K@P Series on Knots and Everything — Vol. 28

BEYOND MEASURE

A Guided Tour Through
Nature, Myth, and Number




This page isintentionally left blank



BEYOND MEASURE

A Guided Tour Through
Nature, Myth, and Number




K(QE Series on Knots and Everything — Vol. 28

BEYOND MEASURE

A Guided Tour Through
Nature, Myth, and Number

Jay Kappraff

New Jersey Institute of Technology
USA

\\Ev‘ World Scientific

New Jersey ¢ London * Singapore « Hong Kong



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: Suite 202, 1060 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

BEYOND MEASURE
A Guided Tour Through Nature, Myth, and Number

Copyright © 2002 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-02-4701-X
ISBN 981-02-4702-8 (pbk)

This book is printed on acid-free paper.

Printed in Singapore by World Scientific Printers (S) Pte Ltd



Contents

Introduction xvii
Acknowledgements XXV
Permission xxvii

Part 1 Essays in Geometry and Number as They Arise in

Nature, Music, Architecture and Design 1
Chapter 1 The Spiral in Nature and Myth 3
1.1 Introduction 3
1.2 The Australian Aborigines 3
1.3 The Fali 6

1.4 The Precession of the Equinoxes in Astronomy
and Myth 1
1.5 Spiral Forms in Water 9
1.6 Meanders 10
1.7 Wave Movement 12
1.8  Vortices and Vortex Trains 15
1.9  Vortex Rings 17
1.10  Three Characteristic Features of Water 21
1.11 The Flowform Method 22
1.12  Conclusion 24
Chapter 2 The Vortex of Life 25
2.1 Introduction 25

2.2 Projective Geometry 26



vi Beyond Measure

2.3

2.4

2.5
2.6
2.1
2.8
2.9
2.10
2.11
2.12

Perspective Transformations on the Line to
Points on a Line

Projective Transformations of Points on a Line to
Points on a Line

Growth Measures

Involutions

Circling Measures

Path Curves

Path Curves in Three Dimensions

Field of Form

Comparison of Three Systems

Conclusion

Appendix 2.A Homogeneous Coordinates

Chapter 3

3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9
3.10

Harmonic Law

Introduction

Musical Roots of Ancient Sumeria

Musical Fundamentals

Spiral Fifths

Just Tuning

Music and Myth

Musically Encoded Dialogues of Plato

The Mathematical Structure of the Tonal Matrix
The Color Wheel

Conclusion

Appendix 3.A

3.A.1 Logarithms and the Logarithmic Spiral
3.A.2 Properties of Logarithms
3.A.3 Logarithms and the Musical Scale

Appendix 3.B The Pythagorean Comma

Appendix 3.C Vectors

29

31
33
36
38
40
46
47
50
52
52

54

54
55
57
63
69
11
80
82
85
87
87
87
89
90
90
91



Chapter 4

4.1
4.2

4.3
4.4

4.5

The Projective Nature of the Musical Scale

Introduction

A Perspective View of the Tonal Matrix:

The Overtone Series

The Three Means

Projective Analysis of an Egyptian Tablet

4.4.1 An Analysis of Schwaller De Lubicz’s
Number Sequence

Conclusion

Appendix 4.A

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7

The Music of the Spheres

Introduction

The Music of the Spheres

Kepler's Music of the Spheres

Results of Kepler's Analysis

Bode’s Law

A Musical Relationship that Kepler Overlooked

Conclusion

Appendix 5.A Kepler's Ratios

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Tangrams and Amish Quilts

Introduction
Tangrams

Amish Quilts
Zonogons

Zonohedra
N-Dimensional Cubes

Contents vii

93
93

94
99
99

101
104
104

109

109
110
114
116
118
120
123
123

125

125
127
128
130
132
133

Triangular Grids in Design: An Islamic Quilt Pattern 135

Other Zonogons

Conclusion

137
141



viii Beyond Measure

Appendix 6.A

Chapter 7

7.1
1.2
13
1.4
7.5
7.6

1.9
1.8

6.A.1 Steps to creating a triangular grid of circles
6.A.2 Steps to creating a square circle grid

Linking Proportions, Architecture, and Music

Introduction

The Musical Proportions of the Italian Renaissance
The Roman System of Proportions

The Geometry of the Roman System of Proportions
The Law of Repetition of Ratios

Relationship between the Roman System and the
System of Musical Proportions

Ehrenkrantz’ System of Modular Coordination
Conclusion

Appendix 7.A An Ancient Babylonian Method for Finding

Chapter 8

8.1
8.2
8.3
8.4
8.5

8.6
8.7

the Square Root of 2

A Secret of Ancient Geometry

Introduction

The Concept of Measure in Ancient Architecture

The Ancient Geometry of Tons Brunes

Equipartion of Lengths: A Study in Perspective

The 3, 4, 5-Triangle in Sacred Geometry

and Architecture

8.5.1 Construction of the Brunes star from 3, 4,
5-triangles

8.5.2  The 3, 4, 5-triangle and its musical proportions

8.5.3 The geometry of the Brunes star

What Pleases the Ear Should Please the Eye

Conclusion

Appendix 8.A Harmonic Means

Appendix 8.B Projective Analysis of the Equipartition

Properties of the Brunes Star

141
141
143

145

145
146
149
153
156

160
164
166

167

169

169
171
172
176

181

181
183
186
187
189
189

192



Chapter 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

9.9
9.10

Chapter

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Contents ix

The Hyperbolic Brunes Star

Introduction

A Generalized Brunes Star

Zeno’s Hyperbolic Paradox

Hyperbolic Functions and Number

Hyperbolic Functions in the Theory of Probability
Gambler’s Ruin

Little End of the Stick Problem

Shannon’s Entropy Function and Optimal
Betting Strategy

The Generalized Little End of the Stick Problem

Conclusion

10 The Hidden Pavements of the

Laurentian Library

Introduction
The Laurentian Library

Reconstruction of the Pavements

The Sacred-Cut Panel
The Medici Panel
The Mask Panel

Conclusion

Appendix 10.A The Sacred Cut and the Square Circle Grid

Chapter 11

11.1
11.2
11.3
11.4
11.5
11.6
11.7

Measure in Megalithic Britain

Introduction

A Standard Measure

Megalithic British and Greek Measures Compared
Statistical Studies of Megalithic Measure
Measurements at Mid Clyth

The Stone Circles

Flattened Circles and the Golden Mean

195

195
196
198
200
201
202
203

206
208
211

213

213
214
216
217
223
229
231
232

235

235
236
237
238
240
242
2417



x Beyond Measure

11.8
119

Historical Perspective

Conclusion

Appendix 11.A
Appendix 11.B The Geometry of the Stone Circles

Chapter 12 The Flame-hand Letters of the

12.1
12.2
12.3
12.4
12.5
12.6

12.7
12.8
12.9

Part 11

Chapter

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

Hebrew Alphabet

Introduction

The Flame-Hand Letters of the Hebrew Alphabet
The Vortex Defining the Living Fruit

The Torus

The Tetrahelix

The Meaning of the Letters

12.6.1 Oneness

12.6.2 Distinction

Generation of the Flame-Hand Letters

Some Commentary on Tenen’s Proposal

Conclusion

Concepts Described in Part 1 Reappear in the
Context of Fractals, Chaos, Plant Growth and
Other Dynamical Systems

