short

poem (in the Mathematics Magazine) that describes our natural reaction

to irrationals:

Pythagoras

Did stagger us

And our reason encumber

With irrational number.
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We can appreciate better the intellectual leap that was required for the

discovery of irrational numbers by realizing that even fractions, or ra-
tional numbers such as A, 'A, VI3, represent by themselves an extremely

important human discovery (or invention). The nineteenth-century

mathematician Leopold Kronecker (1823-1891) expressed his opinion

on this matter by saying: "God created the natural numbers, all else is

the work of man."

Much of our knowledge about the familiarity of the ancient Egyp-

tians with fractions, for example, comes from the Rhind (or Ahmes) Pa-

pyrus. This is a huge (about 18 feet long and 12 inches high) papyrus

that was copied around 1650 B.C. from earlier documents by a scribe

named Ahmes. The papyrus was found at Thebes and bought in 1858

by the Scottish antiquary Henry Rhind, and it is currently in the

British Museum (except for a few fragments, which turned up unex-

pectedly in a collection of medical papers, and which are currently in

the Brooklyn Museum). The Rhind Papyrus, which is in effect a calcu-

lator's handbook, has simple names only for unit fractions, such as 1/2,1/2,

', etc., and for 'A. A few other papyri have a name also for 'A . The ancient

Egyptians generated other fractions simply by adding a few unit frac-

tions. For example, they had 'A + + Ao to represent 4A and

X8 + A74 ± 
1
/532 to represent 2

/59. To measure fractions of a capacity of

grain called hekat, the ancient Egyptians used what were known as

" Horus-eye" fractions. According to legend, in a fight between the god

Horus, the son of Osiris and Isis, and the killer of his father, Horus' eye

got torn away and broke into pieces. The god of writing and of calcula-

tions, Thoth, later found the pieces and wanted to restore the eye. How-

ever, he found only pieces that corresponded to the fractions 'A, X6,

V32, and Y. Realizing that these fractions only add up to %, Thoth pro-

duced the missing fraction of 1
A4 by magic, which allowed him to com-

plete the eye.

Strangely enough, the Egyptian system of unit fractions continued

to be used in Europe for many centuries. For those during the Renais-

sance who had trouble memorizing how to add or subtract fractions,

some writers of mathematical textbooks provided rules written in verse.

An amusing example is provided by Thomas Hylles's The Art of Vulgar
Arithmetic, both in Integers and Fractions (published in 1600):
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Addition of fractions and likewise subtraction

Requireth that first they all have like bases

Which by reduction is brought to perfection

And being once done as ought in like cases,

Then add or subtract their tops and no more

Subscribing the base made common before.

In spite of, and perhaps (to some extent) because of, the secrecy sur-

rounding Pythagoras and the Pythagorean Brotherhood, they are tenta-

tively credited with some remarkable mathematical discoveries that

may include the Golden Ratio and incommensurability. Given, how-

ever, the enormous prestige and successes of ancient Babylonian and

Egyptian mathematics, and the fact that Pythagoras himself probably

learned some of his mathematics in Egypt and Babylon, we may ask: Is

it possible that these civilizations or others discovered the Golden Ra-

tio even before the Pythagoreans? This question becomes particularly

intriguing when we realize that the literature is bursting with claims

that the Golden Ratio can be found in the dimensions of the Great

Pyramid of Khufu at Giza. To answer this question, we will have to

mount an exploratory expedition in archaeological mathematics.
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UNDER A STAR-Y-POINTING

PYRAMID:

The Pyramids first, which in Egypt were laid;

Next Babylon's Gardens, for Amytis made;

Then Maurolos' Tomb of affection and guilt;

Fourth, the Temple of Diana in Ephesus built;

The Colossus of Rhodes, cast in brass, to the Sun;

Sixth, Jupiter's Statue, by Phidias done;

The Pharos of Egypt comes last, we are told,

Or the Palace of Cyrus, cemented with gold.

-ANONYMOUS, " SEVEN WONDERS

OF THE ANCIENT WORLD"

The title of this chapter comes from the poem On Shakespeare, written in

1630 by the famous English poet John Milton (1608-1674). Milton,

who himself was widely esteemed as a poet second only to Shakespeare,

writes:

What needs my Shakespeare for his honor'd hones

The labor of an age in piled stones?

Or that his hallow'd relics should be hid

Under a star-y-pointing pyramid?

Dear son of memory, great heir of fame,

What need'st thou such weak witness of thy name?
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As we shall soon see, the alignment of the pyramids was indeed based

on the stars. As if these monuments are not awe-inspiring enough, how-

ever, many authors insist that the Great Pyramid's dimensions are based

on the Golden Ratio. To all Golden Ratio enthusiasts, this association

only adds to the air of mystique surrounding this proportion. But is this

true? Did the ancient Egyptians really know about 4), and if they did,

did they truly choose to "immortalize" the Golden Ratio by incorporat-

ing it into one of the Seven Wonders of the Ancient World?

Seeing that the initial interest in the Golden Ratio probably was in-

spired by its relation to the pentagram, we must first follow some of the

early history of the pentagram, since this may lead us to the earliest oc-

currences of the Golden Ratio.

Ask any child to draw you a star and she will most likely draw a

pentagram. This is actually a consequence of the fact that we happen to

view stars through Earth's atmosphere. The turbulence of the air bends

starlight in constantly shifting patterns, thus causing the familiar twin-

kling. In an attempt to represent the spikes generated by twinkling us-

ing a simple geometrical shape, humans came up with the pentagram,

which also has the additional attractive property that it can be drawn

without lifting the writing tool off the clay, papyrus, or paper.

Over the ages, such "stars" have become a symbol of excellence

(e.g., five-star hotels, movies, book reviews), achievement ("stardom"),

opportunity ("reach for the stars"), and authority ("five-star" generals).

When this symbolism is combined with the romantic appeal of a starry

night, it is no wonder that the flags of more than sixty nations depict

five-pointed stars and that such star patterns appear on innumerable

commercial logos (e.g., Texaco, Chrysler).

Some of the earliest known pentagrams come from fourth millen-

nium B.C. Mesopotamia. Pentagram shapes were found in excavations

in Uruk (where the earliest writings were also uncovered), and in

Jemdet Nasr. The ancient Sumerian city of Uruk is probably also the

one mentioned in the Bible (Genesis 10) as Erech, one of the cities in

the kingdom of the mighty hunter Nimrod. The pentagram was found

on a clay tablet dated to about 3200 B.C. In Jemdet Nasr, pentagrams

from about the same period were found on a vase and on a spindle

whorl. In Sumerian the pentagram, or its cuneiform derivative, meant
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"the regions of the universe." Other parts of the ancient Middle East

also produced pentagrams. A pentagram on a flint scraper from the

Chalcolithic period (4500-3100 B.c.) was found at Tel Esdar in the Is-

raeli Negev Desert. Pentagrams were also found in Israel in excavations

at Gezer and at Tel Zachariah, but those date to a considerably later pe-

riod (the fifth century B.c.). In spite of the fact that five-pointed stars

appear quite frequently in ancient Egyptian artifacts, true geometrical

pentagrams are not very common, although a pentagram dating to

around 3100 B.C. was found on a jar in Naqadah, near Thebes. Gener-

ally, the hieroglyphic symbol of a star enclosed in a circle meant the

"underworld," or the mythical dwelling of stars at twilight time, while

stars without circles served simply to signify the night stars.

The main question we need to answer, however, in the context of

this book is not whether pentagrams or pentagons had any symbolic or

mystic meanings for these early civilizations but whether these civiliza-

tions were also aware of the geometrical properties of these figures and, in

particular, of the Golden Ratio.

ERE BABYLON WAS DUST

Studies of cuneiform tablets dating to the second millennium B.C.,

which were discovered in 1936 in Susa in Iran, leave very little doubt

that the Babylonians of the first dynasty knew at least an approximate

formula for the area of a pentagon. The Babylonian interest in the pen-

tagon may have originated from the simple fact that this is the figure

obtained if the tips of all five fingers are pressed against a clay tablet. A

line on a Susa tablet reads: "1 40, the constant of the five-sided figure."

Since the Babylonians used the sexagesimal (base 60) system, the num-

bers 1 40 should be interpreted at 1 + 40/60, or 1.666 . . . , for the area

of the pentagon. The actual area of a pentagon with a side of unit length

is, in fact, not too far from this value---1.720. The Babylonians had a

si milar approximation for pi, the ratio of the circumference of a circle to

its diameter. In fact, the approximations for both pi and the area of the

pentagon relied on the same relation. The Babylonians assumed that the

perimeter of any regular polygon (shape of many equal sides and angles)
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is equal to six times the radius of the circle circumscribing that polygon

(Figure 12). This relation is actually precise for a regular hexagon (six-

sided shape; Figure 12), since all the triangles have equal sides. The

value of pi deduced by the Babylonians was pi  = 3 1/8 = 3.125. This is

really not a bad approximation, given that the precise value is

3.14159 . . . . For the pentagon, the assumption "perimeter equals six

times the radius" (which is not accurate) gives the approximate value

1.666 . . . for the area that appears in the Susa tablet.

In spite of these significant early discoveries in mathematics and the

intimate relation between the pentagon-pentagram system and the

Golden Ratio, there is absolutely no shred of mathematical evidence

that the Babylonians knew about the Golden Ratio. Nevertheless, some

texts claim that the Golden Ratio is found on Babylonian and Assyrian

stelae and bas-reliefs. For example, a Babylonian stela (Figure 13) de-

picting priests leading an initiate to a "meeting" with the sun god is

said (in Michael Schneider's entertaining book, A Beginner's Guide to

Constructing the Universe) to contain "many Golden Ratio relationships."

Similarly, in an article that appeared in 1976 in the journal The Fi-

bonacci Quarterly, art analyst Helene Hedian states that a bas-relief of an

Assyrian winged demigod of the ninth century i.c . (currently in the

Metropolitan Museum of Art) fits perfectly into a rectangle with di-

mensions that are in a Golden Ratio. Furthermore, Hedian suggests

that the strong lines of the wings, legs, and beak follow other phi divi-
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sions. Hedian also makes a similar assertion about the Babylonian "Dy-

ing Lioness" from Nineveh, dated to around 600 B.C ., which is cur-

rently in the British Museum in London.

Does the Golden Ratio really feature in these Mesopotamian arti-

facts, or is this merely a misconception?

In order to answer this question, we must be able somehow to iden-

tify criteria that will allow us to determine whether certain claims

about the appearance of the Golden Ratio are true or false. Clearly, the

presence of the Golden Ratio can be established unambiguously if some

form of documentation indicates that artists or architects have con-

sciously made use of it. Unfortunately, no such documentation exists for

any of the Babylonian tablets and bas-reliefs.

A devoted Golden Numberist still could argue, of course, that the

absence of evidence is not evidence of absence and that the measured

dimensions by themselves provide sufficient proof for the employment

of the Golden Ratio. As we shall soon see, however, the game of trying

to find the Golden Ratio in the dimensions of objects is a misleading

one. Let me illustrate this with the following simple example. Figure

14 shows a sketch of a small television set that rests on the counter in

my kitchen. The drawing shows some dimensions that I have measured

by myself. You will notice that the ratio of

the height of the protrusion at the televi-

sion's rear to its width, 10.6/6.5 = 1.63,

and the ratio of the length of the front to

the height of the screen, 14/8.75 = 1.6, are

both in reasonable agreement with the

value of the Golden Ratio, 1.618 . . . . Does

this mean that the makers of this televi-

sion decided to include the Golden Ratio in

its architecture? Clearly not. This example

simply demonstrates the two main short-

comings of claims about the presence of the

Golden Ratio in architecture or in works

of art, on the basis of dimensions alone:

(1) they involve numerical juggling, and (2)

they overlook inaccuracies in measurements.
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Any time you measure the dimensions of some relatively compli-

cated structure (e.g., a picture on a stela or a television set), you will

have at your disposal an entire collection of lengths to choose from. As

long as you can conveniently ignore parts of the object under consider-

ation, if you have the patience to juggle and manipulate the numbers in

various ways, you are bound to come up with some interesting num-

bers. Thus, in the television, I was able to "discover" some dimensions

that give ratios that are close to the Golden Ratio.

The second point that is often ignored by the too-passionate

Golden Ratio aficionados is that any measurements of lengths involve

errors or inaccuracies. It is important to realize that any inaccuracy in

length measurements leads to a yet larger inaccuracy in the calculated

ratio. For example, imagine that two lengths, of 10 inches each, are

measured with a precision of 1 percent. This means that the result of the

measurement for each length could be anywhere between 9.9 and 10.1

inches. The ratio of these measured lengths could be as bad as 9.9/10.1

= 0.98, which represents a 2 percent inaccuracy—double that of the in-

dividual measurements. Therefore, an overzealous Golden Numberist

could change two measurements by only 1 percent, thereby affecting

the obtained ratio by 2 percent.

A reexamination of Figure 13 with these caveats in mind reveals,

for example, that the vertical long segment has been conveniently cho-

sen so as to include the base of the bas-relief and not just the cuneiform

text. Similarly, the point to which the horizontal long segment was

measured has been chosen quite arbitrarily to be to the right, rather

than to the left, of the edge of the bas-relief.

Reevaluating all of the existing material in this light, I have to con-

clude that it is very unlikely that the Babylonians discovered the

Golden Ratio.

WAY DOWN IN EGYPT LAND

The situation concerning the ancient Egyptians is more complicated,

and it requires a considerable amount of detective work. Here we are

confronted with what is suggested to be overwhelming evidence in the
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form of numerous texts that claim that phi can be found, for example,

in the proportions of the Great Pyramid and in other ancient Egyptian

monuments.

Let me start with two of the easier cases, those of the Osirion and

the Tomb of Petosiris. The Osirion is a temple considered to be the

cenotaph of King Seti I, who ruled Egypt in the XIX dynasty from

about 1300 to about 1290 i.C. The temple was discovered by the noted

archaeologist Sir Flinders Petrie in 1901, and the massive excavation

works were completed in 1927. The temple itself is supposed to repre-

sent, via its architectural symbolism, the myth of Osiris. Osiris, the

husband of Isis, was originally the king of Egypt. His brother Seth mur-

dered him and scattered the pieces of his body. Isis collected the pieces,

thus providing Osiris with a renewed life. Consequently, Osiris became

king of the Underworld and of cyclic transformation through death and

rebirth on both the individual and cosmic levels. After the cult of the

dead was further developed during the Middle Kingdom (2000-1786

i.C.), Osiris was regarded as the judge of the soul after death.

The entire roofed Osirion temple was covered with earth, so as to

resemble an underground tomb. The plan of the Osirion (Figure 15a)

Figure 15a Figure 15b
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contains a central area with ten square columns, which is surrounded by

what was probably a water-filled ditch. This structure has been inter-

preted to symbolize creation out of the primordial waters.

In his interesting 1982 book Sacred Geometry: Philosophy and Practice,

Robert Lawlor suggests that the geometry of the Osirion is "conform-

ing to the proportions of the Golden Section" because "the Golden Pro-

portion is the transcendent 'idea-form' which must exist a priori and

eternally before all the progressions which evolve in time and space." To

support his suggestion about the prominent appearance of the Golden

Ratio, 4), in the architectural design of the temple, Lawlor offers de-

tailed geometrical analyses of the type presented in Figure 15b. Fur-

thermore, he claims that "the emphasis on the theme of the pentagon

aptly symbolized the belief that the king, after death, became a star."

In spite of their considerable visual appeal, I find Lawlor's analyses

unconvincing. Not only are the lines that are supposed to indicate

Golden Ratio proportions drawn at what appear to be totally arbitrary

points, but even the pentagons represent, in my opinion, a rather forced

interpretation of what is basically a rectangular shape. The fact that

Lawlor himself presents other geometrical analyses of the temple's

geometry (with (l) being associated with different dimensions) further

demonstrates the nonunique and somewhat capricious nature of such

readings.

The situation with the Tomb of Petosiris, which was excavated by

archaeologist Gustave Lefebvre during the early 1920s, is very similar.

The tomb is not as old as the Osirion, dating only to about 300 B.C.,

and it was built for the High Priest (known as Master of the Seat) of

Thoth. Since this tomb is from a period during which the Golden

Ratio was already known (to the Greeks), at least in principle, the

Golden Ratio could feature in the tomb's geometry. In fact, Lawlor

(again in Sacred Geometry) concludes that "the Master Petosiris had a

complete and extremely sophisticated knowledge of the Golden Pro-

portion." This conclusion is based on two geometrical analyses of a

painted bas-relief from the east wall of the tomb's chapel (Figure 16a).

The bas-relief shows a priest pouring a libation over the head of the

mummy of the deceased.

Unfortunately, the geometrical analyses that Lawlor presents appear
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Figure 16a Figure 16b

rather contrived (Figure 16b), with lines drawn conveniently at points

that are not obvious terminals at all. Furthermore, some of the ratios

obtained are too convoluted (e.g., 2-■11 + / phi) to be credible. My per-
sonal feeling is, therefore, that while Lawlor's assertion that "the burial
practices in the Pharaonic tradition were undertaken not merely to pro-
vide a receptacle for the physical body of the deceased, but also to make
a place to retain the metaphysical knowledge which the person had
mastered in his lifetime" is a very correct one, the Golden Ratio is un-
likely to have been a part of Petosiris' knowledge.

I should emphasize that it is virtually impossible to prove that the

Golden Ratio does not appear in some Egyptian artifacts when the evi-

dence is presented only in the form of some measured dimensions.

However, in the absence of any supporting documentation, the dimen-

sions of the artwork or architectural design have to be such that the

Golden Ratio will literally jump at you, rather than be buried so deeply

to require a very complex analysis to be revealed. As we shall see later,

detailed investigations of several much more recent cases for which

claims existed in the literature that the artists had used the Golden Ra-

tio show that there was no basis for these assertions.

Instead of continuing with relatively obscure objects, such as an
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Egyptian stela from around 2150 i.C., claimed by some to show di-

mensions in a ratio of 4), let me now turn to the main event—the Great

Pyramid of Khufu.

PYRAMID OF NUMBERS

According to tradition, it was King Menes (or Narmer) who as a ruler

of Upper Egypt conquered the rival kingdom of Lower Egypt (in the

delta of the Nile), thus uniting Egypt as a single kingdom, around

3110 i.C. Sun worship as the basic form of religion was introduced un-

der the rule of the third dynasty (ca. 2780-2680 i.C.), as were mum-

mification and the construction of large stone monuments. The age of

the great pyramids reached its climax during the fourth dynasty, around

2500 i.C., in the famous triad of pyramids at Giza (Figure 17). The

"Great Pyramid" (the one at the back in the figure) stands not only as a

monument to the king but also as a testimony to the success of a unified

organization of the ancient Egyptian society. Researcher Kurt Men-

delssohn concluded in his 1974 book The Riddle of the Pyramids that, to

Figure 17
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a large extent, the object of the whole exercise of constructing the pyr-

amids was not the use to which the final products were to be put (to

serve as tombs), but their manufacture. In other words, what mattered

was not the pyramids themselves but the building of the pyramids. This

would explain the apparent disparity between the tremendous effort of

piling up some 20 million tons of quarried limestone and the sole pur-

pose of burying under them three pharaohs.

In 1996 amateur Egyptologist Stuart Kirkland Wier, working un-

der the sponsorship of the Denver Museum of Natural History, esti-

mated that building the Great Pyramid at Giza required something

like 10,000 workers. A calculation of the energy required to carry the

blocks of stone from the quarry to the pyramid site, as well as that

needed to lift the stones to the necessary height, gave Wier the total

amount of work that had to be invested. Assuming that the construc-

tion lasted twenty-three years (the length of King Khufu's reign), and

making some reasonable assumptions about the daily energy output of

an Egyptian worker and about the construction schedule, Wier was able

to estimate the size of the workforce.

Until recently, the dating of the pyramids at Giza relied mostly on

surviving lists of kings and the lengths of their reigns. Since these lists

are rare, seldom complete, and known to contain inconsistencies,

chronologies generally were accurate only to within about a hundred

years. (Dating by radioactive carbon contains a similar uncertainty.) In

a paper that appeared in the journal Nature in November 2000, Kate

Spence of Cambridge University proposed another method of dating,

which gives for Khufu's Great Pyramid a date of 2480 B.C., with an un-

certainty of only about five years. Spence's method is the one originally

suggested by the astronomer Sir John Herschel in the middle of the

nineteenth century, and it is based on the fact that the pyramids were

always oriented with respect to the north direction with extraordinary

precision. For example, the orientation of the Great Pyramid at Giza

deviates from the true north by less than 3 minutes of arc (a mere 5 per-

cent of one degree). There is no doubt that the Egyptians used astro-

nomical observations to determine the north direction with such

accuracy.
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The north celestial pole is defined as a point on the sky aligned with

Earth's rotation axis, around which the stars appear to rotate. However,

the axis of Earth itself is not precisely fixed; rather it wobbles very

slowly like the axis of a spinning top or gyroscope. As a result of this

motion, known as precession, the north celestial pole appears to trace

out a large circle on the northern sky about every 26,000 years. While

today the north celestial pole is marked (to within one degree) by the

North Star, Polaris (known by the astronomical name of oc-Ursae Mi-

noris), this was not the case at the time of the Great Pyramid's con-

struction. By tentatively identifying the two stars that the ancient

Egyptians used to mark the north to be -Ursae Majoris and p-Ursae

Minoris, and by a careful examination of the alignments of eight pyra-

mids, Spence was able to determine the date of accession of Khufu's

pyramid to be 2480 B.C. ± 5, about seventy-four years younger than

previous estimates.

Few archaeological structures have generated as much myth and

controversy as has the Great Pyramid. The preoccupation with the pyra-

mid, or the occult side of pyramidology, was, for example, a central

theme to the cult of the Rosicrucians (founded in 1459 by Christian

Rosenkreuz). The members of this cult made great pretensions to

knowledge of the secrets of nature, magical signatures, and the like.

Freemasonry originated from some factions of the Rosicrucians' cult.

The more modern interest in pyramidology started probably with

the religiously permeated book of the retired English publisher John

Taylor, The Great Pyramid: Why Was It Built and Who Built It? which

appeared in 1859. Taylor was so convinced that the pyramid contained

a variety of dimensions inspired by mathematical truths unknown to

the ancient Egyptians that he concluded that its construction was the

result of divine intervention. Influenced by the then-fashionable idea

that the British were the descendants of the lost tribes of Israel, he pro-

posed, for example, that the basic measuring unit of the pyramid was

the same as the biblical cubit (slightly more than 25 British inches;

equal to precisely 25 "pyramid inches"). This unit supposedly was also

the one employed by Noah in building the Ark and by King Solomon

in the construction of the Temple. Taylor went on to claim that this
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sacred cubit was divinely selected on the basis of the length of Earth's

center-to-pole radius, with the "pyramid inch" being the five-hundred-

millionth part of Earth's polar axis. His cranky book found a great ad-

mirer in Charles Piazzi Smyth, the Astronomer-Royal of Scotland, who

published no fewer than three massive tomes (the first entitled Our In-

heritance in the Great Pyramid) on the Great Pyramid in the 1860s. Pi-

azzi Smyth's enthusiasm was motivated partly by his strong objection

to attempts to introduce the metric system in Britain. His pseudoscien-

tific/theological logic worked something like this: The Great Pyramid

was designed in inches; the mathematical properties of the pyramid

show that it was constructed by divine inspiration; therefore, the inch is

a God-given unit, unlike the centimeter, which was inspired "by the

wildest, most blood-thirsty and most atheistic revolution" (meaning

the French Revolution). In further describing his views on the system of

measures debate, Piazzi Smyth writes (in The Great Pyramid, Its Secrets

and Mysteries Revealed):

So that not for the force of the sparse oratory emitted in defense of

British metrology before Parliament, were the bills of the pro-

French metrical agitators so often overthrown, but for the sins

rather of that high-vaulting system itself; and to prevent a chosen

nation, a nation preserved through history . . . to prevent that na-

tion unheedingly robing itself in the accursed thing, in the very

garment of the coming Anti-Christ; and Esau-like, for a little base-

pottage, for a little temporarily extra mercantile profit, throwing

away a birthright institution which our Abrahamic race was in-

tended to keep, until the accomplishment of the mystery of God

touching all humankind.

After reading this text, we cannot be too surprised to find out that au-

thor Leonard Cottrell chose to entitle the chapter on Charles Piazzi

Smyth in his book The Mountains of Pharaoh "The Great Pyramidiot."

Both Piazzi Smyth and Taylor essentially revived the Pythagorean

obsession with the number 5 in their numerology-based analysis of the

pyramid. They noted that the pyramid has, of course, five corners and

five faces (counting the base); that the "sacred cubit" had about 25 (5
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squared) inches (or precisely 25 "pyramid inches"); that the "pyramid

inch" is the five-hundred-millionth part of Earth's axis; and so on.

Writer Martin Gardner found an amusing example that demon-

strates the absurdity in Piazzi Smyth's "fiveness" analysis. In his book

Fads and Fallacies in the Name of Science, Gardner writes:

If one looks up the facts about the Washington Monument in the

World Almanac, he will find considerable fiveness. Its height is 555

feet and 5 inches. The base is 55 feet square, and the windows are

set at 500 feet from the base. If the base is multiplied by 60 (or five

times the number of months in a year) it gives 3,300, which is the

exact weight of the capstone in pounds. Also, the word "Washing-

ton" has exactly ten letters (two times five). And if the weight of the

capstone is multiplied by the base, the result is 181,500—a fairly

close approximation to the speed of light in miles per second.

Here, however, comes the most dramatic announcement concerning the

Great Pyramid in the context of our interest in the Golden Ratio. In

the same book, Gardner refers to a statement that, if true, shows that

the Golden Ratio was actually incorporated in the Great Pyramid by

design. Gardner writes: "Herodotus states that the Pyramid was built

so the area of each face would equal the area of a square whose side is

equal to the Pyramid's height." The Greek historian Herodotus (ca.

485-425 B.C.) was called "the Fattier of History" by the great Roman

orator Cicero (106 43 B.C.). While Gardner did not realize the full im-

plications of Herodotus' statement, he was neither the first nor the last

to present it.

In an article entitled "British Modular Standard of Length," which

appeared in The Athenaeum on April 28, 1860, the famous British as-

tronomer Sir John (Frederick William) Herschel (1792-1871) writes:

The same slope, . . . belongs to a pyramid characterized by the

property of having each of its faces equal to the square described

upon its height. This is the characteristic relation which, Herodotus

distinctly tells us, it was the intention of its builders that it should

embody, and which we now know that it did embody.
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Most recently, in 1999, French author and telecommunications expert

Midhat J. Gazale writes in his interesting book Gnomon: From Pharaohs

to Fractals: "It was reported that the Greek historian Herodotus learned

from the Egyptian priests that the square of the Great Pyramid's height

is equal to the area of its triangular lateral side." Why is this statement

so crucial? For the simple reason that it is equivalent to saying that the

Great Pyramid was designed so that the ratio of the height of its trian-

gular face to half the side of the base is equal to the Golden Ratio!

Figure 18

Examine for a moment the sketch of the pyramid in Figure 18, in

which a is half the side of the base, s is the height of the triangular face,

and h is the pyramid's height. If the statement attributed to Herodotus

is correct, this would mean that h2 (the square of the pyramid's height)

is equal to s X a (the area of the triangular face; see Appendix 3). Some

elementary geometry shows that this equality means that the ratio s/a is

precisely equal to the Golden Ratio. (The proof is given in Appendix 3.)

The immediate question that comes to mind is: Well, is it? The base of

the Great Pyramid is actually not a perfect square, as the lengths of the

sides vary from 755.43 feet to 756.08 feet. The average of the lengths is

2a = 755.79 feet. The height of the pyramid is h = 481.4 feet. From

these values we find (by using the Pythagorean theorem) that the height

of the triangular side s is equal to s = 612.01 feet. We therefore find that

s/a = 612.01/377.90 = 1.62, which is indeed extremely close to (differ-

ing by less than 0.1 percent from) the Golden Ratio.

Taken at face value, therefore, this evidence would imply that the
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ancient Egyptians indeed knew about the Golden Ratio, since not only

does this number appear in the ratio of dimensions of the Great Pyra-

mid but its presence seems to be supported by historical documentation

of the intentions of the designers, in the form of Herodotus' statement.

But is this true? Or are we witnessing here what the Canadian mathe-

matician and author Roger Herz-Fischler called "one of the most in-

genious sleights of hand in 'scientific' history"?

Clearly, since the measurements of the dimensions cannot be al-

tered, the only part in this "evidence" for the presence of the Golden

Ratio that can be challenged is Herodotus' statement. In spite of the

numerous repetitions of the quote from History, and even though one

cannot cross-examine a man who lived 2,500 years ago, at least four re-

searchers have taken upon themselves the "detective" work of investi-

gating what Herodotus really said or meant. The results of two of these

inquiries have been summarized by Herz-Fischler and by University of

Maine mathematician George Markowsky.

The original text from Herodotus' History appears in paragraph 124

of book II, named Euterpe. Traditional translations read: "Its base is

square, each side is eight plethra long and its height the same," or "It is

a square, eight hundred feet each way, and the height the same." Note

that one plethron was 100 Greek feet (approximately 101 English feet).

These texts look very different from what has been presented as a

quote (that the square of the height equals the area of the face) from

Herodotus. Furthermore, the figures for the pyramid's dimensions that

Herodotus mentions are wildly off. The Great Pyramid is far from be-

ing 800 feet high (its height is only about 481 feet), and even the side

of its square base (about 756 feet) is significantly less than 800 feet. So

where did that "quote" come from? The first clue comes from Sir John

Herschel's article in The Athenaeum. According to Herschel, it was John

Taylor in his book The Great Pyramid, Why Was It Built and Who Built

It? who had "the merit of pointing out" this property of the pyramid

and Herodotus' quote. Herz-Fischler tracked down the misconception

to what appears to be nothing more than a misinterpretation of

Herodotus in John Taylor's by now infamous book.

Taylor starts with a translation of Herodotus that does not read too

differently from the ones above: "of this Pyramid, which is four-sided,
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each face is, on every side 8 plethra, and the height equal." Here, how-

ever, he lets his imagination run wild, by assuming that Herodotus

meant that the number of square feet in each face is equal to the num-

ber of square feet in a square with a side equal to the pyramid's height.

Even with this "imaginative" interpretation, Taylor is still left with the

small problem that the number mentioned (eight'plethra) is way off the

actual measurements. His suggested solution to this problem is even

more appalling. With no justification whatsoever, he claims that the

eight plethra must be multiplied by the area of the base of one of the

small pyramids standing on the east side of the Great Pyramid.

The conclusion from all of this is that Herodotus' text can hardly be

taken as documenting the presence of the Golden Ratio in the Great

Pyramid. The totally unfounded interpretation of the text instigated by

Taylor's book (and subsequently repeated endless times) really makes

little sense and represents just another case of number juggling.

Not everyone agrees with this conclusion. In an article entitled

"The Icosahedral Design of the Great Pyramid," which appeared in

1992, Hugo F. Verheyen proposes that the Golden Ratio as a mystic

symbol may have been deliberately hidden within the design of the

Great Pyramid "as a message for those who understand." As we shall see

later, however, there are more reasons to doubt the idea that the Golden

Ratio featured at all in the pyramid's design.

When we realize that the Great Pyramid rivals the legendary city of

Atlantis in the numbers of books written about it, we should not be too

surprised to hear that 4) was not the only special number to be invoked

in pyramidology—It was too.

The it theory appeared first in 1838, in Letter from Alexandria, on the

Evidence of the Practical Application of the Quadrature of the Circle, in the

Configuration of the Great Pyramids of Egypt, by H. Agnew, but it is gen-

erally credited to Taylor, who merely repeated Agnew's theory. The

claim is that that ratio of the circumference of the base (8a in our pre-

vious notation, in which a was half the side of the base) to the pyramid's

height (h) is equal to 21t. If we use the same measured dimensions we

used before, we find 8a/ h = 4 x 755.79/481.4 = 6.28, which is equal to

21c with a remarkable precision (differing only by about 0.05 of a per-

cent).
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The first thing to note, therefore, is that just from the dimensions

of the Great Pyramid alone, it would be impossible to determine

whether phi or pi, if either, was a factor in the pyramid's design. In fact,

in an article published in 1968 in the journal The Fibonacci Quarterly,

Colonel R. S. Beard of Berkeley, California, concluded that: "So roll the

dice and choose your own theory."

If we have to choose between rc and it. as potential contributors to

the pyramid's architecture, then IC has a clear advantage over (1). First,

the Rhind (Ahmes) Papyrus, one of our main sources of knowledge of

Egyptian mathematics, informs us that the ancient Egyptians of the

seventeenth century B.C. knew at least an approximate value of 1E, while

there is absolutely no evidence that they knew about (I>. Recall that

Ahmes copied this mathematical handbook at about 1650 B.C., during

the period of the Hyksos or shepherd kings. However, he references the

original document from the time of King Ammenemes III of the

Twelfth Dynasty; and it is perhaps not impossible (although it is un-

likely) that the contents of the document had already been known at the

time of the construction of the Great Pyramid. The papyrus contains

eighty-seven mathematical problems preceded by a table of fractions.

There is considerable evidence (in the form of other papyri and records)

that the table continued to serve as a reference for nearly two thousand

years. In his introduction, Ahmes describes the document as "the en-

trance into the knowledge of all existing things and all obscure secrets."

The Egyptian estimate of TE appears in problem number 50 of the Rhind

Papyrus, which deals with determining the area of a circular field.

Ahmes' solution suggests: "take away 'A of the diameter and square the

remainder." From this we deduce that the Egyptians approximated TC to

be equal to 25 = 3.16049 . . . , which is less than 1 percent off the cor-

rect value of 3.14159 . . . .

A second fact that gives it an advantage over el) is the interesting

theory that the builders incorporated 7t into the pyramid's design even

without knowing its value. This theory was put forward by Kurt

Mendelssohn in The Riddle of the Pyramids. Mendelssohn's logic works as

follows. Since there is absolutely no evidence that the Egyptians at the

ti me of the Old Kingdom had anything but the most rudimentary

command of mathematics, the presence of TE in the pyramid's geometry
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must be the consequence of some practical, rather than theoretical, de-

sign concept. Mendelssohn suggests that the ancient Egyptians may

have not used the same unit of length to measure vertical and horizon-

tal distances. Rather, they could have used palm fiber ropes to measure

the height of the pyramid (in units of cubits) and roller drums (one cu-

bit in diameter) to measure the length of the base of the pyramid. In

this way, horizontal lengths would have been obtained by counting the

revolutions in units one might call "rolled cubits." All the Egyptian ar-

chitect then had to do was to choose how many cubits he wanted his

workers to build upward for every horizontal rolled cubit. Since one

rolled cubit is really equal to it cubits (the circumference of a circle with

a diameter of one cubit), this method of construction would imprint

the value of it into the pyramid's design without the builders even

knowing it.

Of course, there is no way to test Mendelssohn's speculation di-

rectly. However, some Egyptologists claim that there does exist direct

evidence suggesting that neither the Golden Ratio nor pi were used in the

Great Pyramid's design (not even inadvertently). This theory is based

on the concept of the seked. The seked was simply a measure of the slope

of the sides of a pyramid or, more precisely, the number of horizontal

cubits needed to move for each vertical cubit. Clearly, this was an im-

portant practical concept for the builders, who needed to keep a con-

stant shape with each subsequent block of stone. The problems

numbered 56 to 60 in the Rhind Papyrus deal with calculations of the

seked and are described in great detail in Richard J. Gillings's excellent

book, Mathematics in the Time of the Pharaohs. In 1883, Sir Flinders Petrie

found that the choice of a particular seked (slope of the pyramid's side)

gives for the Great Pyramid the property of "ratio of circumference of

the base to the pyramid's height equal to 21C " to a high precision, with

TC playing no role whatsoever in the design. Supporters of the seked hy-

pothesis point out that precisely the same seked is found in the step

pyramid at Meidum, which was built just before the Great Pyramid at

Giza.

Not all agree with the seked theory. Kurt Mendelssohn writes: "A

great number of mathematical explanations have been suggested and

even one, made by a noted archaeologist [Petrie], that the builders by
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accident used a ratio of HAI f= 28/22, which is very close to 4/it}, remains

lamentably unconvincing." On the other hand, Roger Herz-Fischler,

who examined no fewer than nine theories that have been advanced for

the Great Pyramid's design, concluded in a paper that appeared in the

journal Crux Mathernaticorum in 1978 that the seked theory is very prob-

ably the correct one.

From our perspective, however, if either of the two hypotheses,

seked or rollers, is correct, then the Golden Ratio played no role in the

Great Pyramid's design.

Is, therefore, the 4,500-year-old case of the Golden Ratio and the

Great Pyramid closed? We would certainly hope so, but unfortunately

history has shown that the mystical appeal of the pyramids and Golden

Numberism may be stronger than any solid evidence. The arguments

presented by Petrie, Gillings, Mendelssohn, and Herz-Fischler have

been available for decades, yet this has not prevented the publication of

numerous new books repeating the Golden Ratio fallacy.

For our purposes, we have to conclude that it is highly unlikely that

either the ancient Babylonians or the ancient Egyptians discovered the

Golden Ratio and its properties; this task was left for the Greek math-

ematicians.



4

THE SECOND

TREASURE

Geometry has two great treasures; one is the Theorem of Pythagoras;

the other, the division of a line into extreme and mean ratio.

The first we may compare to a measure of gold;

the second we may name a precious jewel.

-JOHANNES KEPLER (1571-1630)

There is no doubt that anybody who grew up in a western or mideast-

em civilization is a pupil of the ancient Greeks, when it comes to math-

ematics, science, philosophy, art, and literature. The phrase of the

German poet Goethe—"of all peoples the Greeks have dreamt the

dream of life the best"—is only a small tribute to the pioneering efforts

of the Greeks in branches of knowledge that they invented and denom-

inated.

However, even the accomplishments of the Greeks in many other

fields pale in comparison with their awe-inspiring achievements in

mathematics. In the span of only four hundred years, for example, from

Thales of Miletus (at ca. 600 B.c.) to "the Great Geometer" Apollonius

of Perga (at ca. 200 B.C.), the Greeks completed all the essentials of a

theory of geometry.

The Greek excellence in mathematics was largely a direct conse-
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quence of their passion for knowledge for its own sake, rather than

merely for practical purposes. A story has it that when a student who

learned one geometrical proposition with Euclid asked, "But what do I

gain from this?" Euclid told his slave to give the boy a coin, so that the

student would see an actual profit.

The curriculum for the education of statesmen at the time of Plato

included arithmetic, geometry, solid geometry, astronomy, and mu-

sic—all of which, the Pythagorean Archytas tells us, fell under the gen-

eral definition of "mathematics." According to legend, when Alexander

the Great asked his teacher Menaechmus (who is reputed to have dis-

covered the curves of the ellipse, the parabola, and the hyperbola) for a

shortcut to geometry, he got the reply: "0 King, for traveling over the

country there are royal roads and roads for common citizens; but in

geometry there is one road for all."

PLATO

Into this intellectual milieu enter Plato (428/427 B.C.-348/347 B.C.),

one of the most influential minds of ancient Greece and of western civ-

ilization in general. Plato is said to have studied mathematics with the

Pythagorean Theodorus of Cyrene, who was the first to prove that not

just but also numbers like 4 .3-, and up to  are irrational. (No

one knows for sure why he stopped at 17, but clearly he did not have a

general proof.) Some researchers claim that Theodorus also may have

used a line cut in the Golden Ratio to provide what may be the easiest

proof of incommensurability. (The idea is essentially the same as that

presented in Appendix 2.)

As Plato states in The Republic, mathematics was an absolute must

in the education of all state leaders and philosophers. Accordingly, the

inscription over the entrance to his school (the Academy) read: "Let no

one destitute of geometry enter my doors." The historian of mathemat-

ics David Eugene Smith describes this in his book Our Debt to Greece and
Rome as the first college entrance requirement in history. Plato's admi-

ration for mathematics also shows when he speaks with some envy on



64 MARIO LIVIO

the attitude toward mathematics in Egypt, where "arithmetical games

have been invented for the use of mere children, which they learn as a

pleasure and amusement."

In considering the role of Plato in mathematics in general, and in

relation to the Golden Ratio in particular, we have to examine not just

his own purely mathematical contributions, which were not very sig-

nificant, but the effects of his influence and encouragement on the

mathematics of others of his and of later generations. To some extent,

Plato may be considered as one of the first true theoreticians. His theo-

retical inclinations are best exemplified by his attitude toward astron-

omy, where, rather than observing the stars in their motions, he

advocates to "leave the heavens alone" and concentrate on the more ab-

stract heaven of mathematics. The latter, according to Plato, is merely

represented by the actual stars, in the same way that the abstract enti-

ties of a point, a line, and a circle are represented by geometrical draw-

ings. Interestingly, in his outstanding book A History of Greek

Mathematics (1921), Sir Thomas Heath writes: "It is difficult to see what

Plato can mean by the contrast which he draws between the visible

broideries of heaven [the visible stars and their arrangement), which are

indeed beautiful, and the true broideries which they only imitate and

which are infinitely more beautiful and marvelous."

As a theoretical astrophysicist myself, I must say that I feel quite a

bit of affinity with some of the sentiments expressed by Plato's under-

lying motif. The distinction here is between the beauty of the cos-

mos itself and the beauty of the theory that explains the universe.

Let me clarify this with a simple example, the principle of which

was first discovered by the famous German painter Albrecht Di_irer

(1471-1528).

You can put together six pentagons (Figure 19) to make one large

pentagon, with five holes in the shape of Golden Triangles (isosceles tri-

angles with a ratio of side to base of 0. Six of these pentagons, in turn,

go together to make an even larger (and more holey-looking) pentagon,

and so on indefinitely.

I think everyone will agree that the obtained shape (Figure 19) is

extremely beautiful. But this shape contains an additional mathemati-

cal appeal, which is in the simplicity of the underlying principle of its
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Figure 19

construction. This is, I believe, that mathematical heaven to which

Plato was referring.

There is little doubt that Plato's guidance was far more important

than his direct contributions. A text attributed to Philodemus from the

first century reads: "Great progress in mathematics [was achieved) dur-

ing that time, with Plato as the director and problem-giver, and the

mathematicians investigating them zealously."

Nevertheless, Plato himself certainly had an intense interest in the

properties of numbers and of geometrical figures. In Laws, for example,

he suggests that the optimal number of citizens in a state is 5,040 be-

cause: (a) it is the product of 12, 20, and 21; (b) the twelfth part of it

can still be divided by 12; (c) it has 59 divisors, including all the whole

numbers from 1 to 12 (except for 11, but 5,038, which is very close to

5,040, is divisible by 11). The choice of this number and its properties

allow Plato to develop his socioeconomic vision. For example, the state's

land is divided into 5,040 lots, with 420 such lots constituting the ter-

ritory of each of twelve "tribes." The people of the state themselves are

divided into four social categories: free citizens and their wives and chil-

dren, their slaves, resident aliens, and a diverse population of visiting
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aliens. In elections to the Council, members from all four property cat-

egories vote for ninety members from each class.

Another number often associated with Plato is 216. Plato mentions

this number in The Republic in a rather obscure passage that alludes to

the fact that 216 is equal to 6 cubed, with 6 being one of the numbers

representing marriage (since it is the product of the female 2 and the

male 3). Plato, himself a pupil of the Pythagoreans, was also aware of

the fact that the sum of the cubes of the sides of the famous 3-4-5

Pythagorean triangle is equal to 216.

Plato and the Golden Section are linked mainly through two areas

that were particularly close to his heart: incommensurability and the

Platonic solids. In Laws, Plato expresses his own feeling of shame for hav-

ing learned about incommensurable lengths and irrational numbers rel-

atively late in his life, and he laments the fact that many of the Greeks

of his generation were still not familiar with the existence of such num-

bers.

Plato recognizes (in Hippias Major) that just as an even number may

be the sum of either two even or two odd numbers, so can the sum of

two irrationals be either irrational or rational. Since we already know

that is irrational, a rational straight line (e.g., of unit length) divided

in a Golden Section provides an illustration of the latter case, although

Plato may not have known this fact. Some researchers maintain that

Plato had a direct interest in the Golden Section. They point out that

when Proclus Diadochus (ca. 411-485) writes (in A Commentary on the

First Book of Euclid's Elements): "Eudoxus... multiplied the number of

theorems which Plato originated concerning the 'section,' " he may be

referring to Plato's (and Eudoxus') association with the Golden Section.

This interpretation, however, has been a matter of serious controversy

since the second half of the nineteenth century, with many researchers

concluding that the word "section" probably has nothing to do with the

Golden Section but rather is referring to the section of solids or to the

general sectioning of lines. Nevertheless, there is little doubt that much

of the groundwork leading to the definition and understanding of the

Golden Ratio was carried out during the years just prior to the opening

of Plato's Academy in 386 B.C. and throughout the period of the Acad-

emy's operation. The key figure and driving force behind the geometri-
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cal theorems concerning the Golden Ratio was probably Theaetetus (ca.

417 B.c.—ca. 369 i.C.), who according to the Byzantine collection

Suidas "was the first to construct the five so-called solids." The fourth-

century mathematician Pappus tells us that Theaetetus was also the one

to have "distinguished the powers which are commensurable in length

from those which are incommensurable." Theaetetus was not attached

to the Academy directly, but he surely had some informal connections

with it.

Figure 20

In Timaeus, Plato takes on the immense task of discussing the origin

and workings of the cosmos. In particular, he attempts to explain the

structure of matter using the five regular solids (or polyhedra), which

had been investigated already to some extent by the Pythagoreans and

very thoroughly by Theaetetus. The five Platonic solids (Figure 20) are

distinguished by the following properties: They are the only existing

solids in which all the faces (of a given solid) are identical and equilat-

eral, and each of the solids can be circumscribed by a sphere (with all its

vertices lying on the sphere). The Platonic solids are the tetrahedron

(with four triangular faces; Figure 20a), the cube (with six square faces;

Figure 20b), the octahedron (with eight triangular faces; Figure 20c),
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the dodecahedron (with twelve pentagonal faces; Figure 20d), and the

icosahedron (with twenty triangular faces; Figure 20e).

Plato combined the ideas of Empedocles (ca. 490-430 B.C.), that

the four basic elements of matter are earth, water, air, and fire, with the

"atomic" theory of matter (the existence of indivisible particles) of

Democritus of Abdera (ca. 460 B.c.—ca. 370 B.C.). His "unified" theory

suggested that each of the four elements corresponds to a different kind

of fundamental particle and is represented by one of the Platonic solids.

We should realize that while the details have, of course, changed con-

siderably, the basic idea underlying Plato's theory is not that different

from John Dalton's formulation of modern chemistry in the nineteenth

century. According to Plato, Earth is associated with the stable cube,

the "penetrating" quality of fire with the pointy and relatively simple

tetrahedron, air with the "mobile" appearance of the octahedron, and

water with the multifaceted icosahedron. The fifth solid, the dodecahe-

dron, was assigned by Plato (in Timaeus) to the universe as a whole, or in

his words, the dodecahedron is that "which the god used for embroi-

dering the constellations on the whole heaven." This is the reason why

the painter Salvador Dali decided to include a huge dodecahedron float-

ing above the supper table in his painting "Sacrament of the Last

Supper" (Figure 5 on page 9).

The absence of a fundamental element to be associated with the do-

decahedron was not accepted by all of Plato's followers, some of whom

postulated the existence of a fifth element. Aristotle, for example, took

the aether, the material of heavenly bodies which he assumed to perme-

ate the entire universe, to be the cosmic fifth essence ("quintessence").

He posited that by pervading all matter, this fifth essence ensured that

motion and change could occur, in accordance with the laws of nature.

The idea of a substance that pervades all space as a necessary medium for

the propagation of light continued to hold until 1887, when a famous

experiment by American physicist Albert Abraham Michelson and

chemist Edward Williams Morley showed that this medium does not

exist (nor is it required by the modern theory of light). Basically, the ex-

periment measured the speed of two beams of light launched in differ-

ent directions. The expectation was that because of Earth's motion

through the aether, the speeds of the two beams would be different, but
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the experiment proved categorically that they were not. The result of

the Michelson-Morley experiment set Einstein on the road to the theory

of relativity.

In a surprising turn of events, in 1998 two groups of astronomers

discovered that not only is our universe expanding (a fact already dis-

covered by astronomer Edwin Hubble in the 1920s), but that the ex-

pansion is accelerating. This discovery came as a total shock, since

astronomers naturally assumed that, due to gravity, the expansion

should be slowing down. In the same way that a ball thrown upward on

Earth continuously slows down because of gravity's pull (and eventually

reverses its motion), the gravitational force exerted by all the matter in

the universe should cause the cosmic expansion to decelerate. The dis-

covery that the expansion is speeding up rather than slowing down sug-

gests the existence of some form of "dark energy" that manifests itself as

a repulsive force, which in our present-day universe overcomes the at-

tractive force of gravity. Physicists are still struggling to understand the

source and nature of this "dark energy." One suggestion is that this en-

ergy is associated with some quantum mechanical field that permeates

the cosmos, a bit like the familiar electromagnetic field. Borrowing

from Aristotle's invisible medium, this field has been dubbed "quintes-

sence." Incidentally, in Luc Besson's 1997 science fiction movie The

Fifth Element, the "fifth element" of the title was taken to be the life

force itself—that which animates the inanimate.

Plato's theory was much more than a symbolic association. He

noted that the faces of the first four solids could be constructed out of

two types of right-angled triangles, the isosceles 45°-90°-45° triangle

and the 30°-90°-60° triangle. Plato went on to explain how basic

"chemical reactions" could be described using these properties. For ex-

ample, in Plato's "chemistry," when water is heated by fire, it produces

two particles of vapor (air) and one particle of fire. In a chemical reac-

tion formulation, this may be written as

{water} 2{airi + [fire]

or, in balancing the number of faces involved (in the Platonic solids that

represent these elements, respectively): 20 = 2 x 8 + 4. While this de-
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scription clearly does not conform with our modern understanding of

the structure of matter, the central idea—that the most fundamental

particles in our universe and their interactions can be described by a

mathematical theory that possesses certain symmetries—is one of the

cornerstones of today's research in particle physics.

To Plato, the complex phenomena that we observe in the universe

are not what really matters; the truly fundamental things are the un-

derlying symmetries, and those are never changing. This view is very

much in line with modern thinking about the laws of nature. For ex-

ample, these laws do not change from place to place in the universe. For

this reason, we can use the same laws that we determine from laboratory

experiments whether we study a hydrogen atom here on Earth or in a

galaxy that is billions of light-years away. This symmetry of the laws of

nature manifests itself in the fact that the quantity which we call linear

momentum (equaling the product of the mass of an object and the speed,

and having the direction of the motion) is conserved, namely, has the

same value whether we measure it today or a year from now. Similarly,

because the laws of nature do not change with the passing of time, the

quantity we call energy is conserved. We cannot get energy out of noth-

ing. Modern theories, which are based on symmetries and conservation

laws, are thus truly Platonic.

The original fascination of the Pythagoreans with polyhedra may

have originated from observations of pyrite crystals in southern Italy,

where the Pythagorean school was located. Pyrite, commonly known as

fool's gold, often has crystals with a dodecahedral shape. However, the

Platonic solids, their beauty, and their mathematical properties contin-

ued to captivate the imagination of people for centuries after Plato, and

they turn up in the most unexpected places. For example, in Cyrano de

Bergerac's (1619-1655) science-fiction novel A Voyage to the Moon: with

Some Account of the Solar World, the author uses a flying machine in the

form of an icosahedron to escape from prison in a tower and to land on

a sunspot.

The Golden Ratio, 43., plays a crucial role in the dimensions and

symmetry properties of some Platonic solids. In particular, a dodecahe-

dron with an edge length (the segment along which two faces join)

of one unit has a total surface area of 154,1V3 — and a volume of
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54. 346 — 240. Similarly, an icosahedron with a unit length edge has a

volume of 54)5/6.

The symmetry of the Platonic solids leads to other interesting

properties. For example, the cube and the octahedron have the same

number of edges (twelve), but their number of faces and vertices are in-

terchanged (the cube has six faces and eight vertices and the octahedron

eight faces and six vertices). The same is true for the dodecahedron and

icosahedron; both have thirty edges, and the dodecahedron has twelve

faces and twenty vertices, while it is the other way around for the

icosahedron. These similarities in the sym-

metries of the Platonic solids allow for in-

teresting mappings of one solid into its

dual or reciprocal solid. If we connect the

centers of all the faces of a cube, we obtain

an octahedron (Figure 21), while if we

connect the centers of the faces of an

octahedron, we obtain a cube. The same

procedure can be applied to map an icosa-

hedron into a dodecahedron and vice

versa, and the ratio of the edge lengths of

the two solids (one embedded in the other) that are obtained can again

be expressed in terms of the Golden Ratio, as 4:• 2 /V5-. The tetrahedron is

self-reciprocating—joining the four centers of the tetrahedron's faces

makes another tetrahedron.

While not all the properties of the Platonic solids were known in

antiquity, neither Plato nor his followers failed to see their sheer beauty.

To some extent, even the initial difficulties in constructing these fig-

ures (until methods using the Golden Ratio were found) could be taken

as their attributes. After all, the last sentence in Hippias Major reads:

"All that is beautiful is difficult." In "On the Failure of the Oracles,"

the Greek historian Plutarch (ca. 46—ca. 120) writes: "A pyramid [a

tetrahedron], an octahedron, an icosahedron, and a dodecahedron, the

primary figures which Plato predicates, are all beautiful because of

the symmetries and equalities in their relations, and nothing superior

or even like to these has been left for Nature to compose and fit to-

gether."
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As noted above, the icosahedron

and the dodecahedron are intimately

related to the Golden Ratio, in more

ways than one. For example, the twelve

vertices of any icosahedron can be di-

vided into three groups of four, with

the vertices of each group lying at the

corners of a Golden Rectangle (a rectan-

gle in which the ratio of length to

width is the Golden Ratio). The rect-

angles are perpendicular to each other, and their one common point is

the center of the icosahedron (Figure 22). Similarly, the centers of the

twelve pentagonal faces of the dodecahedron can be divided into three

groups of four, and each of those groups also forms a Golden Rectangle.

The close associations between some plane figures, such as the pen-

tagon and the pentagram, and some solids, such as the Platonic solids,

and the Golden Ratio lead to the inescapable conclusion that the Greek

interest in the Golden Ratio probably started with attempts to con-

struct such plane figures and solids. Most of this mathematical effort oc-

curred around the beginning of the fourth century B.C. There exist,

however, numerous claims that the Golden Ratio is embodied in the ar-

chitectural design of the Parthenon, which was built and decorated be-

tween 447 and 432 B.C., under the rule of Pericles. Can these claims be

verified?

THE VIRGIN'S PLACE

The Parthenon ("the virgin's place" in Greek) was built on the Acropo-

lis in Athens as a temple sacred to the cult of Athena Parthenos (Athena

the Virgin). The architects were Ictinus and Callicrates, and Phidias and

his assistants and students were charged with supervising the sculp-

tures. Sculptured groups ornamented the pediments terminating the

roof at the eastern and western ends. One group depicted the birth of

Athena and the other the contest between Athena and Poseidon.

Somewhat deceptive in its simplicity, the Parthenon remains one
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of the finest architectural expressions of the ideal of clarity and unity.

On September 26, 1687, Venetian artillery hit the Parthenon directly,

during an attack on the Ottoman Turks who held Athens at the time

and who used the Parthenon as a powder magazine. While the damage

was extensive, the basic structure remained intact. In describing this

event, General Konigsmark, who accompanied the field commander,

wrote: "How it dismayed His Excellency to destroy the beautiful tem-

ple which had existed three thousand years!" Numerous attempts have

been made, especially since the end of the Turkish control (in 1830),

to discover some mathematical or geometrical basis supposedly em-

ployed to achieve the Parthenon design's high perfection. Most books

on the Golden Ratio state that the dimensions of the Parthenon, while

its triangular pediment was still intact, fit precisely into a Golden Rec-

tangle. This statement is usually accompanied by a figure similar to

that in Figure 23. The Golden Ratio is assumed to feature in other di-

mensions of the Parthenon as well. For example, in one of the most ex-

tensive works on the Golden Ratio, Adolph Zeising's Der Goldne Schnitt

(The golden section;

published in 1884),

Zeising claims that the

height of the façade

from the top of its tym-

panum to the bottom

of the pedestal below

the columns is also di-

vided in a Golden Ra-

tio by the top of the

columns. This state-

ment was repeated in

many books, such as

Matila Ghyka's influen-

tial Le Nombre d'or (The

golden number; ap-

peared in 1931). Other

authors, such as Milou-

tine Borissavlievitch in
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The Golden Number and the Scientific Aesthetics of Architecture (1958), while

not denying the presence of 4 in the Parthenon's design, suggest that

the temple owes its harmony and beauty more to the regular rhythm in-

troduced by the repetition of the same column (a concept termed the

"law of the Same").

The appearance of the Golden Ratio in the Parthenon was seriously

questioned by University of Maine mathematician George Markowsky

in his 1992 College Mathematics Journal article "Misconceptions about

the Golden Ratio." Markowsky first points out that invariably, parts of

the Parthenon (e.g., the edges of the pedestal; Figure 23) actually fall

outside the sketched Golden Rectangle, a fact totally ignored by all the

Golden Ratio enthusiasts. More important, the dimensions of the

Parthenon vary from source to source, probably because different refer-

ence points are used in the measurements. This is another example of

the number-juggling opportunity afforded by claims based on mea-

sured dimensions alone. Using the numbers quoted by Marvin Tracht-

enberg and Isabelle Hyman in their book Architecture: From Prehistory to

Post-Modernism (1985), I am not convinced that the Parthenon has any-

thing to do with the Golden Ratio. These authors give the height as 45

feet 1 inch and the width as 101 feet 3.75 inches. These dimensions

give a ratio of width/height of approximately 2.25, far from the Golden

Ratio of 1.618 . . . Markowsky points out that even if we were to take

the height of the apex above the pedestal upon which the series of

columns stands (given as 59 feet by Stuart Rossiter in his 1977 book

Greece), we still would obtain a width/height ratio of about 1.72, which

is closer to but still significantly different from the value of  Other re-

searchers are also skeptical about phi's role in the Parthenon's design.

Christine Flon notes in The World Atlas of Architecture (1984) that while

"it is not unlikely that some architects ... should have wished to base

their works on a strict system of ratios . . . it would be wrong to gener-

alize."

So, was the Golden Ratio used in the Parthenon's design? It is

difficult to say for sure. While most of the mathematical theorems con-

cerning the Golden Ratio (or "extreme and mean ratio") appear to have

been formulated after the Parthenon had been constructed, considerable

knowledge existed among the Pythagoreans prior to that. Thus, the
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Parthenon's architects might have decided to base its design on some

prevailing notion for a canon for aesthetics. However, this is far less cer-

tain than many books would like us to believe and is not particularly

well supported by the actual dimensions of the Parthenon.

Whether or not the Golden Ratio features in the Parthenon, what

is clear is that whichever mathematical "programs" concerning the

Golden Ratio were instituted by the Greeks in the fourth century

B.C., that work culminated in the publication of Euclid's Elements, in

around 300 B.C. Indeed, from a perspective of logic and rigor, the El-

ements was long thought to be an apotheosis of certainty in human

knowledge.

EXTREME AND MEAN RATIO

In 336 B.C., twenty-year-old Alexander (the Great) of Macedonia suc-

ceeded to the throne and, by a sequence of brilliant victories, conquered

most of Asia Minor, Syria, Egypt, and Babylon and became ruler of the

Persian Empire. A few years before his death at the young age of thirty-

three, he founded what became the greatest monument to his name—

the city of Alexandria near the mouth of the Nile.

Alexandria was located at the crossroads of three great civilizations:

Egyptian, Greek, and Jewish. Consequently, it became an extraordinary

intellectual center that lasted for centuries and the birthplace of such

remarkable achievements as the Septuagint (meaning "translation of

the 70")—the Greek translation of the Old Testament, traditionally at-

tributed to seventy-two translators. The translation was begun in the

third century B.C., and the work progressed in several stages over about

a century.

After Alexander's death, Ptolemy I gained control over Egypt and

the African dominions by 306 B.C., and among his first actions was the

establishment of the equivalent of a university (known then as the Mu-

seum) in Alexandria. This institution included a library, which, follow-

ing an immense gathering effort, was reputed to hold at one time

700,000 books (some confiscated from unlucky tourists). The first staff

of teachers at the Alexandria school included Euclid, the author of the
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best-known book in the history of mathematics—the Elements (Stoi-

chia). In spite of Euclid being a "best-selling" author (only the Bible

sold more books than Elements until the twentieth century), his life is so

veiled in obscurity that even his birthplace in unknown. Given the con-

tents of the Elements, it is very likely that Euclid studied mathematics in

Athens with some of Plato's students. Indeed, Proclus writes about Eu-

clid: "This man lived in the time of the first Ptolemy . . . he is then

younger than the pupils of Plato, but older than Eratosthenes and

Archimedes."

The Elements, a thirteen-volume work on geometry and number

theory, is so colossal in its scope that we sometimes tend to forget that

Euclid was the author of almost a dozen other books, covering topics

from music through mechanics to optics. Only four of these other trea-

tises survived to the present day: Division of Figures, Optics, Phaenomena,

and Data. Optics contains some of the earliest studies of perspective.

Few will disagree that the Elements is the greatest and most influen-

tial mathematical textbook ever written. A story has it that when Abra-

ham Lincoln wanted to understand the true meaning of the word

"proof' in the legal profession, he started to study the Elements in his

cabin in Kentucky. The famous British logician and philosopher

Bertrand Russell describes in his Autobiography his first encounter with

Euclid's Elements (at age eleven!) as "one of the great events of my life, as

dazzling as first love."

The picture of the author that emerges from the pages of the Ele-

ments is that of a conscientious man, respectful of tradition, and very

modest. Nowhere does Euclid attempt to take credit for work that was

not originally his. In fact, he claims no originality whatsoever, in spite

of the fact that it is very obvious that he contributed many new proofs,

totally rearranged the contents contributed by others to entire volumes,

and designed the whole work. Euclid's scrupulous fairness and modesty

gained him the admiration of Pappus of Alexandria, who around A.D.

340 composed an eight-volume work entitled Collection (Synagoge),

which provides an invaluable record of many aspects of Greek mathe-

matics.

In the Elements, Euclid attempted to encompass most of the

mathematical knowledge of his time. Books I to VI deal with the plane
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geometry we learn in school and which has become synonymous with

Euclid's name (Euclidean geometry). Of these books, I, II, IV, and VI

discuss lines and plane figures, while Book III presents theorems related

to the circle, and Book V gives an extensive account of the work on pro-

portion originated by Eudoxus of Cnidus (ca. 408-355 B.C.). Books VII

to X deal with number theory and the foundations of arithmetic. In

particular, irrational numbers are elaborated on in Book X, the contents

of which are mostly the work of Theaetetus. Book XI provides the basis

for solid geometry; Book XII (mostly describing the work of Eudoxus)

proves the theorem for the area of the circle, and Book XIII (due mostly

to Theaetetus) demonstrates the constructions of the five Platonic

solids.

Still in ancient times, Hero (in the first century A.D.), Pappus (in the

fourth century), and Proclus (in the fifth century), all of Alexandria, and

Simplicius of Athens (in the sixth century) all wrote commentaries on the

Elements. A new revision of the work, by Theon of Alexandria, appeared in

the fourth century A.D. and served as the basis for all translations until the

nineteenth century, when a manuscript containing a somewhat different

text was discovered in the Vatican. In the Middle Ages, the Elements was

translated into Arabic three times. The first of these translations was car-

ried out by al-Hajjaj ibn Yasuf ibn Matar, at the request of Caliph Harlin

ar-Rashid (ruled 786-809), who is familiar to us through the stories in

The Arabian Nights. The Elements was first made known in Western Eu-

rope through Latin translations of the Arabic versions. English Benedic-

tine monk Adelard of Bath (ca. 1070-1145), who according to some

stories was traveling in Spain disguised as a Muslim student, got hold of

an Arabic text and completed the translation into Latin around 1120.

This translation became the basis of all editions in Europe until the

sixteenth century. Translations into many modern languages followed.

While Euclid himself may not have been the greatest mathemati-

cian who ever lived, he was certainly the greatest teacher of mathemat-

ics. The textbook he wrote remained in use practically unaltered for

more than two thousand years, until the middle of the nineteenth cen-

tury. Even the fictional detective Sherlock Holmes, in Arthur Conan

Doyle's A Study in Scarlet, claimed that his conclusions, achieved by de-

duction, were "as infallible as so many propositions of Euclid."
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The Golden Ratio appears in the Elements in several places. The first

definition of the Golden Ratio ("extreme and mean ratio"), in relation

to areas, is given somewhat obliquely in Book II. A second, clearer def-

inition, in relation to proportion, appears in Book VI. Euclid then uses

the Golden Ratio, especially in the construction of the pentagon (in

Book IV) and in the construction of the icosahedron and dodecahedron

(in Book XIII). .

Let me use some very simple geometry to examine Euclid's defini-

tion and explain why the Golden Ratio is so important for the con-

struction of the pentagon. In Figure 24, the line AB is divided by point

Euclid's definition in Book VI of extreme and mean ratio is such that:

(larger segment)/(shorter segment) is equal to (whole line/larger seg-

ment). In other words, in Figure 24:

AC/CB = AB/AC.

How is this line division related to the pentagon? In any regular planar

figure (those with equal sides and interior angles; known as regular

polygons),the sum of all the interior angles is given by 180(n –2), wheren

is the number of sides. For example, in a triangle n = 3, and the sum of

all the angles is equal to 180 degrees. In a pentagon n = 5, and the sum

of all the angles is equal to 540 degrees. Every angle of the pentagon is

therefore equal to 540/5 = 108 degrees. Imagine now that we draw two

adjacent diagonals in the pentagon, as in Figure 25a, thus forming

three isosceles (with two equal sides) triangles. Since the two angles

near the base of an isosceles triangle are equal, the base angles in the two

triangles on the sides are 36 degrees each [half of (180° – 108°)). We

therefore obtain for the angles of the middle triangle the values

36-72-72 (as marked in Figure 25a). If we bisect one of the two 72-de-

gree base angles (as in Figure 25b), we obtain a smaller triangle DBC

with the same angles (36-72-72) as the large one ADB. Using very
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elementary geometry, we can show that according to Euclid's definition,

point C divides the line AB precisely in a Golden Ratio. Furthermore,

the ratio of AD to DB is also equal to the Golden Ratio. (A short proof

is given in Appendix 4.) In other words, in a regular pentagon, the ra-

tio of the diagonal to the side is equal to I. This fact illustrates that

the ability to construct a line divided in a Golden Ratio provides at the

same time a simple means of constructing the regular pentagon. The

construction of the pentagon was the main reason for the Greek interest

in the Golden Ratio. The triangle in the middle of Figure 25a, with a

ratio of side to base of 4., is known as a Golden Triangle,. the two trian-

gles on the sides, with a ratio of side to base of 1/4), are sometimes called

Golden Gnomons. Figure 25b demonstrates a unique property of Golden

Triangles and Golden Gnomons—they can be dissected into smaller

triangles that are also Golden Triangles and Golden Gnomons.

(a) (b)

Figure 25

The association of the Golden Ratio with the pentagon, fivefold

symmetry, and the Platonic solids is interesting in itself and, indeed,

was more than sufficient to ignite the curiosity of the ancient Greeks.

The Pythagorean fascination with the pentagon and the pentagram,

coupled with Plato's interest in the regular solids and his belief that the

latter represented fundamental cosmic entities, prompted generations

of mathematicians to labor on the formulation of numerous theorems

concerning 1. Yet the Golden Ratio would not have reached the level of

almost reverential status that it eventually achieved were it not for some



80 MARIO LIVIO

truly unique algebraic properties. In order to understand these proper-

ties, we need first to find the precise value of 49.

Examine again Figure 24, and let us take the length of the shorter

segment, CB, to be 1 unit and the length of the longer one, AC, to be x

units. If the ratio of x to 1 is the same as that of x + 1 (length of the line

AB) to x, then the line has been cut in extreme and mean ratio. We can

easily solve for the value, x, of the Golden Ratio. From the definition of

extreme and mean ratio

Multiplying both sides by x, we get x2 = x + 1, or the simple quadratic

equation

1.2 - x - 1 0.

In case you do not remember precisely how to solve quadratic equa-

tions, Appendix 5 presents a brief reminder. The two solutions of the

equation for the Golden Ratio are:

x, - 1 + 
2

1 — 
-

2

The positive solution (1 + 1.6180339887 . . . gives the value

of the Golden Ratio. We now see clearly that(?) is irrational, being sim-

ply half the sum of 1 and the square root of 5. Even before we go any

further, we can get a feeling that this number has some interesting

properties by using a simple scientific pocket calculator. Enter the num-

ber 1.6180339887 and hit the [x 2} button. Do you see something

surprising? Now enter the number again, and this time hit the

fl/xj button. Intriguing, isn't it? While the square of the number
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1.6180339887 . . . gives 2.6180339887 . . . , its reciprocal ("one

over") gives 0.6180339887 . , all having precisely the same digits af-

ter the decimal point! The Golden Ratio has the unique properties that

we produce its square by simply adding the number 1 and its recipro-

cal by subtracting the number 1. Incidentally, the negative solution of

the equation x 2 = (1 — '\i)/2 is equal precisely to the negative of 1/0).

Paul S. Bruckman of Concord, California, published in 1977 in the

journal The Fibonacci Quarterly an amusing poem called "Constantly

Mean." Referring to the Golden Ratio as the "Golden Mean," the first

verse from that poem reads:

The golden mean is quite absurd;

It's not your ordinary surd.

If you invert it (this is fun!),

You'll get itself reduced by one;

But if increased by unity,

This yields its square, take it from me.

The fact that we now have an algebraic expression for the Golden Ratio

allows us, in principle, to calculate it to a high precision. This is pre-

cisely what M. Berg did in 1966, when he used 20 minutes on an IBM

1401 mainframe computer to calculate 4) to the 4,599th decimal place.

(The result was published in the Fibonacci Quarterly.) The same can be

achieved today on almost any personal computer in less than two sec-

onds. In fact, the Golden Ratio was .computed to 10 million decimal

places in December 1996, and it took about thirty minutes. For the true

number enthusiasts, here is 4) to the 2,000t h decimal place:

Decimal

place

1 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 50

28621 35448 62270 52604 62818 90244 97072 07204 18939 11374 100

84754 08807 53868 91752 12663 38622 23536 93179 31800 60766

72635 44333 89086 59593 95829 05638 32266 13199 28290 26788 200

06752 08766 89250 17116 96207 03222 10432 16269 54862 62963

13614 43814 97587 01220 34080 58879 54454 74924 61856 95364 300

86444 92410 44320 77134 49470 49565 84678 85098 74339 44221

25448 77066 47809 15884 60749 98871 24007 65217 05751 79788 400
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34166 25624 94075 89069 70400 02812 10427 62177 11177 78053
15317 14101 17046 66599 14669 79873 17613 56006 70874 80710 500

13179 52368 94275 21948 43530 56783 00228 78569 97829 77834
78458 78228 91109 76250 03026 96156 17002 50464 33824 37764
86102 83831 26833 03724 29267 52631 16533 92473 16711 12115
88186 38513 31620 38400 52221 65791 28667 52946 54906 81131
71599 34323 59734 94985 09040 94762 13222 98101 72610 70596
11645 62990 98162 90555 20852 47903 52406 02017 27997 47175
34277 75927 78625 61943 20827 50513 12181 56285 51222 48093
94712 34145 17022 37358 05772 78616 00868 83829 52304 59264
78780 17889 92199 02707 76903 89532 19681 98615 14378 03149
97411 06926 08867 42962 26757 56052 31727 77520 35361 39362 1000

10767 38937 64556 06060 59216 58946 67595 51900 40055 59089
50229 53094 23124 82355 21221 24154 44006 47034 05657 34797
66397 23949 49946 58457 88730 39623 09037 50339 93856 21024
23690 25138 68041 45779 95698 12244 57471 78034 17312 64532
20416 39723 21340 44449 48730 23154 17676 89375 21030 68737
88034 41700 93954 40962 79558 98678 72320 95124 26893 55730
97045 09595 68440 17555 19881 92180 20640 52905 51893 49475
92600 73485 22821 01088 19464 45442 22318 89131 92946 89622
00230 14437 70269 92300 78030 85261 18075 45192 88770 50210
96842 49362 71359 25187 60777 88466 58361 50238 91349 33331

22310 53392 32136 24319 26372 89106 70503 39928 22652 63556
20902 97986 42472 75977 25655 08615 48754 35748 26471 81414
51270 00602 38901 62077 73224 49943 53088 99909 50168 03281
12194 32048 19643 87675 86331 47985 71911 39781 53978 07476
15077 22117 50826 94586 39320 45652 09896 98555 67814 10696
83728 84058 74610 33781 05444 39094 36835 83581 38113 11689
93855 57697 54841 49144 53415 09129 54070 05019 47754 86163
07542 26417 29394 68036 73198 05861 83391 83285 99130 39607
20144 55950 44977 92120 76124 78564 59161 60837 05949 87860
06970 18940 98864 00764 43617 09334 17270 91914 33650 13715 2000

Intriguing as they are, you may think that the properties of 43. I have

described so far hardly justify adjectives like "Golden" or "Divine," and

you would be right. But this has been just a first glimpse of the wonders

to come.

SURPRISES GALORE

Everyone is familiar with the feeling we experience when we suddenly

recognize the face of an old friend at a party where we were convinced
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we hardly know anyone. You may also have a similar emotional response

when you go to an art exhibition and, upon turning a corner, find your-

self suddenly facing one of your favorite paintings. The entire notion of

a "surprise party" is in fact based on the pleasure and gratification many

of us feel when confronted with such unexpected appearances. Mathe-

matics and the Golden Ratio in particular provide a rich treasury of

such surprises.

I magine that we are trying to determine the value of the following

unusual expression that involves square roots that go on forever:

However, note that because the second expression on the right-hand

side goes on to infinity, it is actually equal to our original x. We there-

fore obtain the quadratic equation x ' = 1 + x. But this is precisely the

equation that defines the Golden Ratio! We therefore found that our

endless expression is actually equal to (I).

Let us now look at a very different type of never-ending expression,

this time involving fractions:
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This is a special case of mathematical entities known as continued frac-

tions, which are used quite frequently in number theory. How would we

compute the value of this continued fraction? Again, we could in prin-

ciple truncate the series of is at successively higher points, hoping to

find the limit to which the continued fraction converges. Based on our

previous experience, however, we could at least start by denoting the

value by x. Thus,

Note, however, that because the continued fraction goes on forever, the

denominator of the second term on the right-hand side is in fact identical

to x itself. We therefore have the equation

1
x = 1 + — .

x

Multiplying both sides by x, we get x2 = x + 1, which is again the equa-

tion defining the Golden Ratio! We find that this remarkable continued

fraction is also equal to 4). Paul S. Bruckman's poem "Constantly Mean"

refers to this property as well:

Expressed as a continued fraction,

It's one, one, one, . , until distraction;

In short, the simplest of such kind

(Doesn't this really blow your mind?)
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Because the continued fraction corresponding to the Golden Ratio is

composed of ones only, it converges very slowly. The Golden Ratio is, in

this sense, more "difficult" to express as a fraction than any other irra-

tional number—it is the "most irrational" among irrationals.

From never-ending expressions let us now turn our attention to the

Golden Rectangle in Figure 26. The lengths of the sides of the rectan-

gle are in a Golden Ratio to each other. Suppose we cut off a square from

this rectangle (as marked in the figure). We will be left with a smaller

rectangle that is also a Golden Rectangle. The dimensions of the

"daughter" rectangle are smaller than those of the "parent" rectangle by

precisely a factor 4). We can now cut a square from the daughter Golden

Rectangle and we will be left again with a Golden Rectangle, the di-

mensions of which are smaller by another factor of 4). Continuing this

process ad infinitum, we will produce smaller and smaller Golden Rect-

angles (each time with dimensions "deflated" by a factor 4)). If we were

to examine the ever-decreasing (in size) rectangles with a magnifying

glass of increasing power, they would all look identical. The Golden

Rectangle is the only rectangle with the property that cutting a square

from it produces a similar rectangle. Draw two diagonals of any mother-

daughter pair of rectangles in the series, as in Figure 26, and they will

all intersect at the same point. The series of continuously diminishing

rectangles converges to that never-reachable point. Because of the "di-

vine" properties attributed to the Golden Ratio, mathematician Clif-

ford A. Pickover suggested that we should refer to that point as "the

Eye of God."

Figure 26
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If you did not find it mind-boggling that all of these diverse math-

ematical circumstances lead to 4,, take a simple pocket calculator and I

will show you an amazing magic trick. Choose any two numbers (with

any number of digits) and write them one after the other. Now, using

the calculator (or in your head), form a third number, by simply adding

together the first two (and write it down); form a fourth number by

adding the second number to the third; a fifth number by adding the

third to the fourth; a sixth number by adding the fourth to the fifth and

so on, until you have a series of twenty numbers. For example, if your

first two numbers were 2 and 5, you would have obtained the series 2,

5, 7, 12, 19, 31, 50, 81, 131. . . . Now use the calculator to divide your

twentieth number by your nineteenth number. Does the result look fa-

miliar? It is, of course, phi. I shall return to this trick and its explana-

tion in Chapter 5.

TOWARD THE DARK AGES

In his definition in the Elements, Euclid was interested primarily in the

geometrical interpretation of the Golden Ratio and in its use in the con-

struction of the pentagon and some Platonic solids. Following in his

footsteps, Greek mathematicians in the next centuries produced several

new geometrical results involving the Golden Ratio. For example, the

"Supplement" to the Elements (often referred to as Book XIV) contains

an important theorem concerning a dodecahedron and an icosahedron

that are circumscribed by the same sphere. The text of the "Supple-

ment" is attributed to Hypsicles of Alexandria, who probably lived in

the second century B.C., but it is believed to contain theorems by Apol-

lonius of Perga (ca. 262-190 B.C.), one of the three key figures (together

with Euclid and Archimedes) of the Golden Age of Greek mathematics

(from about 300 to 200 B.C.). Developments concerning the Golden

Ratio become more sparse after that and are associated mainly with

Hero (in the first century A.D.), Ptolemy (in the second century A.D.),

and Pappus (in the fourth century). In his Metrica, Hero provided ap-

proximations (often without offering a clue of how they were obtained)
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for the areas of the pentagon and the decagon (the ten-sided polygon)

and for the volumes of dodecahedrons and icosahedrons.

Ptolemy (Claudius Ptolemaus) lived around A.D. 100 to 179, but

virtually nothing is known about his life, except that he did most of his

work in Alexandria. Based on his own and previous astronomical obser-

vations, he developed his celebrated geocentric model of the universe,

according to which the Sun and all the planets revolved around Earth.

While fundamentally wrong, his model did manage to explain (at least

initially) the observed motions of the planets, and it continued to gov-

ern astronomical thinking^for some thirteen centuries.

Ptolemy synthesized his own astronomical work with that of other

Greek astronomers (in particular Hipparchos of Nicaea) in an en-

cyclopaedic, thirteen-volume book, Hi Mathimatiki Syntaxis (The

mathematical synthesis). The book later became known as The Great As-

tronomer. However, ninth-century Arab astronomers referred to the book

invoking the Greek superlative "Megiste" ("the greatest'') but prefixing

it with the Arabic identifier of proper names, "al." The book thereby be-

came known, to this day, as the Almagest. Ptolemy also did important

work in geography and wrote an influential book entitled Guide to Ge-

ography.

In the Almagest and the Guide to Geography. Ptolemy constructed

one of the earliest equivalents of a trigonometric table for many angles.

In particular, he calculated lengths of chords connecting two points on

a circle for various angles, including the angles 36, 72, and 108 degrees,

which, as you recall, appear in the pentagon and are therefore closely as-

sociated with the Golden Ratio.

The last great Greek geometer who contributed theorems related to

the Golden Ratio was Pappus of Alexandria. In his Collection (Synagoge;

ca. A.D. 340), Pappus gives a new method for the construction of the do-

decahedron and the icosahedron as well as comparisons of the volumes

of the Platonic solids, all of which involve the Golden Ratio. Pappus'

commentary on Euclid's theory of irrational numbers traces beautifully

the historical development of irrationals and is extant in its Arabic

translations. However, his heroic efforts to arrest the general decay of

mathematics and of geometry in particular were unsuccessful, and after

his death, with the overall withering of intellectual curiosity in the
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West, interest in the Golden Ratio entered a long period of hibernation.

The great Alexandrian library was destroyed by a series of attacks, first

by the Romans and then by Christians and Muslims. Even Plato's Acad-

emy came to an end in A.D. 529, when the Byzantine emperor Justinian

ordered the closing of all the Greek schools. During the depressing

Dark Ages that followed, the French historian and bishop Gregory of

Tours (538-594) lamented that "the study of letters is dead in our

midst." In fact, the whole enterprise of science was essentially trans-

ferred in its entirety to India and the Arab world. A significant event of

this period was the introduction of the so-called Hindu-Arabic numer-

als and of decimal notation. The most important Hindu mathematician

of the sixth century was Aryabhata (476—ca. 550). In his best-known

book, entitled Aryabhatiya, we find the phrase "from place to place each

is ten times the preceding," which indicates an application of a place-

value system. An Indian plate from 595 already contains writing (of a

date) in Hindu numerals using decimal place-value notation, implying

that such numerals had been in use for some time. The first sign (albeit

with no real influence) of Hindu numerals moving West can be found

in the writings of the Nestorian bishop Severus Sebokht, who lived in

Keneshra on the Euphrates River. He wrote in 662: "I will omit all dis-

cussion of the science of the Indians . . . and of their valuable methods

of calculation which surpass description. I wish only to say that this

computation is done by means of nine signs."

With the ascendancy of Islam, the Muslim world became an im-

portant center for mathematical study. Had it not been for the intellec-

tual surge in Islam during the eighth century, most of the ancient

mathematics would have been lost. In particular, Caliph al-Mamun

(786-833) established in Baghdad the Beit al-hikma (House of wis-

dom), which operated in a similar fashion to the famous Alexandrian

university or "Museum." Indeed, the Abbasid empire subsumed any

Alexandrian learning that had survived. According to tradition, after

having a dream in which Aristotle appeared, the caliph decided to have

all the ancient Greek works translated.

Many of the important Islamic contributions were algebraic in na-

ture and touched on the Golden Ratio only very peripherally. Neverthe-

less, at least three mathematicians should be mentioned: Al-Khwarizmi
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and Abu Kamil Shuja in the ninth century and Abu'l-Wafa in the tenth

century.

Mohammed ibn-Musa al-Khwarizmi composed, in Baghdad (at

about 825), what is considered to be the most influential algebraic work

of the period—Kita-b al-jabr wa al-muqa- balah (The science of restoration

and reduction). From this title ("al-jabr") comes the word "algebra" that

we use today, since this was the first textbook used in Europe on that

subject matter. Furthermore, the word "algorithm," used for any special

method for solving a mathematical problem using a collection of exact

procedural steps, comes from a distortion of al-Khwarizn-u- 's name. The

Science of Restoration was synonymous with the theory of equations for a

few hundred years. The equation required to solve one of the problems

presented by al-Khw-arizmi bears a close resemblance to the equation

defining the Golden Ratio. Al-Khwarizrru- says: "I have divided ten into

two parts; I have multiplied the one by ten and the other by itself, and

the products were the same." Al-Khwarizn-u- calls the unknown shai

("the thing"). Consequently, the first line in the description of the equa-

tion obtained (for the above problem) translates to: "you multiply thing

by ten; it is ten things." The equation one obtains, 10x = (10 — x)2 , is the

one for the smaller segment of a line of length 10 divided in a Golden

Ratio. The question of whether al-Khwarizmi actually had the Golden

Ratio in mind when posing this problem is a matter of some dispute.

Under the influence of al-Khwarizmi's work, the unknown was called

"res" in the early algebraic works in Latin, translated to "cosa" ("the

thing") in Italian. Accordingly, algebra itself became known as "l'arte

della cosa" ("the art of the thing"). Occasionally it was referred to as the

"ars magna" ("the great art"), to distinguish it from what was consid-

ered as the lesser art of arithmetic.

The second Arab mathematician who made contributions related to

the history of the Golden Ratio is Abu Kamil Shuja, known as al-Hasib

al-Misri, meaning "the Calculator from Egypt." He was born around

850, probably in Egypt, and died at about 930. He wrote many books,

some of which, including the Book on Algebra, Book of Rare Things in the

Art of Calculation, and Book on Surveying and Geometry, have survived.

Abu Kamil may have been the first mathematician who instead of sim-

ply finding a solution to a problem was interested in finding all the pos-
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sible solutions. In his Book of Rare Things in the Art of Calculation he even

describes one problem for which he found 2,678 solutions. More im-

portant from the point of view of the history of the Golden Ratio, Abu

Kamil's books served as the basis for some of the books of the Italian

mathematician Leonardo of Pisa, known as Fibonacci, whom we shall

encounter shortly. Abu Kamil's treatise On the Pentagon and the Decagon

contains twenty problems and their solutions, in which he calculates

the areas of the figures and the length of their sides and the radii of sur-

rounding circles. In some of these calculations (but not all), he uses the

Golden Ratio. A few of the algebraic problems appearing in Algebra

may have also been inspired by the concept of the Golden Ratio.

The last of the Islamic mathematicians I would like to mention is

Mohammed Abu'l-Wafa (940-998). Abu'l-Wafa was born in Buzjan

(in present-day Iran) and lived during the rule of the Buyid Islamic dy-

nasty in western Iran and Iraq. This dynasty reached its peak under the

reign of Adud ad-Dawlah, who was a great patron of mathematics, the

sciences, and the arts. Abu'l-Wafa was one of the mathematicians who

were invited to Adud ad-Dawlah's court in Baghdad in 959. His first

major book was Book on What Is Needed from the Science of Arithmetic for

Scribes and Businessmen, and according to Abu'l-Wafa, it "comprises all

that an experienced or novice, subordinate or chief in arithmetic needs

to know." Interestingly, although Abu'l-Wafa himself was an expert in

the use of Hindu numerals, all the text of his book is written with no

numerals whatsoever—numbers are written only as words, and calcula-

tions are done only mentally. By the tenth century, the use of Indian

numerals had not yet found application in the business circles. Abu'l-

Wafa's interest in the Golden Ratio appears in his other book: A Book on

the Geometric Constructions Which Are Needed for an Artisan. In this book,

Abu'l-Wafa presents ingenious methods for the construction of the pen-

tagon and the decagon and for inscribing regular polygons in circles

and inside other polygons. A unique component of his work is a series

of problems that he solves using a ruler (straightedge) and a compass, in

which the angle between the two legs of the compass is kept fixed

(known as "rusty compass" constructions). This particular genre was

probably inspired by Pappus' Collection but may also represent Abu'l-
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Wafa's response to a practical problem—the results with a fixed-angle

compass are more accurate.

The work by these and other Islamic mathematicians produced im-

portant but only incremental progress in the mathematical history of

the Golden Ratio. As is often the case in the sciences, such preparatory

periods of slow advancement are necessary to give birth to the next

breakthrough. The great playwright George Bernard Shaw once ex-

pressed his views on progress by the statement: "The reasonable man

adapts himself to the world; the unreasonable one persists in trying to

adapt the world to himself. Therefore all progress depends on the un-

reasonable man." In the case of the Golden Ratio, the quantum leap had

to await the appearance of the most distinguished European mathe-

matician of the Middle Ages—Leonardo of Pisa.