13 Self-Referential Systems

Introduction

Self-Referential Systems in Mathematics

The Nature of Self-Referentiality
Self-Referentiality and the Egyptian Creation Myth
Spencer-Brown’s Concept of Re-entry

Imaginary Numbers and Self-Referential Logic
Knots and Self-Referential Logic

Conclusion

Appendix 13.A

250
254
254
256

261
261
262
265
268
271
276
2717
278
278
286
288

289

291

291
292
293
296
297
300
303
306
306



Contents xi

Chapter 14 Nature’s Number System

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Introduction

The Nature of Rational and Irrational Numbers
Number

Farey Series and Continued Fractions
Continued Fractions, Gears, Logic, and Design
Farey Series and Natural Vibrations

Conclusion

Appendix 14.A Euler’s y-Function

Appendix 14.B The Relation between Continued Fraction

Indices and the Little End of the Stick
Problem

Appendix 14.C “Kissing” Gears

Chapter 15 Number: Gray Code and the Towers of Hanoi

15.1
15.2
153
154
15.5
15.6
15.7

Introduction

Binary Numbers and Gray Code

Gray Code and Rational Numbers

Gray Code and Prime Numbers

Towers of Hanoi

The TOH Sequence, Divisibility, and Self-replication
Conclusion

Appendix 15.A

15.A1 Converting between Binary and Gray Code
15.A2 Converting from Binary to TOH Position

Chapter 16 Gray Code, Sets, and Logic

16.1
16.2
16.3
16.4
16.5

Introduction

Set Theory

Mathematical Logic

Higher Order Venn diagrams
Karnaugh Maps

309

309
309
311
317
3217
330
333
334

335
337

340

340
340
344
346
348
354
356
357
357
357

359

359
359
362
364
367



xii Beyond Measure

16.6  Karnaugh Maps and n-dimensional Cubes 368
16.7 Kamaugh Maps and DNA 369
16.8 Laws of Form 372
16.9 Conclusion 377
Chapter 17 Chaos Theory: A Challenge to Predictability 378
17.1  Introduction 378
17.2  The Logistic Equation 382
17.3  Gray Code and the Dynamics of the Logistic Equation 387
174  Symbolic Dynamics 389
17.5 The Morse—Thue Sequence 390
17.6  The Shift Operator 391
17.7  Conclusion 392
Appendix 17.A 392
Chapter 18 Fractals 394
18.1 Introduction 394
18.2  Historical Perspective 395
18.3 A Geometrical Model of a Coastline 396
18.4  Geometrically Self-Similar Curves 401
18.5 Self-Referentiality of Fractals 406
18.6  Fractal Trees 411
18.7  Fractals in Culture 414
18.8  Conclusion 416
Chapter 19 Chaos and Fractals 417
19.1 Introduction 417
19.2  Chaos and the Cantor Set 417
19.3 Mandelbrot and Julia Sets 420
19.4  Numbers and Chaos: The Case of ¢ = 0 426
19.5 Dynamics for Julia Sets with ¢ # 0 431
19.6  Universality 436

19.7 The Mandelbrot set Revisited 437



19.8
19.9
19.10

A Mandelbrot Set Crop Circle
Complexity
Conclusion

Chapter 20 The Golden Mean

20.1
20.2
20.3
20.4

20.5
20.6
20.7
20.8
20.9

Chapter

21.1
21.2

21.3
21.4
21.5

21.6

Chapter

22.1
222

21

Introduction

Fibonacci Numbers and the Golden Mean
Continued Fractions

The Geometry of the Golden Mean
20.4.1 The golden rectangle
20.4.2 The pentagon

20.4.3 Golden triangles

20.4.4 Golden diamonds

20.4.5 Brunes star

Wythoffs Game

A Fibonacci Number System
Binary and Rabbit “Time Series”
More About the Rabbit Sequence

Conclusion

Generalizations of the Golden Mean — [

Introduction

Pascal’s Triangle, Fibonacci and other
n-bonacci Sequences

n-Bonacci Numbers

n-Bonacci Distributions

A General Formula for Limiting Ratios of
n-Bonacci Sequences

Conclusion

22 Generalizations of the Golden Mean — 11

Introduction

Golden and Silver Means from Pascal’s Triangle

Contents  xiii

438
441
442

443

443
443
446
448
448
449
449
449
453
454
458
463
467
468

469
469

469
471
472

474
474

475

475
476



xiv Beyond Measure

22.3
22.4
22.5
22.6

22.1
22.8
229
22.10

12.11

Lucas’ Version of Pascal’s Triangle

Silver Mean Series

Regular Star Polygons

The Relationship between Fibonacci and
Lucas Polynomials and Regular Star Polygons
The Relationship between Number and the
Geometry of Polygons

Additive Proporties of the Diagonal Lengths
The Heptagonal System

Self-Referential Properties of the
Silver Mean Constants

Conclusion

Appendix 22.A Generalizations of the Vesica Pisces

Chapter 23 Polygons and Chaos

23.1
23.2
23.3

234
23.5
23.6
23.7
23.8

Introduction
Edge Cycles of Star Polygons

The Relationship between Polygons and Chaos for

the Cyclotomic 7-gon

Polygons and Chaos for the 7-cyclotomic Polygon
Polygons and Chaos for Generalized Logistic Equations

New Mandelbrot and Julia Sets
Chaos and Number

Conclusion

Appendix 23.A
Appendix 23.B
Appendix 23.C

Chapter 24 Growth of Plants: A Study in Number

24.1
24.2

Introduction

Three Models of Plant Growth
24.2.1  Coxeter’s model
24.2.2  Van lterson’s model
24.2.3 Rivier’s model

479
481
486

488

492
494
495

498
501
502

504

504
505

507
508
513
514
516
516
517
518
518

520

520
521
522
524
527



24.3
24.4
24.5

Contents xv

Optimal Spacing
The Gears of Life

Conclusion

Appendix 24.A The Golden Mean and Optimal Spacing

Chapter 25 Dynamical Systems

25.1  Introduction
25.2  Quasicrystals
25.3 The Ising Problem
25.3.1 The Ising model
25.3.2 The Devil’s Staircase for Ising spins
25.3.3 Spatial Distribution of Spins
254 The Circle Map and Chaos
25.5 Mode Locking
25.6  Mode Locking and Natural Resonances
25.7 Mode Locking and the Harmonics of the Musical Scale
25.8 Mode Locking and the Circle Map
25.9  Blackmore’s Strain Energy: A Unifying Concept
25.10 Conclusion
Epilogue
Bibliography
Index

529
531
536
537

539

539
539
542
542
543
544
546
549
551
551
553
556
557

559
565
571



This page isintentionally left blank



Introduction

Blessed be you, mighty matter, irresistible march of evolution, reality ever new-born;
You who, by constantly shattering our mental categories,
force us to go ever further and further in our pursuit of the truth.

Blessed be you, universal matter, unmeasurable time, boundless ether;
You who, by overflowing and dissolving our narrow standards
of measurement reveal to us the dimensions of God.

Teihard De Chardin

This book has been written as an antidote to the present-day emphasis
on specialization in which knowledge is compartmentalized. Not only are
the arts and sciences separated from each other, but even specialists in
different scientific disciplines find it difficult to communicate with one
another. One consequence of this specialization is that context, passion,
and spiritual content are often considered irrelevant. This narrowing of
focus has enabled us to probe deeper into ever-narrower areas of study.
While this has enabled us to create a world of technological wonders, it has
also encouraged us to confuse ends with means. All too often great discoveries
are accompanied by costs which outweigh their benefits.

Furthermore, despite successes in certain areas of science and
mathematics, other areas, particularly those relating to the biosciences and
cosmology, have not been amenable to standard scientific modeling. Recently
we have begun to realize that our scientific theories and mathematical
systems are incomplete, and we have attempted to create new models to
explain the otherwise unexplainable. On the other hand, ancient cultures
attempted to understand the natural world from their own perspective which
may add novel and perviously undiscovered insights into the investigation
and analysis of current problems. A theme of this book is that our efforts

xvii



xviii Beyond Measure

to understand natural phenomena may be enhanced by broadening our
approach to science and mathematics to include ideas from art and
architecture, both ancient and modem.

Writing this book has been a personal journey. My training is in
engineering, the physical sciences, and mathematics. However, in 1978 I
helped to organize an interdisciplinary effort at the New Jersey Institute of
Technology involving the Mathematics and Computer Science Departments
and the School of Architecture, which resulted in a new course in
Mathematics of Design [Kapl, 5]. In the process I discovered that common
ideas span areas as diverse as art, architecture, chemistry, physics, and biology,
with mathematics as a common language. My book, Connections: The
Geometric Bridge between Art and Science was an attempt to explore this
common language within the context of geometry and design. This book
continues that exploration emphasizing the role of number and its
relationship to geometry.

Beyond Measure is written in two parts. Part | presents several examples
in which art, architecture, music, and design with interesting mathematical
content might have been used by ancient civilizations and primitive cultures
to represent aspects of the natural world. I present the work of several
researchers who use number and geometry to guide them in this endeavor.
Sometimes valuable insights can be found in questionable theories and
hypotheses. I am sensitive to the concern of scientists such as Carl Sagan
[Sag] that scientifically unsubstantiated ideas may be gaining undeserved
credibility in our society. However, there is also the danger that in the
process of stemming the spread of spurious ideas, valuable insights will be
eliminated from consideration. I have widened my net to include ideas that
pass the test of being mathematically consistent, even though they are part
of unproven theories.

Part II focuses on several mathematical themes of current interest, such
as the theory of chaos and fractals; the mathematical study of the growth
of plants (also known as plant phyllotaxis); how the number system
anticipates certain naturally occurring resonances at both astronomical and
sub-microscopic scales; how mathematical logic relates to number and to
the structure of DNA; and the importance of the study of dynamical systems
as a way to describe natural processes. Many patterns of geometry and
number, and even certain specific numbers such as the golden and silver
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means, and geometric structures such as spirals and star polygons that arise
in Part I are crucial for an understanding of the concepts of Part II. An
intriguing discovery is included that shows an unexpected relationship
between chaos theory and the geometry of regular polygons.

Chapters 13 and 14 serve as a bridge between the two parts of this
book. These chapters examine the nature of systems that are created from
within themselves, in other words self-referential systems. In Part I, such
systems take the form of the creations of architects, artists, and designers,
and patterns in nature. Part Il focuses on the self-referential aspect of
dynamical systems. In man’s quest to bring order to the world of his senses,
the invention of number is perhaps his greatest achievement. Are the patterns
of number that we find through our observations of the world already
present in our minds? Is number part of the self-referential apparatus of our
brains? Questions such as these are always in the background of our
discussions in this book.

Much of the material described in this book is not well-known and is
the result of my travels along the back roads of mathematical inquiry. Some
of the material comes from scientific sources; others I have drawn from
individuals who are unknown in scientific circles, but who have worked
over a lifetime to develop their area of knowledge. I have also contributed
some of my own discoveries.

Artists and scientists both ancient and modern have searched for
harmony in the natural world using number and geometry. While in modern
times, these ideas have been pursued using the language of science, the
ancient world used art, music, poetry, and myth.

In recent years science has come to realize the limits inherent in its
ability to model reality. Chaos theory has been developed to deal with
systems that are entirely deterministic, yet so sensitive to initial conditions
that changes more minute than the tolerance of the finest measuring sticks
can have measurable effects on the systems. This calls into question
previously formulated models which have assumed that the results of an
experiment were intrinsically reproducible. Just as in the ancient world
myths were created in order to give man some control over the vicissitudes
of nature, new mathematical theories are being posited which make
relationships based on number the key to gaining some control over
phenomena exhibiting this sensitive dependence. In other words, chaos
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emerges at one level but, with the help of mathematics, it is replaced by
order at a higher level. In Part 11 of this book, I will attempt to illustrate
this interplay between order and chaos.

In an essay entitled Science and Art, the botanist Jochen Bockemuhl
[Boc] states that the aims of art and science are almost diametrically opposed.

“New faculties have been developed, but in either case they
are one-sided. Artists have learned to let go of external objects
and gain inner perception. Their works point to the inner life.
— Scientists on the other hand, concentrate on the physical
aspect of things and are able to handle this irrespective of
content. They fail to realize that the experience gained in
thinking has opened up a way to move consciously from outer
phenomenon to inner experience.”

Bockemuhl feels that the approaches used in science and the arts can
complement each other. This book is my effort to move the discourse of
mathematics and science in the direction of the arts to their mutual benefit.

Since ancient myth and history figure so strongly in Part I, I would like
to state my perspective on their importance. The historical records of the
ancient world are incomplete in every area. Most of the surviving records
are little more than warehouse lists that shed little light on the thought
processes of the people of that time. The best that we can do is piece
together speculations of what occurred and why or how it occurred from the
fragments that have survived the passage of time. Further clues can be
obtained by studying myths that have been handed down to us through the
work of artists and poets of each age. I support the belief of de Santillana
and H. von Dechend in Hamlet’s Mill [de-D] that ancient people were every
bit as subtle in their understanding of the universe as are we.

It is my belief that astronomical and cultural information may have
been geometrically and arithmetically expressed through the musical scale
and the proportions of significant ancient structures. Artists and practitioners
of folk arts and crafts have also given expression to certain patterns which
carry geometrical relationships despite the mathematical naivete of their
creators. Some of these ideas will be presented in this book.

We live in an age dominated by science and technology. To a great
degree, we have derived great benefits from the fruits of technology. However,
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the assumptions of our scientific paradigms lead us to believe that the
machines that we have created and the scientific constructs of our minds
have no limits. So long as the limitations of our scientific models are
understood and these models are seen as tools to extend our perceptions
we are on safe ground. It is only when we mistake the “scaffolding” for
the “edifice” that we overreach the bounds of scientific validity [Rot].