5

SON OF

GOOD NATURE

The nine Indian figures are: 9 8 7 6 5 4 3 2 1.

With these nine figures, and with the sign 0 . . . any number

may be written, as is demonstrated below.

-LEONARDO FIBONACCI (CA. I I 70S- I 240S)

With the above words, Leonardo of Pisa (in Latin Leonardus Pisanus),

also known as Leonardo Fibonacci, began his first and best-known book,

Liber abaci (Book of the abacus), published in 1202. At the time the

book appeared, only a few privileged European intellectuals who cared

to study the translations of the works of al-Khwarizmi and Abu Kamil

knew the Hindu-Arabic numerals we use today. Fibonacci, who for a

while joined his father, a customs and trading official, in Bugia (in

present-day Algeria) and later traveled to other Mediterranean coun-

tries (including Greece, Egypt, and Syria), had the opportunity to study

and compare different numerical systems and methods for arithmetical

operations. Upon concluding that the Hindu-Arabic numerals, which

included the place-value principle, were far superior to all other meth-

ods, he devoted the first seven chapters of his book to explanations of

Hindu-Arabic notation and its use in practical applications.

Leonardo Fibonacci was born in the 1170s to a businessman and

government official named Guglielmo. The nickname Fibonacci (from

the Latin filius Bonacci, son of the Bonacci family, or "son of good na-
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tare") was most probably introduced by the historian of mathematics

Guillaume Libri in a footnote in his 1838 book Histoire des Sciences

Mathematique en Italie (History of the mathematical sciences in Italy), al-

though some researchers attribute the first use of Fibonacci to Italian

mathematicians at the end of the eighteenth century. In some manu-

scripts and documents, Leonardo either refers to himself or is referred to

as Leonardo Bigollo (or Leonardi Bigolli Pisani), where "Bigollo" means

something like "a traveler" or a "man of no importance" in the Tuscan

and Venetian dialects respectively. Pisa of the twelfth century was a

busy port through which merchandise passed both from inland and

from overseas. Spices from the Far East circulated through Pisa on their

way to northern Europe, crossing in the port the paths of wine, oil, and

salt that were transported between different parts of Italy, Sicily, and

Sardinia. The large Pisan leather industry imported goatskins from

North Africa, and tanners could be seen processing hides on Pisa's river-

banks. The city, on the river Arno, was also proud of its excellent iron-

work and shipyards. Pisa is best known today for its famous leaning

tower, and the construction of this bell tower began during Fibonacci's

youth. Clearly, all of this commercial frenzy required massive records of

inventories and prices. Leonardo surely had the opportunity to watch

various scribes as they were listing prices in Roman numerals and

adding them up using an abacus. Arithmetic operations with Roman

numerals are not fun. For example, to obtain the sum of 3,786 and

3,843, you would need to add MMMDCCLXXXVI to MMMDCC-

CXLIII; if you think that is cumbersome, try multiplying those num-

bers. However, for as long as medieval merchants stuck to simple

additions and subtractions, they could get by with Roman numerals.

The fundamental element that the Roman numerals were lacking was,

of course, the place-value system—the fact that a number written as

547 really means (5 x 10 2) + (4 x 10 ' ) + (7 x 10°). The West Euro-

peans overcame the lack of a place-value principle in their number sys-

tem by the use of the abacus. The name "abacus" may have originated

from avaq, the Hebrew word for dust, since the earliest of these calcula-

tion devices were simply boards dusted with sand on which numbers

could be traced. The abacus during Fibonacci's time had counters slid-

ing along wires. The different wires of the abacus played the role of
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place value. A typical abacus had four wires, with beads on the bottom

wire representing units, those on the one above it tens, those on the

third hundreds, and those on the top wire thousands. Thus, while the

abacus provided a fairly efficient means for simple arithmetic operations

(I was amazed to discover during a visit to Moscow in 1990 that the

cafeteria in my hotel was still using an abacus), it clearly presented

enormous disadvantages when handling more complex computations.

It is impossible to imagine, for example, trying to manipulate the "bil-

lions and billions" of astronomy popularizer Carl Sagan using an abacus.

In Bugia (now called Bejaia), in Algeria, Fibonacci became ac-

quainted with the art of the nine Indian figures, probably with, in his

words, the "excellent instruction" of an Arab teacher. Following a tour

around the Mediterranean, which he used to expand his mathematical

horizons, he decided to publish a book that would introduce the use of

Hindu-Arabic numerals more widely into commercial life. In this book,

Fibonacci meticulously explains the translation from Roman numerals

to the new system and the arithmetic operations with the new numer-

als. He gives numerous examples that demonstrate the application of

his "new math" to a variety of problems ranging from business practices

and the filling and emptying of cisterns to the motions of ships. At the

beginning of the book, Fibonacci adds the following apology: "If by

chance I have omitted anything more or less proper or necessary, I beg

forgiveness, since there is no one who is without fault and circumspect

in all matters."

In many cases, Fibonacci gave more than one version of the prob-

lem, and he demonstrated an astonishing versatility in the choice of sev-

eral methods of solution. In addition, his algebra was often rhetorical,

explaining in words the desired solution rather than solving explicit

equations, as we would do today. Here is a nice example of one of the

problems that appear in Liber abaci (as translated in the charming book

Leonard of Pisa and the New Mathematics of the Middle Ages by Joseph and

Frances Gies):

A man whose end was approaching summoned his sons and said:

"Divide my money as I shall prescribe." To his eldest son, he said,

"You are to have 1 bezant [a gold coin first struck at Byzantium)
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and a seventh of what is left." To his second son he said, "Take 2

bezants and a seventh of what remains." To the third son, "You are

to take 3 bezants and a seventh of what is left." Thus he gave each

son 1 bezant more than the previous son and a seventh of what re-

mained, and to the last son all that was left. After following their fa-

ther's instructions with care, the sons found that they had shared

their inheritance equally. How many sons were there, and how large

was the estate?

For the interested reader, I present both the algebraic (modern) solution

and Fibonacci's rhetorical solution to this problem in Appendix 6.

The Liber abaci brought Fibonacci considerable recognition, and his

fame reached even the ears of the Roman emperor Frederick II, known

as "Stupor Mundi" ("Wonder of the World") for his patronage of math-

ematics and the sciences. Fibonacci was invited to appear before the

emperor in Pisa in the early 1220s and was presented with a series of

what were considered to be very difficult mathematical problems, by

Master Johannes of Palermo, one of the court mathematicians. One of

the problems read as follows: "Find such a rational number [a whole

number or a fraction) that when 5 is either added to or subtracted from

its square, the result [in either case) is also the square of a rational num-

ber." Fibonacci solved all the problems using ingenious methods. He

later described two of them in a short book called F los (Flower) and used

the one above in the prologue of a book he dedicated to the emperor:

Liber quadratorum (Book of squares). Today we have to be impressed by

the fact that without relying on computers or calculators of any sort,

simply through his virtuosic command of number theory, Fibonacci was

able to find out that the solution to the problem above is 4
V12. Indeed,

(4 A2) 2 + 5 = CX2Y and (41/2) 2 — 5 = ('/2)2.

Fibonacci's role in the history of the Golden Ratio is truly fascinat-

ing. On one hand, in problems in which he consciously used the Golden

Ratio, he is responsible for a significant but not spectacular progress.

On the other, by simply formulating a problem that on the face of it has

no relation whatsoever to the Golden Ratio, he expanded the scope of

the Golden Ratio and its applications dramatically.

Fibonacci's direct contributions to the Golden Ratio literature ap-
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pear in a short book on geometry, Practica Geometriae (Practice of geom-

etry), which was published in 1223. He presented new methods for the

calculation of the diagonal and the area of the pentagon, calculations of

the sides of the pentagon and the decagon from the diameter of both in-

scribed and circumscribed circles, and computations of volumes of the

dodecahedron and the icosahedron, all of which are intimately related to

the Golden Ratio. In the solutions to these problems Fibonacci exhibits

a deep understanding of Euclidean geometry. While his mathematical

techniques rely to some extent on previous works, in particular on Abu

Kamil's On the Pentagon and the Decagon, there is little doubt that Fi-

bonacci brought the use of the Golden Ratio's properties in various geo-

metrical applications to a higher level. However, Fibonacci's main claim

to fame and his most exciting contribution to the Golden Ratio derive

from an innocent-looking problem in Liber abaci.

ALL THE THOUGHTS OF A RABBIT ARE RABBITS

Many students of mathematics, the sciences, and the arts have heard of

Fibonacci only because of the following problem from Chapter XII in

the Liber abaci.

A certain man put a pair of rabbits in a place surrounded on all sides

by a wall. How many pairs of rabbits can be produced from that pair

in a year if it is supposed that every month each pair begets a new

pair which from the second month on becomes productive?

How can the numbers of the offspring of rabbits have significant mathe-

matical consequences? Indeed, the solution to the problem itself is quite

simple. We start with one pair. After the first month, the first pair gives

birth to another pair, hence there are two. In Figure 27 I represent a ma-

ture pair with a large rabbit symbol and a young pair with a small sym-

bol. After the second month, the mature pair gives birth to another young

pair, while the baby pair matures. Hence, there are three pairs, as depicted

in the figure. After the third month, each of the two mature pairs gives
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birth to another pair, and the baby pair matures, so there are five. After

the fourth month, each of the three mature pairs gives birth to a pair, and

the two baby pairs mature, giving us a total of eight pairs. After five

months we have a baby pair from each of the five adult pairs, plus three

maturing pairs for a total of thirteen. By now we understand how to pro-

ceed to obtain the numbers of mature pairs, of baby pairs, and of pairs in

total in successive months. Suppose we examine just the number of adult

pairs in any particular month. That number is composed of the number

of adult pairs in the previous month, plus the number of baby pairs

(which have matured) from that same previous month. However, the

number of baby pairs from the previous month is actually equal to the

number of adult pairs in the month before that. Therefore, in any given

month (starting with the third), the number of adult pairs is simply equal

to the sum of the numbers of adult pairs in the two preceding months.

The number of adult pairs therefore follows the sequence: 1, 1, 2, 3, 5,

8, . . . You can easily see from the figure that the numbers of baby pairs

follow precisely the same sequence, only displaced by one month.

Namely, the numbers of baby pairs are 0, 1, 1, 2, 3, 5, 8, . . . Of course,

the total number of pairs is simply the sum of these, and it gives the same

sequence as for the adult pairs, with the first term omitted (1, 2, 3, 5,

8, . . .). The sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . ,

in which each term (starting with the third) is equal to the sum of the

dubbed the Fibonacci sequence

in the nineteenth century,

by the French mathematician

Edouard Lucas (1842-1891).

Number sequences in which

the relation between succes-

sive terms can be expressed

by a mathematical expression

are known as recursive. The

Fibonacci sequence was the

first such recursive sequence

known in Europe. The general

property that each term in the
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sequence is equal to the sum of the two preceding ones is expressed math-

ematically as (a notation introduced in 1634 by the mathematician Al-

bert Girard): F„,, = F„,, + F, Here F„ represents the nth number in the

sequence (e.g., F5 is the fifth term); F„, is the term following F„ (for n =

5, n + 1 = 6), and F„,, follows F„,,

The reason that Fibonacci's name is so famous today is that the ap-

pearance of the Fibonacci sequence is far from being confined to the

breeding of rabbits. Incidentally, the title of this chapter was inspired

by Ralph Waldo Emerson's The Natural History of Intellect, which ap-

peared in 1893. Emerson says: "All the thoughts of a turtle are turtles,

and of a rabbit, rabbits." We shall encounter the Fibonacci sequence in

an incredible variety of seemingly unrelated phenomena.

To start things off, let us examine a phenomenon that is just about

as remote from the topic of rabbit progeny as we could possibly imag-

ine—the optics of light rays. Suppose we have two glass plates made

of slightly different types of glass (different light refraction properties,

or "indices of refraction") mounted face to face (as in Figure 28a). If we

shine light through the plates, the light rays can (in principle) reflect

internally at four reflective surfaces before emerging (Figure 28a). More

specifically, they can either pass through without reflecting at all, or

they can undergo one internal reflection, two internal reflections, three

internal reflections, and so on, potentially an infinite number of internal

reflections before reemerging. All of these are paths allowed by the

laws of optics. Now count the number of beams that emerge from this

two-plate system. There is only one emerging beam in the case of no

reflections at all (Figure 28b). There are two emerging beams when all

the possibilities for the rays to undergo precisely one internal reflection

are considered (Figure 28c), because there are two paths the ray can

follow. There are three emerging beams for all the possibilities of two

internal reflections (Figure 28d); five beams for three internal reflec-

tions (Figure 28e); eight paths if the ray is reflected four times (Figure

280; thirteen paths for five reflections (Figure 28g); and so on. The

numbers of emerging beams-1, 2, 3, 5, 8, 13 . . . —form a Fibonacci

sequence.

Now consider the following entirely different problem. A child is try-

ing to climb a staircase. The maximum number of steps he can climb at a
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time is two; that is, he can climb either one step or two steps at

a time. If there are n steps in total, in how many different ways, Cn, can he

climb the staircase? If there is only one step (n = 1), clearly there is only

one way to climb it, C, = 1. If there are two steps, the child can

either climb the two steps at once or take them one step at a time; thus,

there are two ways, C, = 2. If there are three steps, there are three ways of

climbing: 1 + 1 + 1, 1 + 2, or 2 + 1; therefore C, = 3. If there are four

steps, the number of ways to climb them increases to C4  = 5: 1 + 1 + 1 +

1, 1 + 2 + 1, 1 + 1 + 2, 2 + 1 + 1, 2 + 2. For five steps, there are eight

ways, C5 = 8: 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 1 + 2 + 1, 1 + 2

+1+1,2+1+1+ 1, 2 + 2 + 1, 2 + 1 + 2, 1 + 2 + 2. We find that

the numbers of possibilities, 1, 2, 3, 5, 8, . . . , form a Fibonacci sequence.

Finally, let us examine the family tree of a drone, or male bee. Eggs

of worker bees that are not fertilized develop into drones. Hence, a drone

has no "father" and only a "mother." The queen's eggs, on the other

hand, are fertilized by drones and develop into females (either workers or

queens). A female bee has therefore both a "mother" and a "father." Con-

sequently, one drone has one parent (its mother), two grandparents (its

mother's parents), three great-grandparents (two parents of its grand-

mother and one of its grandfather), five great-great-grandparents (two

for each great-grandmother and one for its great-grandfather), and so on.

The numbers in the family tree, 1, 1, 2, 3, 5 . . . , form a Fibonacci se-

quence. The tree is pre-

sented graphically in

Figure 29.

This all looks very

inrriguing—the same

series of numbers ap-

plies to rabbits, to op-

tics, to stair climbing,

and to drone family

trees—but how is the

Fibonacci sequence re-

lated to the Golden

Ratio?
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GOLDEN FIBONACCIS

Examine again the Fibonacci sequence; 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

89, 144, 233, 377, 610, 987, . . . , and this time let us look at the ra-

tios of successive numbers (calculated here to the sixth decimal place):

Do you recognize this last ratio? As we go farther and farther down the

Fibonacci sequence, the ratio of two successive Fibonacci numbers os-

cillates about (being alternately greater or smaller) but comes closer and

closer to the Golden Ratio. If we denote the nth Fibonacci number by

F,,, and the next one by F,,,,, then we discovered that the ratio F,,,/F„

approaches 4 as n becomes larger. This property was discovered in 1611

(although possibly even earlier by an anonymous Italian) by the famous

German astronomer Johannes Kepler, but more than a hundred years

passed before the relation between Fibonacci numbers and the Golden

Ratio was proven (and even then not fully) by the Scottish mathemati-

cian Robert Simson (1687-1768). Kepler, by the way, apparently hit

upon the Fibonacci sequence on his own and not via reading the Liber

abaci.
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But why should the terms in a sequence derived from the breeding

of rabbits approach a ratio defined through the division of a line? To un-

derstand this connection, we have to go back to the astonishing contin-

ued fraction we encountered in Chapter 4. Recall that we found that the

Golden Ratio can he written as

In principle, we could calculate the value of phi) by a series of succes-

sive approximations, in which we would interrupt the continued

fraction farther and farther down. Suppose we attempted to do just

that. We would find the series of values (reminder: 1 over alb is equal to

b/a):
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up seven products, 1 x 1 +

1 x 2 + 2 x 3 + 3 x 5 + 5

x 8 + 8 x 13 + 13 x 21 =

441, the sum (441) is equal

to the square of the last

number used (21 2 = 441).

Similarly, summing up the

eleven products 1 x 1 + 1

x 2+2 x 3+3x5+5x

8 + 8 x 13 + 13 x 21 + 21

x 34 + 34 x 55 + 55 x 89

+ 89 x 144 = 144 2 . This

property can be represented

beautifully by a figure (Fig-

ure 30). Any odd number of rectangles with sides equal to successive

Fibonacci numbers fits precisely into a square. The figure shows an ex-

ample with seven such rectangles.

Eleven Is the Sin

In the drama The Piccolomini by the German playwright and poet

Friedrich Schiller, astrologer Seni declares: "Elf ist die Sundae. Elfe

uberschreiten  die zehn Gebote" ("Eleven is the sin. Eleven transgresses

the Ten Commandments"), expressing an opinion that dates back

to medieval times. The Fibonacci sequence, on the other hand, has a

property related to the number 11, which, far from being sinful, is

quite beautiful.

Suppose we sum up the first ten consecutive Fibonacci numbers:

1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143. This sum

is divisible evenly by 11 (143/11 = 13). The same is true for the sum of

any ten consecutive Fibonacci numbers. For example, 55 + 89 + 144 +

233 + 377 + 610 + 987 + 1,597 + 2,584 + 4,181 = 10,857, and

10,857 is divisible by 11, 10,857/11 = 987. If you examine these two

examples, you discover something else. The sum of any ten consecutive

numbers is always equal to 11 times the seventh number. You can use

this property to amaze an audience by the speed with which you can add

any ten successive Fibonacci numbers.



THE GOLDEN RATIO 105

Revenge of the Sexagesimal?

As you recall, for reasons that are not entirely clear, the ancient Babylo-

nians used base 60 (the sexagesimal base) in their counting system. Al-

though not related to the Babylonian number system, the number 60

happens to play a role in the Fibonacci sequence.

Fibonacci numbers become very large quite rapidly, because you al-

ways add two successive Fibonacci numbers to find the next one. In fact,

we are quite lucky that rabbits don't live forever, or we would all be in-

undated with rabbits. While the fifth Fibonacci number is only

5, the 125th is already 59,425,114,757,512,643,212,875,125. Inter-

estingly, the unit digit repeats itself with a periodicity of 60 (namely,

after every 60 numbers). For example, the second number is 1, the

sixty-second number is 4,052,739,537,881 (also ending in 1); the

122 nd number, 14,028,366,653,498,915,298,923,761, also ends in 1;

and so does the 182 nd ; and so on. Similarly, the fourteenth number is

377; the seventy-fourth number (sixty numbers farther along the se-

quence) 1,304,969,544,928,657 also ends in 7; and so on. This prop-

erty was discovered in 1774 by the Italian-born French mathematician

Joseph Louis Lagrange (1736-1813), who is responsible for many

works in number theory and mechanics and who also studied the sta-

bility of the solar system. The last two digits (e.g., 01, 01, 02, 03, 05,

08, 13, 21 . . .) repeat in the sequence with a periodicity of 300 and the

last three digits repeat with a periodicity of 1,500. In 1963 Stephen P.

Geller used an IBM 1620 computer to show that the last four digits

repeat every 15,000 times, the last five repeat every 150,000 times,

and finally, after the computer ran for nearly three hours, a repetition

of the last six digits appeared at the 1,500,000th Fibonacci number.

Being unaware of the fact that a general theorem concerning the perio-

dicity of the last digits could be proven, Geller commented: "There

does not yet seem to be any way of guessing the next period, but per-

haps a new program for the machine which will permit initialization

at any point in the sequence for a test will cut down computer time

enough so that more data can be gathered." Shortly thereafter, how-

ever, Israeli mathematician Dov Jarden pointed out that one can prove

rigorously that for any number of last digits from three and up,



106 MARIO LIVIO

the periodicity is simply fifteen times ten to a power that is one less

than the number of digits (e.g., for seven digits it is 15 x 10 " , or 15

million).

Why 1/89?

The properties of our universe, from the sizes of atoms to the sizes of

galaxies, are determined by the values of a few numbers known as con-

stants of nature. These constants include a measure of the strengths

of all the basic forces--gravitational, electromagnetic, and two nu-

clear forces. The strength of the familiar electromagnetic force be-

tween two electrons, for example, is expressed in physics in terms of

a constant known as the fine structure constant. The value of this

constant, almost exactly '
437, has puzzled many generations of physi-

cists. A joke made about the famous English physicist Paul Dirac

(1902-1984), one of the founders of quantum mechanics, says that

upon arrival to heaven he was allowed to ask God one question. His

question was: "Why X37?"

The Fibonacci sequence also contains one absolutely remarkable

number—its eleventh number, 89. The value of l
A9 in decimal represen-

tation is equal to: 0.01123595 . . . Suppose you arrange the Fibonacci

numbers 1, 1, 2, 3, 5, 8, 13, 21, ... as decimal fractions in the follow-

ing way:

0.01

0.001

0.0002

0.00003

0.000005

0.0000008

0.00000013

0.000000021

In other words, the units digit in the first Fibonacci number is in the

second decimal place, that of the second is in the third decimal place,

and so on (the units digit of the nth Fibonacci number is in the (n + 1)th
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decimal place). Now add all of those numbers up. In the preceding list

we would obtain 0.01123595 . . . , which is equal to `A9.

Lightning Addition Trick

Some people can add numbers very quickly in their heads. The Fi-

bonacci sequence allows a person to perform such lightning addition

tricks without much effort. The sum of all the Fibonacci numbers from

the first to the nth is simply equal to the (n + 2)th number minus 1. For

example, the sum of the first ten numbers, 1 + 1 + 2 + 3 + 5 + 8 +

13 + 21 + 34 55 = 143, is equal to the twelfth number (144) minus

1. The sum of the first seventy-eight numbers is equal to the eightieth

number minus 1; and so on. Therefore, you can have someone write a

long column of numbers starting with 1, 1, and continuing using the

definition of the Fibonacci sequence (that each new number be the sum

of the two previous ones). Tell this person to draw a line between some

arbitrary two numbers in the column and you will be able, at a glance,

to give the sum of all the numbers prior to the line. That sum will be

equal to the second term after the line minus one.

Pythagorean Fibonaccis

Oddly enough, Fibonacci numbers can even be related to Pythagorean

triples. The latter, as you recall, are triples of numbers that can serve as

the lengths of the sides of a right-angled triangle (like the numbers 3,

4, 5). Take any four consecutive Fibonacci numbers, such as 1, 2, 3, 5.

The product of the outer numbers, 1 x 5 = 5, twice the product of the

inner terms, 2 x 2 X 3 = 12, and the sum of the squares of the inner

terms, 2 2 + 3 2 = 13, give the three legs in the Pythagorean triple, 5, 12,

13 (5 2 + 12 2 = 13 2). But this is not all. Notice also that the third num-

ber, 13, is itself a Fibonacci number. This property was discovered by

the mathematician Charles Raine.

Given the numerous wonders that the Fibonacci numbers hold in

store (we shall soon encounter many more), it should come as no sur-

prise that mathematicians looked for some efficient method for calcu-

lating these numbers, F„, for any value of n. While in principle this is

not a problem, since if we need the 100t h number we simply have to add

up the 98t h and the 99th numbers, this still means that we first need to
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Once discovered, Fibonacci numbers seemed to start' popping up

everywhere in nature. A few fascinating examples are provided by

botany.

AS THE SUNFLOWER TURNS ON HER GOD

The leaves along a twig of a plant or the stems along a branch tend to

grow in positions that would optimize their exposure to sun, rain, and

air. As a vertical stem grows, it produces leaves at quite regular spac-

ings. However, the leaves do not grow directly one

above the other, because this would shield the lower

leaves from the moisture and sunlight they need.

Rather, the passage from one leaf to the next (or

from one stem to the next along a branch) is charac-

terized by a screw-type displacement around the

stem (as in Figure 31). Similar arrangements of re-

peating units can be found in the scales of a

pinecone or the seeds of a sunflower. This phenom-

enon is called phyllotaxis ("leaf arrangement" in

Greek), a word coined in 1754 by the Swiss natu-

ralist Charles Bonnet (1720-1793). For example, in

basswoods leaves occur generally on two opposite

sides (corresponding to half a turn around the

stem), which is known as a X phyllotactic ratio. In

other plants, such as the hazel, blackberry, and

beech, passing from one leaf to the next involves

one-third of a turn (X phyllotactic ratio). Similarly,

the apple, the coast live oak, and the apricot have

leaves every % of a turn, and the pear and the weep-

ing willow have them every 3/8of a turn. Figure 31

illustrates a case where it took three complete turns

to pass through eight stems (a phyllotactic ratio of X). You'll notice that

all the fractions that are observed are ratios of alternate members of the

Fibonacci sequence.

The fact that leaves of plants follow certain patterns was first noted
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in antiquity by Theophrastus (ca. 372 B.C.—ca. 287 B.c.) in Enquiry into

Plants. He remarks: "those that have flat leaves have them in a regular

series." Pliny the Elder (A.D. 23-79) made a similar observation in his

monumental Natural History, where he talks about "regular intervals"

between leaves "arranged circularly around the branches." The study of

phyllotaxis did not go much beyond these early, qualitative observa-

tions until the fifteenth century, when Leonardo da Vinci (1452-1519)

added a quantitative element to the description of leaf arrangements by

noting that the leaves were arranged in spiral patterns, with cycles of

five (corresponding to an angle of 'A of a turn). The first person to dis-

cover (intuitively) the relation between phyllotaxis and the Fibonacci

numbers was the astronomer Johannes Kepler. Kepler wrote: "It is in

the likeness of this self-developing series [referring to the recursive

property of the Fibonacci sequence] that the faculty of propagation is,

in my opinion, formed; and so in a flower the authentic flag of this fac-

ulty is shown, the pentagon."

Charles Bonnet initiated serious studies in observational phyl-

lotaxis. In his 1754 book Recherches sur l'Usage des Feuilles dans les Plantes

(Research.on the use of leaves in plants) he gives a clear description of 2/s

phyllotaxis. While working with the mathematician G. L. Calandrini,

Bonnet may have also discovered that sets of spiral rows (now known as

parastichies) appear in some plants, like the scales of a fir cone or a

pineapple.

The history of truly mathematical phyllotaxis (as opposed to the

purely descriptive approaches) begins in the nineteenth century with

the works of botanist Karl Friedric Schimper (published in 1830), his

friend Alexander Braun (published in 1835), and the crystallographer

Auguste Bravais and his botanist brother Louis (published in 1837).

These researchers discovered the general rule that phyllotactic ratios

could be expressed by ratios of terms of the Fibonacci series (like 'A; 'A)

and also noted the appearance of consecutive Fibonacci numbers in the

parastichies of pinecones and pineapples.

Pineapples indeed provide a truly beautiful manifestation of a

Fibonacci-based phyllotaxis (Figure 32). Each hexagonal scale on the

surface of the pineapple is a part of three different spirals. In the figure

you can see one of eight parallel rows sloping gently from lower left to
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upper right, one of thirteen parallel rows that slope more steeply from

lower right to upper left, and one of twenty-one parallel rows that are

very steep (from lower left to upper right). Most pineapples have five,

eight, thirteen, or twenty-one spirals of increasing steepness on their

surface. All of these are Fibonacci numbers.

How do plants know to arrange their leaves in these Fibonacci pat-

terns? The growth of the plant takes place at the tip of the stem (called

the meristem), which has a conical shape (being thinnest at the tip).

Leaves that are farther down from the tip (namely, which grew earlier)

tend to be radially farther out from the stem's center when viewed from

the top (because the stem is thicker there). Figure 33 shows such a view

of the stem from the top, where the leaves are numbered according to

their order of appearance. The leaf numbered 0, which appeared first, is

by now the farthest down from the meristem and the farthest out from

the stem's center. Botanist A. H. Church in his 1904 book On the Rela-

tion of Phyllotaxis to Mechanical Laws first emphasized the importance of

this type of representation for the understanding of phyllotaxis. What

we find (by imagining a curve that connects leaves 0 to 5 in Figure 33)

is that successive leaves sit along a tightly wound spiral, known as the

generative spiral. The important quantity that characterizes the loca-

tion of the leaves is the angle between the lines connecting the stem's

center with successive leaves. One of the discoveries of the Bravais

brothers in 1837 was that new leaves advance roughly by the same an-

gle around the circle and that this angle (known as the divergence an-

gle) is usually close to 137.5 degrees. Are you shocked to hear that this
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value is determined by the Golden Ratio? The angle that divides a com-

plete turn in a Golden Ratio is 360°/4 = 222.5 degrees. Since this is

more than half a circle (180 degrees), we should measure it going in the

opposite direction around the circle. In other words, we should subtract

222.5 from 360, giving us the observed angle of 137.5 degrees (some-

times called the Golden Angle).

In a pioneering work in 1907, German mathematician G. van Iter-

son showed that if you closely pack successive points separated by 137.5

degrees on tightly wound spirals, then the eye would pick out one fam-

ily of spiral patterns winding clockwise and one counterclockwise. The

numbers of spirals in the two families tend to be consecutive Fibonacci

numbers, since the ratio of such numbers approaches the Golden Ratio.

Such counterwinding spirals are

most spectacularly exhibited by the

arrangement of the florets in sunflow-

ers. When you look on the head of a

sunflower (Figure 34), you will notice

both clockwise and counterclockwise

spiral patterns formed by the florets.

Clearly the florets grow in a way that

affords the most efficient sharing of

horizontal space. The numbers of these

spirals usually depend on the size of the

sunflower. Most commonly there are

thirty-four spirals going one way and

fifty-five the other, but sunflowers with ratios of numbers of spirals of

89/55, 144/89, and even (at least one; reported by a Vermont couple to

the Scientific American in 1951) 233/144 have been seen. All of these are,

of course, ratios of adjacent Fibonacci numbers. In the largest sunflow-

ers, the structure stretches from one pair of consecutive Fibonacci num-

bers to the next higher, when we move from the center to the periphery.

The petal counts and petal arrangements of some flowers also har-

bor Fibonacci numbers and Golden Ratio connections. Many people

have relied (at least symbolically) at some point in their lives on the

numbers of petals of daisies to satisfy their curiosity about the intrigu-

ing question: "She loves me, she loves me not." Most field daisies have
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thirteen, twenty-one, or thirty-four petals, all Fibonacci numbers.

(Wouldn't it be nice to know in advance if the daisy has an even or odd

number of petals?) The number of petals simply reflects the number of

spirals in one family.

The beautifully symmetric arrangement of the petals of roses is also

based on the Golden Ratio. If you dissect a rose (petal by petal), you will

discover the positions of its tightly packed petals. Figure 35 presents a

schematic in which the petals have been numbered. The angles defining

the positions (in fractions of a full turn) of the petals are the fractional

part of simple multiples of 4). Petal 1 is 0.618 (the fractional part of 1

x 4)) of a turn from petal 0, petal 2 is 0.236 (the fractional part of 2 x

4)) of a turn from petal 1, and so on.

This description shows that the

2,300-year-old puzzle of the origins of

phyllotaxis reduces to the basic question:

Why are successive leaves separated by

the Golden Angle of 137.5 degrees? The

attempts to answer this question come in

two flavors: theories that concentrate on

the geometry of the configuration, and on

simple mathematical rules that can gen-

erate this geometry; and models that sug-

gest an actual dynamical cause for the observed behavior. Landmark

works of the first type (e.g., by mathematicians Harold S. M. Coxeter

and I. Adler and by crystallographer N. Rivier) show that buds which

are placed along the generative spiral separated by the Golden Angle

are close-packed most efficiently. This is easy to understand. If the di-

vergence angle was, let's say, 120 degrees (which is 360/3) or any other

rational multiple of 360 degrees, then the leaves would have aligned ra-

dially (along three lines in the case of 120 degrees), leaving large spaces

in between. On the other hand, a divergence angle like the Golden An-

gle (which is an irrational multiple of 360 degrees) ensures that buds do

not line up along any specific radial direction and they fill the spaces ef-

ficiently. The Golden Angle proves to be even better than other irra-

tional multiples of 360 degrees because the Golden Ratio is the most

irrational of all irrational numbers in the following sense. Recall that
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the Golden Ratio is equal to a continued fraction composed entirely of

ls. That continued fraction converges more slowly than any other con-

tinued fraction. In other words, the Golden Ratio is farther away from

being expressible as a fraction than any other irrational number.

In a paper that appeared in 1984 in Journal de Physique, a team of

scientists led by N. Rivier from the Universite de Provence in Mar-

seille, France, used a simple mathematical algorithm to show that when

a growth angle equal to the Golden Angle is used, structures that

closely resemble real sunflowers are obtained. (See Figure 36.) Rivier

and his collaborators suggested that this provided an answer to the

question that had been posed in the classical work of biologist Sir

D'Arcy Wentworth Thompson. In his monumental book On Growth and

Form (first published in 1917 and revised in 1942), Thompson wonders:

". . . and not the least curious feature of the case {phyllotaxis} is the lim-

ited, even the small number of possible arrangements which we observe

and recognize." Rivier's team found that the requirements of homogene-

ity (that the structure is the same everywhere) and of self-similarity (that

when one examines the structure on different scales from small to large,

it looks precisely the same) limit drastically the number of possible

structures. These two properties may be sufficient to explain the pre-

ponderance of Fibonacci numbers and the Golden Ratio in phyllotaxis,

but they still do not offer any physical cause.

The best clues for a possible dynamical cause of phyllotaxis came

not from botany but from experi-

ments in physics by L. S. Levitov

(in 1991) and by Stephane Douady

and Yves Couder (in 1992 to

1996). The experiment by Douady

and Couder is particularly fasci-

nating. They held a dish full of sil-

icone oil in a magnetic field that

was stronger near the dish's edge

than at the center. Drops of a mag-

netic fluid, which act like tiny bar

magnets, were dropped periodi-

cally at the center of the dish. The
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tiny magnets repelled each other and were pushed radially by the mag-

netic field gradient. Douady and Couder found patterns that oscillated

about, but generally converged to, a spiral on which the Golden Angle

separated successive drops. Physical systems usually settle into states

that minimize the energy. The suggestion is therefore that phyllotaxis

simply represents a state of minimal energy for a system of mutually re-

pelling buds. Other models, in which leaves appear at the points of the

highest concentration of some nutrient, also tend to produce separa-

tions equal to the Golden Angle.

I hope that the next time you eat a pineapple, send a red rose to a

loved one, or admire van Gogh's sunflower paintings, you will remem-

ber that the growth pattern of these plants embodies this wonderful

number we call the Golden Ratio. Realize, however, that plant growth

also depends on factors other than optimal spacing. Consequently, the

phyllotaxis rules I have described cannot be taken as applying to all cir-

cumstances, like a law of nature. Rather, in the words of the famous

Canadian mathematician Coxeter, they are "only a fascinatingly preva-

lent tendency."

Botany is not the only place in nature where the Golden Ratio and

Fibonacci numbers can be found. They appear in phenomena covering a

range in sizes from the microscopic to that of giant galaxies. Often that

appearance takes the form of a magnificent spiral.

AL HOUGH CHANGED, I RISE AGAIN THE SAME

No family in the history of mathematics has produced as many cele-

brated mathematicians (thirteen in total!) as did the Bernoulli family.

Disconcerted by the Spanish Fury (the ravaging riot in the Netherlands

by Spanish soldiers), the family fled to Basel, Switzerland, from the

Catholic Spanish Netherlands. Three members of the family, the broth-

ers Jacques (1654-1705) and Jean (1667-1748), and the latter's second

son, Daniel (1700-1782), stood out head and shoulders above the rest.

Strangely, the Bernoullis were almost equally famous for their bitter in-

terfamilial rivalries as they were for their numerous mathematical

achievements. In one case, the exchanges between Jacques and Jean
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became particularly acrimonious. The feud was sparked by a dispute

over a solution to a famous problem in mechanics. The problem, known

as the brachistochrone (from the Greek brachistos, "shortest," and

chronos, "time"), was to find the curve along which a particle acted on by

the force of gravity will pass in the shortest time from one point to an-

other. The two brothers proposed the same solution independently, but

Jean's derivation was incorrect, and he later attempted to present

Jacques' derivation as his own. The sad consequence of this chain of

events was that Jeanne became a professor in Groningen and did not set

foot in Basel until his brother's death.

Jacques Bernoulli's association with the Golden Ratio comes

through another famous curve. He devoted a treatise entitled Spira
Mirabilis (Wonderful spiral) to a particular type of spiral shape. Jacques

was so impressed with the beauty of the curve known as a logarith-

mic spiral (Figure 37; the name was derived from the way in which

the radius grows as we move around the curve clockwise) that he asked

that this shape, and the motto he assigned to it: "Eadem mutato

resurgo" (although changed, I rise again the same), be engraved on his

tombstone.

The motto describes a fundamental property unique to the loga-

rithmic spiral—it does not alter its shape

as its size increases. This feature is known

as self-similarity. Fascinated by this

property, Jacques wrote that thee  logarith-

mic spiral "may be used as symbol,

either of fortitude and constancy in ad-

versity, or of the human body, which after

all its changes, even after death, will be

restored to its exact and perfect self."

If you think about it for a moment,

this is precisely the property required for

many growth phenomena in nature. For example, as the mollusk in-

side the shell of the chambered nautilus (Figure 4) grows in size, it

constructs larger and larger chambers, sealing off the smaller unused

ones. Each increment in the length of the shell is accompanied by a

proportional increase in its radius, so that the shape remains un-
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changed. Consequently, the nautilus sees an identical "home" through-

out its lifetime, and it does not need, for example, to adjust its balance

as it matures. The latter property applies also to rams, the horns of

which are also in the shape of logarithmic spirals (although they do not

lie in a plane), and to the curve of elephants' tusks. Increasing by ac-

cumulation from within itself, the logarithmic spiral grows wider,

with the distance between its "coils" increasing, as it moves away from

the source, known as the pole. Specifically, turning by equal angles in-

creases the distance from the pole by equal ratios. If we were, with the

aid of a microscope, to enlarge the coils that are invisible to the naked

eye to the size of Figure 37, they would fit precisely on the larger spi-

ral. This property distinguishes the logarithmic spiral from another

common spiral known as the Archimedean spiral, after the famous

Greek mathematician Archimedes (ca. 287-212 B.C.), who described

it extensively in his book On Spirals. We can see an Archimedean spi-

ral in the side of a roll of paper towels or a rope coiled on the floor. In

this type of spiral, the distance between successive coils remains always

the same. As a result of a mistake that surely would have caused

Jacques Bernoulli much grief, the mason who prepared Bernoulli's

tombstone engraved on it an Archimedean rather than a logarithmic

spiral.

Nature loves logarithmic spirals. From sunflowers, seashells, and

whirlpools, to hurricanes and giant spiral galaxies, it seems that nature

chose this marvelous shape as its favorite "ornament." The constant

shape of the logarithmic spiral on all size scales reveals itself beautifully

in nature in the shapes of minuscule fossils or unicellular organisms

known as foraminifera. Although the spiral shells in this case are com-

posite structures (and not one continuous tube), X-ray-images of the in-

ternal structure of these fossils show that the shape of the logarithmic

spiral remained essentially unchanged for millions of years.

In his classic book The Curves of Life (1914), English author and ed-

itor Theodore Andrea Cook gives numerous examples of the appearance

of spirals (not just logarithmic) in nature and art. He discusses spirals in

things as diverse as climbing plants, the human body, staircases, and

Maori tattoos. In explaining his motivation for writing the book, Cook

writes: "for the existence of these chapters upon spiral formations no
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other apology is needed than the interest and beauty of an investi-

gation."

Artists have also not failed to see the beauty of logarithmic spirals.

In Leonardo da Vinci's study for the mythological subject "Leda and the

Swan," for example, he draws the hair arranged in the shape of a nearly

logarithmic spiral (Figure 38). Leonardo repeats this shape many times

in his study of spirals in clouds and water in the impressive series of

sketches for the "Deluge." In that work, he combined his scientific ob-

servations of frightening floods with the allegorical aspects of destruc-

tive forces descended from heaven. Describing the violent flow of water

Leonardo wrote: "The sudden waters rush into the pond that contains

them, striking the various obstacles with swirling eddies. . . . The mo-

mentum of the circular waves flying from the point of impact hurls

them in the way of other circular waves moving in the opposite di-

rection."

Twentieth-century designer and illustrator Edward B. Edwards de-

veloped hundreds of decorative designs based on the logarithmic spiral;

many can be seen in his book Pattern and Design with Dynamic Symmetry

(an example is shown in Figure 39).

The logarithmic spiral and the Golden Ratio go hand in hand. Ex-

amine again the series of nested Golden Rectangles obtained when you

snip off squares from a Golden Rectangle (Figure 40; we encountered



Figure 40 Figure 4 1

Figure 42

THE GOLDEN RATIO 119

this property already in Chapter 4). If you connect the successive points

where these "whirling squares" divide the sides in Golden Ratios, you

obtain a logarithmic spiral that coils inward toward the pole (the point

given by the intersection of the diagonals in Figure 25, which was

called fancifully "the eye of God").

You can also obtain a logarithmic spiral from a Golden Triangle.

We saw in Chapter 4 that if you start from a Golden Triangle (an isosce-

les triangle in which the side is in Golden Ratio to the base) and bisect

a base angle, you get a smaller Golden Triangle. If you continue the

process of bisecting the base angle ad infinitum, you will generate a

series of whirling triangles. Connecting the vertices of the Golden Tri-

angles in the progression will trace a logarithmic spiral (Figure 41).

The logarithmic spiral is also known as the equiangular spiral. This

name was coined in 1638 by the French mathematician and philosopher

Rene Descartes (1596-1650),

after whom we name the num-

bers used to locate a point in

the plane (with respect to two

axes)—Cartesian coordinates.

The name "equiangular" re-

flects another unique property

of the logarithmic spiral. If

you draw a straight line from

the pole to any point on the
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curve, it cuts the curve at precisely the same angle (Figure 42). Falcons

use this property when attacking their prey. Peregrine falcons are some

of the fastest birds on Earth, plummeting toward their targets at speeds

of up to two hundred miles per hour. But they could fly even faster if

they would just fly straight instead of following a spiral trajectory to

their victims. Biologist Vance A. Tucker of Duke University in North

Carolina wondered for years why peregrines don't take the shortest dis-

tance to their prey. He then realized that because falcons' eyes are on ei-

ther side of their heads, to take advantage of their razor-sharp vision,

they must cock their heads 40 degrees to one side or the other. Tucker

found in wind-tunnel experiments that such a head tip would slow

them considerably. The results of his research, which were published in

the November 2000 issue of the Journal of Experimental Biology, show

that falcons keep their head straight and follow a logarithmic spiral. Be-

cause of the spiral's equiangular property, this path allows them to keep

their target in view while maximizing speeds.

The amazing thing is that the

same spiral shape that is found in the

unicellular foraminifera and in the

sunflower and that guides the flight

"systems of stars gathered together in

of a falcon can also be found in those

a common plane, like those of the

Milky Way" which philosopher Im-

manuel Kant (1724-1804) specu-

lated about long before they were

actually observed (Figure 43). These

became known as island universes—

giant galaxies containing hundreds of

billions of stars like our Sun. Observa-

tions conducted with the Hubble Space

Telescope revealed that there are some one hundred billion galaxies in

our observable universe, many of which are spiral galaxies. You can

hardly think of a better manifestation of the grand vision expressed by

English poet, painter, and mystic William Blake (1757-1827), when

he wrote:
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To see a World in a Grain of Sand,

And a Heaven in a Wild Flower,

Hold Infinity in the Palm of your hand,

And Eternity in an hour.