I doubt whether a computer will ever be able to either compose or play
a piece of music with the spiritual depth of a Bach partita executed by a
great violinist. The composer and musician are engaged in processes that
invoke mental and physical tolerances beyond measure. To create
transcendent qualities of sound, a violinist engages in nuances of physical
engagement with the violin beyond the limits of measure. In a similar
way a great athlete has learned to control tolerances in timing in order
to display the effortless mastery which so thrills the observer. Marcel
Marceau has said that in order to create a smile in mime, the smile must
come from within; otherwise, it is seen as a grimace. Although it may
appear that a smile might be describable in physical terms as a mere tension
of the cheeks and jaw, the smile cannot be abstracted from its subject
without destroying its essence. What I am suggesting is that the things
in our lives that mean the most may be beyond measure and reproduction
by computers and science. This book speaks to the need to expand the
discourse of science beyond its traditional boundaries.

The scientific method proceeds along a two-stage process. At stage one
the scientist is presented with a medley of observations and perceptions
which he or she must integrate, in stage two, into a coherent theory which
has ramifications beyond the observer’s power of prediction. In stage one,
measurement plays an important role. However, measurement brings all
attention to a single focus and has the effect of abstracting the phenomenon
studied from its context, which may reduce its power. This effect is
dramatically exhibited in the quantum world where the act of measurement
so profoundly alters the system that the measuring process must be included
as part of the system to be measured. Even when we have been successful
in describing the primary genetic units of a living system in terms of its
DNA coding and have developed the means to manipulate these genetic
structures, its meaning to the organism is incomplete. The organism responds
as much to its context as to its coding. For example, the outward form of
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a plant depends crucially on whether it is grown on a north or south-facing
slope, covered by shadow or open, in moist or dry soil. By focusing on the
gene we miss the enormous plasticity that enables the organism to manifest
its true nature [Hol].

The great mystery is how perceptions at stage one lead to a unified
concept at stage two. It is here that | believe something akin to Polyani’s
notion of tacit knowledge comes into play [Pol]. Some aspect of our minds
and prior experiences leads us to go beyond mere appearances to a higher
level of understanding. In the act of comprehension or discovery we move
from a focus on some aspect of our object of study to its meaning for us.
According to Polyani,

“To attend from a thing to its meaning is to interiorize it,
and... to look instead at the thing (or measure it) is to
exteriorize or alienate it. We shall then say that we endow a
thing with meaning by interiorizing it and destroy its meaning
by alienating it.”

It is this transcendent process, as manifested in the pursuit of knowledge in
both the ancient and modern world, that forms the focus of this book.

I have been told that an author of science books for the general public
loses an ever larger part of his audience for each equation or number series
he uses. In this respect, I have not exercised prudence. I have included all
of the mathematical arguments necessary to present a meaningful discourse.
Nothing has been hidden from view. Since this is meant to be more than
a book about ancient and modern mathematics and science, it faces the
mathematics squarely. However, I have endeavored never to go beyond the
level of mathematics mastered in the early school years. Calculus is never
needed (although it figures peripherally in Chapter 10), and only in rare
instances is algebra called upon. It is the concepts of number and geometry
which provide the mathematical substance of the book. Each chapter,
particularly in Part I, can be read either on the level of ideas or in terms
of the mathematical detail. The ideas are occasionally subtle and require
careful reflection on the part of both professionals and novices. This is
particularly the case in Chapter 2 on projective geometry, Chapter 19
on the relationship between chaos theory and number, and Chapters 22
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and 23 on the relationship between polygons and theories of proportion
and chaos theory. 1 have placed expanded mathematical discussions
in appendices so as not to interrupt the flow of ideas.

The chapters of this book can be read as independent essays. However
they are also woven together by several recurring themes. Since the golden
mean plays a large role in this book, one warning to the reader is in order.
I have chosen to use the symbol 7 more in favor to mathematicians,
throughout this book to signify the golden mean rather than the symbol ¢
more familiar to non-mathematicians.

Plato stated that if one is to learn the truth of the nature of the universe,
one must keep his eyes on the unity of all things and immerse himself in
the study of music, astronomy, geometry, and number, the so-called
quadrivium. This book represents my attempt to follow this prescription. It
has been an enriching personal experience. | have listened to the stories of
individuals who have each spent years pursuing a single area of knowledge.
[ feel privileged to have been able to learn from them and to have the
opportunity of distilling their work so that it can be understood and
appreciated by others. At the same time, | have attempted to look beyond
the individual stories to a greater synthesis of their ideas. I have discovered
that many streams are flowing together into one. If we stand back, we can
begin to understand how ancient knowledge and modern themes join
together.
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1
The Spiral in Nature and Myth

The ocean wave...in essence is a kind of ghost
Freed from materiality by the dimension of time.
Made not of substance but energy.

Guy Murchie
1.1 Introduction

Our technological culture may learn much from primitive societies which
express their understanding of nature in myths and rituals.

I shall examine the symbolic role of the spiral in the myths and rituals
of the Australian Aborigines, and the Fali of the Cameroons (cf. [Eli],
[Gui]). I shall also examine the possibility that ancient civilizations were
aware of such astronomical phenomena as the precession of the equinoxes,
and that the stars were pictured as rising in helices [de-D]. Finally, I will
present an outline of the observations and ideas of Theodor Schwenk [Schw}
on the creative force of water in the genesis of organic forms.

1.2 The Australian Aborigines

The Aborigines are a nomadic people who believe that in ancient times,
known as the “epoch of the sky”, gods inhabited the territory. At a later
time, known as “the epoch of the dream” or “dreamtime”, these gods were
replaced by legendary heroes who were relegated to a mythical past time
and to eternal idleness. The heroes, being less removed from man’s experience
than the gods, presented men with a model to emulate. Through the example
of these heroes, men became capable of molding and controlling nature.

3
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Figure 1.1 Australian aborigines: Mythical formation of the dunes along a river. Schematic
representation of the river-as-serpent { Australia). By courtesy of Elemond Milano.

According to Guidoni the landscape was said to be formed by the mythical
ancestor-snake. The legend suggests that when it emerged from the sea the
snake crawled across the dry land leaving its sinuous track, a spiral form,
imprinted there forever (see Figure 1.1). This relationship can be understood
by looking at the undulating pattern of a river as it traverses the landscape
and comparing it with the meandering course of a snake slithering along
the Earth. There are many different tribal groups, each with its own
interlocking myths which direct them along paths that often cross. The
underpinning of tribal unity is, however, that the territory is conceived of
as a network of sacred centers that represent the campsites along the
wandering snakelike paths. These centers are located at water holes and the
path takes the nomads to places of abundant food and water as the seasons
change. These centers are thought to have been used by their mythic
progenitors to issue from and reenter into the earth during their wanderings.
These centers or water holes are symbolized by spirals.

More than one group can occupy a single campsite at the same time,
but only according to specific rules laid down in the myths. Each tribe has
a coat of arms consisting of connected bands cut with diagonal parallel lines
inclined alternately to the left and the right to represent a particular stretch
of watercourse inhabited by the tribe. The whole course of the river is
thereby synthesized into a zigzag pattern that shows the position of the
various tribes as they disperse themselves along the river relative to each
other and as they follow the itinerary of the culture hero in their wanderings.

During their wanderings, the chief of the group carries a sacred pole to
symbolize the sacred center. With it, he orients the tribe to the space and
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points to the directions of the path through it. In one legend, it is said that
the Achilpa tribe perished when this pole was accidentally broken and the
people became disoriented and could not proceed. A myth tells that the
Achilpa hero Numbakulla climbed to the heavens on the pole, again
emphasizing the pole’s connection of heaven with Earth.

Large numbers of vital spirits are always present at the sacred locations.
Conception is portrayed by the passing into the uterus of one of these spirit
babies. Since every individual existed prior to his life in a specific territorial
center, he considers himself more intimately linked to the place of his
conception than that of his birth.

Dances are used to reenact this creation story. In the Bamba ceremony
of the Walbirti, a pole about three feet high is erected and, like the dance
that follows, is intended to increase the ant species. First a hole is dug and
water poured on the ground. The moist earth is then made sacred with
“blood” by soaking it with red ocher. The pole is decorated with white spots
representing ants and topped with a tuft of leaves of the bloodrot plant
considered to be the source of life, containing a baby. The pole is placed
in the hole, which symbolizes an anthill, while the circle and hole represent
the encampment of ants. Dancers crawl across the symbolic campsite in
imitation of the insect, coming closer to the center and finally symbolically
entering the hole. This end to the dance represents the act of procreation
that concludes every act of entering the sacred center. Viewing the ceremony
in terms of a two-dimensional design, the center represents the hole, the
sacred source, and the concentric circles stand for the degrees of distance
from the center with vertical movement back to the surface of the earth
and to the present. The combination of inwardly moving circular motion
results in a spiral path.

The representation of the sacred hole and the path leading to it carries
a great many associations. The center is the point of contact with dreamtime;
the concentric circles represent the primordial campsite, the path leading
to it signifies the present time; the movement of ascent and descent, the
sexual act and the male organ. The complex geometrical symbolism also
gives a summary picture of the territory. It represents the routes the tribes
take in their movement through the territory and the seasons, giving primary
attention to the need for water and the relationships between the other
tribal groups.
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1.3 The Fali

According to Guidoni, every interpretation of the Fali culture can be traced
back to the mythic creation of the universe through the balanced
correspondence between two cosmic eggs: one of the tortoise and the other
of the toad. This subdivision between two unequal parts corresponding to
the tortoise and the toad is also reflected in the organization of the society,
the territory, and the architecture of the Fali. Every subsequent differentiation
of elements within the society came about through a series of alternate and
opposing movements or “vibrations” which guaranteed the maintenance of
equilibrium between opposites. Every region, every group, or architectural
element either participates in one of these opposing movements or is a
fixed point that acts as a pivot for the motion of the parts around it.
The form of the Fali’s dwellings is an example of how this mythical
organizing principle works. The huts are constructed with a “feminine”
cylindrical part made of masonry and a “masculine” conical part made up
of rafters and straw, as is shown in Figure 1.2. Although they are stationery,
these parts can be imagined to circle in opposite directions to each other.

Figure 1.2 Fali: Section of a granary of bal
do type (Cameroon). By courtesy of Elemond
Milano.
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All points participate in a kind of virtual motion except that the vertex of
the cone is fixed. According to Guidoni,

“It was the tortoise that gave man the model for his house.
Under its tutelage the first couple built the primordial house,
whose constructive and decorative detail was established for all
time and which must be faithfully imitated in all dwellings of
the Fali.”

The relationship between the Fali myths and the spiral will be made
explicit in the next chapter.

1.4 The Precession of the Equinoxes in Astronomy and Myth

The Earth’s axis is inclined at an angle of 23% degrees to the normal
(perpendicular) line to the plane of the sun’s movement (ecliptic plane) as
shown in Figure 1.3. This normal line is also known as the axis of the
celestial sphere. There is evidence that ancient civilizations were aware
that the Earth’s axis makes one complete revolution about the axis of the
celestial sphere approximately every 26,000 years and that some creation
myths depicted stars moving on spiral paths (a star rising in the East makes
a helical path in the night-time sky around the pole star), within this
precession cone as shown for the representation of creation of the Bambara
tribe of Africa [de-DJ in Figure 1.4a. As a result, the star marking the
direction of north changes over time. Whereas now the north star is alpha
Ursae Minoris, around 3000 B.C. it was alpha Draconis and in 14,000 A.D.
it will be Vega.

Twice each year, at the vernal and autumnal equinoxes, the Earth moves
to a position in which it lies on the line of intersection of the ecliptic (the
plane of the planet’s movement about the sun) and the equatorial planes
(the plane of the Earth’s equator). The vernal and autumnal equinoxes
along with the summer and winter solstices make up what is referred to as the
“four corners of the quadrangular Earth”, as depicted by the Bambara tribe
in Figure 1.4b by four spirals. Angle is metaphorically used to emphasize the
temporal rather than spatial element since angle is measured by units of
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Figure 1.3 A diagram of the Precession of the Equinoxes. The symmetrical drawing shows
that the phenomenon occurs at both poles.



Chapter 1 The Spiral in Nature and Myth 9

Figure 1.4 The ways of the Demiurge during creation, according to the Bambara. (a) “In
order to make heaven and earth, the Demiurge stretched himself into a conical helix; the
turnings-back of that spiral are marked graphically by the sides of two angles which represent
also the space on high and the space below.” (b) “In order to mix the four elements of which all
things are formed, and to distribute them to the borders of space, the movements of the Demiurge
through the universe are figured by four spirals bound one to the other which represent at the
same time the circular voyage, the four angles of the world in which the mixing of the elements
takes place, and the motion of matter.”

time (e.g., degrees, minutes, and seconds of arc). As a result of the precession
of the Earth’s axis, the location of the line of the equinoxes changes. For
this reason, the movement of the Earth’s axis is referred to as the precession
of the equinoxes.

1.5 Spiral Forms in Water

The book Sensitive Chaos by Theodor Schwenk [Schw] is concerned with

the creation of flowing forms in water and air. As Schwenk states:

“In the olden days, religious homage was paid to water, for
men felt it to be filled with divine beings whom they could
only approach with the greatest reverence. Divinities of the
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water often appear at the beginning of a mythology (for example,
the Australian aborigines). Men gradually lost the knowledge
and experience of the spiritual nature of water until at last they
came to treat it merely as a substance and means of transmitting
energy.”

Water expresses itself in a vocabulary of spiral forms. Schwenk feels
that these forms are the progenitors of life. The meandering stream, the
breaking wave, the train of vortices created by a branch or other obstructions
hanging in the water, and the watery vortex extending from the water’s
surface into its depths are the raw materials of living forms. According to

Schwenk,

“Every living creature in the act of bringing forth its visible
form passes through a liquid phase. While some creatures remain
in this liquid state or solidify only slightly, others leave the
world of water and fall under the dominion of the earthly
element. All reveal in their forms that at one time they passed
through a liquid phase.”

Let us take a look at how spiral forms arise in water and manifest in living
forms. All material in quotation marks have been taken from Sensitive Chaos.

1.6 Meanders

A naturally flowing stream always takes a winding course. “The rhythm of
these meanders is a part of the nature of a river. A stream that has been
artificially straightened looks lifeless and dreary”.