Why do so many galaxies exhibit a spiral pattern? Spiral galaxies like

our own Milky Way have a relatively thin disk (like a pancake) com-

posed of gas, dust (miniature grains), and stars. The entire galactic disk

is rotating about the galactic center. In the vicinity of the Sun, for ex-

ample, the orbital speed around the Milky Way's center is about 140

miles per second, and it takes material about 225 million years to com-

plete one revolution. At other distances from the center the speed is dif-

ferent—higher closer to the center, lower at greater distances—that is,

galactic disks do not rotate like a solid compact disk but rather rotate

differentially. Seen face on, spiral galaxies show spiral arms originating

close to the galactic center and extending outward throughout much of

the disk (as in the "Whirlpool Galaxy," Figure 43). The spiral arms are

the part of the galactic disk where many young stars are being born.

Since young stars are also the brightest, we can see the spiral structure

of other galaxies from afar. The basic question that astrophysicists had

to answer is: How do the spiral arms retain their shape over long peri-

ods of time? Because the inner parts of the disk rotate faster than the

outer parts, any large-scale pattern that is somehow "attached" to the

disk material (e.g., the stars) cannot survive for long. A spiral structure

tied always to the same collection of stars and gas clouds would in-

evitably wind up, contrary to observations. The explanation for the

longevity of the spiral arms relies on density waves—waves of gas com-

pression sweeping through the galactic disk—squeezing gas clouds

along the way and triggering the formation of new stars. The spiral pat-

tern that we observe simply marks the denser-than-average parts of the

disk and its newborn stars. The pattern is therefore created repeatedly

without winding up. The situation is similar to that observed near a

lane closed for repairs by a work crew on a major highway. The density

of cars in the vicinity of the closed stretch is higher because cars have to

slow down there. If you take a long-exposure photograph of the high-

way from above, you will record the high-traffic density near the place



122 MARIO LIVIO

where repairs are being undertaken. Just as the traffic density wave is

not associated with any particular set of cars, the spiral-arms pattern is

not tied to any particular piece of disk material. Another similarity is in

the fact that the density wave itself moves through the disk more slowly

than the motion of the stars and the gas, just as the speed at which the

repair work proceeds along the highway is typically much slower than

the unperturbed speed of individual cars.

The agent that deflects the motion of the stars and the gas clouds

and generates the spiral density wave (analogous to the repair crew that

deflects the moving cars to fewer lanes) is the gravitational force result-

ing from the fact that the distribution of matter in the galaxy is not per-

fectly symmetric. For example, a set of oval orbits around the center

(Figure 44a) in which each orbit is perturbed (rotated) slightly by an

amount that changes with distance from the center results in a spiral

pattern (Figure 44b).

(a) (b)

Figure 44

Actually, we should be quite happy that the force of gravity behaves

in our universe the way it does. According to Newton's universal law of

gravitation, every mass attracts every other mass, and the force of at-

traction decreases as the masses get farther apart. In particular, dou-

bling the distance weakens the force by a factor of four (the force

decreases as the inverse of the square of the distance). Newton's laws of

motion show that as a result of this dependence on the distance, the or-

bits of the planets around the Sun are in the shapes of ellipses. Imagine

what would have happened had we lived in a universe in which gravity

had decreased by a factor of eight (instead of four) upon doubling of the
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distance (a force decreasing as the inverse of the cube of the distance). In

such a universe, Newton's laws predict that one possible orbit of the

planets is a logarithmic spiral. In other words, Earth would have spi-

raled into the Sun or rushed off into space.

Leonardo Fibonacci, who initiated all of this frenzy of mathemati-

cal activity, is far from forgotten today. In today's Pisa, a statue of

Fibonacci constructed in the nineteenth century stands in the Scotto

Garden on the grounds of the Sangallo Fortress, next to a street named

after Fibonacci, which runs along the south side of the Arno River.

Since 1963 the Fibonacci Association has published a journal enti-

tled the Fibonacci Quarterly. The group was formed by mathematicians

Verner Emil Hoggatt (1921-1981) and Brother Alfred Brousseau

(1907-1988) "in order to exchange ideas and stimulate research in

Fibonacci numbers and related topics." Perhaps against the odds, the

Fibonacci Quarterly has since grown into a well-recognized journal in

number theory. As Brother Brousseau humorously put it: "We got a

group of people together in 1963, and just like a bunch of nuts, we

started a mathematics magazine." The Tenth International Conference

on Fibonacci Numbers and Their Applications is planned for June

24-28,2002, at Northern Arizona University in Flagstaff, Arizona.

All of this is but a small tribute to the man who used rabbits to dis-

cover a world-embracing mathematical concept. As important as Fi-

bonacci's contribution was, however, the story of the Golden Ratio did

not end in the thirteenth century; fascinating developments were still

to come in Renaissance Europe.



6

THE DIVINE

PROPORTION

The quest for our origin is that sweet fruit's juice which maintains

satisfaction in the minds of the philosophers.

-LUCA PACIOLI (1445-1517)

Few famous painters in history have also been gifted mathematicians.

However, when we speak of a "Renaissance man," we mean a person

who exemplifies the Renaissance ideal of wide-ranging culture and

learning. Accordingly, three of the best-known Renaissance painters,

the Italians Piero della Francesca (ca. 1412-1492) and Leonardo da

Vinci and the German Albrecht Diirer, also made interesting contribu-

tions to mathematics. Not surprisingly perhaps, the mathematical in-

vestigations of all three painters were related to the Golden Ratio.

The most active mathematician of this illustrious trio of artists was

Piero della Francesca. The writings of Antonio Maria Graziani (the

brother-in-law of Piero's great-grandchild), who purchased Piero's

house, indicate that the artist was born in 1412 in Borgo San Sepolcro

(today Sansepolcro) in central Italy. His father, Benedetto, was a pros-

perous tanner and shoemaker. Little else is known about Piero's very

early life, but newly discovered documents show that he spent some

time before 1431 as an apprentice in the workshop of the painter Anto-
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nio D'Anghiari (by whom no works have survived). By the late 1430s

Piero had moved to Florence, where he started to work with the artist

Domenico Veneziano. In Florence, the young painter was exposed to the

works of such early Renaissance painters as Fra Angelico and Masaccio

and to the sculptures of Donatello. He was particularly impressed with

the serenity of the religious works of Fra Angelico, and his own style, in

terms of application of color and light, reflected this influence. Later in

life, every phase in Piero's work was characterized by a burst of activity,

in a variety of places including Rimini, Arezzo, and Rome. The figures

that Piero painted either have an architectural solidity about them, as

in the "Flagellation of Christ" (currently in the Galleria Nationale

delle Marche in Urbino; Figure 45), or they seem like natural exten-

Figure 45 Figure 46

sions of the background, as in "The Baptism" (currently in the National

Gallery, London; Figure 46).

In the Lives of the Most Eminent Painters, Sculptors, and Architects, the

first art historian, Giorgio Vasari (1511-1574), writes that Piero

demonstrated great mathematical ability since early youth, and he at-

tributes to him "many" mathematical treatises. Some of these were

written when the painter, because of his old age, could no longer prac-

tice art. In the dedicatory letter to Duke Guidobaldo of Urbino, Piero

says about one of his books that it was composed "in order that his wits
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might not go torpid with disuse." Three of Piero's mathematical works

have survived: De Prospectiva pingendi (On perspective in painting), Li-

bellus de Quinque Corporibus Regularibus (Short book on the five regular

solids), and Trattato d'Abaco (Treatise on the abacus).

Piero's On Perspective (written in the mid-1470s to 1480s) contains

numerous references to Euclid's Elements and Optics, since he was deter-

mined to demonstrate that the technique for achieving perspective in a

painting relies firmly on the scientific basis for visual perception. In his

own paintings, perspective provides a spacious container that is in com-

plete consonance with the geometrical properties of the figures within.

In fact, to Piero, painting itself was primarily "the demonstration in a

plane of bodies in diminishing or increasing size." This attitude is man-

ifested magnificently in the "Flagellation" (Figures 45 and 47), which is

one of the few Renaissance paintings with a very meticulously deter-

mined perspectival construction. As modern-day artist David Hockney

puts it in his 2001 book Secret Knowledge, Piero paints "the way he

knows the figures to be, not the way he sees them."

Figure 47
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With the occasion of the 500 th anniversary of Piero's death, re-

searchers Laura Geatti of the University of Rome and Luciano Fortunati

of the National Research Council in Pisa performed a detailed,

computer-aided analysis of the "Flagellation." They digitized the entire

image, determined the coordinates of all the points, measured all the

distances, and conducted a complete perspectival analysis using alge-

braic calculations. Doing this allowed them to determine the precise lo-

cation of the "vanishing point," at which all lines receding directly from

the viewer converge (Figure 47), that Piero used to achieve the paint-

ing's impressive "depth."

Piero's lucid book on perspective became the standard manual for

artists who attempted to paint plane figures and solids, and the less

mathematical (and more accessible) parts of the treatise were incorpo-

rated into most subsequent works on perspective. Vasari testifies that

due to Piero's strong mathematical background, "he understood better

than anyone else all the curves in the regular bodies and we are indebted

to him for the light shed on that subject." An example of Piero's careful

analysis of how to draw a pentagon in perspective is shown in Figure 48.

In both the Treatise on the Abacus and the Five Regular Solids, Piero

Figure 48 Figure 49
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presents a wide range of problems (and their solutions) that involve the

pentagon and the five Platonic solids. He calculates the lengths of sides

and diagonals as well as areas and volumes. Many of the solutions in-

volve the Golden Ratio, and some of Piero's techniques represent inno-

vative thinking and originality.

Like Fibonacci before him, Piero wrote the Treatise on the Abacus

mainly to provide the merchants of his day with arithmetic recipes and

geometrical rules. In a commercial world that had neither a unique sys-

tem of weights and measures nor even agreed-upon shapes or sizes of

containers, the ability to calculate volumes of figures was an absolute

must. However, Piero's mathematical curiosity carried him well beyond

the subjects that had simple everyday applications. Accordingly, we

find in his books "useless" problems, such as calculating the side of an

octahedron inscribed inside a cube or calculating the diameter of the

five small circles inscribed inside a circle of a known diameter (Figure

49). The solution of the latter problem involves a pentagon and, there-

fore, the Golden Ratio.

Much of Piero's algebraic work was incorporated into a book pub-

lished by Luca Pacioli (1445-1517), entitled Summa de arithmetica,

geometria, proportioni et proportionalita (The collected knowledge of arith-

metic, geometry, proportion and proportionality). Most of Piero's work

on solids, which appeared in Latin, was translated into Italian by the

same Luca Pacioli and again incorporated (or, many less tactfully say,

simply plagiarized) into his famous book on the Golden Ratio: Divina

Proportione (The divine proportion).

Who was this highly controversial mathematician Luca Pacioli?

Was he the greatest mathematical plagiarist of all times or rather a

great communicator of mathematics?

UNSUNG HERO OF THE RENAISSANCE?

Luca Pacioli was born in 1445 in Borgo San Sepolcro (the same Tuscan

town in which Piero della Francesca was born and where he had his

workshop). In fact, Pacioli had his early education in Piero's workshop.

However, unlike other students who displayed skill in the art of paint-
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ing, and some, like Pietro Perugino, who were destined to become great

painters themselves, he showed greater promise in mathematics. Piero

and Pacioli were closely associated later in life, as manifested by the fact

that Piero included a portrait of Pacioli, as St. Peter Martyr, in a paint-

ing of "Madonna and Child with Saints and Angels." Pacioli moved to

Venice at a relatively young age and became the tutor of the three sons

of a wealthy merchant. In Venice he continued his mathematical educa-

tion (under the mathematician Domenico Bragadino) and wrote his first

textbook on arithmetic.

In the 1470s, Pacioli studied theology and was ordained as a Fran-

ciscan friar. Consequently, he is customarily referred to as Fra Luca

Pacioli. In the following years, he traveled extensively, teaching mathe-

matics at the universities of Perugia, Zara, Naples, and Rome. During

this period he may have also tutored for some time Guidobaldo of

Montefeltro, who was to become the Duke of Urbino in 1482.

In what may be the best portrait of a mathematician ever produced,

Jacopo de' Barbari (1440-1515) depicts Luca Pacioli giving a lesson in

Figure 50
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geometry to a pupil (Figure 50; the painting is currently in the Galle-

ria Nazionale di Capodimonte in Naples). One of the Platonic solids, a

dodecahedron, is seen on the right resting on top of Pacioli's book

Summa. Pacioli himself, dressed in his friar robes and almost resembling

a geometrical solid, is shown copying a diagram from volume XIII of

Euclid's Elements. A transparent polyhedron known as a rhombicubocta-

hedron (one of the Archimedean Solids, with twenty-six faces of which

eighteen are squares and eight equilateral triangles), half filled with wa-

ter and hanging in mid-air, symbolizes the purity and timelessness of

mathematics. The artist has captured the reflections and refractions

from this glass polyhedron with extraordinary skill. The identity of the

second person in the painting has been the subject of some debate. One

of the suggestions is that the student is Duke Guidobaldo. British

mathematician Nick MacKinnon raised an interesting possibility in

1993. In a well-researched article entitled "The Portrait of Fra Luca Pa-

cioli," which appeared in the Mathematical Gazette, MacKinnon sug-

gests that the figure is that of the famous German painter Albrecht

Diirer, who had great interest in geometry and perspective (and to

whose relationship with Pacioli we shall return later in this chapter).

The face of the student does in fact bear a striking resemblance to

Diirer's self-portrait.

Pacioli returned to Borgo San Sepolcro in 1489, after having been

granted some special privileges by the Pope, only to encounter jealousy

from the existing religious establishment. For about two years he was

even banned from teaching. In 1494, Pacioli went to Venice to publish

his Summa, which he dedicated to Duke Guidobaldo. Encyclopedic in

nature and scope (some 600 pages), the Summa compiled the mathe-

matical knowledge of the time in arithmetic, algebra, geometry, and

trigonometry. In this book, Pacioli borrows freely (usually with an ap-

propriate acknowledgment) problems on the icosahedron and dodeca-

hedron from Piero's Trattato and problems in algebra and geometry

from Fibonacci and others. Identifying Fibonacci as his main source,

Pacioli states that when no other is quoted, the work belongs to Leonar-

dus Pisanus. An interesting part of the Summa is on double-entry ac-

counting, a method of record keeping that lets you track where money

comes from and where it goes. While Pacioli did not invent this system
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but merely summarized the practices of Venetian merchants during the

Renaissance, this is considered to be the first published book on ac-

counting. Pacioli's desire to "give the trader without delay information

as to his assets and liabilities" thus gained him the title "Father of Ac-

counting," and accountants from all over the world celebrated in 1994

(in Sansepolcro, as the town is now known) the 500th anniversary of the

Summa.

In 1480, Ludovico Sforza became effectively the Duke of Milan. In

fact, he was only the regent of the real seven-year-old duke, following

an episode of political intrigue and murder. Determined to make his

court a home for scholars and artists, Ludovico invited Leonardo da
Vinci in 1482 as a "painter and engineer of the duke." Leonardo had

considerable interest in geometry, especially for its practical applica-

tions in mechanics. In his words: "Mechanics is the paradise of the

mathematical sciences, because by means of it one comes to the fruits of

mathematics." Consequently, Leonardo was probably the one who in-

duced the duke to invite Pacioli to join the court, as a teacher of math-

ematics, in 1496. Undoubtedly, Leonardo learned some of his geometry

from Pacioli, while he infused in the latter a greater appreciation for art.

During his stay in Milan, Pacioli completed work on his three-

volume treatise Divina Proportione (The divine proportion), which was

eventually published in Venice in 1509. The first volume, Compendio de

Divina Proportione (Compendium of the divine proportion), contains a

detailed summary of the properties of the Golden Ratio (which Pacioli

refers to as the "Divine Proportion") and a study of Platonic solids and

other polyhedra. On the first page of The Divine Proportion Pacioli de-

clares somewhat grandiloquently that this is: "A work necessary for all

the clear-sighted and inquiring human minds, in which everyone who

loves to study philosophy, perspective, painting, sculpture, architec-

ture, music and other mathematical disciplines will find a very delicate,

subtle and admirable teaching and will delight in diverse questions

touching upon a very secret science."

Pacioli dedicated the first volume of The Divine Proportion to Lu-

dovico Sforza, and in the fifth chapter he lists five reasons why he be-

lieves that the appropriate name for the Golden Ratio should be The

Divine Proportion.
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1. "That it is one only and not more." Pacioli compares the unique

value of the Golden Ratio to the fact that unity "is the supreme

epithet of God himself."

2. Pacioli finds a similarity between the fact that the definition of

the Golden Ratio involves precisely three lengths (AC, CB, and

AB in Figure 24) and the existence of a Holy Trinity, of Father,

Son, and Holy Ghost.

3. To Pacioli, the incomprehensibility of God and the fact that the

Golden Ratio is an irrational number are equivalent. In his own

words: "Just like God cannot be properly defined, nor can be un-

derstood through words, likewise our proportion cannot be ever

designated by intelligible numbers, nor can it be expressed by

any rational quantity, but always remains concealed and secret,

and is called irrational by the mathematicians."

4. Pacioli compares the omnipresence and invariability of God to

the self-similarity associated with the Golden Ratio—that its

value is always the same and does not depend on the length of the

line being divided or the size of the pentagon in which ratios of

lengths are calculated.

5. The fifth reason reveals an even more Platonic view of existence

than Plato himself expressed. Pacioli states that just as God con-

ferred being to the entire cosmos through the fifth essence, repre-

sented by the dodecahedron, so does the Golden Ratio confer

being to the dodecahedron, since one cannot construct the dodeca-

hedron without the Golden Ratio. He adds that it is impossible to

compare the other four Platonic solids (representing earth, water,

air, and fire) to each other without the Golden Ratio.

In the book itself, Pacioli raves ceaselessly about the properties of

the Golden Ratio. He analyzes in succession what he calls the thirteen

different "effects" of the "divine proportion" and attaches to each one

of these "effects" adjectives like "essential," "singular," "wonderful,"

"supreme," and so on. For example, he regards the "effect" that Golden

Rectangles can be inscribed in the icosahedron (Figure 22) as "incom-

prehensible." Pacioli stops at thirteen "effects," concluding that, "for

the sake of salvation, the list must end," because thirteen men were
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present at the table at the Last

Supper.

There is no doubt that Pa-

cioli had a great interest in

the arts and that his intention

in The Divine Proportion was

partly to perfect their mathe-

matical basis. His opening

statement on the book's first

page expresses his desire to

reveal to artists, through the

Golden Ratio, the "secret" of

harmonic forms. To ensure its

attractiveness, Pacioli secured

for The Divine Proportion the

services of the dream illustra-

tor of any author—Leonardo

da Vinci himself provided

sixty illustrations of solids,

depicted in both skeletal (Figure 51) and solid forms (Figure 52).

Pacioli was quick to express his gratitude; he wrote about Leonardo's

contribution: "the most excellent painter in perspective, architect,

musician, the man endowed with all virtues, Leonardo da Vinci, who

deduced and elaborated a series of diagrams of regular solids." The

text itself, however, falls somewhat short of its declared high goals.

While the book starts

with a sensational flour-

ish, it continues with a

rather conventional set

of mathematical formu-

lae loosely wrapped up

in philosophical defini-

tions.

The second book in

the Divina Proportione is

a treatise on proportion
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and its application to architecture and the structure of the human body.

Pacioli's treatment was largely based on the work of the eclectic Roman

architect Marcus Vitruvius Pollio (ca. 70-25 i.c.). Vitruvius wrote:

. . . in the human body the central point is naturally the navel. For

if a man be placed flat on his back, with his hands and feet extended,

and a pair of compasses centered at his navel, the fingers and toes of

his two hands and feet will touch the circumference of a circle de-

scribed therefrom. And just as the human body yields a circular out-

line, so too a square figure may be found from it. For if we measure

the distance from the soles of the feet to the top of the head, and

then apply that measure to the outstretched arms, the breadth will

be found to be the same as the height, as in the case of plane surfaces

which are perfectly square.

This passage was taken by the Renaissance scholars as yet another

demonstration of the link between the organic and geometrical basis

of beauty, and it led to the concept of the "Vitruvian man," drawn

beautifully by Leonardo (Figure 53; currently in the Galleria dell'Acca-

demia, Venice). Accordingly, Pa-

cioli's book also starts with

a discussion of proportions in

the human body, "since in the

human body every sort of pro-

portion and proportionality can

be found, produced at the beck

of the all-Highest through the

inner mysteries of nature."

However, contrary to frequent

claims in the literature, Pacioli

does not insist on the Golden

Ratio as determining the pro-

portions of all works of art.

Rather, when dealing with de-

sign and proportion, he specifi-

cally advocates the Vitruvian
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system, which is based on simple (rational) ratios. Author Roger Herz-

Fischler traced the fallacy of the Golden Ratio as Pacioli's canon for pro-

portion to a false statement made in the 1799 edition of Histoire de

Mathematiques (History of mathematics) by the French mathematicians

Jean Etienne Montucla and Jerome de Lalande.

The third volume of the Divina (A short book divided into three

partial tracts on the five regular bodies) is essentially an Italian word-

by-word translation of Piero's Five Regular Solids composed in Latin.

The fact that nowhere in the text does Pacioli acknowledge that he was

merely the translator of the book provoked a violent denunciation from

art historian Giorgio Vasari. Vasari writes about Piero della Francesca

that he

. . . was regarded as a great master of the problems of regular solids,

both arithmetical and geometrical, but he was prevented by the

blindness that overtook him in his old age, and then by death, from

making known his brilliant researches and the many books he had

written. The man who should have done his utmost to enhance

Piero's reputation and fame, since Piero taught him all he knew,

shamefully and wickedly tried to obliterate his teacher's name and

to usurp for himself the honor which belonged entirely to Piero; for

he published under his own name, which was Fra Luca dal Borgo

(Pacioli}, all the researches done by that admirable old man, who

was a great painter as well as an expert in the sciences.

So, was Pacioli a plagiarist? Quite possibly, although in Summa he did

render homage to Piero, whom he regarded as "the monarch of our

times in painting" and one who "is familiar to you in that copious work

which he composed on the art of painting and on the force of the line in

perspective."

R. Emmett Taylor (1889-1956) published in 1942 a book entitled

No Royal Road: Luca Pacioli and His Times. In this book, Taylor adopts a

very sympathetic attitude toward Pacioli, and he argues that, on the ba-

sis of style, Pacioli may have had nothing to do with the third book of

the Divina and it was just appended to Pacioli's work.

Be that as it may, there is no question that if not for Pacioli's printed
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books, Piero's ideas and mathematical constructions (which were not

published in printed form) would not have reached the wide circulation

that they eventually achieved. Furthermore, up until Pacioli's time, the

Golden Ratio had been known only by rather intimidating names, such

as "extreme and mean ratio" or "proportion having a mean and two ex-

tremes," and the concept itself was familiar only to mathematicians.

The publication of The Divine Proportion in 1509 gave a new topical in-

terest to the Golden Ratio. The concept could now be considered with

fresh attention, because its publication in book form identified it as

worthy of respect. The infusion of theological/philosophical meaning

into the name ("Divine Proportion") also singled out the Golden Ratio

as a mathematical topic into which an increasingly eclectic group of in-

tellectuals could delve. Finally, with Pacioli's book, the Golden Ratio

started to become available to artists in theoretical treatises that were

not overly mathematical, that they could actually use.

Leonardo da Vinci's drawings of polyhedra for The Divine Proportion,

drawn (in Pacioli's words) with his "ineffable left hand," had their own

impact. These were probably the first illustrations of skeletal solids,

which allowed for an easy visual distinction between front and back.

Leonardo may have drawn the polyhedra from a series of wooden mod-

els, since records of the Council Hall in Florence indicate that a set of

Pacioli's wooden models was purchased by the city for public display. In

addition to the diagrams for Pacioli's book, we can find sketches of

many solids scattered throughout Leonardo's notebooks. In one place he

presents an approximate geometrical construction of the pentagon. This

fusion of art and mathematics reaches its climax in Leonardo's Trattato

della pittura (Treatise on painting; organized by Francesco Melzi, who

inherited Leonardo's manuscripts), which opens with the admonition:

"Let no one who is not a mathematician read my works"—hardly a

likely statement to be found in any contemporary art handbook!

The drawings of solids in the Divina have also inspired some of the

intarsia constructed by Fra Giovanni da Verona around 1520. Intarsia

represent a special art form, in which elaborate flat mosaics are con-

structed of pieces of inlaid wood. Fra Giovanni's intarsia panels include

an icosahedron, which almost certainly used Leonardo's skeletal draw-

ing as a template.
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The lives of Leonardo and Pacioli continued to be somewhat inter-

twined even after the completion of The Divine Proportion. In October of

1499 the two men fled Milan, after the French army, led by King Louis

XII, captured that city. After spending brief periods of time in Mantua

and Venice, both settled for some time in Florence. During the period

of their friendship, Pacioli's name became associated with two other

major mathematical works—a translation into Latin of Euclid's Elements

and an unpublished work on recreational mathematics. Pacioli's trans-

lation of the Elements was an annotated version, based on an earlier

translation by Campanus of Novara (1220-1296), which appeared in

printed form in Venice in 1482 (and which was the first printed version).

Pacioli did not manage to publish his compilation of problems in recre-

ational mathematics and proverbs De Viribus Quantitatis (The powers of

numbers) before his death in 1517. This work was a collaborative proj-

ect between Pacioli and Leonardo, and Leonardo's own notes contain

many of the problems in De Viribus.

Fra Luca Pacioli certainly cannot be remembered for originality, but

his influence on the development of mathematics in general, and on the

history of the Golden Ratio in particular, cannot be denied.

MELANCHOLY

Another major Renaissance figure who entertained an intriguing com-

bination of artistic and mathematical interests is the German painter

Albrecht Darer.

Darer is considered by many to be the greatest German artist of the

Renaissance. He was born on May 21, 1471, in the Imperial Free City

of Nurnberg, to a hardworking jeweler. At age nineteen, he already

demonstrated talents and ability as a painter and woodcut designer that

surpassed those of his teacher, the leading painter and book illustrator

in Nurnberg, Michael Wolgemut. Darer therefore embarked on four

years of travel, during which he became convinced that mathematics,

"the most precise, logical, and graphically constructive of the sciences,"

has to be an important ingredient of art.

Consequently, after a short stay in Nurnberg, during which he mar-
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ried Agnes Frey, the daughter of a successful craftsman, he left again for

Italy, with the goal of expanding both his artistic and mathematical

horizons. His visit to Venice in 1494-1495 seems to have accomplished

precisely that. Diirer's meeting with the founder of the Venetian School

of painting, Giovanni Bellini (ca. 1426-1516), left a great impression

on the young artist, and his admiration for Bellini persisted throughout

his life. At the same time, Durer's encounter with Jacopo de' Barbari,

who painted the wonderful portrait of Luca Pacioli (Figure 50), ac-

quainted him with Pacioli's mathematical work and its relevance for

art. In particular, de' Barbari showed Direr two figures, male and

female, that were constructed by geometrical methods, and the ex-

perience motivated Direr to investigate human movement and pro-

portions. Direr probably met with Pacioli himself in Bologna, during

a second visit to Italy in 1505 to 1507. In a letter from that period, he

describes his visit to Bologna as being "for art's sake, for there is one

there who will instruct me in the secret art of perspective." The myste-

rious "one" in Bologna has been interpreted by many as referring to Pa-

cioli, although other names, such as those of the outstanding architect

Donato di Angelo Bramante (1444-1514) and the architectural theo-

rist Sebastiano Serlio (1475-1554), have also been suggested. During

the same Italian trip Darer also met again with Jacopo de' Barbari. This

second visit, though, was marked by Diirer's somewhat paranoiac ner-

vousness about harm that might be done to him by artists envious of his

fame. For example, he refused invitations to dinner for fear that some-

one might try to poison him.

Starting in 1495, Darer showed a serious interest in mathematics.

He spent much time studying the Elements (a Latin translation of which

he obtained in Venice, although he spoke little Latin), Pacioli's works

on mathematics and art, and the important works on architecture, pro-

portion, and perspective by the Roman architect Vitruvius and by the

Italian architect and theorist Leon Baptista Alberti (1404-1472).

Diirer's contributions to the history of the Golden Ratio come both

in the form of written work and through his art. His major treatise, Un-

terweisung der Messung mit dem Zirkel and Richtscheit (Treatise on mea-

surement with compass and ruler), was published in 1525 and was one

of the first books on mathematics published in German. In it Direr
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complains that too many artists are ignorant of geometry, 'without

which no one can either be or become an absolute artist." The first of the

four books of the Treatise gives detailed descriptions of the construction

of various curves, including the logarithmic (or equiangular) spiral,

which is, as we have seen, closely related to the Golden Ratio. The sec-

ond book contains precise and approximate methods for the construc-

tion of many polygons, including two constructions of the pentagon

(one exact and one approximate). The Platonic solids, as well as other

solids, some of Darer's own invention, together with the theory of per-

spective and of shadows, are discussed in the fourth book. Diirer's book

was not intended to be used as a textbook of geometry—for example, he

gives only one example of a proof. Rather, Darer always starts with a

practical application and then continues with an exposition of the very

basic theoretical aspects. The

book contains some of the

earliest presentations of nets

of polyhedra. These are plane

sheets on which the surfaces

of the polyhedra are drawn in

such a way that the figures

can be cut out (as single

pieces) and folded to form

the three-dimensional solids.

Diirer's illustration for

the net of a dodecahedron

(related as we know to the

Golden Ratio) is shown in

Figure 54.

Darer mingled his virtuosity in woodcuts and engravings with

his interest in mathematics in the enigmatic allegory "Melencolia I"

(Figure 55). This is one of the trio of master engravings (the other

two being "Knight, Death and Devil," and "St. Jerome in His Study").

It has been suggested that Darer created the picture in a fit of melan-

choly after the death of his mother. The central figure in "Melencolia"

is a winged female seated listless and dispirited on a stone ledge. In

her right hand she holds a compass, opened for measuring. Most of



Figure 55

1 40 MARIO LIVIO

the objects in the engrav-

ing have multiple symbolic

meanings, and entire articles

have been devoted to their

interpretation. The pot on

the fire in the middle left

and the scale at the top are

thought to represent al-

chemy. The "magic square"

on the upper right (in which

every row, column, diagonal,

the four central numbers,

and the numbers in the four

corners add up to 34; inci-

dentally, a Fibonacci num-

ber) is thought to represent

mathematics (Figure 56).

The middle entries in the

bottom row make 1514, the date of the engraving. The inclusion of the

magic square probably represents Pacioli's influence, since Pacioli's De

Viribus included a collection of magic squares. The main purport of the

engraving, with its geometrical figures, keys, bat, seascape, and so on,

seems to be the representation of the melancholy that engulfs the artist

or thinker, amid doubts in the success of her endeavors, while time, rep-

resented by the hourglass at the top, goes on.

The strange solid in the middle left of the engraving has been the

topic of serious discussion and various reconstruction attempts. At first

sight it looks like a cube from which two opposite corners have been

sliced off (which inspired some Freudian interpretations), but this ap-

pears not to be the case. Most researchers conclude that the figure is

what is known as a rhombohedron (a six-sided solid with each side

shaped as a rhombus; Figure 57), which has been truncated so that it

can be circumscribed by a sphere. When resting on one of its triangular

faces, its front fits precisely into the magic square. The angles in the face

of the solid have also been a matter of some debate. While many sug-
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gest 72 degrees, which would relate the figure to the Golden Ratio (see

Figure 25), Dutch crystallographer C. H. MacGillavry concluded on

the basis of perspectival analysis that the angles are of 80 degrees. The

perplexing qualities of this solid are summarized beautifully in an arti-

cle by T. Lynch that appeared in 1982 in the Journal of the Warburg and

Courtauld Institutes. The author concludes: "As a representation of poly-

hedra was seen as one of the main problems of perspective geometry,

what better way could Durer prove his ability in this field, than to in-

clude in an engraving a shape that was so new and perhaps even unique,

and to leave the question of what it was, and where it came from, for

other geometricians to solve?"

With the exception of the influential work of Pacioli and the math-

ematical/artistic interpretations of the painters Leonardo and Durer, the

sixteenth century brought about no other surprising developments in

the story of the Golden Ratio. While a few mathematicians, including

the Italian Rafael Bombelli (1526-1572) and the Spanish Franciscus

Flussates Candalla (1502-1594) used the Golden Ratio in a variety of

problems involving the pentagon and the Platonic solids, the more

exciting applications had to await the very end of the century.

However, the works of Pacioli, Direr, and others revived the inter-

est in Platonism and Pythagoreanism. Suddenly the Renaissance intel-

lectuals saw a real opportunity to relate mathematics and rational logic

to the universe around them, in the spirit of the Platonic worldview.

Concepts like the "Divine Proportion" built, on one hand, a bridge be-
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tween mathematics and the workings of the cosmos and, on the other, a

relation among physics, theology, and metaphysics. The person who, in

his ideas and works, exemplifies more than any other this fascinating

blending of mathematics and mysticism is Johannes Kepler.

MYSTERIUM COSMOGRAPHICUM

Johannes Kepler is best remembered as an outstanding astronomer re-

sponsible (among other things) for the three laws of planetary motion

that bear his name. But Kepler was also a talented mathematician, a

speculative metaphysician, and a prolific author. Born at a time of great

political upheaval and religious chaos, Kepler's education, life, and

thinking were critically shaped by the events around him. Kepler was

born on December 27, 1571, in the Imperial Free City of Weil der

Stadt, Germany, in his grandfather Sebald's house. His father, Heinrich,

a mercenary soldier, was absent from home throughout most of Kepler's

childhood, and during his short visits he was (in Kepler's words): "a

wrongdoer, abrupt and quarrelsome." The father left home when Kepler

was about sixteen, never to be seen again. He is supposed to have par-

ticipated in a naval war for the Kingdom of Naples and to have died on

his way home. Consequently, Kepler was raised mostly by his mother,

Katharina, who worked in her father's inn. Katharina herself was a

rather strange and unpleasant woman, who gathered herbs and believed

in their magical healing powers. A series of events involving personal

grudges, unfortunate gossip, and greed eventually led to her arrest at

old age in 1620, and to an indictment of witchcraft. Such accusations

were not uncommon at that time--no fewer than thirty-eight women

were executed for witchcraft in Weil der Stadt in the years between

1615 and 1629. Kepler, who was already well known at the time of her

arrest, reacted to the news of his mother's trial "with unutterable

distress." He effectively took charge of her defense, enlisting the help of

the legal faculty at the University of Tubingen. The charges against

Katharina Kepler were eventually dismissed after a long ordeal, mainly

in light of her own testimony under the threat of great pain and torture.

This story conveys the atmosphere and the intellectual confusion that
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prevailed during the period of Kepler's scientific work. Kepler was born

into a society that experienced (only fifty years earlier) Martin Luther's

breaking with the Catholic church, proclaiming that humans' sole jus-

tification before God was faith. That society was also about to embark

on the bloody and insane conflict known as the Thirty Years' War. We

can only be astonished how, with this background and with the violent

ups and downs of his tumultuous life, Kepler was able to produce a dis-

covery that is regarded by many as the true birth of modern science.

Kepler started his studies at the higher seminary at Maulbronn and

then won a scholarship from the Duke of Wurttemberg to attend the

Lutheran seminary at the University of Tubingen in 1589. The two

topics that attracted him most, and which in his mind were closely re-

lated, were theology and mathematics. At that time astronomy was

considered a part of mathematics, and Kepler's teacher of astronomy

was the prominent astronomer Michael MIstlin (1550-1631), with

whom he continued to maintain contact even after leaving Tubingen.

In his formal lessons, Mastlin must have taught only the traditional

Ptolemaic or geocentric system, in which the Moon, Mercury, Venus,

the Sun, Mars, Jupiter, and Saturn all revolved around the stationary

Earth. Mastl in, however, was fully aware of Nicolaus Copernicus' helio-

centric system, which was published in 1543, and in private he did dis-

cuss the merits of such a system with his favorite student, Kepler. In the

Copernican system, six planets (including Earth, but not including the

Moon, which was no longer considered a planet but rather a "satellite")

revolved around the Sun. In the same way that from a moving car you

can observe only the relative motions of the other cars, in the Coperni-

can system, much of what appears to be the motion of the planets sim-

ply reflects the motion of Earth itself.

Kepler seems to have taken an immediate liking to the Copernican

system. The fundamental idea of this cosmology, that of a central Sun

surrounded by a sphere of the fixed stars with a space between the

sphere and the Sun, fit perfectly into his view of the cosmos. Being a

profoundly religious person, Kepler believed that the universe repre-

sents a reflection of its Creator. The unity of the Sun, the stars, and the

intervening space symbolized to him an equivalence to the Holy Trin-

ity of the Father, Son, and the Holy Spirit.
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While Kepler graduated with distinction from the faculty of arts

and was close to finishing his theological studies, something happened

to change his profession from that of a pastor to that of a mathematics

teacher. The Protestant seminary in Graz, Austria, asked the University

of Tubingen to recommend a replacement for one of their math teach-

ers who had passed away, and the university selected Kepler. In March

of 1594 Kepler therefore began, unwillingly, a month-long trip to

Graz, in the Austrian province of Styria.

Realizing that fate had forced upon him the career of a mathemati-

cian, Kepler became determined to fulfill what he regarded as his Chris-

tian duty—to understand God's creation, the universe. Accordingly, he

delved into the translations of the Elements and the works of the Alexan-

drian geometers Apollonius and Pappus. Accepting the general princi-

ple of the Copernican heliocentric system, he set out to search for

answers to the following two major questions: Why were there precisely

six planets? and What was it that determined that the planetary orbits

would be spaced as they are? These "why" and "what" questions were

entirely new in the astronomical vocabulary. Unlike the astronomers

before him, who satisfied themselves with simply recording the ob-

served positions of the planets, Kepler was seeking a theory that would

explain it all. He expressed this new approach to human inquiry beau-

tifully:

In all acquisition of knowledge it happens that, starting out from

those things which impinge on the senses, we are carried by the op-

eration of the mind to higher things which cannot be grasped by

any sharpness of the senses. The same thing happens also in the

business of astronomy, in which we first of all perceive with our eyes

the various positions of the planets at different times, and reasoning

then imposes itself on these observations and leads the mind to

recognition of the form of the universe.

But, wondered Kepler, what tool would God use to design His uni-

verse?

The first glimpse of what was to become his preposterously fantas-

tic explanation to these cosmic questions dawned on Kepler on July



Figure 58

THE GOLDEN RATIO 145

19, 1595, as he was trying to explain

the conjunctions of the outer planets,

Jupiter and Saturn (when the two bod-

ies have the same celestial coordinate).

Basically, he realized that if he in-

scribed an equilateral triangle within

a circle (with its vertices lying on the

circle) and another circle inside the

triangle (touching the midpoints of

the sides; Figure 58), then the ratio of

the radius of the larger circle to that

of the smaller one was about the same as the ratio of the sizes of Saturn's

orbit to Jupiter's orbit. Continuing with this line of thought, he de-

cided that to get to the orbit of Mars (the next planet closer to the Sun),

he would need to use the next geometrical figure—a square—inscribed

inside the small circle. Doing this, however, did not produce the right

size. Kepler did not give up, and being already along a path inspired by

the Platonic view, that "God ever geometrizes," it was only natural for

him to take the next geometrical step and try three-dimensional figures.

The latter exercise resulted in Kepler's first use of geometrical objects

related to the Golden Ratio.

Kepler gave the answer to the two questions that intrigued him in

his first treatise, known as Mysteritim Cosmographictim (The cosmic mys-

tery), which was published in 1597. The full title, given on the title

page of the book (Figure 59; although the publication date reads 1596,

the book was published the following year) reads: "A precursor to cos-

mographical dissertations, containing the cosmic mystery of the ad-

mirable proportions of the Celestial Spheres, and of the True and Proper

Causes of their Numbers, Sizes, and Periodic Motions of the Heavens,

Demonstrated by the Five Regular Geometric Solids."

Kepler's answer to the question of why there were six planets was

simple: because there are precisely five regular Platonic solids. Taken as

boundaries, the solids determine six spacings (with an outer spherical

boundary corresponding to the heaven of the fixed stars). Furthermore,

Kepler's model was designed so as to answer at the same time the ques-

tion of the sizes of the orbits as well. In his words:
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The Earth's sphere is the measure of all other orbits. Circumscribe a

dodecahedron around it. The sphere surrounding it will be that of

Mars. Circumscribe a tetrahedron around Mars. The sphere sur-

rounding it will be that of Jupiter. Circumscribe a cube around

Jupiter. The surrounding sphere will be that of Saturn. Now, in-

scribe an icosahedron inside the orbit of the Earth. The sphere in-

scribed in it will be that of Venus. Inscribe an octahedron inside
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Venus. The sphere inscribed in it will be that of Mercury. There you

have the basis for the number of the planets.

Figure 60 shows a schematic from Mysterium Cosmographictim, which il-

lustrates Kepler's cosmological model. Kepler explained at some length

why he made the particular associations between the Platonic solids and

the planets, on the basis of their geometrical, astrological, and meta-

physical attributes. He ordered the solids based on relationships to the

sphere, assuming that the differences between the sphere and the other

solids reflected the distinction between the creator and his creations.

Similarly, the cube is characterized by a single angle—the right angle.

To Kepler this symbolized the solitude associated with Saturn, and so

on. More generally, astrology was relevant to Kepler because "man is

the goal of the universe and of all creation," and the

metaphysical approach was justified by the fact that

"the mathematical things are the causes of the physi-

cal because God from the beginning of time carried

within himself in simple and divine abstraction the

mathematical objects as proto-

types for the materially planned

quantities."

Earth's position was chosen

so as to separate the solids that

can stand upright (i.e., cube,

tetrahedron, and dodecahedron),

from those that "float" (i.e., octa-

hedron and icosahedron).

The spacings of the planets

resulting from this model agreed

reasonably well for some planets

but were significantly discrepant

for others (although the discrep-

ancies were usually no more than 10 percent). Kepler, absolutely

convinced of the correctness of his model, attributed most of the incon-

sistencies to inaccuracies in the measured orbits. He sent copies of the

book to various astronomers for comments, including a copy to one of
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the foremost figures of the time, the Danish Tycho Brahe (1546-1601).

One copy even made it into the hands of the great Galileo Galilei

(1564-1642), who informed Kepler that he too believed in Copernicus'

model but lamented the fact that "among a vast number (for such is the

number of fools)" Copernicus "appeared fit to be ridiculed and hissed off

the stage."

Needless to say, Kepler's cosmological model, which was based on

the Platonic solids, was not only absolutely wrong, but it was crazy even

for Kepler's time. The discovery of the planets Uranus (next after Saturn

in terms of increasing distance from the Sun) in 1781 and Neptune

(next after Uranus) in 1846 put the final nails into the coffin of an al-

ready moribund idea. Nevertheless, the importance of this model in the

history of science cannot be overemphasized. As astronomer Owen Gin-

gerich has put it in his biographical article on Kepler: "Seldom in his-

tory has so wrong a book been so seminal in directing the future course

of science." Kepler took the Pythagorean idea of a cosmos that can be

explained by mathematics a huge step forward. He developed an actual

mathematical model for the universe, which on one hand was based on

existing observational measurements and on the other was falsifiable
by observations that could be made subsequently. These are precisely

the ingredients required by the "scientific method"—the organized ap-

proach to explaining observed facts with a model of nature. An ideal-

ized scientific method begins with the collection of facts, a model is

then proposed, and the model's predictions are tested through experi-

ments or further observations. This process is sometimes summed up by

the sequence: induction, deduction, verification. In fact, Kepler was

even given a chance to make a successful prediction on the basis of his

theory. In 1610, Galileo discovered with his telescope four new celestial

bodies in the Solar System. Had these proven to be planets, it would

have dealt a fatal blow to Kepler's theory already during his lifetime.