A closer look at the flow patterns in a meandering stream shows that
in addition to the forward motion of the stream, the flow of water revolves
in the cross-section of the river in two contrary directions. “Let us look at
one point in the current, for instance near the bank on the inside of a bend.
On the surface the water is streaming outwards” as shown in Figure 1.5.
The movement downstream combined with the revolving circulation results
in a spiraling motion. Actually, two spiraling streams lie next to each other
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Figure 1.5 Representation of the meander of a
river showing the revolving secondary currents
in the bed of the stream.

along the river bed and form a kind of twisted rope of watery strands. To
be more exact, rather than being strands, the water forms entire surfaces
that twist together. According to Schwenk,

“These movements are the cause of varying degrees of erosion
of the banks of the river. The outer banks are always more
eroded than the inner, which tend to silt up. The material
scooped away from the outer bank wanders with the spiraling
current to the inner bank further downstream and is deposited
there. Because of this process the river eats its way further and
further outwards at the outer bank, swinging from side to side
as it flows, thus making the loops more pronounced...A
meandering motion lengthens the course of the river and thus
slows down the speed at which it flows. In this way the riverbed
is not hollowed out, and the ground-water reserves are left
intact.”
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Figure 1.6 Many unicellular water animals have incorporated the spiraling movement of water
in their shapes (from Ludwig, after Kahl). Courtesy of Rudolf Steiner Press.

Figure 1.6 illustrates two unicellular water animals that have incorporated
the spiraling movement of water in their shapes. They usually propel
themselves along like a meandering stream with a screw-like movement.

1.7 Wave Movement

A stone in a stream or a gentle breeze on the ocean will cause the water
in its proximity to respond immediately with rhythmical movement. The
patterns that arise from these external influences are characteristic of the
particular body of water, be it a lake, a stream, or an ocean.

In spite of the ceaseless flow of the stream and its swirling nature as it
moves around stones and boulders, the flow pattern is stationary. The same
wave forms remain behind the same rocks. On the other hand, in the open
sea, the wave form wanders across the surface, allowing the water to remain
in the same place. As an experiment, throw a piece of cork in the water and
watch it bob up and down while the waves sweep over the surface. Schwenk
notes that the wave is a newly formed third element at the surface of
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contact between water and wind. The wave is a form created simply out of
movement. In this sense it is like all organic forms, which in spite of
chemical changes, remain intact as entities.

Wave forms are replete with complex movements of different types. For
example, they sort themselves out in different wavelengths, with the longer
wavelengths moving faster than the shorter. Also, as the wave passes an
element of water, the element rises and falls in a circular movement. Flowing
movements can also be superimposed on a wave, so that as the wave moves
forward, a strong wind can cause the moving current on the back of the
wave to move faster than the wave and overshoot the crest and break. In
this process, all that is thythmic in a wave becomes altered. It takes on a
spiral form interspersed with hollow spaces in which air is trapped.
“Whenever hollow spaces are formed, water is drawn into the hollows in
a circular motion, and eddies and vortices arise”. This presents us with a
new formative principle:

The wave folds over and finally curls under to form a circling vortex.
This is illustrated in Figure 1.7 and also by the famous painting “The Great
Wave” by Katsushika Hokusai, shown in Figure 1.8. Elements that until
now were separate unite in turbulence and foam.

Figure 1.7 A wave curls over to form a vortex.
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Figure 1.8 “The Great Wave” by Katsuhika Hokusai.
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Figure 1.9 In the rigid chrysalis of a butterfly,
growth takes place at varying speeds. This leads
to folding processes in preparation for the
forming of the organs (from Eidmann after
Weber). Courtesy of Rudolf Steiner Press.

The different speeds of growth or development in organic forms also
show evidence of the same folding. This is most evident in the process in
which organs are developed. Schwenk offers the development of the pupa
of a butterfly as an example. As shown in Figure 1.9, “the organs, which at

first are curled up, are pushed out when fully developed and appear as
feelers, limbs, etc”.
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1.8 Vortices and Vortex Trains

Wave-forming motion not only occurs between air and water but also in
the midst of water, as when two streams of water flow past each other at
different speeds. For example, in a naturally flowing stream we can observe
the patterns formed in the water at a place where a twig from a bush hangs
into the water. The flowing water is parted by the obstructions and reunites
when it has passed. But at the same time, a series of small vortex pairs,
spiraling in alternate directions, arise as shown in Figure 1.10, and travel
downstream with the current. The vortices in this series or “train” of vortices
are evenly spaced in a thythm determined by the obstruction. These vortices
have the same effect as the breaking waves. The boundary of the vortex
train entraps the stagnant fluid on the inside of the boundary and mixes it
with the water of the swiftly moving stream exterior to the boundary. In
this way, fluids of different states of motion on either side of the boundary
are gradually combined.

“A particularly clear picture of a train of vortices is exhibited by the bony
structure in the nose of a deer, shown in Figure 1.11. Large surfaces are thus
created past which air can stream, giving the animal its acute sense of smell”.
In Figure 1.12, the whole field of motion of a train of vortices is shown.

@\,ﬂ\f&g/&(@@

Figure 1.10 A distincr train of vortices (after Homann). Courtesy of Rudolf Steiner Press.

Figure 1.11 Enlarged detail of the bony
structure in the nose of the deer.
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Figure 1.12 A vortex train seen as a ball and
socket joint with flow lines passing straight
across joint.

Figure 1.13 Spongy bone structure in the

human hip joint.

“Single vortices are clearly separated from one another by a dividing
line or surface. The vortices are not fully formed, but the surrounding
substance pushes into the space created by the moving rod. It first enters
from one side then from the other, making visible the strict rthythm of
vortex formation. The boundary of this advance can be seen as a kind of
‘joint” where ‘ball and socket’ lie opposite one another. Closer inspection
shows that flow lines pass straight across the boundary surface of this joint”.

In a similar manner, the spongy structure that makes up the joints of
humans and animals closely follows the form of a single link within a
vortex train, as Figure 1.13 illustrates. The stress lines, take the place of
flow lines in fluids, running directly across the gap. Striking images of a
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Figure 1.14 Design on a palm leaf (May River,
New Guinea), Volkerkundliches Museum,
Basel.

vortex train have also been found in primitive designs, such as the one
shown in Figure 1.14.

1.9 Vortex Rings

Aside from the rhythmic processes of vortex formation at the surface of the
water, there is also the three-dimensional nature of the vortex to consider.
As shown in Figure 1.15, “every vortex is a funnel of downward suction. All
flowing water, though it may seem to be entirely uniform, is really divided
into extensive inner surfaces, each rotating at a different speed. In
the formation of vortices, these surfaces are drawn into the whirlpool”. The
inside of the vortex turns faster than the outside, and corkscrew-like surfaces
appear on the surface of the vortex as the result of the disparity of the
motion. The vortex is a figure complete in itself with its own forms, rhythms,
and movements.

Figure 1.15 Vortex funnel.



18 Beyond Measure

.
s
.
.
.
T
.

-
a
-
i
o

Maudaaddnsartadretnan

»
-ABLAS,

[LITTLS TVY ST pee

Figure 1.16 System of vortices with which Descartes sought to account for the motion of the
heavenly bodies consisted of whirlpools of ether. In the case of the solar system the vortex
carried the planets around the sun (S). Irregular path across the top of the illustration is a
comet, the motion of which Descartes believed could not be reduced to a uniform law.
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Figure 1.17 Spiral formation in snails and shells.