However, to Kepler's relief, the new bodies turned out to be satellites

(like our Moon) around Jupiter, not new planets revolving around the

Sun.

Present-day physical theories that aim at explaining the existence

of all the elementary (subatomic) particles and the basic interactions

among them rely on mathematical symmetries in a very similar fashion
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to Kepler's theory relying on the symmetry properties of the Platonic

solids to explain the number and properties of the planets. Kepler's

model had something else in common with today's fundamental theory

of the universe: Both theories are by their very nature reductionistic-

they attempt to explain many phenomena in terms of a few fundamen-

tal laws. For example, Kepler's model deduced both the number of

planets and the properties of their orbits from the Platonic solids. Sim-

ilarly, modern theories known as string theories use basic entities

(strings) which are extremely tiny (more than a billion billion times

smaller than the atomic nucleus) to deduce the properties of all the ele-

mentary particles. Like a violin string, the strings can vibrate and pro-

duce a variety of "tones," and all the known elementary particles simply

represent these different tones.

Kepler's continued interest in the Golden Ratio during his stay in

Graz produced another interesting result. In October 1597, he wrote to

Mastlin, his former professor, about the following theorem: "If on a line

which is divided in extreme and mean ratio one constructs a right an-

gled triangle, such that the right angle is on the perpendicular put at

the section point, then the smaller leg will equal the larger segment of

the divided line." Kepler's statement is represented by Figure 61. Line

AB is divided in a Golden Ratio by point C. Kepler constructs a right-

angled triangle ADB on AB as a hypotenuse, with the right angle D be-

ing on the perpendicular put at the Golden Section point C. He then

proves that BD (the shorter side of the right angle) is equal to AC (the

longer segment of the line divided in Golden Ratio). What makes this

particular triangle special (other than the use of the Golden Ratio) is

that in 1855 it was used by pyramidologist Friedrich ROber in one of

Figure 61 Figure 62
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the false theories explaining the appearance of the Golden Ratio in the

design of the pyramids. Riiber was not aware of Kepler's work, but he

used a similar construction to support his view that the "divine propor-

tion" played a crucial role in architecture.

Kepler's Mysterium Cosmographicum led to a meeting between him

and Tycho Brahe in Prague—at the time the seat of the Holy Roman

Emperor. The meeting took place on February 4, 1600, and was the

prelude to Kepler's moving to Prague as Tycho's assistant in October of

the same year (after being forced out of Catholic Graz because of his

Lutheran faith). When Brahe died on October 24, 1601, Kepler became

the Imperial Mathematician.

Tycho left a huge body of observations, in particular of the orbit of

Mars, and Kepler used these data to discover the first two laws of plan-

etary motions named after him. Kepler's First Law states that the orbits

of the known planets around the Sun are not exact circles but rather

ellipses, with the Sun at one focus (Figure 62; the elongation of the el-

lipse is greatly exaggerated). An ellipse has two points called foci, such

that the sum of the distances of any point on the ellipse from the two

foci is the same. Kepler's Second Law establishes that the planet moves

fastest when it is closest to the Sun (the point known as perihelion) and

slowest when it is farthest (aphelion), in such a way that the line join-

ing the planet to the Sun sweeps equal areas in equal time intervals

(Figure 62). The question of what causes Kepler's laws to hold true was

the outstanding unsolved problem of science for almost seventy years

after Kepler published the laws. It took the genius of Isaac Newton

(1642-1727) to deduce that the force holding the planets in their orbits

is gravity. Newton explained Kepler's laws by solving together the laws

that describe the motion of bodies with the law of universal gravitation.

He showed that elliptical orbits with varying speeds (as described by

Kepler's laws) represent one possible solution to these equations.

Kepler's heroic efforts in the calculations of Mars' orbit (many hun-

dreds of sheets of arithmetic and their interpretation; dubbed by him as

"my warfare with Mars") are considered by many researchers as signify-

ing the birth of modern science. In particular, at one point he found a

circular orbit that matched nearly all of Tycho's observations. In two

cases, however, this orbit predicted a position that differed from the ob-
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servations by about a quarter of the angular diameter of a full moon.

Kepler wrote about this event: "If I had believed that we could ignore

these eight minutes [of arc], I would have patched up my hypothesis in

Chapter 16 accordingly. Now, since it was not permissible to disregard,

those eight minutes alone pointed the path to a complete reformation

in astronomy."

Kepler's years in Prague were extremely productive in both astron-

omy and mathematics. In 1604, he discovered a "new" star, now known

as Kepler's Supernova. A supernova is a powerful stellar explosion, in

which a star nearing the end of its life ejects its outer layers at a speed

of ten thousand miles per second. In our own Milky Way galaxy, one

such explosion is expected to occur on the average every one hundred

years. Indeed, Tycho discovered a supernova in 1572 . (Tycho's Super-

nova), and Kepler discovered one in 1604. Since then, however, for un-

clear reasons, no other supernova has been discovered in the Milky Way

(although one exploded apparently unnoticed in the 1660s). As-

tronomers remark jokingly that maybe this paucity of supernovae sim-

ply reflects the fact that there have been no truly great astronomers

since Tycho and Kepler.

In June 2001, I visited the house in which Kepler lived in Prague,

at 4 Karlova Street. Today, this is a busy shopping street, and it is easy

to miss the rusty plaque above the number 4, which states that Kepler

lived there from 1605 to 1612. One of the shop owners just below Kep-

ler's apartment did not even know that one of the greatest astronomers

of all times had lived there. The rather sad-looking inner courtyard does

contain a small sculpture of the armillary sphere with Kepler's name

written across it, and another plaque is located near the mailboxes.

Kepler's apartment itself, however, is not marked in any special way and

is not open to the public, being occupied by one of the many families

who live in the residential upper floors.

Kepler's mathematical work produced a few more highlights in the

history of the Golden Ratio. In the text of a letter that he wrote in 1608

to a professor in Leipzig, we find that he discovered the relation be-

tween Fibonacci numbers and the Golden Ratio. He repeats the con-

tents of that discovery in an essay tracing the reason for the six-cornered

shape of snowflakes. Kepler writes:
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Of the two regular solids, the dodecahedron and the icosahedron .. .

both of these solids, and indeed the structure of the pentagon itself,

cannot be formed without the divine proportion as the geometers of

today call it. It is so arranged that the two lesser terms of a progres-

sive series together constitute the third, and the two last, when

added, make the immediately subsequent term and so on to infinity,

as the same proportion continues unbroken . . . the further we ad-

vance from the number one, the more perfect the example becomes.

Let the smallest numbers be 1 and 1 . . . add them, and the sum will

be 2; add to this the latter of the 1's, result 3; add 2 to this, and get

5; add 3, get 8; 5 to 8, 13; 8 to 13, 21. As 5 is to 8, so 8 is to 13, ap-

proximately, and as 8 to 13, so 13 is to 21, approximately.

In other words, Kepler discovered that the ratio of consecutive Fi-

bonacci numbers converges to the Golden Ratio. In fact, he also discov-

ered another interesting property of the Fibonacci numbers: that the

square of any term differs by 1 at most from the product of the two ad-

jacent terms in the sequence. For example, since the sequence is: 1, 1, 2,

3, 5, 8, 13, 21, 34, . . . , if we look at 3 2 = 9, it is only different by 1

from the product of the two terms that are adjacent to 3, 2 x 5 = 10.

Similarly, 13 2 = 169 is different by 1 from 8 x 21 = 168, and so on.

This particular property of Fibonacci numbers gives rise to a puz-

zling paradox first presented by the great creator of mathematical puz-

zles, Sam Loyd (1841-1911).

Consider the square of eight units on the side (area of 8 2 = 64) in

Figure 63. Now dissect it into four parts as indicated. The four pieces

can be reassembled (Figure 64) to form a rectangle of sides 13 and 5

3 5

Figure 63 Figure 64
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with an area of 65! Where did the extra square unit come from? The so-

lution to the paradox is in the fact that the pieces actually do not fit ex-

actly along the rectangle's long diagonal—there is a narrow space (a

long thin parallelogram hidden under the thick line marking the long

diagonal in Figure 64) with an area of one square unit. Of course, 8 is a

Fibonacci number, and its square (8 2 = 64) differs by 1 from the prod-

uct of its two adjacent Fibonacci numbers (13 x 5 = 65)—the property

discovered by Kepler.

You have probably noticed that Kepler refers to the Golden Ratio

as "the divine proportion as the geometers of today call it." The combi-

nation of rational elements with Christian beliefs characterizes all of

Kepler's endeavors. As a Christian natural philosopher, Kepler regarded

it as his duty to understand the universe together with the intentions of

its creator. Fusing his ideas on the Solar System with a strong affinity to

the number 5, which he adopted from the Pythagoreans, Kepler writes

about the Golden Ratio:

A peculiarity of this proportion lies in the fact that a similar pro-

portion can be constructed out of the larger part and the whole;

what was formerly the larger part now becomes the smaller, what

was formerly the whole now becomes the larger part, and the sum of

these two now has the ratio of the whole. This goes on indefinitely;

the divine proportion always remaining. I believe that this geomet-

rical proportion served as idea to the Creator when He introduced

the creation of likeness out of likeness, which also continues indefi-

nitely. I see the number five in almost all blossoms which lead the

way for a fruit, that is, for creation, and which exist, not for their

own sake, but for that of the fruit to follow. Almost all tree-

blossoms can be included here; I must perhaps exclude lemons and

oranges; although I have not seen their blossoms and am judging

from the fruit or berry only which are not divided into five, but

rather into seven, eleven, or nine cores. But in geometry, the num-

ber five, that is the pentagon, is constructed by means of the divine

proportion which I wish [to assume to be) the prototype for the cre-

ation. Furthermore, there exists between the movement of the Sun

(or, as I believe, the Earth) and that of Venus, which stands at the
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top of generative capability the ratio of 8 to 13 which, as we shall

hear, comes very close to the divine proportion. Lastly, according to

Copernicus, the Earth-sphere is midway between the spheres Mars

and Venus. One obtains the proportion between them from the do-

decahedron and the icosahedron, which in geometry are both deriv-

atives of the divine proportion; it is on our Earth, however, that the

act of procreation takes place.

Now see how the image of man and woman stems from the di-

vine proportion. In my opinion, the propagation of plants and the

progenitive acts of animals are in the same ratio as the geometrical

proportion, or proportion represented by line segments, and the

arithmetic or numerically expressed proportion.

Simply put, Kepler truly believed that the Golden Ratio served as a

fundamental tool for God in creating the universe. The text also shows

that Kepler was aware of the appearance of the Golden Ratio and Fi-

bonacci numbers in the petal arrangements of flowers.

Kepler's relatively tranquil and professionally fruitful years in

Prague ended in 1611 with a series of disasters. First, his son Friedrich

died of smallpox, then his wife, Barbara, died of a contagious fever

brought along by the occupying Austrian troops. Finally, Emperor

Rudolph was deposed, abdicating the crown in favor of his brother

Matthias, who was not known for his tolerance of Protestants. Kepler

was therefore forced to leave for Linz in present-day Austria.

The crowning jewel of Kepler's work at Linz came in 1619, with

the publication of his second major work on cosmology, Harmonice

Mundi (Harmony of the world).

Recall that music and harmony represented to Pythagoras and the

Pythagoreans the first evidence that cosmic phenomena could be de-

scribed by mathematics. Only strings plucked at lengths with ratios

corresponding to simple numbers produced consonant tones. A ratio of

2:3 sounded the fifth, 3:4 a fourth, and so on. Similar harmonic spac-

ings of the planets were also thought to produce the "music of the

spheres." Kepler was very familiar with these concepts since he read

most of the book by Galileo's father, Vincenzo Galilei, Dialogue Concern-

ing Ancient and Modern Music, although he rejected some of Vincenzo's
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ideas. Since he also believed that he had a complete model for the Solar

System, Kepler was able to develop little "tunes" for the different plan-

ets (Figure 65).

Figure 65

As Kepler was convinced that "before the origin of things, geome-

try was coeternal with the Divine Mind," much of the Harmony of the

World is devoted to geometry. One aspect of this work that is particu-

larly important for the story of the Golden Ratio is Kepler's work on

tiling, or tessellation.

In general, the word "tiling" is used to describe a pattern or struc-

ture that comprises of one or more shapes of "tiles" that pave a plane ex-

actly, with no spaces, such as the arrangements in mosaics or floor tiles.

In Chapter 8 we shall see that some of the mathematical concepts pres-

ent in tiling are intimately related to

the Golden Ratio. While Kepler was

not aware of all the intricacies of the

mathematics of tiling, his interest in

the relationship between different geo-

metrical forms and his admiration for

the pentagon—the most direct mani-

festation of the "divine proportion"—

was sufficient to lead him to interesting

work on tiling. He was particularly

interested in the congruence (fitting

together) of geometrical shapes like

polygons and solids. Figure 66 shows



156 MARIO LIVIO

an example from The Harmony of the World. This particular tiling pattern

is composed of four shapes, all related to the Golden Ratio: pentagons,

pentagrams, decagons, and double decagons. To Kepler, this is a mani-

festation of "harmony," since harmonia in Greek means "a fitting to-

gether."

Figure 67

Interestingly, two other men who played significant roles in the his-

tory of the Golden Ratio before Kepler (and whose work was described

in previous chapters) also showed interest in tiling—the tenth-century

mathematician Abu'l-Wafa and the painter Albrecht Durer . Both of

them presented designs containing figures with fivefold symmetry. (An

example of Durer's work is shown in Figure 67.)

The fifth book of Harmony of the World contains Kepler's most sig-

nificant result in astronomy—Kepler's Third Law of planetary motion.

This represents the culmination of all of his agonizing over the sizes of

the orbits of the planets and their periods of revolution around the Sun.

Twenty-five years of work have been condensed into one incredibly sim-

ple law: The ratio of the period squared to the semimajor axis cubed is

the same for all the planets (the semimajor axis is half the long axis of

the ellipse; Figure 62). Kepler discovered this seminal law, which

served as the basis for Newton's formulation of the law of universal

gravitation, only when Harmony of the World was already in press. Un-

able to control his exhilaration he announced: "I have stolen the golden

vessels of the Egyptians to build a tabernacle for my God from them,

far away from the borders of Egypt." The essence of the law follows nat-

urally from the law of gravity: The force is stronger the closer the planet
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is to the Sun, so inner planets

must move faster to avoid

falling toward the Sun.

In 1626, Kepler moved

to Ulm and completed the

Rudolphine Tables, the most

extensive and accurate astro-

nomical tables produced un-

til that time. While I was

visiting the University of Vi-

enna in June 2001, my hosts

showed me in the observa-

tory's library a first edition

of the tables (147 copies are

known to exist today). The

frontispiece of the book (Fig-

ure 68), a symbolic repre-

sentation of the history of

astronomy, contains at the

lower left corner what may

be Kepler's only self-portrait

(Figure 69). It shows Kepler

working by candlelight, un-

der a banner listing his im-

portant publications.

Kepler died at noon on

November 15, 1630, and

was buried in Regensburg.

Befitting his turbulent life,

wars have totally destroyed

his tomb, without a trace.

Luckily, a sketch of the

gravestone made by a friend

survived, and it contains

Kepler's epitaph:
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I used to measure the heavens,

Now the Earth's shadows I measure

My mind was in the heavens,

Now the shadow of my body rests here.

Today, Kepler's originality and productivity are almost incomprehensi-

ble. We should realize that this was a man who endured unimaginable

personal hardships, including the loss of three of his children in less

than six months during 1617 and 1618. The English poet John Donne

(1572-1631) perhaps described him best when he said that Kepler

"hath received it into his care, that no new thing should be done in

heaven without his knowledge."



7

PAINTERS AND POETS

HAVE EQUAL LICENSE

Painting isn't an aesthetic operation; it's a form of magic designed

as a mediator between this strange hostile world and us.

-PABLO PICASSO (1881-1973)

The Renaissance produced a significant change in direction in the his-

tory of the Golden Ratio. No longer was this concept confined to math-

ematics. Now the Golden Ratio found its way into explanations of

natural phenomena and into the arts.

We have already encountered claims that the architectural design of

various structures from antiquity, such as the Great Pyramid and the

Parthenon, had been based on the Golden Ratio. A closer examination

of these claims revealed, however, that in most cases they could not be

substantiated. The introduction of the notion of the existence of a "Di-

vine Proportion" and the general recognition of the importance of

mathematics for perspective made it more conceivable that some artists

would start using scientifically based methods in general and the

Golden Ratio in particular in their works. Contemporary painter and

draftsman David Hockney argues in his book Secret Knowledge (2001),

for example, that starting with around 1430, artists began secretly us-

ing cameralike devices, including lenses, concave mirrors, and the cam-

era obscura, to help them create realistic-looking paintings. But did
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artists really use the Golden Ratio? And if they did, was the Golden Ra-

tio's application restricted to the visual arts or did it penetrate into

other areas of artistic endeavor?

THE ARTIST'S SECRET GEOMETRY?

Many of the assertions concerning the employment of the Golden Ratio

in painting are directly associated with the presumed aesthetic proper-

ties of the Golden Rectangle. I shall discuss the reality (or falsehood) of

such a canon for aesthetics later in the chapter. For the moment, how-

ever, I shall concentrate on the much simpler question: Did any pre-

and Renaissance painters actually base their artistic composition on the

Golden Rectangle? Our attempt to answer this question takes us back

to the thirteenth century.

The "Ognissanti Madonna" (also known as "Madonna in Glory,"

Figure 70; currently in the Uffizi Gallery in Florence) is one of the

Figure 70 Figure 71
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greatest panel paintings by the famous Italian painter and architect

Giotto di Bondone (1267-1337). Executed between 1306 and 1310,

the painting shows a half-smiling, enthroned Virgin caressing the knee

of the Child. The Madonna and Child are surrounded by angels and

saints arranged in some sort of perspectival "hierarchy." Many books

and articles on the Golden Ratio repeat the statement that both the

painting as a whole and the central figures can be inscribed precisely in

Golden Rectangles (Figure 71).

A similar claim is made about two other paintings with the same

general subject: the "Madonna Rucellai" (painted in 1285) by the great

Sienese painter Duccio di Buoninsegna, known as Duccio (ca.

1255-1319), and the "Santa Trinita Madonna" by the Florentine painter

Cenni di Pepo, known as Cimabue (ca. 1240-1302). As fate would have

it, currently the three paintings happen to be hanging in the same room

in the Uffizi Gallery in Florence. The dimensions of the "Ognissanti,"

"Rucellai," and "Santa Trinita" Madonnas give height to width ratios of

1.59, 1.55, and 1.73, respectively. While all three numbers are not too

far from the Golden Ratio, two of them are actually closer to the simple

ratio of 1.6 rather than to the irrational number 4. This fact could indi-

cate (if anything) that the artists followed the Vitruvian suggestion for a

simple proportion, one that is the ratio of two whole numbers, rather

than the Golden Ratio. The inner rectangle in the "Ognissanti

Madonna" (Figure 71) leaves us with an equally ambiguous impression.

Not only are the boundaries of the rectangle drawn usually (e.g., in

Trudi Hammel Garland's charming hook Fascinating Fibonaccis) with

rather thick lines, making any measurement rather uncertain, but, in

fact, the upper horizontal side is placed somewhat arbitrarily.

Remembering the dangers of having to rely on measured dimen-

sions alone, we may wonder if there exist any other reasons to suspect

that these three artists might have desired to include the Golden Ratio

in their paintings. The answer to this question appears to be negative,

unless they were driven toward this ratio by some unconscious aesthetic

preference (a possibility that will be discussed later in the chapter). Re-

call that the three Madonnas were painted more than two centuries be-

fore the publication of The Divine Proportion brought the ratio to wider

attention.
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The French painter and author Charles Bouleau expresses a differ-

ent view in his 1963 book The Painter's Secret Geometry. Without refer-

ring to Giotto, Duccio, or Cimabue specifically, Bouleau argues that

Pacioli's book represented an end to an era rather than its beginning.

He asserts that The Divine Proportion merely "reveals the thinking of

long centuries of oral tradition" during which the Golden Ratio "was

considered as the expression of perfect beauty." If this were truly the

case, then Cimabue, Duccio, and Giotto indeed might have decided to

use this accepted standard for perfection. Unfortunately, I find no evi-

dence to support Bouleau's statement. Quite to the contrary; the docu-

mented history of the Golden Ratio is inconsistent with the idea that

this proportion was particularly revered by artists in the centuries pre-

ceding the publication date of Pacioli's book. Furthermore, all the seri-

ous studies of the works of the three artists by art experts (e.g., Giotto by

Francesca Flores D'Arcais; Cimabtie by Luciano Bellosi) give absolutely

no indication whatsoever that these painters might have used the

Golden Ratio—the latter claim appears only in the writings of Golden

Number enthusiasts and is based solely on the dubious evidence of

measured dimensions.

Another name that invariably turns up in almost every claim of

the appearance of the Golden Ratio in art is that of Leonardo da Vinci.

Some authors even attribute the invention of the name "the Divine

Proportion" to Leonardo. The discussion usually concentrates on five

works by the Italian master: the unfinished canvas of "St. Jerome," the

two versions of "Madonna of the Rocks," the drawing of "a head of

an old man," and the famous "Mona Lisa." I am going to ignore the

"Mona Lisa" here for two reasons: It has been the subject of so many

volumes of contradicting scholarly and popular speculations that it

would be virtually impossible to reach any unambiguous conclusions;

and the Golden Ratio is supposed to be found in the dimensions of a

rectangle around Mona Lisa's face. In the absence of any clear (and doc-

umented) indication of where precisely such a rectangle should be

drawn, this idea represents just another opportunity for number jug-

gling. I shall return, however, to the more general topic of proportions

in faces in Leonardo's paintings, when I shall discuss the drawing "a

head of an old man."
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Figure 72 Figure 73

The case of the two versions of "Madonna of the Rocks" (one in the

Louvre in Paris, Figure 72, and the other in the National Gallery in

London, Figure 73) is not particularly convincing. The ratio of the

height to width of the painting thought to have been executed earlier

(Figure 72) is about 1.64 and of the later one 1.58, both reasonably

close to .21) but also close to the simple ratio of 1.6.

The dating and authenticity of the two "Madonna of the Rocks"

also put an interesting twist on the claims about the presence of the

Golden Ratio. Experts who studied the two paintings concluded that,

without a doubt, the Louvre version was done entirely by Leonardo's

hand, while the execution of the National Gallery version might have

been a collaborative effort and is still the source of some debate. The

Louvre version is thought to be one of the first works that Leonardo pro-

duced in Milan, probably between 1483 and 1486. The National

Gallery painting, on the other hand, usually is assumed to have been

completed around 1506. The reason that these dates may be of some

significance is that Leonardo met Pacioli for the first time in 1496, in

the Court of Milan. The seventy-first chapter of the Divina (the end of
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the first portion of the book) was, in Pacioli's words: "Finished this day

of December 14, at Milan in our still cloister the year 1497." The first

version (and the one with no doubts about authenticity) of the

"Madonna of the Rocks" was therefore completed about ten years before

Leonardo had the opportunity to hear directly from the horse's mouth

about the "divine proportion." The claim that Leonardo used the

Golden Ratio in "Madonna of the Rocks" therefore amounts to believ-

ing that the artist adopted this proportion even before he started his

collaboration with Pacioli. White this is not impossible, there is no ev-

idence to support such an interpretation.

Either version of "Madonna of the Rocks" represents one of

Leonardo's most accomplished masterpieces. Perhaps in no other paint-

ing did he apply better his poetic formula: "every opaque body is sur-

rounded and clothed on its surface by shadows and light." The figures

in the paintings literally open themselves to the emotional participa-

tion of the spectator. To claim that these paintings derive any part of

their strength from the mere ratio of their dimensions trivializes

Leonardo's genius unnecessarily. Let us not fool ourselves; the feeling of

awe we experience when facing "Madonna of the Rocks" has very little

to do with whether the dimensions of the paintings are in a Golden

Ratio.

A similar uncertainty exists with respect to the unfinished "St.

Jerome" (Figure 74; currently in the Vatican museum). Not only is the

painting dated to 1483, long before Pacioli's move to Milan, but the

claim made in some books (e.g., in David Bergamini and the editors of

Life Magazine's Mathematics) that "a Golden Rectangle fits so neatly

around St. Jerome" requires quite a bit of wishful thinking. In fact, the

sides of the rectangle miss the body (especially on the left side) and head

entirely, while the arm extends well beyond the rectangle's side.

The last example for a possible use of the Golden Ratio by Leonardo

is the drawing of "a head of an old man" (Figure 75; the drawing is cur-

rently in the Galleria dell'Accademia in Venice). The profile and dia-

gram of proportions were drawn in pen some time around 1490. Two

studies of horsemen in red chalk, which are associated with Leonardo's

"Battle of Anghiari," were added to the same page around 1503-1504.
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While the overlying grid leaves very little doubt that Leonardo was

indeed interested in various proportions in the face, it is very difficult

to draw any definitive conclusions from this study. The rectangle in

the middle left, for example, is approximately a Golden Rectangle, but

the lines are drawn so roughly that we cannot be sure. Nevertheless, this

drawing probably comes the closest to a demonstration that Leonardo

used rectangles to determine dimensions in his paintings and that

he might have even considered the application of the Golden Ratio to

his art.

Leonardo's interest in proportions in the face may have another in-

Figure 74 Figure 75

teresting manifestation. In an article that appeared in 1995 in the Sci-
entific American, art historian and computer graphics artist Lillian

Schwarz presented an interesting speculation. Schwarz claimed that in

the absence of his model for the "Mona Lisa," Leonardo used his own fa-

cial features to complete the painting. Schwarz's suggestion was based

on a computer-aided comparison between various dimensions in Mona

Lisa's face and the respective dimensions in a red chalk drawing that is

considered by many (but not all) to be Leonardo's only self-portrait.
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However, as other art analysts have pointed out, the similarity in the

proportions may simply reflect the fact that Leonardo used the same for-

mulae of proportion (which may or may not have included the Golden

Ratio) in the two portraits. In fact, Schwarz herself notes that even in

his grotesques—a collection of bizarre faces with highly exaggerated

chins, noses, mouths, and foreheads—Leonardo used the same propor-

tions in the face as in the "head of an old man."

If there exist serious doubts regarding whether Leonardo himself,

who was not only a personal friend of Pacioli but also the illustrator for

the Divina, used the Golden Ratio in his paintings, does this mean that

no other artist ever used it? Definitely not. With the surge of Golden

Ratio academic literature toward the end of the nineteenth century, the

artists also started to take notice. Before we discuss artists who did use

the Golden Ratio, however, another myth still needs to be dispelled.

In spite of many existing claims to the contrary, the French pointil-

list Georges Seurat (1859-1891) probably did not use the Golden Ra-

tio in his paintings. Seurat was interested in color vision and color

combination, and he used the pointillist (multidotted) technique to ap-

proximate as best as he could the scintillating, vibratory quality of

light. He was also concerned late in life with the problem of expressing

specific emotions through pictorial means. In a letter he wrote in 1890,

Seurat describes succinctly some of his views:

Art is harmony. Harmony is the analogy of contradictions and of

similars, in tone, shade, line, judged by the dominant of those and

under the influence of a play of light in arrangements that are gay,

light, sad. Contradictions are . . . , with respect to line, those that

form a right angle. . . . Gay lines are lines above the horizontal; .. .

calm is the horizontal; sadness lines in the downward direction.

Seurat used these ideas explicitly in "The Parade of a Circus" (some-

times called "The Side Show"; Figure 7.6; currently in The Metropoli-

tan Museum of Art, New York). Note in particular the right angle

formed by the balustrade and the vertical line to the right of the mid-

dle of the painting. The entire composition is based on principles that

Seurat adopted from art theorist David Sutter's book La philosophie des
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Beatix-Arts appliquee a la peinture (The philosophy of the fine arts applied

to painting; 1870). Sutter wrote: "when the dominant is horizontal, a

succession of vertical objects can be placed on it because this series will

concur with the horizontal line."

Figure 76

Golden Ratio aficionados often present analyses of "The Parade" (as

well as other paintings, such as "The Circus") to "prove" the use of (I).

Even in the beautiful book Mathematics, by Bergamini' and the editors of

Life Magazine, we find: "La Parade, painted in the characteristic multi-

dotted style of the French impressionist Georges Seurat, contains nu-

merous examples of Golden proportions." The book goes even further

with a quote (attributed to "one art expert") that Seurat "attacked every

canvas by the Golden Section." Unfortunately, these statements are

unfounded. This myth was propagated by the Romanian born prelate

and author Matila Ghyka (1881-1965), who was also the "art expert"

quoted by Bergamini. Ghyka published two influential books, Esthe-

tique des proportions dans la nature et dans les arts (Aesthetics of proportions

in nature and in the arts; 1927) and Le Nombre d'Or: Rites et rythmes py-

tagoriciens dans le developpement de la civilisation occidentale (The golden

number, Pythagorean rites and rhythms in the development of Western
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civilization; 1931). Both books are composed of semimystical interpre-

tations of mathematics. Alongside correct descriptions of the mathe-

matical properties of the Golden Ratio, the books contain a collection

of inaccurate anecdotal materials on the occurrence of the Golden Ratio

in the arts (e.g., the Parthenon, Egyptian temples, etc.). The books have

been almost inexplicably influential.

Concerning "The Parade" specifically, while it is true that the hori-

zontal is cut in proportions close to the Golden Ratio (in fact, the simple

ratio eight-fifths), the vertical is not. An analysis of the entire composi-

tion of this and other paintings by Seurat, as well as paintings by the

Symbolist painter Pierre Puvis de Chavannes (1824-1898), led even a

Golden Ratio advocate like painter and author Charles Bouleau to con-

clude that "I do not think we can, without straining the evidence to re-

gard his lPuvis de Chavannes'sl compositions as based on the Golden

Ratio. The same applies to Seurat." A detailed analysis in 1980 by Roger

Herz-Fischler of all of Seurat's writings, sketches, and paintings reached

the same conclusion. Furthermore, the mathematician, philosopher, and

art critic Charles Henry (1859-1926) stated firmly in 1890 that the

Golden Ratio was "perfectly ignored by contemporary artists."

Who, then, did use the Golden Ratio either in actual paintings or in

the theory of painting? The first prominent artist and art theorist to em-

ploy the ratio was probably Paul Serusier (1864-1927). Serusier was

born in Paris, and after studying philosophy he entered the famous art

school Academie Julian. A meeting with the painters Paul Gaugin and

Emile Bernard converted him to their expressive use of color and sym-

bolist views. Together with the post-Impressionist painters Pierre Bon-

nard, Edouard Vuillard, Maurice Denis, and others he founded the group

called the Nabis, from the Hebrew word meaning "prophets." The name

was inspired by the group's half-serious, half-burlesque pose regarding

their new style as a species of religious illumination. The composer

Claude Debussy was also associated with the group. Serusier probably

heard about the Golden Ratio for the first time during one of his visits

(between 1896 and 1903) to his friend the Dutch painter Jan Verkade

(1868-1946). Verkade was a novice in the Benedictine monastery of

Beuron, in South Germany. There groups of monk-painters were execut-

ing rather dull religious compositions based on "sacred measures," fol-
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lowing a theory of Father Didier Lenz. According to Father Lenz's the-

ory, the great art works of antiquity (e.g., Noah's Ark, Egyptian works,

etc.) were all based on simple geometrical entities such as the circle,

equilateral triangle, and hexagon. Serusier found the charm of this the-

ory captivating, and he wrote to Verkade: "as you can imagine, [I) have

talked a great deal about your measures." The painter Maurice Denis

(1870-1943) wrote biographical notes on Serusier, from which we learn

that those "measures" employed by Father Lenz included the Golden Ra-

tio. Even though Serusier admits that his initial studies of the mathe-

matics of Beuron were "not all plain sailing," the Golden Ratio and the

story of its potential association with the Great Pyramid and Greek art-

works made it also into Serusier's important art theory book L'ABC de la

Peinture (The ABC of painting).

While Serusier's interest in the Golden Ratio appears to have been

more philosophical than practical, he did make use of this proportion in

some of his works, mainly to "verify, and occasionally to check, his in-

ventions of shapes and his composition."

Following Serusier, the concept of the Golden Ratio propagated into

other artistic circles, especially that of the Cubists. The name "Cubism"

was coined by art critic Louis Vauxcelles (who, by the way, had also been

responsible for "Expressionism" and "Fauvism") after viewing an exhibi-

tion of Georges Braque's work in 1908. The movement was inaugurated

by Picasso's painting "Les Demoiselles d'Avignon" and Braque's "Nude."

In revolt against the passionate use of color and form in Expressionism,

Picasso and Braque developed an austere, almost monochrome style that

deliberately rejected any subject matter that was likely to evoke emo-

tional associations. Objects like musical instruments and even human

figures were dissected into faceted geometrical planes, which were then

combined in shifting perspectives. This analysis of solid forms for the

purpose of revealing structure was quite amenable to the use of geomet-

rical concepts like the Golden Ratio. In fact, some of the early Cubists,

such as Jacques Villon and his brothers Marcel and Raymond Duchamp-

Villon, together with Albert Gleizes and Francis Picabia, organized

in Paris in October 1912 an entire exhibition entitled "Section d'Or"

("The Golden Section"). In spite of the highly suggestive name, none of

the paintings that was exhibited actually included the Golden Section
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as a basis for its composition. Rather,

the organizers chose the name simply

to project their general interest in ques-

tions that related art to science and

philosophy. Nevertheless, some Cubists,

like the Spanish-born painter Juan Gris

(1887-1927) and the Lithuanian-born

sculptor Jacques (Chaim Jacob) Lipchitz

(1891-1973) did use the Golden Ratio

in some of their later works. Lipchitz

wrote: "At the time, I was very inter-

ested in theories of mathematical pro-

portions, like the other cubists, and I

tried to apply them to my sculptures.

We all had a great curiosity for that idea

of a golden rule or Golden Section, a sys-

tem which was reputed to lay under the

art and architecture of ancient Greece."

Lipchitz helped Juan Gris in the con-

struction of the sculpture "Arlequin" (currently in the Philadelphia Mu-

seum of Art; Figure 77), in which the two artists used Kepler's triangle

(which is based on the Golden Ratio; see Figure 61) for the production

of the desired proportions.

Another artist who used the Golden Ratio in the early 1920s was

the Italian painter Gino Severini (1883-1966). Severini attempted in

his work to reconcile the somewhat conflicting aims of Futurism and

Cubism. Futurism represented an effort by a group of Italian intellectu-

als from literary arts, the visual arts, theater, music, and cinema to bring

about a cultural rejuvenation in Italy. In Severini's words: "We choose

to concentrate our attention on things in motion, because our modern

sensibility is particularly qualified to grasp the idea of speed." The first

painters' Futurist manifesto was signed in 1910, and it strongly urged

the young Italian artists to "profoundly despise all forms of imitation."

While still a Futurist himself, Severini found in Cubism a "notion

of measure" that fit his ambition of "making, by means of painting,

an object with the same perfection of craftsmanship as a cabinet
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maker making furniture." This

striving for geometrical perfection

led Severini to use the Golden Sec-

tion in his preparatory drawings for

several paintings (e.g., "Maternity,"

currently in a private collection in

Rome; Figure 78).

Russian Cubist painter Maria

Vorobeva, known as Marevna, pro-

vides an interesting instance of the

role of the Golden Ratio in Cubist

art. Marevna's 1974 book, Lift with
the Painters of La Rtiche, is a fascinat-

ing account of the lives and works

of her personal friends—a group

that included the painters Picasso,

Modigliani, Soutine, Rivera (with

whom she had a daughter), and others in Paris of the 1920s. Although

Marevna does not give any specific examples and some of her historical

comments are inaccurate, the text implies that Picasso, Rivera, and Gris

had used the Golden Ratio as "another way of dividing planes, which is

more complex and attracts experienced and inquisitive minds."

Another art theorist who had great interest in the Golden Ratio at

the beginning of the twentieth century was the American Jay Ham-

bidge (1867-1924). In a series of articles and books, Hambidge defined

two types of symmetry in classical and modern art. One, which he

called "static symmetry," was based on regular figures like the square

and equilateral triangle, and was supposed to produce lifeless art. The

other, which he dubbed "dynamic symmetry," had the Golden Ratio

and the logarithmic spiral in leading roles. Hambidge's basic thesis was

that the use of "dynamic symmetry" in design leads to vibrant and mov-

ing art. Few today take his ideas seriously.

One of the strongest advocates for the application of the Golden

Ratio to art and architecture was the famous Swiss-French architect and

painter Le Corbusier (Charles-Edouard Jeanneret, 1887-1965).

Jeanneret was born in La Chaux-de-Fonds, Switzerland, where he
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studied art and engraving. His father worked in the watch business

as an enameler, while his mother was a pianist and music teacher who

encouraged her son toward a musician's dexterity as well as more

abstract pursuits. He began his studies of architecture in 1905 and

eventually became one of the most influential figures in modern archi-

tecture. In the winter of 1916-1917, Jeanneret moved to Paris, where

he met Amedee Ozenfant, who was well connected in the Parisian haut

monde of artists and intellectuals. Through Ozenfant, Jeanneret met

with the Cubists and was forced to grapple with their inheritance. In

particular, he absorbed an interest in proportional systems and their role

in aesthetics from Juan Gris. In the autumn of 1918, Jeanneret and

Ozenfant exhibited together at the Galerie Thomas. More precisely, two

canvases by Jeanneret were hung alongside many more paintings by

Ozenfant. They called themselves "Purists," and entitled their catalog

Apres le Cubisme (After cubism). Purism invoked Piero della Francesca

and the Platonic aesthetic theory in its assertion that "the work of art

must not be accidental, exceptional, impressionistic, inorganic, protes-

tatory, picturesque, but on the contrary, generalized, static, expressive

of the invariant."

Jeanneret did not take the name "Le Corbusier" (co-opted from an-

cestors on his mother's side called Lecorbesier) until he was thirty-three,

well installed in Paris, and confident of his future path. It was as if he

wanted basically to repress his faltering first efforts and stimulate the

myth that his architectural genius bloomed suddenly into full maturity.

Originally, Le Corbusier expressed rather skeptical, and even nega-

tive, views of the application of the Golden Ratio to art, warning

against the "replacement of the mysticism of the sensibility by the

Golden Section." In fact, a thorough analysis of Le Corbusier's architec-

tural designs and "Purist" paintings by Roger Herz-Fischler shows that

prior to 1927, Le Corbusier never used the Golden Ratio. This situation

changed dramatically following the publication of Matila Ghyka's in-

fluential book Aesthetics of Proportions in Nattire and in the Arts, and his

Golden Number, Pythagorean Rites and Rhythms (1931) only enhanced the

mystical aspects of (4) even further. Le Corbusier's fascination with Aes-

thetics and with the Golden Ratio had two origins. On one hand, it was

a consequence of his interest in basic forms and structures underlying
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natural phenomena. On the other, coming from a family that encour-

aged musical education, Le Corbusier could appreciate the Pythagorean

craving for a harmony achieved by number ratios. He wrote: "More

than these thirty years past, the sap of mathematics has flown through

the veins of my work, both as an architect and painter; for music is

always present within me." Le Corbusier's search for a standardized pro-

portion culminated in the introduction of a new proportional system

called the "Modulor."

The Modulor was supposed to

provide "a harmonic measure to

the human scale, universally ap-

plicable to architecture and me-

chanics." The latter quote is in

fact no more than a rephrasing

of Protagoras' famous saying from

the fifth-century i.C. "Man is the

measure of all things." Accord-

ingly, in the spirit of the Vitru-

vian man (Figure 53) and the

general philosophical commit-

ment to discover a proportion sys-

tem equivalent to that of natural

creation, the Modulor was based on human proportions (Figure 79).

A six-foot (about 183-centimeter) man, somewhat resembling the

familiar logo of the "Michelin man," with his arm upraised (to a height

of 226 cm; 7'5"), was inserted into a square (Figure 80). The ratio of the

height of the man (183 cm; 6') to the height of his navel (at the mid-

point of 113 cm; 3' 8.5") was taken to be precisely in a Golden Ratio.

The total height (from the feet to the raised arm) was also divided in a

Golden Ratio (into 140 cm and 86 cm) at the level of the wrist of a

downward-hanging arm. The two ratios (113/70) and (140/86) were

further subdivided into smaller dimensions according to the Fibonacci

series (each number being equal to the sum of the preceding two; Fig-

ure 81). In the final version of the Modulor (Figures 79 and 81), two

scales of interspiraling Fibonacci dimensions were therefore introduced

(the "red and the blue series").



174 MARIO LIVIO

Figure 80

Figure 81

Le Corbusier suggested that the Modulor would give harmonious

proportions to everything, from the sizes of cabinets and door handles,

to buildings and urban spaces. In a world with an increasing need for

mass production, the Modulor was supposed to provide the model for
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standardization. Le Corbusier's two books, Le Modulor (published in

1948) and Modulor II (1955), received very serious scholarly attention

from architectural circles, and they continue to feature in any discussion

of proportion. Le Corbusier was very proud of the fact that he had the

opportunity to present the Modulor even to Albert Einstein, in a meet-

ing at Princeton in 1946. In describing that event he says: "I expressed

myself badly, I explained `Modulor' badly, I got bogged down in the

morass of 'cause and effect.' " Nevertheless, he received a letter from

Einstein, in which the great man said this of the Modulor: "It is a scale

of proportions which makes the bad difficult and the good easy."

Le Corbusier translated his theory of the Modulor into practice in

many of his projects. For example, in his notes for the impressive urban

layout of Chandigarh, India, which included four major government

buildings—a Parliament, a High Court, and two museums—we find:

"But, of course, the Modulor came in at the moment of partitioning the

window area. . . . In the general section of the building which involves

providing shelter from the sun for the offices and courts, the Modulor

will bring textural unity in all places. In the design of the frontages, the

Modulor (texturique) will apply its red and blue series within the spaces

already furnished by the frames."

Figure 82
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Le Corbusier was certainly not the last artist to be interested in the

Golden Ratio, but most of those after him were fascinated more by the

mathematical-philosophical-historical attributes of the ratio than by its

presumed aesthetic properties. For example, the British abstract artist

Anthony Hill used a Fibonacci series of dimensions in his 1960 "Con-

structional Relief" (Figure 82). Similarly, the contemporary Israeli

painter and sculptor Igael Tumarkin has deliberately included the for-

mula for the value of 4. (4) = (1 + 'N)/2) in one of his paintings.

An artist who transformed the Fibonacci sequence into an impor-

tant ingredient of his art is the Italian Mario Merz. Merz was born in

Milan in 1925, and in 1967 he joined the art movement labeled Arte

Povera (Poor Art), which also included the artists Michelangelo Pisto-

letto, Luciano Fabro, and Jannis Kounellis. The name of the movement

(coined by the critic Germano Celant) was derived from the desire of its

members to use simple, everyday life materials, in a protest against

what they regarded as a dehumanized, consumer-driven society. Merz

started to use the Fibonacci sequence in 1970, in a series of "concep-

tual" works that include the numbers in the sequence or various spirals.

Merz's desire to utilize Fibonacci numbers was based on the fact that the

sequence underlies so many growth patterns of natural life. In a work

from 1987 entitled "Onda d'urto" (Shock wave), he has a long row of

stacks of newspapers, with the Fibonacci numbers glowing in blue neon

lights above the stacks. The work "Fibonacci Naples" (from 1970) con-

sists of ten photographs of factory workers, building in Fibonacci num-

bers from a solitary person to a group of fifty-five (the tenth Fibonacci

number).

False claims about artists allegedly using the Golden Ratio con-

tinue to spring up almost like mushrooms after the rain. One of these

claims deserves some special attention, since it is repeated endlessly.

The Dutch painter Piet Mondrian (1872-1944) is best known for

his geometric, nonobjective style, which he called "neoplasticism." In

particular, much of his art is characterized by compositions involving

only vertical and horizontal lines, rectangles, and squares, and employ-

ing only primary colors (and sometimes black or grays) against a

white background, as in "Broadway Boogie-Woogie" (Figure 83; in



The Museum of Modern Art,

New York). Curved lines,

three-dimensionality, and re-

alistic representation were

entirely eliminated from his

work.

Not surprisingly, per-

haps, Mondrian's geometrical

compositions attracted quite

a bit of Golden Numberist

speculation. In Mathematics,

David Bergamini admits that

Mondrian himself "was vague

about the design of his

paintings," but nevertheless claims that the linear abstraction "Place de

la Concorde" incorporates overlapping Golden Rectangles. Charles

Bouleau was much bolder in The Painter's Secret Geometry, asserting that

"the French painters never dared to go as far into pure geometry and the

strict use of the golden section as did the cold and pitiless Dutchman

Piet Mondrian." Bouleau further states that in "Broadway Boogie-Woo-

gie," "the horizontals and verticals which make up this picture are

nearly all in the golden ratio." With so many lines to choose from in

this painting, it should come as no surprise that quite a few can be

found at approximately the right separations. Having spent quite some

time reading the more serious analyses of Mondrian's work and not hav-

ing found any mention of the Golden Ratio there, I became quite in-

trigued by the question: Did Mondrian really use the Golden Ratio in

his compositions or not? As a last resort I decided to turn to the real ex-

pert—Yves-Alain Bois of Harvard University, who coauthored the book

Mondrian that accompanied the large retrospective exhibit of the artist's

work in 1999. Bois's answer was quite categorical: "As far as I know,

Mondrian never used a system of proportion (if one excepts the modu-

lar grids he painted in 1918-1919, but there the system is deduced

from the format of the paintings themselves: they are divided in 8 x 8

units)." Bois added: "I also vaguely remember a remark by Mondrian
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mocking arithmetic computations with regard to his work." He con-

cluded: "I think that the Golden Section is a complete red herring with

regard to Mondrian."

All of this intricate history does leave us with a puzzling question.

Short of intellectual curiosity, for what reason would so many artists

even consider employing the Golden Ratio in their works? Does this ra-

tio, as manifested for example in the Golden Rectangle, truly contain

some intrinsic, aesthetically superior qualities? The attempts to answer

this question alone resulted in a multitude of psychological experi-

ments and a vast literature.

THE SENSES DELIGHT IN THINGS DULY PROPORTIONED

With the words in the title of this section, Italian scholastic philosopher

St. Thomas Aquinas (ca. 1225-1274) attempted to capture a funda-

mental relationship between beauty and mathematics. Humans seem to

react with a sense of pleasure to "forms" that possess certain symmetries

or obey certain geometrical rules.

In our examination of the potential aesthetic value of the Golden

Ratio, we will concentrate on the aesthetics of very simple, nonrepre-

sentational forms and lines, not on complex visual materials and works

of art. Furthermore, in most of the psychological experiments I shall de-

scribe, the term "beautiful" was actually shunned. Rather, words like

"pleasing" or "attractive" have been used. This avoids the need for a def-

inition of "beautiful" and builds on the fact that most people have a

pretty good idea of what they like, even if they cannot quite explain

why.

Numerous authors have claimed that the Golden Rectangle is the

most aesthetically pleasing of all rectangles. The more modern interest

in this question was largely initiated by a series of rather crankish pub-

lications by the German researcher Adolph Zeising, which started in

1854 with Netie Lehre von den Proportionen des menschlichen Korpers (The

latest theory of proportions in the human body) and culminated in the

publication (after Zeising's death) of a massive book, Der Goldne Schnitt

(The golden section), in 1884. In these works, Zeising combined his
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own interpretation of Pythagorean and Vitruvian ideas to argue that

"the partition of the human body, the structure of many animals which

are characterized by well-developed building, the fundamental types of

many forms of plants, . . . the harmonics of the most satisfying musical

accords, and the proportionality of the most beautiful works in archi-

tecture and sculpture" are all based on the Golden Ratio. To him, there-

fore, the Golden Ratio offered the key to the understanding of all

proportions in "the most refined forms of nature and art."

One of the founders of modern psychology, Gustav Theodor Fech-

ner (1801-1887), took it upon himself to verify Zeising's pet theory.

Fechner is considered a pioneer of experimental aesthetics. In one of his

early experiments, he conducted a public opinion poll in which he

asked all the visitors to the Dresden Gallery to compare the beauty of

two nearly identical Madonna paintings (the "Darmstadt Madonna"

and the "Dresden Madonna") that were exhibited together. Both paint-

ings were attributed to the German painter Hans Holbein the Younger

(1497-1543), but there was a suspicion that the "Dresden Madonna"

was actually a later copy. That particular experiment resulted in a total

failure—out of 11,842 visitors, only 113 answered the questionnaire,

and even those were mostly art critics or people who had formed previ-

ous judgments.

Fechner's first experiments with rectangles were performed in the

1860s, and the results were published in the 1870s and eventually

summarized in his 1876 book, Vorschule der Aesthetik (Introduction to

aesthetics). He rebelled against a top-down approach to aesthetics,

which starts with the formulation of abstract principles of beauty, and

rather advocated the development of experimental aesthetics from the

bottom up. The experiment was quite simple: Ten rectangles were

placed in front of a subject who was asked to select the most pleasing

one and the least pleasing one. The rectangles varied in their length-to-

width ratios from a square (a ratio of 1.00) to an elongated rectangle (a

ratio of 2.5). Three of the rectangles were more elongated than the

Golden Rectangle, and six were closer to a square. According to Fech-

ner's own description of the experimental setting, subjects often waited

and wavered, rejecting one rectangle after another. Meanwhile the ex-

perimenter would explain that they should carefully select the most
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pleasing, harmonic, and elegant rectangle. In Fechner's experiment, 76

percent of all choices centered on the three rectangles having the ratios

1.75, 1.62, and 1.50, with the peak at the Golden Rectangle (1.62). All

other rectangles received less than 10 percent of the choices each.

Fechner's motivation for studying the subject was not free of preju-

dice. He himself admitted that the inspiration for the research came to

him when he "saw the vision of a unified world of thought, spirit and

matter, linked together by the mystery of numbers." While nobody ac-

cuses Fechner of altering the results, some speculate that he may have

subconsciously produced circumstances that would favor his desired

outcome. In fact, Fechner's unpublished papers reveal that he conducted

similar experiments with ellipses, and having failed to discover any

preference for the Golden Ratio, he did not publish the results.

Fechner further measured the dimensions of thousands of printed

books, picture frames in galleries, windows, and other rectangularly

shaped objects. His results were quite interesting, and often amusing.

For example, he found that German playing cards tended to be some-

what more elongated than the Golden Rectangle, while French playing

cards were less so. On the other hand, he found the average height-to-

width ratio of forty novels from the public library to be near 03.. Paint-

ings (the area inside the frame) were actually found to be "significantly

shorter" than a Golden Rectangle. Fechner made the following (politi-

cally incorrect by today's standards) observation about window shapes:

"Only the window shapes of the houses of peasants seem often to be

square, which is consistent with the fact that people with a lower level

of education prefer this form more than people with a higher educa-

tion." Fechner further claimed that the point at which the transverse

piece crosses the upright post in graveyard crosses divides the post, on

the average, in a Golden Ratio.

Many researchers repeated similar experiments over the twentieth

century, with varying results. Overly eager Golden Ratio enthusiasts

usually report only those experiments that seem to support the idea of

an aesthetic preference for the Golden Rectangle. However, more care-

ful researchers point out the very crude nature and methodological de-

fects of many of these experiments. Some found that the results

depended, for example, on whether the rectangles were positioned with
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their long side horizontally or vertically, on the size and color of the

rectangles, on the age of the subjects, on cultural differences, and espe-

cially on the experimental method used. In an article published in

1965, American psychologists L. A. Stone and L. G. Collins suggested

that the preference for the Golden Rectangle indicated by some of the

experiments was related to the area of the human visual field. These re-

searchers found that an "average rectangle" of rectangles drawn within

and around the binocular visual field of a variety of subjects has a

length-to-width ratio of about 1.5, not too far from the Golden Ratio.

Subsequent experiments, however, did not confirm Stone and Collins's

speculation. In an experiment conducted in 1966 by H. R. Schiffman of

Rutgers University, subjects were asked to "draw the most aesthetically

pleasing rectangle" that they could on a sheet of paper. After comple-

tion, they were instructed to orient the figure either horizontally or ver-

tically (with respect to the long side) in the most pleasing position.

While Schiffman found an overwhelming preference for a horizontal

orientation, consistent with the shape of the visual field, the average ra-

tio of length to width was about 1.9—far from both the Golden Ratio

and the visual field's "average rectangle."

The psychologist Michael Godkewitsch of the University of

Toronto cast even greater doubts about the notion of the Golden Rect-

angle being the most pleasing rectangle. Godkewitsch first pointed out

the important fact that average group preferences may not reflect at all

the most preferred rectangle for each individual. Often something that

is most preferred on the average is not chosen first by anyone. For ex-

ample, the brand of chocolate that everybody rates second best may on

the average be ranked as the best, but nobody will ever buy it! Conse-

quently, first choices provide a more meaningful measure of preference

than mean preference rankings. Godkewitsch further noted that if pref-

erence for the Golden Ratio is indeed universal and genuine, then it

should receive the largest number of first choices, irrespective of which

other rectangles the subjects are presented with.

Godkewitsch published in 1974 the results of a study that involved

twenty-seven rectangles with length-to-width ratios in three ranges. In

one range the Golden Rectangle was next to the most elongated rectan-

gle, in one it was in the middle, and in the third it was next to the
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shortest rectangle. The results of the experiment showed, according to

Godkewitsch, that the preference for the Golden Rectangle was an arti-

fact of its position in the range of rectangles being presented and of the

fact that mean preference rankings (rather than first choices) were used

in the earlier experiments. Godkewitsch concluded that "the basic

question whether there is or is not, in the Western world, a reliable ver-

bally expressed aesthetic preference for a particular ratio between length

and width of rectangular shapes can probably be answered negatively.

Aesthetic theory has hardly any rationale left to regard the Golden Sec-

tion as a decisive factor in formal visual beauty."

Not all agree with Godkewitsch's conclusions. British psychologist

Chris McManus published in 1980 the results of a careful study that

used the method of paired comparisons, whereby a judgment is made

for each pair of rectangles. This method is considered to be superior to

other experimental techniques, since there is good evidence that rank-

ing tends to be a process of successive paired comparisons. McManus

concluded that "there is moderately good evidence for the phenomenon

which Fechner championed, even though Fechner's own method for its

demonstration is, at best, highly suspect owing to methodological arti-

facts." McManus admitted, however, that "whether the Golden Section

per se is important, as opposed to similar ratios (e.g. 1.5, 1.6 or even

1.75), is very unclear."
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You can test yourself (or your friends) on the question of which

rectangle you prefer best. Figure 84 shows a collection of forty-eight

rectangles, all having the same height, but with their widths ranging

from 0.4 to 2.5 times their height. University of Maine mathematician

George Markowsky used this collection in his own informal experi-

ments. Did you pick the Golden Rectangle as your first choice? (It is the

fifth from the left in the fourth row.)

GOLDEN MUSIC

Every string quartet and symphony orchestra today still uses Pythago-

ras' discovery of whole-number relationships among the different musi-

cal tones. Furthermore, in the ancient Greek curriculum and up to

medieval times, music was considered a part of mathematics, and mu-

sicians concentrated their efforts on the understanding of the mathe-

matical basis of tones. The concept of the "music of the spheres"

represented a glorious synthesis of music and mathematics, and in the

imaginations of philosophers and musicians, it wove the entire cosmos

into one grand design that could be perceived only by the gifted few. In

the words of the great Roman orator and philosopher Cicero (ca.

106-43 i.C.): "The ears of mortals are filled with this sound, but they

are unable to hear it. . . . You might as well try to stare directly at the

Sun, whose rays are much too strong for your eyes." Only in the twelfth

century did music break away from adherence to mathematical pre-

scriptions and formulae. However, even as late as the eighteenth cen-

tury, the German rationalist philosopher Gottfried Wilhelm Leibnitz

(1646-1716) wrote: "Music is a secret arithmetical exercise and the per-

son who indulges in it does not realize that he is manipulating num-

bers." Around the same time, the great German composer Johann

Sebastian Bach (1685-1750) had a fascination for the kinds of games

that can be played with musical notes and numbers. For example, he en-

crypted his signature in some of his compositions via musical codes. In

the old German musical notation, B stood for B-flat and H stood for

B-natural, so Bach could spell out his name in musical notes: B-flat, A,

C, B-natural. Another encryption Bach used was based on Gematria.
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Taking A = 1, B = 2, C = 3, and so on, B-A-C-H = 14 and

J-S-B-A-C-H = 41 (because I and J were the same letter in the German

alphabet of Bach's time). In his entertaining book Bachanalia (1994),

mathematician and Bach enthusiast Eric Altschuler gives numerous ex-

amples for the appearances of 14s (encoded BACH) and 41s (encoded

JSBACH) in Bach's music that he believes were put there deliberately

by Bach. For example, in the first fugue, the C Major Fugue, Book One

of Bach's Well Tempered Clavier, the subject has fourteen notes. Also, of

the twenty-four entries, twenty-two run all the way to completion and

a twenty-third runs almost all the way to completion. Only one entry—

the fourteenth—doesn't run anywhere near completion. Altschuler

speculates that Bach's obsession with encrypting his signature into his

compositions is similar to artists incorporating their own portraits into

their paintings or Alfred Hitchcock making a cameo appearance in each

of his movies.

Given this historical relationship between music and numbers, it is

only natural to wonder whether the Golden Ratio (and Fibonacci num-

bers) played any role either in the development of musical instruments

or in the composition of music.

The violin is an instrument in which the Golden Ratio does feature

frequently. Typically, the violin soundbox contains twelve or more arcs

of curvature (which make the violin's curves) on each side. The flat arc

at the base often is centered at the Golden Section point up the center

line.

Some of the best-known

violins were made by Anto-

nio Stradivari (1644-1737)

of Cremona, Italy. Original

drawings (Figure 85) show

that Stradivari took special

care to place the "eyes" of the

f-holes geometrically, at po-

sitions determined by the

Golden Ratio. Few (if any)

believe that it is the applica-

tion of the Golden Ratio that
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gives a Stradivarius violin its superior quality. More often such elements

as varnish, sealer, wood, and general craftsmanship are cited as the po-

tential "secret" ingredient. Many experts agree that the popularity of

eighteenth-century violins in general stems from their adaptability for

use in large concert halls. Most of these experts will also tell you that

there is no "secret" in Stradivarius violins—these are simply inimitable

works of art, the sum of all the parts that make up their superb crafts-

manship.

Another musical instrument often mentioned in relation to Fi-

bonacci numbers is the piano. The octave on a piano keyboard consists

of thirteen keys, eight white keys and five black keys (Figure 86). The

five black keys themselves form one group of two keys and another of

three keys. The numbers 2, 3, 5, 8, and 13 happen all to be consecutive

Fibonacci numbers. The primacy of the C major scale, for example, is

partly due to the fact that it is being played on the piano's white keys.

However, the relationship between the

piano keyboard and Fibonacci numbers

is very probably a red herring. First,

note that the chromatic scale (from C to

B in the figure), which is fundamental

to western music, is really composed of

twelve, not thirteen, semitones. The

same note, C, is played twice in the oc-

tave, to indicate the completion of the

cycle. Second, and more important, the

arrangement of the keys in two rows, with the sharp and flats being

grouped in twos and threes in the upper row, dates back to the early fif-

teenth century, long before the publication of Pacioli's book and even

longer before any serious understanding of Fibonacci numbers.

In the same way that Golden Numberists claim that the Golden

Ratio has special aesthetic qualities in the visual arts, they also attrib-

ute to it particularly pleasing effects in music. For example, books on

the Golden Ratio are quick to point out that many consider the major

sixth and the minor sixth to be the most pleasing of musical intervals

and that these intervals are related to the Golden Ratio. A pure musical

tone is characterized by a fixed frequency (measured in the number of
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vibrations per second) and a fixed amplitude (which determines the in-

stantaneous loudness). The standard tone used for tuning is A, which

vibrates at 440 vibrations per second. A major sixth can be obtained

from a combination of A with C, the latter note being produced by a

frequency of about 264 vibrations per second. The ratio of the two fre-

quencies 440/264 reduces to 5/3, the ratio of two Fibonacci numbers. A

minor sixth can be obtained from a high C (528 vibrations per second)

and an E (330 vibrations per second). The ratio in this case, 528/330,

reduces to 8/5, which is also a ratio of two Fibonacci numbers and al-

ready very close to the Golden Ratio. (The ratios of successive Fibonacci

numbers approach the Golden Ratio.) However, as in painting, note

that in this case, too, the concept of a "most pleasing musical interval"

is rather ambiguous.

Fixed-note instruments like the piano are tuned according to the

"tempered scale" popularized by Bach, in which each semitone has an

equal frequency ratio to the next semitone, making it easy to play in any

key. The ratio of two adjacent frequencies in a well-tempered instru-

ment is 2 112 (the twelfth root of two). How was this number derived? Its

origins actually can be traced to ancient Greece. Recall that an octave is

obtained by dividing a string into two equal parts (a frequency ratio of

2:1), and a fifth is produced by a frequency ratio of 3:2 (basically using

two-thir& of a string). One of the questions that intrigued the

Pythagoreans was whether by repeating the procedure for creating the

fifth (applying the 3/2 frequency ratio consecutively) one could gener-

ate an integer number of octaves. In mathematical terms, this means

asking: Are there any two integers n and m such that (3/2)" is equal to

2"? As it turns out, while no two integers satisfy this equality precisely,

n = 12 and m = 7 come pretty close, because of the coincidence that 2112

is nearly equal to 3 119 (the nineteenth root of 3). The twelve frequencies

of the octave are therefore all approximate powers of the basic frequency

ratio 2 1/12 . Incidentally, you may be amused to note that the ratio of

19/12 is equal to 1.58, not too far from (I).

Another way in which the Golden Ratio could, in principle, con-

tribute to the satisfaction from a piece of music is through the concept

of proportional balance. The situation here is somewhat trickier, how-

ever, than in the visual arts. A clumsily proportioned painting will in-
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stantly stick out in an exhibit like a sore thumb. In music, on the other

hand, we have to hear the entire piece before making a judgment. Nev-

ertheless, there is no question that experienced composers design the

framework of their music in such a way that not only are the different

parts in perfect balance with each other, but also each part in itself pro-

vides a fitting container for its musical argument.

We have seen many examples where Golden Ratio enthusiasts have

scrutinized the proportions of numerous works in the visual arts to dis-

cover potential applications of 4. These aficionados have subjected

many musical compositions to the same type of treatment. The results

are very similar—alongside a few genuine utilizations of the Golden

Ratio as a proportional system, there are many probable misconcep-

tions.

Paul Larson of Temple University claimed in 1978 that he discov-

ered the Golden Ratio in the earliest notated western music—the

"Kyrie" chants from the collection of Gregorian chants known as Liber

Usualis. The thirty Kyrie chants in the collection span a period of more

than six hundred years, starting from the tenth century. Larson stated

that he found a significant "event" (e.g., the beginning or ending of a

musical phrase) at the Golden Ratio separation of 105 of the 146 sec-

tions of the Kyries he had analyzed. However, in the absence of any sup-

porting historical justification or convincing rationale for the use of the

Golden Ratio in these chants, I am afraid that this is no more than an-

other exercise in number juggling.

In general, counting notes and pulses often reveals various numeri-

cal correlations between different sections of a musical work, and the

analyst faces an understandable temptation to conclude that the com-

poser introduced the numerical relationships. Yet, without a firmly

documented basis (which is lacking in many cases), such assertions re-

main dubious.

In 1995, mathematician John F. Putz of Alma College in Michigan

examined the question of whether Mozart (1756-1791) had used the

Golden Ratio in the twenty-nine movements from his piano sonatas

that consist of two distinct sections. Generally, these sonatas consist of

two parts: the Exposition, in which the musical theme is first intro-

duced, and the Development and Recapitulation, in which the main
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theme is further developed and revisited. Since musical pieces are di-

vided into equal units of time called measures (or bars), Putz examined

the ratios of the numbers of measures in the two sections of the sonatas.

Mozart, who "talked of nothing, thought of nothing but figures" dur-

ing his school days (according to his sister's testimony), is probably one

of the better candidates for the use of mathematics in his compositions.

In fact, several previous articles had claimed that Mozart's piano sonatas

do reflect the Golden Ratio. Putz's first results appeared to be very

promising. In the Sonata No. 1 in C Major, for example, the first move-

ment consists of sixty-two measures in the Development and Recapitu-

lation and thirty-eight in the Exposition. The ratio 62/38 = 1.63 is

quite close to the Golden Ratio. However, a thorough examination of

all the data basically convinced Putz that Mozart did not use the Golden

Ratio in his sonatas, nor is it clear why the simple matter of measures

would give a pleasing effect. It therefore appears that while many be-

lieve that Mozart's music is truly "divine," the "Divine Proportion" is

not a part of it.

A famous composer who might have used the Golden Ratio quite

extensively was the Hungarian Bela Bartok (1881-1945). A virtuoso

pianist and folklorist, Bartok blended elements from other composers

that he admired (including Strauss, Liszt, and Debussy) with folk mu-

sic, to create his highly personal music. He once said that "the melodic

world of my string quartets does not differ essentially from that of folk

songs." The rhythmical vitality of his music, combined with a well-

calculated formal symmetry, united to make him one of the most orig-

inal twentieth-century composers.

The Hungarian musicologist Ernä Lendvai investigated Bartok's

music painstakingly and published many books and articles on the sub-

ject. Lendvai testifies that "from stylistic analyses of Bart6k's music I

have been able to conclude that the chief feature of his chromatic tech-

nique is obedience to the laws of Golden Section in every movement."

According to Lendvai, Bartok's management of the rhythm of the

composition provides an excellent example of his use of the Golden Ra-

tio. By analyzing the fugue movement of Bartok's Mtisic for Strings, Per-

cussion and Celesta, for example, Lendvai shows that the eighty-nine

measures of the movement are divided into two parts, one with fifty-five
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measures and the other with thirty-four measures, by the pyramid peak

(in terms of loudness) of the movement. Further divisions are marked

by the placement and removal of the sordini (the mutes for the instru-

ments) and by other textural changes (Figure 87). All the numbers

of measures are Fibonacci numbers, with the ratios between major

parts (e.g., 55/34) being close to the Golden Ratio. Similarly, in Sonata

for Two Pianos and Percussion, the various themes develop in Fi-

bonacci/Golden Ratio order in terms of the numbers of semitones (Fig-

ure 88).
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Some musicologists do not accept Lendvai's analyses. Lendvai him-

self admits that Bartok said nothing or very little about his own com-

positions, stating: "Let my music speak for itself; I lay no claim to any

explanation of my works." The fact that Bartok did not leave any

sketches to indicate that he derived rhythms or scales numerically

makes any analysis suggestive at best. Also, Lendvai actually dodges the

question of whether Bartok used the Golden Ratio consciously. Hun-

garian musicologist Laszlo Somfai totally discounts the notion that

Bartok used the Golden Ratio, in his 1996 book Bela Bartok: Composi-

tion, Concepts and Atitograph Sotirces. On the basis of a thorough analysis

(which took three decades) of some 3,600 pages, Somfai concludes that

Bartok composed without any preconceived musical theories. Other

musicologists, including Ruth Tatlow and Paul Griffiths, also refer to

Lendvai's study as "dubious."

In the interesting book Debtissy in Proportion, Roy Howat of Cam-

bridge University argues that the French composer Claude Debussy

(1862-1918), whose harmonic innovations had a profound influence on

generations of composers, used the Golden Ratio in many of his com-

positions. For example, in the solo piano piece Reflets  dans l'eau, (Reflec-

tions in the water), a part of the series Images, the first rondo reprise

occurs after bar 34, which is at the Golden Ratio point between the be-

ginning of the piece and the onset of the climactic section after bar 55.

Both 34 and 55 are, of course, Fibonacci numbers, and the ratio 34/21

is a good approximation for the Golden Ratio. The same structure is

mirrored in the second part, which is divided in a 24/15 ratio (equal to
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the ratio of the two Fibonacci numbers 8/5, again close to the Golden

Ratio; Figure 89). Howat finds similar divisions in the three symphonic

sketches La Mer (The sea), in the piano pieceJardins sous la Pluie (Gar-

dens under the rain), and other works.

I must admit that given the history of La Mer, I find it somewhat

difficult to believe that Debussy used any mathematical design in the

composition of this particular piece. He started La Mer in 1903, and in

a letter he wrote to his friend Andre Messager he says: "You may not

know that I was destined for a sailor's life and that it was only quite by

chance that fate led me in another direction. But I have always retained

a passionate love for her [the sea]." By the time the composition of La

Mer was finished, in 1905, Debussy's whole life had been literally

turned upside down. He had left his first wife, "Lily" (real name Rosalie

Texier), for the alluring Emma Bardac; Lily attempted suicide; and both

she and Bardac brought court actions against the composer. If you

listen to La Mer—perhaps Debussy's most personal and passionate

work—you can literally hear not only a musical portrait of the sea,

probably inspired by the work of the English painter Joseph Mallord

William Turner, but also an expression of the tumultuous period in the

composer's life.

Since Debussy didn't say much about his compositional technique,

we must maintain a clear distinction between what may be a forced in-

terpretation imposed on the composition and the composer's real and

conscious intention (which remains unknown). To support his analysis,

Howat relies primarily on two pieces of circumstantial evidence: De-

bussy's close association with some of the symbolist painters who are

known to have been interested in the Golden Ratio, and a letter De-

bussy wrote in August 1903 to his publisher, Jacque Durand. In that

letter, which accompanied the corrected proofs of Jardins sous la Pltiie,

Debussy talks about a bar missing in the composition and explains:

"However, it's necessary, as regards number; the divine number." The

implication here is that not only was Debussy constructing his har-

monic structure with numbers in general but that the "divine number"

(assumed to refer to the Golden Ratio) played an important role.

Howat also suggests that Debussy was influenced by the writings of
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the mathematician and art critic Charles Henry, who had great interest

in the numerical relationships inherent in melody, harmony, and

rhythm. Henry's publications on aesthetics, such as the Introduction d

une esthetiqtie scientifiqtie (Introduction to a scientific aesthetic; 1885),

gave a prominent role to the Golden Ratio.

We shall probably never know with certainty whether this great

pillar of French modernism truly intended to use the Golden Ratio to

control formal proportions. One of his very few piano students, Made-

moiselle Worms de Romilly, wrote once that he "always regretted not

having worked at painting instead of music." Debussy's highly original

musical aesthetic may have been aided, to a small degree, by the appli-

cation of the Golden Ratio, but this was certainly not the main source

of his creativity.

Just as a curiosity, the names of Debussy and Bartok are related

through an amusing anecdote. During a visit of the young Hungarian

composer to Paris, the great piano teacher Isidore Philipp offered to in-

troduce Bartok to the composer Camille Saint-Saens, at the time a great

celebrity. Bartok declined. Philipp then offered him to meet with the

great organist and composer Charles-Marie Widor. Again Bartok de-

clined. "Well," said Philipp, "if you won't meet Saint-Saens and Widor,

who is there that you would like to know?" "Debussy," replied Bartok.

"But he is a horrid man," said Philipp. "He hates everybody and will

certainly be rude to you. Do you want to be insulted by Debussy?"

"Yes," Bartok replied with no hesitation.

The introduction of recording technologies and computer music in

the twentieth century accelerated precise numerical measurements and

thereby encouraged number-based music. The Austrian composer Al-

ban Berg (1885-1935), for example, constructed his Kammerkonzert

entirely around the number 3: There are units of thirty bars, on three

themes, with three basic "colors" (piano, violin, wind). The French

composer Olivier Messiaen (1908-1992), who was largely driven by a

deep Catholic faith and a love for nature, also used numbers consciously

(e.g., to determine the number of movements) in rhythmic construc-

tions. Nevertheless, when asked specifically in 1978 about the Golden

Ratio, he disclaimed use of it.
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The colorful composer, mathematician, and teacher Joseph Schil-

linger (1895-1943) exemplified by his own personality and teachings

the Platonic view of the relationship between mathematics and music.

After studying at the St. Petersburg Conservatory and teaching and

composing at the Kharkov and Leningrad State academies, he settled in

the United States in 1928, where he became a professor of both mathe-

matics and music at various institutions, including Columbia Univer-

sity and New York University. The famous composer and pianist

George Gershwin, the clarinetist and bandleader Benny Goodman, and

the dance-band leader Glenn Miller were all among Schillinger's stu-

dents. Schillinger was a great believer in the mathematical basis for

music, and he developed a System of Musical Composition. In particu-

lar, in some pieces, successive notes in the melody followed Fibonacci

intervals when counted in units of half-steps (Figure 90). To Schillinger,

these Fibonacci leaps of the notes conveyed the same sense of harmony

as the phyllotactic ratios of the leaves on a stem convey to the botan-

ist. Schillinger found "music" in the most unusual places. In Joseph

Schillinger: A Memoir, the biographical book written by his widow

Frances, the author tells the story of a party riding in a car during a rain

shower. Schillinger noted: "The splashing rain has its rhythm and the

windshield wipers their rhythmic pattern. That's unconscious art." One

of Schillinger's attempts to demonstrate that music can be based en-

tirely on mathematical formulation was particularly amusing. He basi-

cally copied the fluctuations of a stock market curve as they appeared in

the New York Times on graph paper and, by translating the ups and

downs into proportional musical intervals, showed that he could obtain

a composition somewhat similar to those of the great Johann Sebastian

Bach.
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The conclusion from this brief tour of the world of music is that

claims about certain composers having used the Golden Ratio in their

music usually leap too swiftly from numbers generated by simple

counting (of bars, notes, etc.) to interpretation. Nevertheless, there is no

doubt that the twentieth century in particular produced a renewed in-

terest in the use of numbers in music. As a part of this Pythagorean re-

vival, the Golden Ratio also started to feature more prominently in the

works of several composers.

The Viennese music critic Eduard Hanslick (1825-1904) expressed

the relationship between music and mathematics magnificently in the

book The Beatitiful in Mtisic:

The "music" of nature and the music of man belong to two distinct

categories. The translation from the former to the latter passes

through the science of mathematics. An important and pregnant

proposition. Still, we should be wrong were we to construe it in the

sense that man framed his musical system according to calculations

purposely made, the system having arisen through the unconscious

application of pre-existent conceptions of quantity and proportion,

through subtle processes of measuring and counting; but the laws

by which the latter are governed were demonstrated only subse-

quently by science.

PYTHAGORAS PLANNED IT

With the words in the heading, the famous Irish poet William Butler

Yeats (1865-1939) starts his poem "The Statues." Yeats, who once

stated that "the very essence of genius, of whatever kind, is precision,"

examines in the poem the relation between numbers and passion. The

first stanza of the poem goes like this:

Pythagoras planned it. Why did the people stare?

His numbers, though they moved or seemed to move

In marble or in bronze, lacked character.

But boys and girls, pale from the imagined love
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Of solitary beds, knew what they were,

That passion could bring character enough,

And pressed at midnight in some public place

Live lips upon a plummet-measured face.

Yeats emphasizes beautifully the fact that while the calculated propor-

tions of Greek sculptures may seem cold to some, the young and pas-

sionate regarded these forms as the embodiment of the objects of their

love.

At first glance, nothing seems more remote from mathematics than

poetry. We think that the blossoming of a poem out of the poet's sheer

imagination should be as boundless as the blossoming of a red rose. Yet

recall that the growth of the rose's petals actually occurs in a well-

orchestrated pattern based on the Golden Ratio. Could poetry be con-

structed on this basis, as well?

There are at least two ways, in principle, in which the Golden Ra-

tio and Fibonacci numbers could be linked to poetry. First, there can be

poems about the Golden Ratio or the Fibonacci numbers themselves

(e.g., "Constantly Mean" by Paul Bruckman; presented in Chapter 4) or

about geometrical shapes or phenomena that are closely related to the

Golden Ratio. Second, there can be poems in which the Golden Ratio

or Fibonacci numbers are somehow utilized in constructing the form,

pattern, or rhythm.

Examples of the first type are provided by a humorous poem by

J. A. Lindon, by Johann Wolfgang von Goethe's dramatic poem "Faust,"

and by Oliver Wendell Holmes's poem "The Chambered Nautilus."

Martin Gardner used Lindon's short poem to open the chapter on

Fibonacci in his book Mathematical Circus. Referring to the recursive re-

lation which defines the Fibonacci sequence, the poem reads:

Each wife of Fibonacci,

Eating nothing that wasn't starchy,

Weighed as much as the two before her,

His fifth was some signora!

Similarly, two lines from a poem by Katherine O'Brien read:
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Fibonacci couldn't sleep—

Counted rabbits instead of sheep.

The German poet and dramatist Goethe (1743-1832) was certainly one

of the greatest masters of world literature. His all-embracing genius is

epitomized in Fatist—a symbolic description of the human striving for

knowledge and power. Faust, a learned German doctor, sells his soul to

the devil (personified by Mephistopheles) in exchange for knowledge,

youth, and magical power. When Mephistopheles finds that the penta-

gram's "Druidenfuss" ("Celtic wizard's foot") is drawn on Faust's thresh-

old, he cannot get out. The magical powers attributed to the pentagram

since the Pythagoreans (and which led to the definition of the Golden

Ratio) gained additional symbolic meaning in Christianity, since the

five vertices were assumed to stand for the letters in the name Jesus. As

such, the pentagram was taken to be a source of fear for the devil. The

text reads:

Mephistopheles: Let me admit; a tiny obstacle

Forbids my walking out of here:

It is the druid's foot upon your threshold.

Faust: The pentagram distresses you?

But tell me, then, you son of hell.

If this impedes you, how did you come in?

Mephistopheles: Observe! The lines are poorly drawn;

That one, the angle pointing outward,

Is, you see, a little open.

Mephistopheles therefore uses trickery—the fact that the pentagram

had a small opening in it—to get by. Clearly, Goethe had no intention

of referring to the mathematical concept of the Golden Ratio in Fatist,

and he included the pentagram only for its symbolic qualities. Goethe

expressed elsewhere his opinion on mathematics thus: "The mathemati-

cians are a sort of Frenchmen: when you talk to them, they immediately

translate it into their own language, and right away it is something

entirely different."

The American physician and author Oliver Wendell Holmes
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(1809-1894) published a few collections of witty and charming poems.

In "The Chambered Nautilus" he finds a moral in the self-similar

growth of the logarithmic spiral that characterizes the mollusk's shell:

Build thee more stately mansions, 0 my soul,

As the swift seasons roll!

Leave thy low-vaulted past!

Let each new temple, nobler than the last,

Shut thee from heaven with a dome more vast,

Till thou at length art free,

Leaving thine outgrown shell by life's unresting sea.

There are many examples of numerically based poetic structures. For ex-

ample, the Divine Comedy, the colossal literary classic by the Italian poet

Dante Alighieri (1265-1321), is divided into three parts, written in

units of three lines, and each of the parts has thirty-three cantos (except

for the first, which has thirty-four cantos, to bring the total to an even

one hundred).

Poetry is probably the place in which Fibonacci numbers made

their first appearance, even before Fibonacci's rabbits. One of the cate-

gories of meters in Sanskrit and Prakit poetry is known as matra-vrttas.

These are meters in which the number of morae (ordinary short sylla-

bles) remains constant and the number of letters is arbitrary. In 1985,

mathematician Parmanand Singh of Raj Narain College, India, pointed

out that Fibonacci numbers and the relation that defines them appeared

in the writings of three Indian authorities on matra-vrttas before A.D.

1202, the year in which Fibonacci's book was published. The first of

these authors on metric was Acarya Virahanka, who lived sometime be-

tween the sixth and eighth centuries. Although the rule he gives is

somewhat vague, he does mention mixing the variations of two earlier

meters to obtain the next one, just as each Fibonacci number is the sum

of the two preceding ones. The second author, Gop -ala, gives the rule

specifically in a manuscript written between 1133 and 1135. He ex-

plains that each meter is the sum of the two earlier meters and calcu-

lates the series of meters 1, 2, 3, 5, 8, 13, 21 . . . , which is precisely the

Fibonacci sequence. Finally, the great Jain writer Ac -arya Hemacandra,



198 MARIO LIVIO

who lived in the twelfth century and enjoyed the patronage of two

kings, also stated clearly in a manuscript written around 1150 that

"sum of the last and the last but one numbers [of variations) is [that) of

the matra-vrtta coming next." However, these early poetic appearances

of Fibonacci numbers went apparently unnoticed by mathematicians.

In her educational book Fascinating Fibonaccis, author Trudi Ham-

mel Garland gives an example of a limerick in which the number of

lines (5), the number of beats in each line (2 or 3), and the total num-

ber of beats (13) are all Fibonacci numbers.

A fly and a flea in a flue (3 beats)

Were imprisoned, so what could they do? (3 beats)

Said the fly, "Let us flee!" (2 beats)

"Let us fly!" said the flea, (2 beats)

So they fled through a flaw in the flue. (3 beats)

We should not take the appearance of very few Fibonacci numbers as ev-

idence that the poet necessarily had these numbers or the Golden Ratio

in mind when constructing the structural pattern of the poem. Like

music, poetry is, and especially was, often intended to be heard, not just

read. Consequently, proportion and harmony that appeal to the ear are

an important structural element. This does not mean, however, that the

Golden Ratio or Fibonacci numbers are the only options in the poet's

arsenal.

George Eckel Duckworth, a professor of classics at Princeton Uni-

versity, made the most dramatic claim about the appearance of the

Golden Ratio in poetry. In his 1962 book Structtiral Patterns and Pro-

portions in Vergil's Aeneid, Duckworth states that "Vergil composed the

Aeneid on the basis of mathematical proportion; each book reveals, in

small units as well as in the main divisions, the famous numerical ratio

known variously as the Golden Section, the Divine Proportion, or the

Golden Mean ratio."

The Roman poet Vergil (70 i.C.-19 i.C.) grew up on a farm, and

many of his early pastoral poems deal with the charm of rural life. His

national epic the Aeneid, which details the adventures of the Trojan hero

Aeneas, is considered one of the greatest poetic works in history. In
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twelve books, Vergil follows Aeneas from his escape from Troy to

Carthage, through his love affair with Dido, to the establishment of

the Roman state. Vergil makes Aeneas the paragon of piety, devotion to

family, and loyalty to state.

Duckworth made detailed measurements of the lengths of passages

in the Aeneid and computed the ratios of these lengths. Specifically, he

measured the number of lines in passages characterized as major (and

denoted that number by M) and minor (and denoted the number by

m), and calculated the ratios of these numbers. The identification of

major and minor parts was based on content. For example, in many

passages the major or minor part is a speech and the other part (minor

or major respectively) is a narrative or a description. From this analysis

Duckworth concluded that the Aeneid contains "hundreds of Golden

Mean ratios." He also noted that an earlier analysis (from 1949) of an-

other Vergil work (Georgius I) gave for the ratio of the two parts (in

terms of numbers of lines), known as "Works" and "Days," a value very

close to (I).

Unfortunately, Roger Herz-Fischler 'has shown that Duckworth's

analysis probably is based on a mathematical misunderstanding. Since

this oversight is endemic to many of the "discoveries" of the Golden Ra-

tio, I will explain it here briefly.

Suppose you have any pair of positive values m and M, such that M

is larger than m. For example, M = 317 could be the number of pages in

the last book you read and m = 160 could be your weight in pounds. We

could represent these two numbers on a line (with proportional

lengths), as in Figure 91. The ratio of the shorter to the longer part is

equal to m/M = 160/317 = 0.504, while the ratio of the longer part to

the whole is M/(M + m) = 317/477 = 0.665. You will notice that the

value of M/(M + m) is closer to 14. = 0.618 than m/M. We can prove

mathematically that this is always the case. (Try it with the actual num-

ber of pages in your last book and your real weight.) From the definition

of the Golden Ratio, we know that when a line is divided in a Golden

Ratio, m/M = M/(M + in) precisely. Consequently, we may be tempted

to think that if we examine a series of ratios of numbers, such as the

lengths of passages, for the potential presence of the Golden Ratio, it

does not matter if we look at the ratio of the shorter to the longer or the
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longer to the whole. What I have just shown is that it definitely does

matter. A too-eager Golden Ratio enthusiast wishing to demonstrate a

Golden Ratio relationship between the weights of readers and the num-

bers of pages in the books they read may he able to do so by presenting

data in the form MI(M + m), which is biased toward 1/(1). This is pre-

cisely what happened to Duckworth. By making the unfortunate deci-

sion to use only the ratio M/(M + m) in his analysis, because he thought

that this was "slightly more accurate," he compressed and distorted the

data and made the analysis statistically invalid. In fact, Leonard A.

Curchin of the University of Ottawa and Roger Herz-Fischler repeated

in 1981 the analysis with Duckworth's data (but using the ratio m/M)

and showed that there is no evidence for the Golden Ratio in the Aeneid.

Rather, they concluded that "random scattering is indeed the case with

Vergil." Furthermore, Duckworth "endowed" Vergil with the knowl-

edge that the ratio of two consecutive Fibonacci numbers is a good ap-

proximation of the Golden Ratio. Curchin and Herz-Fischler, on the

other hand, demonstrated convincingly that even Hero of Alexandria,

who lived later than Vergil and was one of the distinguished mathe-

maticians of his time, did not know about this relation between the

Golden Ratio and Fibonacci numbers.

M=317 m = 160

Figure 91

Sadly, the statement about Vergil and (j) continues to feature in

most of the Golden Ratio literature, again demonstrating the power of

Golden Numberism.

All the attempts to disclose the (real or false) Golden Ratio in vari-

ous works of art, pieces of music, or poetry rely on the assumption that

a canon for ideal beauty exists and can be turned to practical account.

History has shown, however, that the artists who have produced works

of lasting value are precisely those who have broken away from such ac-

ademic precepts. In spite of the Golden Ratio's importance for many ar-

eas of mathematics, the sciences, and natural phenomena, we should, in

my humble opinion, give up its application as a fixed standard for aes-

thetics, either in the human form or as a touchstone for the fine arts.
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FROM THE TILES TO

THE HEAVENS

Understanding is, after all, what science is all about—and science

is a great deal more than mere mindless computation.

-ROGER PENROSE (1931-)

The tangled tale of the Golden Ratio has taken us from the sixth cen-

tury i.C. to contemporary times. Two intertwined trends thread these

twenty-six centuries of history. On one hand, the Pythagorean motto

"all is number" has materialized spectacularly, in the role that the

Golden Ratio plays in natural phenomena ranging from phyllotaxis to

the shape of galaxies. On the other, the Pythagorean obsession with the

symbolic meaning of the pentagon has metamorphosed into what I be-

lieve is the false notion that the Golden Ratio provides a universal

canon of ideal beauty. After all of this, you may wonder whether there

still is room left for any further exploration of this seemingly simple di-

vision of a line.

THE TILED ROAD TO QUASI-CRYSTALS

The Dutch painter Johannes Vermeer (1632-1675) is best known for

his fantastically alluring genre paintings, which typically show one or
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Figure 92 Figure 93

two figures engaged in some domestic task. In many of these paintings,

a window on the viewer's left softly lights the room, and the way the

light reflects off the tiled floor is purely magical. If you examine some

of these paintings closely, you will find that quite a few, such as "The

Concert," "A Lady Writing a Letter with Her Maid," "Love Letter"

(Figure 92; located in the Rijksmuseum, Amsterdam), and "The Art of

Painting" (Figure 93; located in the Kunsthistorisches Museum, Vi-

enna), have identical floor tiling patterns, composed of black and white

squares.