The vortex is like an isolated system closed off from the body of water
around it. For the most part, the vortex with its different speeds follows
Kepler’s Third Law in which a planet moves fast when near the sun. In fact,
Schwenk suggests that the vortex is a miniature planetary system with the
sun corresponding to its center. The exception is that the planets move in
slightly eccentric orbits in contrast to the circular vortex motion. It is
interesting that Descartes’ model of the universe consisted of vortices made
up of the fine matter of “ether” with the stars at the center. Descartes’
sketch in Figure 1.16 shows the planets being carried about in the sun’s
vortex S, and the moon being carried around the earth in the same way.

“The vortex has another quality that suggests [astronomical]
connections”. If a small floating object with a fixed pointer is allowed to
circulate in a vortex, it always points in the direction that it was originally
placed, remaining parallel to itself. In other words, it is always directed to
the same point at infinity, “just as the axis of the Earth points in the same
direction as it revolves around the sun”. The center of the vortex would
rotate at infinite speed if this were possible. Since it is not, it instead
creates a kind of negative pressure, which is experienced as suction.

Many forms in the organic world manifest themselves in the form of a
vortex. For example, the twisting antlers of a horned animal, snails and
shells such as those shown in Figure 1.17, some spiral formations in the
plant world, and most strikingly, the human cochlea. Figure 1.18 shows the
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Figure 1.18 Fibers in the auditory nerve,
arranged spirally just like a liquid vortex, as

though picturing an invisible vortex of forces
(after De Burlet).

Figure 1.19 “Starry Night” by Vincent Van Gogh. About this affirmation of the switling
harmony between the forces of nature, Van Gogh wrote: “First of all the twinkling stars vibrated,
but remained motionless in space, then all the celestial globes were united into one series of
movements... Firmament and planets both disappeared, but the mighty breath which gives
life to all things and in which all is bound up remain [Pur].
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fibers in the auditory nerve arranged spirally just like in a liquid vortex.
However, it is literature and art that has captured the essence of the vortex.
Edgar Allen Poe’s classic tale, “A Descent into the Maelstrom”, presents a
palpable description of the abyss at the base of the vortex and a description
of the chaotic multitude of inner surfaces of the vortex. Van Gogh’s
art portrays nature in a perpetual state of movement. His masterpiece
“Starry Night”, shown in Figure 1.19, best dramatizes the place of the
vortex in nature. As Jill Purce [Pur] observes,

“Not only do the clouds spiral into a Yin Yang formation
(a pair of alternately spiraling vortices), but the opposing forces
of sun and moon are unified. For Van Gogh, this was a decisive
moment of union between inner self and outside world.”

1.10 Three Characteristic Features of Water

The preceding discussion illustrates three characteristic features of water.
The first is the activity of water in all metabolic processes. The second is
its close connection with all rhythmic processes. The third, lesser known
characteristic, is the sensitivity of water’s boundary surfaces, which Schwenk
sees as a indication that water is a sense organ of the earth.

We have seen evidence of the metabolic function where water churns
up silt from a river bed and redeposits it, or where a breaking wave
incorporates the air at its boundary into itself. The rhythmic patterns are
evidenced in the meanders of a river and moving vortex trains. The
sensitivity at boundary surfaces is illustrated by the influence of the smallest
environmental factors such as a mild breeze or whether it is day or night,
on the formation of waves or the creation of vortex trains. This sensitivity
is also expressed in such structures as the deer’s nose, or the antelope’s
horns. The vortex itself is a mechanism that opens up the inner surfaces of
water to the influences of the moon and the stars. This is due to the
disparities of fluid velocity from the center to exterior of the vortex.

All of these functions are manifested in the world of living organisms.
In humans, the intestines best represent an organ of metabolism; the heart,
a center of rhythmic organization; the ear, a sensory organ. These three
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organs are shaped by patterns similar to those found in flowing water.
Though, as Schwenk shows, just as the three characteristics do not specialize
to any of the fundamental patterns of the movement of water, they also do
not specialize to any particular organ. In each movement of water and in
each organ, all three are in evidence.

1.11 The Flowform Method

It was George Adams and Theodor Schwenk, who with a number of others,
founded the Institute for Flow Sciences at Herrischried in South Germany.
Adams was interested in investigating the effect of path curves (a family of
curves discussed in the next chapter and first described by Felix Klein in
the 19th century and which Adams considered to relate intimately to organic
forms) upon the quality of water [AdamG]. In this chapter, I have described
some of water’s formative capacities and some of Schwenk’s profound
conclusions regarding the place of water as a mediator between heaven and
Earth. A water quality test known as the Drop Picture Method was devised
in [Schw-s]. Work has been continued by his son Wolfram Schwenk at the
Institute of which he became Director.

In 1970, John Wilkes, who had been involved at the Institute since its
beginnings, discovered a technique which he later named the Flowform
Method [Rie-W]. This Method has to do with the generation of rhythmical
processes in streaming water, achieved by the design of very specific
proportions within Flowform vessels which resist the flow of water to the
correct degree. It is namely resistance which leads to rthythm in all manner
of contexts. All living organisms are dependent upon rhythms and these are
in turn carried by water or water-based fluids, without which no organism
can survive.

The research and development was continued at Emerson College, Forest
Row, Sussex, England where, by the mid-seventies the Flow Design Research
Association was founded. In collaboration with associates, projects have
since been carried out in some thirty countries. The main emphasis of the
work is related to supporting water’s capacity to sustain life. Rhythm tends
to sensitize the function of water in its activity as mediator between
surroundings and organism. Incidental to this, oxygenation is achieved,
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Figure 1.20 Sevenfold Flowform Cascade.

efficiency being related to the movement dynamic of the Flowforms in
question. Naturally, the potentially vigorous lemniscatory or figure-eight
movement activity with interposed chaos can be utilized for mixing processes
of many kinds.

None of this activity can take place without the influence of surface.
The Flowform Method also enables research to continue in terms of Adams’
original hypothesis regarding the influence of surface and more specifically
pathcurve surfaces upon the quality of water. Rhythmic lemniscatory
movements make possible an intimate relationship of water to the surface
over which it can repeatedly spread as a thin film. Figure 1.20 illustrates an
exploration of a spectrum of thythms in the so-called Sevenfold Flowform
Cascade created by Wilkes with the collaboration of Nigel Wells and
Hansjoerg Palm. The diagram shows the flowpath through a similar earlier
edition of the cascade indicating a metamorphosis in the mathematical
form known as the lemniscate. This “organ of metamorphosis for water”



24 Beyond Measure

relates closely to primitive forms of the heart with their sequences of cavities
which tend however to remain similar to each other, and opens up questions
regarding the rhythmic regulatory function of the heart such as [Mari],
[Men].

1.12 Conclusion

The spiral lies behind the patterns of interconnectedness and the genesis of
forms exhibited by the natural world. It is not surprising that the spiral was
chosen as an archetypal form by primitive societies in their art and rituals.
In the next chapter the spiral arises once again, this time as a fundamental
geometrical form.



2
The Vortex of Life

To see a World in a Grain of Sand
And Heaven in a Wild Flower

Hold Infinity in the palm of your hand
And Eternity in an hour.