Figure 94

Squares, equilateral triangles, and hexagons are particularly easy to

tile with, if one wants to cover the entire plane and achieve a pattern

that repeats itself at regular intervals—known as periodic tiling (Figure
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Figure 96
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94). Simple, undecorated square

tiles and the patterns they form

have a fourfold symmetry—when

rotated through a quarter of a cir-

cle (90 degrees), they remain the

same. Similarly, equilateral, tri-

angular tiles have a threefold

symmetry (they remain the same

when rotated by a third of a circle

or 120 degrees), and hexagonal

tiles have a sixfold symmetry

(they remain the same when ro-

tated by 60 degrees).

Periodic tilings also can be

generated with more complex

shapes. One of the most astound-

ing monuments of Islamic archi-

tecture, the citadel-palace Alhambra in Granada, Spain, contains

numerous examples of intricate tilings (Figure 95). Some of those

patterns inspired the famous Dutch graphic artist M. C. Escher

(1898-1972), who produced many imaginative examples of tilings

(e.g., Figure 96), to which he referred as "divisions of the plane."

The geometrical plane figure most directly related to the Golden

Ratio is, of course, the regular pentagon, which has a fivefold symmetry.

Pentagons, however, cannot be used to fill the plane entirely and form a

periodic tiling pattern. No matter how hard you try, unfilled gaps will

remain. Consequently, it has long been thought that no tiling pattern

with long-range order can

also exhibit a fivefold sym-

metry. However, in 1974,

Roger Penrose discovered

two basic sets of tiles that

can fit together to fill the

entire plane and exhibit

the "forbidden" five-fold

rotational symmetry. The
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resulting patterns are not strictly periodic, even though they display a

long-range order.

The Penrose tilings have the Golden Ratio written all over them.

One pair of tiles that Penrose considered consists of two shapes known

as a "dart" and a "kite" (Figure 97; a and b, respectively). Note that the

two shapes are composed of the isosceles triangles that appear in the

pentagon (Figure 25). The triangle in which the ratio of side to base is

4) (Figure 97b) is the one known as a Golden Triangle, and the one in

which the ratio of side to base is 1/4) (Figure 97a) is the one known as a

Golden Gnomon. The two shapes can be obtained by cutting a diamond

shape or rhombus with angles of 72 degrees and 108 degrees in a way

that divides the long diagonal in a Golden Ratio (Figure 98).

Penrose and Princeton mathematician John Horton Conway

showed that in order to cover the whole plane with darts and kites in a

nonperiodic way (as in Figure 99), certain matching rules must be

obeyed. The latter can be ensured by adding "keys" in the form of

notches and protrusions on the sides of the

figures, like in the pieces of a jigsaw puzzle

(Figure 100). Penrose and Conway further

(a) (b)

Figure 100
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tern. Recall that the Pythagorean inter-

est in the Golden Ratio started with the

infinite series of nested pentagons and

pentagrams in Figure 105. All four of

the Penrose tiles are hidden in this fig-

ure. Points B and D mark the opposite

far corners of the kite DCBA, while

points A and C mark the "wings" of the

dart ABC . Similarly, you can find the

fat rhombus AECD and the thin one

(not to scale) ABCE

Penrose's work on tiling has been expanded to three dimensions. In

the same way that two-dimensional tiles can be used to fill the plane,

three-dimensional "blocks" can be used to fill up space. In 1976, math-

ematician Robert Ammann discovered a pair of "cubes" (Figure 106),

one "squashed" and one "stretched," known as rhombohedra, that can

fill up space with no gaps. Ammann was further able to show that given

a set of face-matching rules, the pattern that emerges is nonperiodic and

has the symmetry properties of the icosahedron (Figure 20e; this is the

equivalent of fivefold symmetry in three dimensions, since five sym-

metric edges meet at every vertex). Not surprisingly, the two rhombo-

hedra are Golden Rhombohedra—their faces actually are identical to

the rhombi of the Penrose tiles (Figure 101).

Figure 106

Penrose's tilings might have remained in the relative obscurity of

recreational mathematics were it not for a dramatic discovery in 1984.

Israeli materials engineer Dany Schectman and his collaborators found

that the crystals of an aluminum manganese alloy exhibit both long-

range order and fivefold symmetry. This was just about as shocking to
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crystallographers as the discovery of a herd of five-legged cows would be

to zoologists. For decades, solid-state physicists and crystallographers

were convinced that solids can come in only two basic forms: Either

they are highly ordered and fully periodic crystals, or they are totally

amorphous. In ordered crystals, like those of ordinary table salt, atoms

or groups of atoms appear in precisely recurring motifs, called tinit cells,

which form periodic structures. For example, in salt, the unit cell is a

cube, and each chlorine atom is surrounded by sodium neighbors and

vice versa (Figure 107). Just as in a perfectly tiled floor, the position and

orientation of each unit cell determines uniquely the entire pattern. In

amorphous materials, such as glasses, on the

other hand, the atoms are totally disordered. In

the same way that only shapes like squares

(with a fourfold symmetry), triangles (threefold

symmetry), and hexagons (sixfold symmetry)

can fill the entire plane with a periodic tiling,

only crystals with two-, three-, four-, and six-

fold symmetry were thought to exist. Schect-

man's crystals caused complete bewilderment

because they appeared both to be highly or-

dered (like periodic crystals) and to exhibit fivefold (or icosahedral)

symmetry. Before this discovery, few people suspected that another state

of matter could exist, sharing important aspects with both crystalline

and amorphous substances.

These new kinds of crystals (since the original discovery, other al-

loys of aluminum have been found) are now known as qtiasi-crystals

-they are neither amorphous like glass nor precisely periodic like salt. In

other words, these unusual materials appear to have precisely the prop-

erties of Penrose tilings! But this realization by itself is of little use to

physicists, who want to understand why and how the quasi-crystals

form. Penrose's and Ammann's matching rules are in this case little

more than a clever mathematical exercise that does not explain the be-

havior of real atoms or atom clusters. In particular, it is difficult to

imagine energetics that permit precisely the existence of two types of

clusters (like the two Ammann rhombohedra) in just the required pro-

portion in terms of density.
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A clue toward a possible explanation came in 1991, when mathe-

matician Sergei E. Burkov of the Landau Institute of Theoretical

Physics in Moscow realized that two shapes of tiles are not needed to

achieve quasi-periodic tiling in the plane. Burkov showed that quasi-

periodicity could be generated even using a single, decagonal (ten-

sided) unit, provided that the tiles are allowed to overlap—a property

forbidden in previous tiling attempts. Five years later, German mathe-

matician Petra Gummelt of the Ernst Moritz Arndt University in

Greifswald proved rigorously that Penrose tiling can be obtained by us-

ing a single "decorated" decagon combined with a specific overlapping

rule. Two decagons may overlap only if shaded areas in the decoration

overlap (Figure 108). The decagon is also closely related to the Golden

Ratio—the radius of the circle that circumscribes a decagon with a side

length of 1 unit is equal to 4.

Based on Gummelt's work, mathemat-

ics finally could be turned into physics.

Physicists Paul Steinhardt of Princeton

University and Hyeong-Chai Jeong of Se-

jong University in Seoul showed that the

purely mathematical rules of overlapping

units could be transformed into a physical

picture in which "quasi-unit cells," which

are really clusters of atoms, simply share

atoms. Steinhardt and Jeong suggested that

quasi-crystals are structures in which iden-

tical clusters of atoms (quasi-unit cells)

share atoms with their neighbors, in a pat-

tern that is designed to maximize the clus-

ter density. In other words, quasi-periodic

packing produces a system that is more sta-

ble (higher density and lower energy) than

otherwise. Steinhardt, Jeong, and collaborators also attempted to verify

this model experimentally in 1998. They bombarded a quasi-crystal al-

loy of aluminum, nickel, and cobalt with X-ray and electron beams.

The images of the structure obtained from the scattered beams were in



THE GOLDEN RATIO 209

remarkable agreement with the picture of overlapping decagons. This is

shown in Figure 109, where a decagon tiling pattern is superimposed

on the experimental result. More recent experiments gave results that

were somewhat more ambiguous. Nevertheless, the general impression

remains that quasi-crystals can be explained by the Steinhardt-Jeong

model.

Figure 109 Figure 110

Images of the surfaces of quasi-crystals (taken in 1994 and 2001)

reveal another fascinating relation to the Golden Ratio. Using a tech-

nique known as scanning tunneling microscopy (STM), scientists from

the University of Basel, Switzerland, and from the Ames Laboratory at

Iowa State University were able to obtain high-resolution images of the

surfaces of an aluminum-copper-iron alloy and an aluminum-palla-

dium-manganese alloy, both of which are quasi-crystals. The images

show flat "terraces" (Figure 110) terminating in steps that come pri-

marily in two heights, "high" and "low" (both measuring only a few

hundred-millionths of an inch). The ratio of the two heights was found

to be equal to the Golden Ratio!

Quasi-crystals are a magnificent example of a concept that started

out as a purely mathematical entity (based on the Golden Ratio) but

that eventually provided an explanation of a real, natural phenomenon.

What is even more amazing about this particular development is that

the concept emerged out of recreational mathematics. How could math-

ematicians have "anticipated" later discoveries by physicists? The ques-

tion becomes more intriguing yet when we recall that Direr and Kepler
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showed interest in tilings with fivefold symmetric shapes already in the

sixteenth and seventeenth centuries. Can even the most esoteric topics

in mathematics eventually find applications in either natural or human-

inspired phenomena? We shall return to this question in Chapter 9.

Another fascinating aspect of the quasi-crystals story is related to two

of the main theorists involved. Both Penrose and Steinhardt spent much

of their scientific careers on topics related to cosmology—the study of the

universe as a whole. Penrose is the person who discovered that Einstein's

theory of general relativity predicts its own defects, points in which the

strength of gravity becomes infinite. These mathematical singularities

correspond to the objects we call black holes, which are masses that have

collapsed to such densities that their gravity is sufficiently strong to pre-

vent any light, mass, or energy to escape from them. Observations during

the past quarter century have revealed that black holes are not just imag-

inary theoretical concepts but actual objects that exist in the universe. Re-

cent observations with the two large space observatories, the Hubble

Space Telescope and the Chandra X-ray Observatory, have shown that

black holes are not even very rare. Rather, the centers of most galaxies har-

bor monstrous black holes with masses between a few million and a few

billion times the mass of our Sun. The presence of the black holes is re-

vealed by the gravitational pull they exert on stars and gas in their neigh-

borhood. According to the standard "big bang" model that describes the

origin of our entire universe, the cosmos as a whole started its expansion

from such a singularity—an extremely hot and dense state.

Paul Steinhardt was one of the key figures in the development of

what is known as the inflationary model of the universe. According to

this model, originally proposed by physicist Alan Guth of MIT, when

the universe was only a tiny fraction of a second old (0.000 . . . 1; with

the "1" at the 35th decimal place), it underwent a fantastically rapid ex-

pansion, increasing in size by a factor of more than 10 30 (1 followed by

30 zeros) within a fraction of a second. This model explains a few oth-

erwise puzzling properties of our universe, such as the fact that it looks

almost precisely the same in every direction—it is exquisitely isotropic.

In 2001, Steinhardt and collaborators proposed a new version of the

universe's very beginnings, known as the Ekpyrotic Universe (from the
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Greek word for "conflagration," or a sudden burst of fire). In this still

very speculative model, the big bang occurred when two three-

dimensional universes moving along a hidden extra dimension collided.

The intriguing question is: Why did these two outstanding cos-

mologists decide to get involved in recreational mathematics and quasi-

crystals?

I have known Penrose and Steinhardt for many years, being in the

same business of theoretical astrophysics and cosmology. In fact, Penrose

was an invited speaker in the first large conference that I organized on

relativistic astrophysics in 1984, and Steinhardt was an invited speaker

in the latest one in 2001. Still, I did not know what motivated them to

delve into recreational mathematics, which appears to be rather remote

from their professional interests in astrophysics, so I asked them.

Roger Penrose replied: "I am not sure I have a deep answer for that.

As you know, mathematics is something most mathematicians do for

enjoyment." After some reflection he added: "I used to play with shapes

fitting together since I was a child; some of my work on tiles therefore

predated my work in cosmology. At the particular time, however, my

recreational mathematics work was at least partially motivated by my

cosmological research. I was thinking about the large-scale structure of

the universe and was looking for toy models with simple basic rules,

which could nevertheless generate complicated structures on large

scales."

"But," I asked, "what was it that induced you to continue to work

on that problem for quite a while?"

Penrose laughed and said, "As you know, I have always been inter-

ested in geometry; that problem simply intrigued me. Furthermore,

while I had a hunch that such structures could occur in nature, I just

couldn't see how nature could assemble them through the normal

process of crystal growth, which is local. To some extent I am still puz-

zled by that."

Paul Steinhardt's immediate reaction on the phone was: "Good

question!" After thinking about it for a few minutes he reminisced:

"As an undergraduate student I really wasn't sure what I wanted to do.

Then, in graduate school, I looked for some mental relief from my
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strenuous efforts in particle physics, and I found that in the topic of or-

der and symmetry in solids. Once I stumbled on the problem of quasi-

periodic crystals, I found it irresistible and I kept coming back to it."

F RAC TA LS

The Steinhardt-Jeong model for quasi-crystals has the interesting prop-

erty that it produces long-range order from neighborly interactions,

without resulting in a fully periodic crystal. Amazingly enough, we can

also find this general property in the Fibonacci sequence. Consider the

following simple algorithm for the creation of a sequence known as the

Golden Sequence. Start with the number 1, and then replace 1 by 10.

From then on, replace each 1 by 10 and each 0 by 1. You will obtain the

following steps:

10

101

10110

10110101

1011010110110

101101011011010110101

and so on. Clearly, we started here with a "short-range" law (the simple

transformation of 0 --■ 1 and 1 -, 10) and obtained a nonperiodic long-
range order. Note that the numbers of is in the sequence of lines 1, 1,
2, 3, 5, 8 . . . form a Fibonacci sequence, and so do the numbers of Os
(starting from the second line). Furthermore, the ratio of the number of
is to the number of Os approaches the Golden Ratio as the sequence
lengthens. In fact, an examination of Figure 27 reveals that if we take 0
to stand for a baby pair of rabbits and 1 to stand for a mature pair, then
the sequence just given mirrors precisely the numbers of rabbit pairs.
But there is even more to the Golden Sequence than these surprising
properties. By starting with 1 (on the first line), followed by 10 (on the
second line), and simply appending to each line the line just preceding
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it, we can also generate the entire sequence. For example, the fourth

line, 10110, is obtained by appending the second line, 10, to the third,

101, and so on.

Recall that "self-similarity" means symmetry across size scale. The

logarithmic spiral displays self-similarity because it looks precisely the

same under any magnification, and so does the series of nested pen-

tagons and pentagrams in Figure 10. Every time you walk into a hair

stylist shop, you see an infinite series of self-similar reflections of your-

self between two parallel mirrors.

The Golden Sequence is also self-similar on different scales. Take

the sequence

and probe it with a magnifying glass in the following sense. Starting

from the left, whenever you encounter a 1, mark a group of three sym-

bols, and when you encounter a 0, mark a group of two symbols (with

no overlap among the different groups). For example, the first digit is a

1, we therefore mark the group of the first three digits 101 (see below).

The second digit from the left is a zero, therefore we mark the group of

two digits 10 that follow the first 101. The third digit is 1; therefore we

mark the three digits 101 that follow the 10; and so on. The marked se-

quence now looks like this

Now from every group of three symbols retain the first two, and from

every group of two retain the first one (the retained symbols are under-

lined):

If you now look at the retained sequence

you find that it is identical to the Golden Sequence.
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We can do another magnification exercise on the Golden Sequence

simply by underlining any pattern or subsequence. For example, sup-

pose we choose "10" as our subsequence, and we underline it whenever

it occurs in the Golden Sequence:

If we now treat each 10 as a single symbol and we mark the number of

places by which each pattern of 10 needs to be moved to overlap with

the next 10, we get the sequence: 2122121 . . . (the first "10" needs to

be moved two places to overlap with the second, the third is one place

after the second, etc.). If we would now replace each 2 by a 1 and each

1 by a 0 in the new sequence, we recover the Golden Sequence. In other

words, if we look at any pattern within the Golden Sequence, we dis-

cover that the same pattern is found in the sequence on another scale.

Objects with this property, like the Russian Matrioshka dolls that fit

one into the other, are known as fractals. The name "fractal" (from the

Latin fracttis, meaning "broken, fragmented") was coined by the famous

Polish-French-American mathematician Benoit B. Mandelbrot, and it

is a central concept in the geometry of nature and in the theory of

highly irregular systems known as chaos.
Fractal geometry represents a brilliant attempt to describe the

shapes and objects of the real world. When we look around us, very few

forms can be described in terms of the simple figures of Euclidean

geometry, such as straight lines, circles, cubes, and spheres. An old

mathematical joke tells of a physicist who thought that he could be-

come rich from betting at horse races by solving the exact equations of

motion for the horses. After much work, he indeed managed to solve

the equations—for spherical horses. Real horses, unfortunately, are not

spherical, and neither are clouds, cauliflowers, or lungs. Similarly, light-

ning, rivers, and drainage systems do not travel in straight lines, and

they all remind us of the branching of trees and of the human circula-

tory system. Examine, for example, the fantastically intricate branching

of the "Dolmen in the Snow" (Figure 111), a painting by the German

romantic painter Caspar David Friedrich (1774-1840; currently in the

Gemaldegalerie Neue Meister in Dresden).
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Mandelbrot's gigantic

mental leap in formulating

fractal geometry has been

primarily in the fact that

he recognized that all of

hese complex zigs and

zags are not merely a nui-

sance but often the main

mathematical characteris-

tic of the morphology.

Mandelbrot's first realiza-

tion was the importance

of self-similarity—the fact

that many natural shapes

display endless sequences of motifs repeating themselves within motifs,

on many scales. The chambered nautilus (Figure 4) exhibits this prop-

erty magnificently, as does a regular cauliflower—break off smaller and

smaller pieces and, up to a point, they continue to look like the whole

vegetable. Take a picture of a small piece of rock, and you will have a

hard time recognizing that you are not looking at an entire mountain.

Even the printed form of the continued fraction that is equal to the

Golden Ratio has this property (Figure 112)—magnify the barely re-

solved symbols and you will see the same continued fraction. In all of

these objects, zooming in does not smooth out the degree of roughness.

Rather, the same irregularities characterize all scales.

At this point, Mandelbrot asked himself, how do you determine the

dimensions of something that has such a fractal structure? In the world

of Euclidean geometry, all the

objects have dimensions that i+ 

can be expressed as whole
if

numbers. Points have zero di-

mensions, straight lines are 1. 
one-dimensional, plane fig-

1 

ures like triangles and pen-

tagons are two-dimensional,

and objects like spheres and Figure 112
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the Platonic solids are three-dimensional. Fractal curves like the path of

a bolt of lightning, on the other hand, wiggle so aggressively that they

fall somewhere between one and two dimensions. If the path is rela-

tively smooth, then we can imagine that the fractal dimension would be

close to one, but if it is very complex, then a dimension closer to two

can be expected. These musings have turned into the by now-famous

question: "How long is the coast of Britain?" Mandelbrot's surprising

answer is that the length of the coastline actually depends on the length

of your ruler. Suppose you start out with a satellite-generated map of

Britain that is one foot on the side. You measure the length and convert

it to the actual length by multiplying by the known scale of your map.

Clearly this method will skip over any twists in the coastline that are

too small to be revealed on the map. Equipped with a one-yard stick,

you therefore start the long journey of actually walking along Britain's

beaches, painstakingly measuring the length yard by yard. There is no

doubt that the number you get now will be much larger than the pre-

vious one, since you managed to capture much smaller twists and turns.

You immediately realize, however, that you would still be skipping over

structures on smaller scales than one yard. The point is that every time

you decrease the size of your ruler, you get a larger value for the length,

because you always discover that there exists substructure on even

smaller scale. This fact suggests that even the concept of length as rep-

resenting size needs to be revisited when dealing with fractals. The con-

tours of the coastline do not become a straight line upon magnification;

rather, the crinkles persist on all scales and the length increases ad in-

finitum (or at least down to atomic scales).

This situation is exemplified beautifully by what could be thought

of as the coastline of some imaginary land. The Koch snowflake is a

curve first described by the Swedish mathematician Helge von Koch

(1870-1924) in 1904 (Figure 113). Start with an equilateral triangle,

one inch long on the side. Now in the middle of each side, construct a

smaller triangle, with a side of one-third of an inch. This will give the

Star of David in the second figure. Note that the original outline of the

triangle was three inches long, while now it is composed of twelve seg-

ments, one-third of an inch each, so that the total length is now four

inches. Repeat the same procedure consecutively—on each side of a tri-
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angle place a new one, with a side length that is one-third that of the

previous one. Each time, the length of the outline increases by a factor

of 4/3 to infinity, in spite of the fact that it borders a finite area. ( We can

show that the area converges to eight-fifths that of the original tri-

angle.)

Figure 113

The realization of the existence of fractals raised the question of the

dimensions that should be associated with them. The fractal dimension

is really a measure of the wrinkliness of the fractal, or of how fast length,

surface, or volume increases if we measure it with respect to ever-

decreasing scales. For example, we feel intuitively that the Koch curve

(bottom of Figure 113) takes up more space than a one-dimensional line

but less space than the two-dimensional square. But how can it have an

intermediate dimension? There is, after all, no whole number between

1 and 2. This is where Mandelbrot followed a concept first introduced

in 1919 by the German mathematician Felix Hausdorff (1868-1942), a

concept that at first appears mind boggling—fractional dimensions. In

spite of the initial shock we may experience from such a notion, frac-

tional dimensions were precisely the tool needed to characterize the

degree of irregularity, or fractal complexity, of objects.

In order to obtain a meaningful definition of the self-similarity

dimension or fractal dimension, it helps to use the familiar whole-



Figure 114

218 MAR1O L1V1O

number dimensions 0, 1,

2, 3 as guides. The idea is

to examine how many

small objects make up a

larger object in any num-

ber of dimensions. For

example, if we bisect a

(one-dimensional) line, we

obtain two segments (for a

reduction factor of f = 1/2).

When we divide a (two-

dimensional) square into

subsquares with half the side length (again a reduction factor f = 1/2),we

get 4 = 2 2 squares. For a side length of one-third (f = 1/3), there are 9 =

3 2 subsquares (Figure 114). For a (three-dimensional) cube, a division

into cubes of half the edge-length (f = 1/2) produces 8 = 23cubes, and

one-third the length (f =1/3) produces 27 = 3 3 cubes (Figure 114). If you

examine all of these examples, you find that there is a relation between

the number of subobjects, n, the length reduction factor, f, and the di-

mension, D. The relation is simply n = (1/f)D. (I give another form of

this relation in Appendix 7.) Applying the same relation to the Koch

snowflake gives a fractal dimension of about 1.2619. As it turns out, the

coastline of Britain also has a fractal dimension of about 1.26. Fractals

therefore serve as models for real coastlines. Indeed, pioneering chaos

theorist Mitch Feigenbaum, of Rockefeller University in New York, ex-

ploited this fact to help produce in 1992 the revolutionary Hammond

Atlas of the World. Using computers to do as much as possible unas-

sisted, Feigenbaum examined fractal satellite data to determine which

points along coastlines have the greatest significance. The result—a

map of South America, for example, that is better than 98 percent ac-

curate, compared to the more conventional 95 percent scored by older

atlases.

For many fractals in nature, from trees to the growth of crystals, the

main characteristic is branching. Let us examine a highly simplified

model for this ubiquitous phenomenon. Start with a stem of unit

length, which divides into two branches of length 1/2 at 120 degrees
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(a) (b) (a) (b)

Figure 115 Figure 116

(Figure 115). Each branch further divides in a similar fashion, and the

process goes on without bound.

If instead of a length reduction factor of 1/2 we had chosen a some-

what larger number (e.g., 0.6), the spaces among the different branches

would have been reduced, and eventually branches would overlap.

Clearly, for many systems (e.g., a drainage system or a blood circulatory

system), we may be interested in finding out at what reduction factor

precisely do the branches just touch and start to overlap, as in Figure

116. Surprisingly (or maybe not, by now), this happens for a reduction

factor that is equal precisely to one over the Golden Ratio, 1/phi  = 0.618. . .

(A short proof is given in Appendix 8.) This is known as a Golden Tree,

and its fractal dimension turns out to be about 1.4404. The Golden

Tree and similar fractals composed of simple lines cannot be resolved

very easily with the naked eye after several iterations. The problem can

be partially resolved by using two-dimensional figures like lunes (Figure

117) instead of lines. At each step, you can use a copying machine

equipped with an image reduction feature to produce lunes
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Figure 119 Figure 120

Figure 121 Figure 122

reduced by a factor 1/4). The resulting image, a Golden Tree composed

of lunes, is shown in Figure 118.

Fractals can be constructed not just from lines but also from simple

planar figures such as triangles and squares. For example, you can start

with an equilateral triangle with a side of unit length and at each cor-

ner attach a new triangle with a side length of 'A. At each of the free cor-

ners of the second-generation triangles, attach a triangle with a side

length of A, and so on (Figure 119). Again, you may wonder at what re-

duction factor do the three boughs start to touch, as in Figure 120, and

again the answer turns out to be 1/4). Precisely the same situation oc-

curs if you build a similar fractal using a square (Figure 121)—overlap-

ping occurs when the reduction factor is 1/4 = 0.618 . . . (Figure 122).
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Furthermore, all the unfilled white rectangles in the last figure are

Golden Rectangles. We therefore find that while in Euclidean geome-

try the Golden Ratio originated from the pentagon, in fractal geometry

it is associated even with simpler figures like squares and equilateral tri-

angles.

Once you get used to the concept, you realize that the world around

us is full of fractals. Objects as diverse as the profiles of the tops of forests

on the horizon and the circulatory system in a kidney can be described in

terms of fractal geometry. If a particular model of the universe as a whole

known as eternal inflation is correct, then even the entire universe is

characterized by a fractal pattern. Let me explain this concept very

briefly, giving only the broad-brush picture. The inflationary theory,

originally advanced by Alan Guth, suggests that when our universe was

only a tiny fraction of a second old, an unbridled expansion stretched our

region of space to a size that is actually much larger than the reach of our

telescopes. The driving force behind this stupendous expansion is a very

peculiar state of matter called a false vacuum. A ball on top of a flat hill,

as in Figure 123, can symbolically describe the situation. For as long as

the universe remained in the false vacuum state (the ball was on the hill-

top), it expanded extremely rapidly, doubling in size every tiny fraction

of a second. Only when the ball rolled down the hill and into the sur-

rounding, lower-energy "ditch" (representing symbolically the fact that

the false vacuum decayed) did the tremendous expansion stop. Accord-

ing to the inflationary model, what we call our universe was caught in the

false vacuum state for a very brief period, during which it expanded at a

Figure 123
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fantastic rate. Eventually the false vacuum decayed, and our universe

resumed the much more leisurely expansion we observe today. All the

energy and subatomic particles of our universe were generated during

oscillations that followed the decay (represented schematically in the

third drawing in Figure 123). However, the inflationary model also pre-

dicts that the rate of expansion while in the false vacuum state is much

faster than the rate of decay. Consequently, the fate of a region of false

vacuum can be illustrated schematically as in Figure 124. The universe

started with some region of false vacuum. As time progressed, some

part (a third in the figure) of the region has decayed to produce a

"pocket universe" like our own. At the same time, the regions that

stayed in the false vacuum state continued to expand, and by the time

represented schematically by the second bar in Figure 124, each one of

them was actually the size of the whole first bar. (This is not shown in

the figure because of space constraints.) Moving in time from the second

bar to the third, the central pocket universe continued to evolve slowly

as in the standard big bang model of our universe. Each of the remain-

ing two regions of false vacuum, however, evolved in precisely the same

way as the original region of false vacuum—some part of them decayed,

producing a pocket universe. Each region of false vacuum expanded

to become the same size as the first bar (again, not shown in the

figure because of space

constraints). An infinite

number of pocket uni-

verses thus were produced,

and a fractal pattern was

generated—the same se-

quence of false vacua and

pocket universes is repli-

cated on ever-decreasing

scales. If this model truly

represents the evolution of

the universe as a whole,

then our pocket universe is but one out of an infinite number of pocket

universes that exist.

In 1990, North Carolina State University professor Jasper Memory
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published a poem entitled "Blake and Fractals" in the Mathematics Mag-

azine. Referring to the mystic poet William Blake's line "To see a World

in a Grain of Sand," Memory wrote:

William Blake said he could see

Vistas of infinity

In the smallest speck of sand

Held in the hollow of his hand.

Models for this claim we've got

In the work of Mandelbrot:

Fractal diagrams partake

Of the essence sensed by Blake.

Basic forms will still prevail

Independent of the Scale;

Viewed from far or viewed from near

Special signatures are clear.

When you magnify a spot,

What you had before, you've got.

Smaller, smaller, smaller, yet,

Still the same details are set;

Finer than the finest hair

Blake's infinity is there,

Rich in structure all the way—

Just as the mystic poets say.

Some of the modern applications of the Golden Ratio, Fibonacci num-

bers, and fractals reach into areas that are much more down to earth

than the inflationary model of the universe. In fact, some say that the

applications can reach even all the way into our pockets.

A GOLDEN TOUR OF WALL STREET

One of the best-known attempts to use the Fibonacci sequence and the

Golden Ratio in the analysis of stock prices is associated with the name

of Ralph Nelson Elliott (1871-1948). An accountant by profession, El-
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liott held various executive positions with railroad companies, primar-

ily in Central America. A serious alimentary tract illness that left him

bedridden forced him into retirement in 1929. To occupy his mind, El-

liott started to analyze in great detail the rallies and plunges of the Dow

Jones Industrial Average. During his lifetime, Elliott witnessed the

roaring bull market of the 1920s followed by the Great Depression. His

detailed analyses led him to conclude that market fluctuations were not

random. In particular, he noted: "the stock market is a creation of man

and therefore reflects human idiosyncrasy." Elliott's main observation

was that, ultimately, stock market patterns reflect cycles of human op-

timism and pessimism.

On February 19, 1935, Elliott mailed a treatise entitled The Wave
Principle to a stock market publication in Detroit. In it he claimed to

have identified characteristics which "furnish a principle that deter-

mines the trend and gives clear warning of reversal." The treatise even-

tually developed into a book with the same title, which was published

in 1938.

Elliott's basic idea was rela-

tively simple. He claimed that

market variations can be charac-

terized by a fundamental pattern

consisting of five waves during

an upward ("optimistic") trend

(marked by numbers in Figure

125) and three waves during a

downward ("pessimistic") trend

(marked by letters in Figure

125). Note that 5, 3, 8 (the total

number of waves) are all Fi-

bonacci numbers. Elliott further

asserted that an examination of

the fluctuation on shorter and

shorter time scales reveals that

the same pattern repeats itself

(Figure 126), with all the num-

bers of the constituent wavelets
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corresponding to higher Fibonacci numbers. Identifying 144 as "the

highest number of practical value," the breakdown of a complete mar-

ket cycle, according to Elliott, might look as follows. A generally up-

ward trend consisting of five major waves, twenty-one intermediate

waves, and eighty-nine minor waves (Figure 126) is followed by a gen-

erally downward phase with three major, thirteen intermediate, and

fifty-five minor waves (Figure 126).

(a) (b)

Figure 127

Some recent books that attempt to apply Elliott's general ideas to

actual trading strategies go even further. They use the Golden Ratio to

calculate the extreme points of maximum and minimum that can be ex-

pected (although not necessarily reached) in market prices at the end of

upward or downward trends (Figure 127). Even more sophisticated al-

gorithms include a logarithmic spiral plotted on top of the daily mar-

ket fluctuations, in an attempt to represent a relationship between price

and time. All of these forecasting efforts assume that the Fibonacci se-

quence and the Golden Ratio somehow provide the keys to the opera-

tion of mass psychology. However, this "wave" approach does suffer

from some shortcomings. The Elliott "wave" usually is subjected to

various (sometimes arbitrary) stretchings, squeezings, and other alter-

ations by hand to make it "forecast" the real-world market. Investors

know, however, that even with the application of all the bells and whis-

tles of modern portfolio theory, which is supposed to maximize the re-

turns for a decided-on level of risk, fortunes can be made or lost in a

heartbeat.
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You may have noticed that Elliott's wave interpretation has as one

of its ingredients the concept that each part of the curve is a reduced-

scale version of the whole, a concept central to fractal geometry. Indeed,

in 1997, Benoit Mandelbrot published a book entitled Fractals and Scal-

ing in Finance: Discontinuity, Concentration, Risk, which introduced well-

defined fractal models into market economics. Mandelbrot built on the

known fact that fluctuations in the stock market look the same when

charts are enlarged or reduced to fit the same price and time scales. If

you look at such a chart from a distance that does not allow you to read

the scales, you will not be able to tell if it represents daily, weekly, or

hourly variations. The main innovation in Mandelbrot's theory, as com-

pared to standard portfolio theory, is in its ability to reproduce tumul-

tuous trading as well as placid markets. Portfolio theory, on the other

hand, is able to characterize only relatively tranquil activity. Mandel-

brot never claimed that his theory could predict a price drop or rise on

a specific day but rather that the model could be used to estimate prob-

abilities of potential outcomes. After Mandelbrot published a simpli-

fied description of his model in Scientific American in February 1999, a

myriad of responses from readers ensued. Robert Ihnot of Chicago prob-

ably expressed the bewilderment of many when he wrote: "If we know

that a stock will go from $10 to $15 in a given amount of time, it

doesn't matter how we interpose the fractals, or whether the graph looks

authentic or not. The important thing is that we could buy at $10 and

sell at $15. Everyone should now be rich, so why are they not?"

Elliott's original wave principle represented a bold if somewhat

naive attempt to identify a pattern in what appears otherwise to be a

rather random process. More recently, however, Fibonacci numbers and

randomness have had an even more intriguing encounter.

RABBITS AND COIN TOSSES

The defining property of the Fibonacci sequence—that each new num-

ber is the sum of the previous two numbers—was obtained from an un-

realistic description of the breeding of rabbits. Nothing in this

definition hinted that this imaginary rabbit sequence would find its way
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into so many natural and cultural phenomena. There was even less, how-

ever, to suggest that experimentation with the basic properties of the

sequence themselves could provide a gateway to understanding the

mathematics of disordered systems. Yet this was precisely what hap-

pened in 1999. Computer scientist Divakar Viswanath, then a postdoc-

toral fellow at the Mathematical Sciences Research Institute in Berkeley,

California, was bold enough to ask a "what if?" question that led unex-

pectedly to the discovery of a new special number: 1.13198824 . . . .

The beauty of Viswanath's discovery lies primarily in the simplicity of its

central idea. Viswanath merely asked himself: Suppose you start with the

two numbers 1, 1, as in the original Fibonacci sequence, but now instead

of adding the two numbers to get the third, you flip a coin to decide

whether to add them or to subtract the last number from the previous

one. You can decide, for example, that "heads" means to add (giving 2 as

the third number) and "tails" means to subtract (giving 0 as the third

number). You can continue with the same procedure, each time flipping

a coin to decide whether to add or subtract the last number to get a new

one. For example, the series of tosses HTTHHTHTTH will produce the

sequence 1, 1, 2, —1, 3, 2, 5, —3, 2, —5, 7, 2. On the other hand, the

(rather unlikely) series of tosses HHHHHHHHHHHH ... will pro-

duce the original Fibonacci sequence.

In the Fibonacci sequence, terms increase rapidly, like a power of

the Golden Ratio. Recall that we can calculate the seventeenth number

in the sequence, for example, by raising the Golden Ratio to the seven-

teenth power, dividing by the square root of 5, and rounding off the re-

sult to the nearest whole number (which gives 1597). Since Viswanath's

sequences were generated by a totally random series of coin tosses, how-

ever, it was not at all obvious that a smooth growth pattern would be

obtained, even if we ignore the minus signs and take only the absolute

value of the numbers. To his own surprise, however, Viswanath found

that if he ignored the minus signs, the values of the numbers in his ran-

dom sequences still increased in a clearly defined and predictable rate.

Specifically, with essentially 100 percent probability, the one hundredth

number in any of the sequences generated in this way was always close

to the one hundredth power of the peculiar number 1.13198824 . . . ,

and the higher the term was in the sequence, the closer it came to the
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corresponding power of 1.13198824 . . . . To actually calculate this

strange number, Viswanath had to use fractals and to rely on a powerful

mathematical theorem that was formulated in the early 1960s by math-

ematicians Hillel Furstenberg of the Hebrew University in Jerusalem

and Harry Kesten of Cornell University. These two mathematicians

proved that for an entire class of randomly generated sequences, the ab-

solute value of a number high in the sequence gets closer and closer to

the appropriate power of some fixed number. However, Furstenberg and

Kesten did not know how to calculate this fixed number; Viswanath

discovered how to do just that.

The importance of Viswanath's work lies not only in the discovery

of a new mathematical constant, a significant feat in itself, but also in

the fact that it illustrates beautifully how what appears to be an entirely

random process can lead to a fully deterministic result. Problems of this

type are encountered in a variety of natural phenomena and electronic

devices. For example, stars like our own Sun produce their energy in nu-

clear "furnaces" at their centers. However, for us actually to see the stars

shining, bundles of radiation, known as photons, have to make their

way from the stellar depths to the surface. Photons do not simply fly

through the star at the speed of light. Rather, they bounce around, be-

ing scattered and absorbed and reemitted by all the electrons and atoms

of gas in their way, in a seemingly random fashion. Yet the net result is

that after a random walk, which in the case of the Sun takes some 10

million years, the radiation escapes the star. The power emitted by the

Sun's surface determined (and continues to determine) the temperature

on Earth's surface and allowed life to emerge. Viswanath's work and the

research on random Fibonaccis that followed provide additional tools

for the mathematical machinery that explains disordered systems.

There is another important lesson to be learned from Viswanath's

discovery—even an eight-hundred-year-old, seemingly trivial mathe-

matical problem can still surprise you.
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I S GOD A

MATHEMATICIAN?

I should attempt to treat human vice and folly geometrically .. .

the passions of hatred, anger, envy, and so on, considered in themselves,

follow from the necessity and efficacy of nature. . . . I shall, therefore,

treat the nature and strength of the emotion in exactly the same manner,

as though I were concerned with lines, planes and solids.

-iARUCH SPINOZA (1632-1677)

Two and two the mathematician continues to make four, in spite of the

whine of the amateur for three, or the cry of the critic for five.

-JAMES MCNEILL WHISTLER (1834-1903)

Euclid defined the Golden Ratio because he was interested in using this

simple proportion for the construction of the pentagon and the penta-

gram. Had this remained the Golden Ratio's only application, the pres-

ent book would have never been written. The delight we derive from

this concept today is based primarily on the element of surprise. The

Golden Ratio turned out to be, on one hand, the simplest of the con-

tinued fractions (but also the "most irrational" of all irrational numbers)

and, on the other, the heart of an endless number of complex natural

phenomena. Somehow the Golden Ratio always makes an unexpected
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appearance at the juxtaposition of the simple and the complex, at the

intersection of Euclidean geometry and fractal geometry.

The sense of gratification provided by the Golden Ratio's surprising

emergences probably comes as close as we could expect to the sensuous

visual pleasure we obtain from a work of art. This fact raises the ques-

tion of what type of aesthetic judgment can be applied to mathematics

or, even more specifically, what did the famous British mathematician

Godfrey Harold Hardy (1877-1947) actually mean when he said: "The

mathematician's patterns, like the painter's or the poet's, must be beau-

tiful."

This is not an easy question. When I discussed the psychological

experiments that tested the visual appeal of the Golden Rectangle, I de-

liberately avoided the term "beautiful." I will adopt the same strategy

here, because of the ambiguity associated with the definition of beauty.

The extent to which beauty is in the eye of the beholder when referring

to mathematics is exemplified magnificently by a story presented in the

excellent 1981 book The Mathematical Experience by Philip J. Davis and

Reuben Hersh.

In 1976, a delegation of distinguished mathematicians from the

United States was invited to the People's Republic of China for a series

of talks and informal meetings with Chinese mathematicians. The del-

egation subsequently issued a report entitled "Pure and Applied Math-

ematics in the People's Republic of China." By "pure," mathematicians

usually refer to the type of mathematics that at least on the face of it has

absolutely no direct relevance to the world outside the mind. At the

same time, we should realize that Penrose tilings and random Fibonac-

cis, for example, provide two of the numerous examples of "pure" math-

ematics turning into "applied." One of the dialogues in the delegation's

report, between Princeton mathematician Joseph J. Kohn and one of his

Chinese hosts, is particularly illuminating. The dialogue was on the

topic of the "beauty of mathematics," and it took place at the Shanghai

Hua-Tung University.

Kohn: Should you not present beauty of mathematics?

Couldn't it inspire students? Is there room for the

beauty of science?
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Answer: The first demand is production.

Kohn: That is no answer.

Answer: Geometry was developed for practice. The evolution

of geometry could not satisfy science and

technology; in the seventeenth century, Descartes

discovered analytical geometry. He analyzed pistons

and lathes and also the principles of analytical

geometry. Newton's work came out of the

development of industry. Newton said, "The basis of

any theory is social practice." There is no theory of

beauty that people agree on. Some people think one

thing is beautiful, some another. Socialist

construction is a beautiful thing and stimulates

people here. Before the Cultural Revolution some of

us believed in the beauty of mathematics but failed

to solve practical problems; now we deal with water

and gas pipes, cables and rolling mills. We do it for

the country and the workers appreciate it. It is a

beautiful feeling.

Since, as this dialogue starkly indicates, there is hardly any formal, ac-

cepted description of aesthetic judgment in mathematics and how it

should be applied, I prefer to discuss only one particular element in

mathematics that invariably gives pleasure to nonexperts and experts

alike—the element of surprise.

MATHEMATICS SHOULD SURPRISE

In a letter written on February 27, 1818, the English Romantic poet

John Keats (1795-1821) wrote: "Poetry should surprise by a fine excess

and not by Singularity—it should strike the Reader as a wording of his

own highest thoughts, and appear almost a Remembrance." Unlike po-

etry, however, mathematics more often tends to delight when it exhibits

an unanticipated result rather than when conforming to the reader's

own expectations. In addition, the pleasure derived from mathematics
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is related in many cases to the surprise felt upon perception of totally

unexpected relationships and unities. A mathematical relation known

as Benford's law provides a wonderful case study for how all of these el-

ements combine to produce a great sense of satisfaction.

Take a look, for example, in the World Almanac, at the table of "U.S.

Farm Marketings by State" for 1999. There is a column for "Crops" and

one for "Livestock and Products." The numbers are given in U.S. dol-

lars. You would have thought that the numbers from 1 to 9 should oc-

cur with the same frequency among the first digits of all the listed

marketings. Specifically, the numbers starting with 1 should constitute

about one-ninth of all the listed numbers, as would numbers starting

with 9. Yet, if you count them, you will find that the number 1 appears

as the first digit in 32 percent of the numbers (instead of the expected

11 percent if all digits occurred equally often). The number 2 also ap-

pears more frequently than its fair share—appearing in 19 percent of

the numbers. The number 9, on the other hand, appears only in 5 per-

cent of the numbers—less than expected. You may think that finding

this result in one table is surprising, but hardly shocking, until you ex-

amine a few more pages in the Almanac (the numbers above were taken

from the 2001 edition). For example, if you look at the table of the

death toll of "Some Major Earthquakes," you will find that the numbers

starting with 1 constitute about 38 percent of all the numbers, and

those starting with 2 are 18 percent. If you choose a totally different

table, such as the one for the population in Massachusetts in places of

5,000 or more, the numbers start with 1 about 36 percent of the time

and with 2 about 16.5 percent of the time. At the other end, in all of

these tables the number 9 appears first only in about 5 percent of the

numbers, far less than the expected 11 percent. How is it possible that

tables describing such diverse and apparently random data all have the

property that the number 1 appears as the first digit 30-some percent of

the time and the number 2 around 18 percent of the time? The situa-

tion becomes even more puzzling when you examine still larger data-

bases. For example, accounting professor Mark Nigrini of the Cox

School of Business at Southern Methodist University, Dallas, examined

the populations of 3,141 counties in the 1990 U.S. Census. He found

that the number 1 appeared as the first digit in about 32 percent of the
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numbers, 2 appeared in about 17 percent, 3 in 14 percent, and 9 in less

than 5 percent. Analyst Eduardo Ley of Resources for the Future in

Washington, D.C., found very similar numbers for the Dow Jones In-

dustrial Average in the years 1990 to 1993. And if all of this is not

dumfounding enough, here is another amazing fact. If you examine the

list of, say, the first two thousand Fibonacci numbers, you will find that

the number 1 appears as the first digit 30 percent of the time, the num-

ber 2 appears 17.65 percent, 3 appears 12.5 percent, and the values con-

tinue to decrease, with 9 appearing 4.6 percent of the time as first digit.

In fact, Fibonacci numbers are more likely to start with 1, with the

other numbers decreasing in popularity in precisely the same manner as the

jtist-described random selections of numbers!

Astronomer and mathematician Simon Newcomb (1835-1909)

first discovered this "first-digit phenomenon" in 1881. He noticed that

books of logarithms in the library, which were used for calculations,

were considerably dirtier at the beginning (where numbers starting

with 1 and 2 were printed) and progressively cleaner throughout.

While this might be expected with bad novels abandoned by bored

readers, in the case of mathematical tables they simply indicated a more

frequent appearance of numbers starting with 1 and 2. Newcomb, how-

ever, went much further than merely noting this fact; he came up with

an actual formula that was supposed to give the probability that a ran-

dom number begins with a particular digit. That formula (presented in

Appendix 9) gives for 1 a probability of 30 percent; for 2, about 17.6

percent; for 3, about 12.5 percent; for 4, about 9.7 percent; for 5, about

8 percent; for 6, about 6.7 percent; for 7, about 5.8 percent; for 8, about

5 percent; and for 9, about 4.6 percent. Newcomb's 1881 article in the

American Jotirnal of Mathematics and the "law" he discovered went en-

tirely unnoticed, until fifty-seven years later, when physicist Frank

Benford of General Electric rediscovered the law (apparently indepen-

dently) and tested it with extensive data on river basin areas, baseball

statistics, and even numbers appearing in Reader's Digest articles. All the

data fit the postulated formula amazingly well, and hence this formula

is now known as Benford's law.

Not all lists of numbers obey Benford's law. Numbers in telephone

books, for example, tend to begin with the same few digits in any given
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region. Even tables of square roots of numbers do not obey the law. On

the other hand, chances are that if you collect all the numbers appear-

ing on the front pages of several of your local newspapers for a week, you

will obtain a pretty good fit. But why should it be this way? What do

the populations of towns in Massachusetts have to do with death tolls

from earthquakes around the globe or with numbers appearing in the

Reader's Digest? Why do the Fibonacci numbers also obey the same law?

Attempts to put Benford's law on a firm mathematical basis have

proven to be much more difficult than expected. One of the key obsta-

cles has been precisely the fact that not all lists of numbers obey the law

(even the preceding examples from the Almanac do not obey the law

precisely). In his Scientific American article describing the law in 1969,

University of Rochester mathematician Ralph A. Raimi concluded that

"the answer remains obscure."

The explanation finally emerged in 1995-1996, in the work of

Georgia Institute of Technology mathematician Ted Hill. Hill became

first interested in Benford's law while preparing a talk on surprises in

probability in the early 1990s. When describing to me his experience,

Hill said: "I started working on this problem as a recreational experi-

ment, but a few people warned me to be careful, because Benford's law

can become addictive." After a few years of work it finally dawned on

him that rather than looking at numbers from one given source, the

mixture of data was the key. Hill formulated the law statistically, in a

new form: "If distributions are selected at random (in any unbiased way)

and random samples are taken from each of these distributions, then the

significant-digit frequencies of the combined sample will converge to Ben-

ford's distribution, even if some of the individual distributions selected

do not follow the law." In other words, suppose you assemble random

collections of numbers from a hodgepodge of distributions, such as a

table of square roots, a table of the death toll in notable aircraft disas-

ters, the populations of counties, and a table of air distances between se-

lected world cities. Some of these distributions do not obey Benford's

law by themselves. What Hill proved, however, is that as you collect

ever more of such numbers, the digits of these numbers will yield fre-

quencies that conform ever closer to the law's predictions. Now, why do

Fibonacci numbers also follow Benford's law? After all, they are fully
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determined by a recursive relation and are not random samples from

random distributions.

Well, in this case it turns out that this conformity with Benford's

law is not a unique property of the Fibonacci numbers. If you examine

a large number of powers of 2 (2 ' = 2, 2 2 = 4, 2 3 = 8, etc.), you'll see that

they also obey Benford's law. This should not be so surprising, given

that the Fibonacci numbers themselves are obtained as powers of the

Golden Ratio (recall that the nt h Fibonacci number is close to 4,
n/A ). In

fact, we can prove that sequences defined by a large class of recursive re-

lations follow Benford's law.

Benford's law provides yet another fascinating example of pure

mathematics transformed into applied. One interesting application is

in the detection of fraud or fabrication of data in accounting and tax

evasion. In a broad range of financial documents, data conform very

closely to Benford's law. Fabricated data, on the other hand, very rarely

do. Hill demonstrates how such fraud detection works with another

simple example, using probability theory. In the first day of class in his

course on probability, he asks students to do an experiment. If their

mother's maiden name begins with A through L, they are to flip a coin

200 times and record the results. The rest of the class is asked to fake a

sequence of 200 heads and tails. Hill collects the results the following

day, and within a short time he is able to separate the genuine from the

fake with 95 percent accuracy. How does he do that? Any sequence of

200 genuine coin tosses contains a run of six consecutive heads or six

consecutive tails with a very high probability. On the other hand, peo-

ple trying to fake a sequence of coin tosses very rarely believe that they

should record such a sequence.

A recent case in which Benford's law was used to uncover fraud in-

volved an American leisure and travel company. The company's audit

director discovered something that looked odd in claims made by the

supervisor of the company's healthcare department. The first two digits

of the healthcare payments showed a suspicious spike in numbers start-

ing with 65 when checked for conformity to Benford's law. (A more de-

tailed version of the law predicts also the frequency of the second and

higher digits; see Appendix 9.) A careful audit revealed thirteen fraud-

ulent checks for amounts between $6,500 and $6,599. The District
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Attorney's office in Brooklyn, New York, also used tests based on Ben-

ford's law to detect accounting fraud in seven New York companies.

Benford's law contains precisely some of the ingredients of surprise

that most mathematicians find attractive. It reflects a simple but aston-

ishing fact—that the distribution of first digits is extremely peculiar. In

addition, that fact turned out to be difficult to explain. Numbers, with

the Golden Ratio as an outstanding example, sometimes provide a more

instantaneous gratification. For example, many professional and ama-

teur mathematicians are fascinated by primes. Why are primes so im-

portant? Because the "Fundamental Theorem of Arithmetic" states that

every whole number larger than 1 can be expressed as a product of

prime numbers. (Note that 1 is not considered a prime.) For example,

28 = 2 x 2 X 7; 66 =. 2 x 3 x 11; and so on. Primes are so rooted in the

human comprehension of mathematics that in his book Cosmos, when

Carl Sagan (1934-1996) had to describe what type of signal an intelli-

gent civilization would transmit into space he chose as an example the

sequence of primes. Sagan wrote: "It is extremely unlikely that any nat-

ural physical process could transmit radio messages containing prime

numbers only. If we received such a message we would deduce a civi-

lization out there that was at least fond of prime numbers." The great

Euclid proved more than two thousand years ago that infinitely many

primes exist. (The elegant proof is presented in Appendix 10.) Yet most

people will agree that some primes are more attractive than others.

Some mathematicians, such as the French Francois Le Lionnais and the

American Chris Caldwell, maintain lists of "remarkable" or "titanic"

numbers. Here are just a few intriguing examples from the great trea-

sury of primes:

• The number 1,234,567,891, which cycles through all the digits,

is a prime.

• The 230t h largest prime, which has 6,400 digits, is composed of

6,399 9s and only one 8.

• The number composed of 317 iterations of the digit 1 is a prime.

• The 713
th
 largest prime can be written as (10' 1 ) x (1019'5 +

1991991991991991991991991) + 1, and it was discovered in—

you guessed it-1991.
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From the perspective of this book, the connection between primes

and Fibonacci numbers is of special interest. With the exception of the

number 3, every Fibonacci number that is a prime also has a prime sub-

script (its order in the sequence). For example, the Fibonacci number

233 is a prime, and it is the thirteenth (also a prime) number in the se-

quence. The converse, however, is not true: The fact that the subscript

is a prime does not necessarily mean that the number is also a prime.

For example, the nineteenth number (19 is a prime) is 4181, and 4181

is not a prime—it is equal to 113 X 37.

The number of known Fibonacci primes has increased steadily over

the years. In 1979, the largest known Fibonacci prime was the 531 " in

the sequence. By the mid-1990s, the largest known was the 2,971 5[ ; and

in 2001, the 81,839 th number was shown to be a prime with 17,103

digits. So, is there an infinite number of Fibonacci primes (as there is an

infinite number of primes, in general)? No one actually knows, and this

is probably the greatest unsolved mathematical mystery about Fi-

bonacci numbers.

THE UNREASONABLE POWER OF MATHEMATICS

The collection of dialogues Intentions contains the aesthetic philosophy

of the famous playwright and poet Oscar Wilde (1854-1900). In that

collection, the dialogue "The Decay of Lying" is a particularly provoca-

tive presentation of Wilde's ideas on "the new aesthetics." In the con-

clusion of this dialogue, one of the characters (Vivian) summarizes:

Life imitates Art far more than Art imitates Life. This results not

merely from Life's imitative instinct, but from the fact that the

selfconscious aim of Life is to find expression, and that Art offers it

certain beautiful forms through which it may realize that energy.

It is a theory that has never been put forward before, but it is ex-

tremely fruitful, and throws an entirely new light upon the history

of Art.

It follows, as a corollary from this, that external Nature also

imitates Art. The only effects that she can show us are effects that
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we have already seen through poetry, or in paintings. This is the

secret of Nature's charm, as well as the explanation of Nature's

weakness.

We could almost substitute "Mathematics" for "Art" in this passage

and obtain a statement that reflects the reality with which many out-

standing minds have struggled. Mathematics appears at first glance to

be just too effective. In Einstein's own words: "How is it possible that

mathematics, a product of human thought that is independent of expe-

rience, fits so excellently the objects of physical reality?" Another out-

standing physicist, Eugene Wigner (1902-1995), known for his many

contributions to nuclear physics, delivered in 1960 a famous lecture en-

titled "The Unreasonable Effectiveness of Mathematics in the Physical

Sciences." We have to wonder, for example, how is it possible that plan-

ets in their orbits around the Sun were found to follow a curve (an el-

lipse) that had been explored by the Greek geometers long before

Kepler's laws were discovered? Why does the explanation of the exis-

tence of quasi-crystals rely on the Golden Ratio, a concept conceived by

Euclid for purely mathematical purposes? Is it not astounding that the

structure of so many galaxies containing billions of stars follows closely

Bernoulli's favorite curve—the magnificent logarithmic spiral? And the

most astonishing of all: Why are the laws of physics themselves ex-

pressible as mathematical equations in the first place?

But this is not all. Mathematician John Forbes Nash (now world fa-

mous as the subject of the book and film biography A Beautiful Mind),
for example, shared the 1994 Nobel Prize in economics because his

mathematical dissertation (written at age twenty-one!) outlining his

"Nash Equilibrium" for strategic noncooperative games inaugurated a

revolution in fields as diverse as economics, evolutionary biology, and

political science. What is it that makes mathematics work so well?

The recognition of the extraordinary "effectiveness" of mathematics

even made it into a hysterically funny passage in Samuel Beckett's novel

Molloy, about which I have a personal story. In 1980, two colleagues

from the University of Florida and I wrote a paper about neutron stars,

which are extremely compact and dense astronomical objects that result
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from the gravitational collapse of the cores of massive stars. The paper

was more mathematical than the garden variety of astronomical papers,

and consequently we decided to add an appropriate motto on the first

page. The motto read:

Extraordinary how mathematics help you .. .

—SAMUEL BECKETT, Molloy

The line was cited as being taken from the first of the trilogy of novels

Molloy, Malone Dies, and The Unnamable by the famous writer and play-

wright Samuel Beckett (1906-1989). All three novels, incidentally,

represent a search for self—a hunt for identity by writers through writ-

ing. We are led to observe the characters in states of decay while they

pursue a meaning for their existence.

Papers in astrophysics very rarely have mottoes. Consequently, we

received a letter from the editor of The Astrophysical Journal informing

us that while he liked Beckett, too, he did not quite see the necessity of

including the motto. We replied that we would leave the decision of

whether to publish the motto or not entirely to him, and the paper

eventually was published with the motto in the December 15 issue.

Here, however, is the full passage from Molloy:

And in winter, under my greatcoat, I wrapped myself in swathes of

newspaper, and did not shed them until the earth awoke, for good,

in April. The Times Literary Supplement was admirably adapted to

this purpose, of a neverfailing toughness and impermeability. Even

farts made no impression on it. I can't help it, gas escapes from my

fundament on the least pretext, it's hard not to mention it now and

then, however great my distaste. One day I counted them. Three

hundred and fifteen farts in nineteen hours, or an average of over

sixteen farts an hour. After all it's not excessive. Four farts every fif-

teen minutes. It's nothing. Not even one fart every four minutes. It's

unbelievable. Damn it, I hardly fart at all, I should never have men-

tioned it. Extraordinary how mathematics help you to know your-

self.
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The history of mathematics has produced at least two attempts, philo-

sophically very different, to answer the question of the incredible power

of mathematics. The answers are also related to the fundamental issue of

the actual nattire of mathematics. A comprehensive discussion of these

topics can fill entire volumes and is certainly beyond the scope of this

book. I will therefore give only a brief description of some of the main

lines of thought and present my personal opinion.

One view on the nature of mathematics, traditionally dubbed the

"Platonic view," is that mathematics is universal and timeless, and its

existence is an objective fact, independent of us humans. According to

this Platonic view, mathematics has always been out there in some ab-

stract world, for humans to simply discover, just as Michelangelo

thought that his sculptures existed inside the marble and he merely un-

covered them. The Golden Ratio, Fibonacci numbers, Euclidean geom-

etry, and Einstein's equations are all a part of this Platonic reality that

transcends the human mind. Supporters of this Platonic view regard the

famous Austrian logician Kurt GOdel (1906-1978) also as a whole-

hearted Platonist. They point out that not only did he say about math-

ematical concepts that "they, too, may represent an aspect of objective

reality" but that his "incompleteness theorems" by themselves could be

taken as arguments in favor of the Platonic view. These theorems, prob-

ably the most celebrated results in the whole of logic, show that for any

formal axiomatic system (e.g., number theory) there exist statements

formulable in its language that it cannot either prove or disprove. In other

words, number theory, for example, is "incomplete" in the sense that

there are true statements of number theory that the theory's methods of

proof are incapable of demonstrating. To prove them we must jump to

a higher and richer system, in which again other true statements can be

made that cannot be proved, and so on ad infinitum. Computer scien-

tist and author Douglas R. Hofstadter phrased this succinctly in his

fantastic book Godel, Escher, Bach: An Eternal Golden Braid: "Provability

is a weaker notion than truth." In this sense, there will never be a for-

mal method of determining for every mathematical proposition

whether it is absolutely true, any more than there is a way to

determine whether a theory in physics is absolutely true. Oxford's

mathematical physicist Roger Penrose is among those who believe that
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GOdel's theorems argue powerfully for the very existence of a Platonic

mathematical world. In his wonderfully thought-provoking book Shad-

ows of the Mind Penrose says: "Mathematical truth is not determined ar-

bitrarily by the rules of some 'man-made' formal system, but has an

absolute nature, and lies beyond any such system of specifiable rules."

To which he adds that: "Support for the Platonic viewpoint . . . was an

important part of Godel's initial motivations." Twentieth-century

British mathematician G. H. Hardy also believed that the human func-

tion is to "discover or observe" mathematics rather than to invent it. In

other words, the abstract landscape of mathematics was there, waiting

for mathematical explorers to reveal it.

One of the proposed solutions to the mystery of the effectiveness of

mathematics in explaining nature relies on an intriguing modification

of the Platonic ideas. This "modified Platonic view" argues that the

laws of physics are expressed as mathematical equations, the structure of

the universe is a fractal, galaxies arrange themselves in logarithmic spi-

rals, and so on, because mathematics is the universe's language. Specifi-

cally, mathematical objects are still assumed to exist objectively, quite

independent of our knowledge of them, but instead of placing mathe-

matics entirely in some mythical abstract plane, at least some parts of it

would be placed in the real cosmos. If we want to communicate with in-

telligent civilizations 10,000 light-years away, all we have to do is

transmit the number 1.6180339887 . . . and be sure that they will un-

derstand what we mean, because the universe has undoubtedly imposed

the same mathematics on them. God is indeed a mathematician.

This modified Platonic view was precisely the belief expressed by

Kepler (colored by his religious inclinations), when he wrote that

geometry "supplied God with patterns for the creation of the world,

and passed over to Man along with the image of God; and was not in

fact taken in through the eyes." Galileo Galilei had similar thoughts:

Philosophy is written in this grand book—I mean the universe—

which stands continually open to our gaze, but it cannot be under-

stood unless one first learns to comprehend the language and

interpret the characters in which it is written. It is written in the

language of mathematics, and its characters are triangles, circles,
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and other geometrical figures, without which it is humanly impos-

sible to understand a single word of it; without these, one is wan-

dering about in a dark labyrinth.

The mystic poet and artist

William Blake had a rather

different opinion of this

mathematician God. Blake

utterly despised scientific ex-

planations of nature. To him,

Newton and the scientists

who followed him merely

conspired to unweave the

rainbow, to conquer all mys-

teries of human life by rules.

Accordingly, in Blake's pow-

erful etching "The Ancient of

Days" (Figure 128; currently

at the Pierpont Morgan Li-

brary, New York), he depicts

an evil God who wields a

compass not to establish uni-

versal order but rather to clip

the wings of imagination.

Kepler and Galileo, however, were definitely not the last mathe-

maticians to adopt this "modified" version of the Platonic view, nor

were such views limited to those who, like Newton, took for granted

the existence of a Divine Mind. The great French mathematician, as-

tronomer, and physicist Pierre-Simon de Laplace (1749-1827) wrote in

his Theorie Analitiqtie des Probabilites (Analytic theory of probabilities;

1812):

Given for one instant an intelligence which comprehends all the

forces by which nature is animated and the respective positions of

the beings which compose it, if moreover this intelligence were vast
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enough to submit these data to analysis, it would embrace in the

same formula both the movements of the largest bodies in the uni-

verse and those of the lightest atom.

This was the same Laplace who replied to Napoleon Bonaparte: "Sire, I

have no need for that hypothesis," when the emperor remarked that

there is no mention of the creator in Laplace's large book on celestial

mechanics.

Very recently, IBM mathematician and author Clifford A. Pickover

wrote in his lively book The Loom of God: "I do not know if God is a

mathematician, but mathematics is the loom upon which God weaves

the fabric of the universe. . . . The fact that reality can be described or

approximated by simple mathematical expressions suggests to me that

nature has mathematics at its core."

Supporters of the "modified Platonic view" of mathematics like to

point out that, over the centuries, mathematicians have produced (or

"discovered") numerous objects of pure mathematics with absolutely no

application in mind. Decades later, these mathematical constructs and

models were found to provide solutions to problems in physics. Penrose

tilings and non-Euclidean geometries are beautiful testimonies to this

process of mathematics unexpectedly feeding into physics, but there are

many more.

There were also many cases of feedback between physics and math-

ematics, where a physical phenomenon inspired a mathematical model

that later proved to be the explanation of an entirely different physical

phenomenon. An excellent example is provided by the phenomenon

known as Brownian motion. In 1827, British botanist Robert Brown

(1773-1858) observed that when pollen particles are suspended in wa-

ter, they get into a state of agitated motion. This effect was explained by

Einstein in 1905 as resulting from the collisions that the colloidal par-

ticles experience with the molecules of the surrounding fluid. Each sin-

gle collision has a negligible effect, because the pollen grains are

millions of times more massive than the water molecules, but the per-

sistent bombardment has a cumulative effect. Amazingly, the same

model was found to apply to the motions of stars in star clusters. There
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the Brownian motion is produced by the cumulative effect of many

stars passing by any given star, with each passage altering the motion

(through gravitational interaction) by a tiny amount.

There exists, however, an entirely different view (from that of the

modified Platonic view) on the nature of mathematics and the reason for

its effectiveness. According to this view (which is intricately related to

dogmas labeled "formalism" and "constructivism" in the philosophy of

mathematics), mathematics has no existence outside the human brain.

Mathematics as we know it is nothing but a human invention, and an

intelligent civilization elsewhere in the universe might have developed

a radically different construct. Mathematical objects have no objective

reality—they are imaginary. In the words of the great German philoso-

pher Immanuel Kant: "The ultimate truth of mathematics lies in the

possibility that its concepts can be constructed by the human mind." In

other words, Kant emphasizes the freedom aspect of mathematics, the

freedom to postulate and to invent patterns and structures.

This view of mathematics as a human invention has become popu-

lar in particular with modern psychologists. For example, French re-

searcher and author Stanislas Dehaene concludes in his interesting 1997

book The Number Sense that "intuitionism {which to him is synonymous

with mathematics as a human invention} seems to me to provide the

best account of the relations between arithmetic and the human brain."

Similarly, the last sentence in the book Where Mathematics Comes From

(2000) by the University of California, Berkeley, linguist George Lakoff

and psychologist Rafael E. Nunez reads: "The portrait of mathematics

has a human face." These conclusions are based primarily on the results

of psychological experiments and on neurological studies of the func-

tionality of the brain. Experiments show that babies have innate mech-

anisms for recognizing numbers in small sets and that children acquire

simple arithmetical capabilities spontaneously, even without much for-

mal instruction. Additionally, the inferior parietal cortex has been iden-

tified as the area of the brain that hosts the neural circuitry involved in

symbolic numerical capabilities. This area of both cerebral hemispheres

is located anatomically at the junction of neural connections from

touch, vision, and audition. In patients suffering from a rare form of

seizure while performing arithmetic manipulations (known as epilepsia
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arithmetices), brain wave measurements (electroencephalograms) show

abnormalities in the inferior parietal cortex. Similarly, lesions in this re-

gion affect mathematical ability, writing, and spatial coordination.

Even if based on physiology and psychology, the view of mathe-

matics as a human invention of no intrinsic reality still needs to answer

the two intriguing questions: Why is mathematics so powerful in ex-

plaining the universe, and how is it possible that even some of the

purest products of mathematics are found eventually to fit physical phe-

nomena like a glove?

The "human inventionist" reply to both of these questions is also

based on a biological model: evolution and natural selection. The idea

here is that progress in understanding the universe and the formulation

of mathematical laws that describe phenomena within it have been

achieved via an extended and tortuous evolutionary process. Our cur-

rent model of the universe is the result of a long evolution that involved

many false starts and blind alleys. Natural selection has weeded out

mathematical models that did not fit the observations and experiments

and left only the successful ones. According to this view, all "theories"

of the universe are in fact nothing but "models" whose attributes are de-

termined solely by their success in fitting the observational and experi-

mental data. Kepler's crazy model of the solar system in Mysterium
Cosmographictim was acceptable, as long as it could explain and predict

the behavior of the planets.

The success of pure mathematics turned into applied mathematics,

in this picture, merely reflects an overproduction of concepts, from

which physics has selected the most adequate for its needs—a true sur-

vival of the fittest. After all, "inventionists" would point out, Godfrey

H. Hardy was always proud of having "never done anything 'useful.' "

This opinion of mathematics is apparently espoused also by Marilyn vos

Savant, the "world record holder" in IQ—an incredible 228. She is

quoted as having said "I'm beginning to think simply that mathemat-

ics can be invented to describe anything, and matter is no exception."

In my humble opinion, neither the modified Platonic view nor the

natural selection view provides a fully satisfactory answer (at least in the

way both are traditionally formulated) to the mystery of the effective-

ness of mathematics.
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To claim that mathematics is purely a human invention and is

successful in explaining nature only because of evolution and natural

selection ignores some important facts in the nature of mathematics and

in the history of theoretical models of the universe. First, while the

mathematical rules (e.g., the axioms of geometry or of set theory) are in-

deed creations of the human mind, once those rules are specified, we

lose our freedom. The definition of the Golden Ratio emerged origi-

nally from the axioms of Euclidean geometry; the definition of the Fi-

bonacci sequence from the axioms of the theory of numbers. Yet the fact

that the ratio of successive Fibonacci numbers converges to the Golden

Ratio was imposed on us—humans had no choice in the matter. There-

fore, mathematical objects, albeit imaginary, do have real properties.

Second, the explanation of the unreasonable power of mathematics can-

not be based entirely on evolution in the restricted sense. For example,

when Newton proposed his theory of gravitation, the data that he was

trying to explain were at best accurate to three significant figures. Yet

his mathematical model for the force between any two masses in the

universe achieved the incredible precision of better than one part in a

million. Hence, that particular model was not forced on Newton by ex-

isting measurements of the motions of planets, nor did Newton force a

natural phenomenon into a preexisting mathematical pattern. Further-

more, natural selection in the common interpretation of that concept

does not quite apply either, because it was not the case that five com-

peting theories were proposed, of which one eventually won. Rather,

Newton's was the only game in town!

The modified Platonic view, on the other hand, faces different types

of challenges.

First, there is the important conceptual issue that the modified

Platonic view does not really offer any explanation to the power of math-

ematics. The question is simply transformed into a belief in the mathe-

matical underpinning of the physical world. Mathematics is simply

assumed to be the symbolic counterpart of the universe. Roger Penrose,

who as I noted before is himself a powerful supporter of the Platonic

world of mathematical forms, agrees that the "puzzling precise under-

lying role that the Platonic mathematical world has in the physical

world" remains a mystery. Oxford University physicist David Deutsch
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turns the question somewhat around. In his insightful 1997 book The

Fabric of Reality, he wonders: "in a reality composed of physics and un-

derstood by the methods of science, where does mathematical certainty

come from?" Penrose adds to the effectiveness of mathematics two more

mysteries. In his book Shadows of the Mind, he wonders: "How it is that

perceiving beings can arise from out of the physical world," and "how it

is that mentality is able seemingly to `create' mathematical concepts

out of some kind of mental model." These intriguing questions, which

are entirely outside the scope of the present book, deal with the origin

of consciousness and the perplexing ability of our rather primitive men-

tal tools to gain access into the Platonic world (which to Penrose is an

objective reality).

The second problem encountered by the modified Platonic view is

related to the question of tiniversality. To what extent are we certain that

the laws that the universe must obey have to be presented by mathe-

matical equations of the type we have formulated? Until very recently,

probably most physicists on the face of the Earth would have argued

that history has shown that equations are the only way in which the laws

of physics can be expressed. This situation may change, however, with

the impending publication of the book A New Kind of Science by Stephen

Wolfram. Wolfram, one of the most innovative thinkers in scientific

computing and in the theory of complex systems, has been best known

for the development of Mathematica, a computer program/system that

allows a range of calculations not accessible before. After ten years of

virtual silence, Wolfram is about to emerge with a provocative book

that makes the bold claim that he can replace the basic infrastructure of

science. In a world used to more than three hundred years of science be-

ing dominated by mathematical equations as the basic building blocks

of models for nature, Wolfram proposes simple computer programs in-

stead. He suggests that nature's main secret is the use of simple pro-

grams to generate complexity.

Wolfram's book was not out yet at the time of this writing, but

from a long conversation I had with him and from an interview he gave

to science writer Marcus Chown, I can safely conclude that his work has

many far-reaching implications. From the restricted point of view of its

reflection on Platonism, however, Wolfram's work points out that at the
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very least, the particular mathematical world that many thought exists

out there, and which was believed to underlie physical reality, may not

be unique. In other words, there definitely can exist descriptions of na-

ture that are very different from the one we have. Mathematics as we

know it captures only a tiny part of the vast space of all possible simple

sets of rules that might describe the workings of the cosmos.

If both the modified Platonic view and the natural selection inter-

pretation have difficulties in attempting to explain the striking effec-

tiveness of mathematics, is there an exposition that works?

I believe that the explanation has to rely on concepts borrowed from

both points of view rather than on adopting one or the other. The situ-

ation here is very similar to the historical attempts in physics to explain

the nature of light. The lesson from this piece of history of science is so

profound that I will describe it now briefly.

Newton's first paper was on optics, and he continued to work on

this subject for most of his life. In 1704 he published the first edition of

his book Opticks, which he later revised three times. Newton proposed a

"particle theory of light," in which light was assumed to be made up of

tiny, hard particles, that obey the same laws of motion as do billiard

balls. In Newton's words: "Even the rays of light seem to be hard bod-

ies." Two famous experiments at the beginning of the twentieth century

discovered the photoelectric effect and the Compton effect, and pro-

vided strong support for the idea of particles of light. The photoelectric

effect is a process in which electrons in a piece of metal absorb sufficient

energy from light to allow them to escape. Einstein's explanation of this

effect in 1905 (which won him the 1922 Nobel Prize for Physics)

showed that light delivers the energy to the electrons in a grainy fash-

ion, in indivisible units of energy. Thus, the photon—the particle of

light—was introduced. Physicist Arthur Holly Compton (1892-1962)

analyzed in 1918 to 1925 the scattering of X rays from electrons both

experimentally and theoretically. His work (which won him the 1927

Nobel Prize for Physics) further confirmed the existence of the photon.

But there was another theory of light—a wave theory—in which

light was assumed to behave like waves of water in a pond. This theory

was most strongly advocated by the Dutch physicist Christiann Huy-

gens (1629-1695). The wave theory did not have much going for it un-
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til the physicist and physician Thomas Young (1773-1829) discovered

interference in 1801. The phenomenon itself is quite simple. Suppose you

dip the index fingers of both hands periodically into the water in a pond.

Each finger will create a sequence of concentric ripples; crest and trough

will follow each other in the form of expanding rings. At points where a

crest emanating from one finger intersects a crest from the other, you get

the two waves to enhance each other ("constructive interference"). At

points where a crest overlaps with a trough, they annihilate each other

("destructive interference"). A detailed analysis of the fixed pattern that

emerges shows that along the central line (between the two fingers),

there is constructive interference. To either side, lines of destructive in-

terference alternate with lines of constructive interference.

In the case of light, destructive interference simply means dark

lines. Young, a child prodigy who spoke eleven languages by age six-

teen, performed an experiment in which he passed light through two

slits and demonstrated that the light on the viewing surface was "di-

vided by dark stripes."

Young's results, which were followed by impressive theoretical

work by French engineer Augustin Fresnel in 1815 to 1820, initiated a

conversion of physicists to the wave theory. Later experiments con-

ducted by the French physicist Leon Foucault in 1850 and by American

physicist Albert Michelson in 1883 showed unambiguously that the re-

fraction of light as it passes from air to water also behaves precisely as

predicted by the wave theory. More important, the Scottish physicist

James Clerk Maxwell (1831-1879) published in 1864 a comprehensive

theory of electromagnetism that predicted the existence of propagating

electromagnetic waves moving at the speed of light. He went on to pro-

pose that light itself is an electromagnetic wave. Finally, between 1886

and 1888, the German physicist Heinrich Herz proved experimentally

that light was indeed the electromagnetic wave predicted by Maxwell.

So, what is light? Is it a pure bombardment by particles (photons)

or a pure wave? Really, it is neither. Light is a more complicated physi-

cal phenomenon than any single one of these concepts, which are based

on classical physical models, can describe. To describe the propagation

of light and to understand phenomena like interference, we can and

have to use the electromagnetic wave theory. When we want to discuss
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the interaction of light with elementary particles, however, we have to

use the photon description. This picture, in which the particle and wave

descriptions complement each other, has become known as the wave-

particle duality. The modern quantum theory of light has unified the

classical notions of waves and particles in the concept of probabilities.

The electromagnetic field is represented by a wave function, which

gives the probabilities of finding the field in certain modes. The photon

is the energy associated with these modes.

Returning now to the question of the nature of mathematics and

the reason for its effectiveness, I believe that the same type of comple-

mentarity should be applied. Mathematics was invented, in the sense

that the "rules of the game" (the sets of axioms) are man-made. But once

invented, it took on a life of its own, and humans had (and still have) to

discover all of its properties, in the spirit of the Platonic view. The end-

less list of unexpected appearances of the Golden Ratio, the numberless

mathematical relations obeyed by the Fibonacci numbers, and the fact

that we still do not know if there are infinitely many Fibonacci primes

provide ample evidence for this discovery quest.

Wolfram holds very similar views. I asked him specifically whether

he thought mathematics was "invented" or "discovered." He replied: "If

there wasn't much choice in selecting this particular set of rules then it

would have made sense to say that it was discovered, but since there was

much choice, and our mathematics is merely historically based, I have

to say that it was invented." The phrase "historically based" in this con-

text is crucial since it implies that the system of axioms on Which our

mathematics is based is the one that happened to emerge because of the

arithmetic and geometry of the ancient Babylonians. This raises two

immediate questions: (1) Why did the Babylonians develop these par-

ticular disciplines and not other sets of rules? And a rephrasing of the

question on the effectiveness of mathematics: (2) Why were these disci-

plines and their offspring found to be useful at all for physics?

Interestingly, the answers to both of these questions may be related.

Mathematics itself could have originated from a subjective human per-

ception of how nature works. Geometry may simply reflect the human

ability to easily recognize lines, edges, and curves. Arithmetic may rep-
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resent the human aptitude to resolve discrete objects. In this picture,

the mathematics that we have is a feature of the biological details of humans

and of how they perceive the cosmos. Mathematics thus is, in some sense, the

language of the universe—of the universe discerned by humans. Other

intelligent civilizations out there might have developed totally differ-

ent sets of rules, if their mechanisms of perception are very different

from ours. For example, when one drop of water is added to another

drop or one molecular cloud in the galaxy coalesces with another, they

make only one drop or one cloud, not two. Therefore, if a civilization

that is somehow fluid based exists, for it, one plus one does not neces-

sarily equal two. Such a civilization may recognize neither the prime

numbers nor the Golden Ratio. To give another example, there is hardly

any doubt that had even just the gravity of Earth been much stronger

than it actually is, the Babylonians and Euclid might have proposed

a different geometry than the Euclidean. Einstein's theory of general

relativity has taught us that in a much stronger gravitational field,

space around us would be curved, not flat—light rays would travel

along curved paths rather than along straight lines. Euclid's geometry

emerged from his simple observations in Earth's weak gravity. (Other

geometries, on curved surfaces, were formulated in the nineteenth cen-

tury.)

Evolution and natural selection definitely played a cardinal role in

our theories of the universe. This is precisely why we don't continue to

adhere today to the physics of Aristotle. This is not to say, however, that

the evolution was always continuous and smooth. The biological evolu-

tion of life on Earth was neither. Life's pathway was occasionally shaped

by chance occurrences like mass extinctions. Impacts of astronomical

bodies (comets or asteroids) several miles in diameter caused the di-

nosaurs to perish and paved the way for the dominance of the mammals.

The evolution of theories of the universe was also sporadically punctu-

ated by quantum leaps in understanding. Newton's theory of gravita-

tion and Einstein's General Relativity ("I still can't see how he thought

of it," said the late physicist Richard Feynman) are two perfect exam-

ples of such spectacular advances. How can we explain these miraculous

achievements? The truth is that we can't. That is, no more than we can
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explain how, in a world of chess that was used to victories by margins of

half a point or so, in 1971 Bobby Fischer suddenly demolished both

chess grandmasters Mark Taimanov and Bent Larsen by scores of six

points to nothing on his way to the world championship. We may find

it equally difficult to comprehend how naturalists Charles Darwin

(1809-1882) and Alfred Russel Wallace (1823-1913) independently

had the inspiration to introduce the concept of evolution itself—the

idea of a descent of all life from a common ancestral origin. We must

simply recognize the fact that certain individuals are head and shoul-

ders above the rest in terms of insight. Can, however, dramatic break-

throughs like Newton's and Einstein's be accommodated at all in a

scenario of evolution and natural selection? They can, but in a some-

what less common interpretation of natural selection. While it is true

that Newton's theory of universal gravitation had no contending theo-

ries to compete with at the time, it would not have survived to the pres-

ent day had it not been the "fittest." Kepler, by contrast, proposed a

very short-lived model for the Sun-planet interaction, in which the Sun

spins on its axis flinging rays of magnetic power. These rays were sup-

posed to grab on the planets and push them in a circle.

When these generalized definitions of evolution (allowing for quan-

tum jumps) and natural selection (operating over extended periods of

time) are adopted, I believe that the "unreasonable" effectiveness of

mathematics finds an explanation. Our mathematics is the symbolic

counterpart of the universe we perceive, and its power has been continu-

ously enhanced by human exploration.

Jef Raskin, the creator of the Macintosh computer at Apple, em-

phasizes a different aspect—the evolution of human logic. In a 1998 es-

say on the effectiveness of mathematics, he concludes that "Human logic

[emphasis added] was forced on us by the physical world and is there-

fore consistent with it. Mathematics derives from logic. This is why

mathematics is consistent with the physical world."

In the play Tamburlaine the Great, a tale about a Machiavellian hero-

villain who is at the same time sensitive and a vicious murderer, the

great English playwright Christopher Marlowe (1564-1593) recog-

nizes this human aspiration for understanding the cosmos:
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Nature that framed us of four elements,

Warring within our breasts for regiment,

Doth teach us all to have aspiring minds:

Our souls, whose faculties can comprehend

The wondrous Architecture of the world:

And measure every wandering planet's course,

Still climbing after knowledge infinite,

And always moving as the restless spheres ..

The Golden Ratio is a product of humanly invented geometry. Humans

had no idea, however, into what magical fairyland this product was go-

ing to lead them. If geometry had not been invented at all, then we

might have never known about the Golden Ratio. But then, who

knows? It might have emerged as the output of a short computer pro-

gram.



APPENDIX 1

We want to show that for any whole numbers p and q, such that p is larger than q, the

three numbers: p — 2pq; q2 form a Pythagorean triple. In other words, we need
to show that the sum of the squares of the first two is equal to the square of the third.
For this we use the general identities that hold for any a and b:



Since based on our assumption the common measure of s, and d, is also a common

measure of d„ the last equality shows that it is also a common measure of s,. We there-

fore find that the same unit that measures s, and d, also measures s2,andd2.This process
can be continued ad infinitum, for smaller and smaller pentagons. We would obtain
that the same unit that was a common measure for the side and diagonal of the first

pentagon is also a common measure of all the other pentagons, irrespective of how tiny
they become. Since this clearly cannot be true, it means that our initial assumption
that the side and diagonal have a common measure was false—this completes the proof

that s, and d, are incommensurable.
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The area of a triangle is half the product of the base and the height to that base. In the
triangle TBC the base, BC, is equal to 2a and the height, TA, is equal to s. Therefore,
the area of the triangle is equal to s x a. We want to show that if the square of the pyra-

mid's height, h' , is equal to the area of its triangular face, s x a, then s/a is equal to the
Golden Ratio.
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One of the theorems in The Elements demonstrates that

when two triangles have the same angles, they are
similar.Namely, the two triangles have precisely the same
shape, with all their sides being proportional to each
other. If one side of one triangle is twice as long as the re-

spective side of the other triangle, then so are other sides.
The two triangles ADB and DBC are similar (because
they have the same angles). Therefore, the ratio ABIDB

(ratio of the sides of the two triangles ADB and DBC) is

equal to DBIBC (ratio of the bases of the same two trian-
gles):

But the two triangles are also isosceles, so that

We therefore find from the above two equalities that

which means (accordine to Euclid's definition) that point C divides line AB in a
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Quadratic equations are equations of the form

where a, b, c are arbitrary numbers. For example, in the equation 2x ' + 3x + 1 = 0,
a = 2, b = 3, c = 1.

The general formula for the two solutions of the equation is

In the above example

In the equation we obtained for the Golden Ratio,

we have a = 1, b = —1, c = —1. The two solutions therefore are:
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The problem of the inheritance can be solved as follows. Let us denote the entire estate
by E and the share (in bezants) of each son by x. (They all shared the inheritance
equally.)

The first son received:

The second son received:

Equating the two shares:

and arranging:

Therefore, each son received 6 bezants.
Substituting in the first equation we have:
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The total estate was 36 bezants. The number of sons was therefore 36/6 = 6.
Fibonacci's solution reads as follows:

The total inheritance has to be a number such that when I times 6 is added

to it, it will be divisible by 1 plus 6, or 7; when 2 times 6 is added to it, it is
divisible by 2 plus 6, or 8; when 3 times 6 is added, it is divisible by 3 plus

6, or 9, and so forth. The number is 36. I/7 of 36 minus 1/7 is 33/7; plus 1 is 42A,
or 6; and this is the amount each son received; the total inheritance divided

by the share of each son equals the number of sons, or 36/6 equals 6.
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The relation between the number of subobjects, n. the length reduction factor, f, and
the dimension, D, is

If a positive number A is written as A = 101, then we call L the logarithm (base 10) of
A, and we write it as log A. In other words, the two equations A = 10^L and L = log A

are entirely equivalent to each other. The rules of logarithms are:
(i) The logarithm of a product is the sum of the logarithms

(ii) The logarithm of a ratio is the difference of the logarithms

(iii) The logarithm of a power of a number is the power times the logarithm of the
number

Since 10 ' = 1, we have from the definition of the logarithm that log 1 = 0. Since 10^j =
10, 10 ' = 100, and so on, we have that log 10 = 1, log 100 = 2, and so on. Consequently,
the logarithm of any number between I and 10 is a number between 0 and 1; the loga-
rithm of any number between 10 and 100 is a number between 1 and 2; and so on.

If we take the logarithm (base 10) of both sides in the above equation (describing
the relation between n, f, and D), we obtain

Therefore, dividing both sides by log f
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In the case of the Koch snowflake, for example, each curve contains four "subcurves"
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If we examine Figure 116(a), we see that the condition for the two branches to touch
amounts to the simple requirement that the sum of all the horizontal lengths of the
ever-decreasing branches with lengths starting with f^3 would be equal to the horizon-
tal component of the large branch of length f All the horizontal components are given
by the total length multiplied by the cosine of 30 degrees. We therefore obtain:

Dividing by cos 30° we obtain

The sum on the right-hand side is the sum of an infinite geometric series (each term is
equal to the previous term multiplied by a constant factor) in which the first term is f^3,

and the ratio of two consecutive terms is f In general, the sum S of an infinite geo-
metric sequence in which the first term is a, and the ratio of consecutive terms q, is
equal to

For example, the sum of the sequence

in which a = 1 and q = 1/2 is equal to

In our case we find from the equation above:
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Dividing both sides by f, we get

Multiplying by (1 —1) and arranging, we obtain the quadratic equation:

with the positive solution
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Benford's law states that the probability P that digit D appears in the first place is given
by (logarithm base 10):



APPENDIX 10

Euclid's proof that infinitely many primes exist is based on the method of reductio ad
absurdum. He began by assuming the contradictory—that only a finite number of
primes exist. If that is true, however, then one of them must be the largest prime. Let

us denote that prime by P. Euclid then constructed a new number by the following
process: He multiplied together all the primes from 2 up to (and including) P, and then

he added 1 to the product. The new number is therefore

By the original assumption, this number must be composite (not a prime), because it

is obviously larger than P, which was assumed to be the largest prime. Consequently,
this number must be divisible by at least one of the existing primes. However, from its
construction, we see that if we divide this number by any of the primes up to P, this

will leave a remainder 1. The implication is, that if the number is indeed composite,

some prime larger than P must divide it. However, this conclusion contradicts the as-

sumption that P is the largest prime, thus completing the proof that there are infi-
nitely many primes.