“Auguries of Innocence” by William Blake

2.1 Introduction

Euclidean geometry (the geometry that we learned in school) has been the
primary tool in formulating mathematical models of the physical world.
However, there is a more general geometry, namely projective geometry, of
which Euclidean geometry is a special case. Drawing on the work of Lawrence
Edwards [Edw1,2,3], I will show that projective geometry can be used to
describe the shapes of plants and other biological forms, as well as the
watery vortex. Again, the spiral plays a key role in these descriptions.

The next section describes the general subject of projective geometry
and then, in the following five sections, presents all of the fundamentals
needed to understand Lawrence Edwards’ application of projective geometry
to plant form. The chapter concludes with a brief discussion of how the
ideas of Guidoni, Schwenk and Edwards relate to each other. The chapter
is written to inform mathematically sophisticated readers. Yet, it should
also be accessible, with some difficulty, to mathematically inclined
non-professionals.

My interest in presenting this material lies in the ability of projective
geometry to represent natural form. In Edwards’ description of organic form,
all points that make up the form are in a state of flux. Nevertheless the
overall form is maintained. Thus biological form is seen as a dynamical
system.

25
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2.2 Projective Geometry

When a two dimensional object is projected by a point source of light from
one plane to another, a projective image results. The object and image are
considered to be projectively equivalent. Artists of the fifteenth century such
as Brunelleschi, Albrecht Alberti, and Leonardo da Vinci developed the art
and mathematics of projections and understood that it is connected with
vision. The eye projects a scene from the horizontal plane to an imaginary
screen in front of the body. Rays of light can be thought to connect points
on the scene to points on this imaginary plane, in which case the scene is
viewed in perspective. When a canvas replaces the imaginary screen, the
scene may be rendered by recreating it at the points where the rays pass
through the canvas, as shown in Figure 2.1. When the eye is at point O,
this projective mapping of scene to canvas transforms the infinitely distant
line of the horizon onto a real line h on the canvas. Also, parallel lines
receding from the viewer towards the horizon appear on the canvas as the
oblique lines | meeting at some point on the horizon line.

The subject of projective geometry pertains to three primary elements:
points, lines and planes, and the properties of these elements that are preserved
under projective transformations. Projectively equivalent objects and images
are considered to be identical in projective geometry just as congruent
figures are indistinguishable in Euclidean geometry. The three primary
elements are considered as separate entities; a line is not considered in the
axioms of projective geometry to be a sequence of points, but an entity in

o/ 4

Figure 2.1 A road | receding to infinity depicted as converging to a point on the horizon line
h of an artist’s canvas.
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itself. Also points and lines are considered to have equal status. In projective
geometry, the line at infinity has as much reality as any other line. After all,
it corresponds to the horizon and is projectively mapped by the artist to the
horizon line of a painting. We are also justified in saying that every pair of
lines has a single point in common; when the lines are parallel the common
point is a point on the line at infinity. Each line is considered to have a
single point at infinity. Imagine a rocket ship moving towards infinity along
the right side of a line. If it continued through the point at infinity and kept
going, it would return to its origin from the left side of the line. By pivoting
a line about a single point, as shown in the so-called pencil of lines of
Figure 2.2, the point at infinity on the line sweeps out the line at infinity.
Alternatively, the line could be considered to have infinite points at either
end, in which case there is an infinite point in the direction of each point
of the compass and these points sweep out a circle at infinity. The line and
circle at infinity are seen to be identical if points on the circle 180 degrees
apart are considered the same (identified with each other). One of the most
valuable features of projective geometry is its ability to make the infinite
accessible to human thought; points and lines at infinity have the same
reality as those from the finite realm.

Figure 2.2 A pencil of lines indicating the point at infinity on each line.
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It is well known that depending on how a right circular cone is sliced
by a plane, the boundary of the cross-section is either a circle, ellipse, parabola,
or hyperbola, the so-called conic sections. Since a point source of light can
be thought of as being located at the vertex, all conic sections are projectively
equivalent. Each conic can be viewed projectively as a circle by singling out
a special line in the plane, as shown in Figure 2.3. Figure 2.3a represents
a projective view of an ellipse, Figure 2.3b a parabola, Figure 2.3c an
hyperbola, while Figure 2.3d represents a circle when the special line is at
infinity. When the special line is mapped to infinity, the usual pictures of
the conics reveal themselves. The richness of projective geometry, in contrast
to Euclidean geometry, is due to the fact that in Euclidean geometry the
special line is always taken to be the line at infinity. As a result, conics
always assume their familiar forms whereas projective geometry always has
a representational flexibility. Yet, many of the theorems of Euclidean
geometry are found to hold in the more general context of projective
geometry.

Crucial to an understanding of projective geometry is the concept of
duality. The axioms are so constructed that in two-dimensional space, their
validity is unaltered whenever point and line are interchanged in any
statement or theorem, while in three-dimensional space point and plane
are interchanged while line is retained. Thus the statement, “any two points

LINE AT INFINITY
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O
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Figure 2.3 When the special line is projectively mapped to infinity, the circles become (a)
an ellipse, (b) a parabola, (c) an hyperbola, (d) a circle.
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contain a single line” (i.e., through any two points a single line can
be drawn), is equivalent to “any two lines contain a single point” (i.e., any
pair of lines define a unique point of intersection). Likewise, “three planes
with no common line contain a unique point” is equivalent to “three
points not all on the same line contain a unique plane” (i.e., three
non-colinear points define a plane).

At one time, projective geometry was part of the repertoire of all
mathematicians. Today, only a few specialists remain connected to this
subject, and they relate to the subject in, primarily, an algebraic manner.
In this brief introduction, we shall emphasize a constructive approach as
can be found in several excellent books [Cox4], [Edw2], [Whi], and [You]].
It is my feeling that the quiet contemplation of projective constructions
can be enlivening to the mind.

2.3 Perspective Transformations on the Line to Points on a Line

One of the most elementary transformations in all of mathematics is the
mapping of the points on line x to points on line x' from a point O not on
lines x and x', as shown in Figure 2.4. A typical point A on line x and A'
on line x' share a common line from the pencil of lines centered at the
point of projection O. Such a projective transformation is called a
perspectivity.

In Figure 2.5 the dual perspectivity is shown. Here two pencils of lines
centered at X and X' are projected onto line o. Lines a and a' meet at a
point on the line of projection o.

The perspectivity in Figure 2.4 is entirely specified by arbitrarily choosing
two points A and B and their transformed points A' and B' since this
determines lines x, x' and point O. In this case, x is the line through AB,
x' is the line through A'B', and O is the meeting point of AA' and BB'.

Referring to Figure 2.4, one can see certain special points of the
transformation. The intersection of x and x' is mapped to itself and is the
only fixed point of the transformation. Also, the line through O parallel to
x maps the point at infinity on line x to the point where this line intersects
x'. Likewise, the point at infinity on x' is mapped from point the on x where
the line through O parallel to x' intersects x.
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Figure 2.4 A perspective transformation of points.

Figure 2.5 A perspective transformation of lines.

Although metric properties such as distance between points are not
generally preserved by perspectivities, a somewhat obscure relation between
any four points A, B, C, D, and their transforms is preserved, namely:

2AB . AD

“BC | DO (2.1)
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This relationship is known as the cross-ratio. It is of fundamental
importance to projective geometry. In fact, projective transformations can
be defined to be those transformations of points and lines that preserve
cross-ratio. It should be mentioned that this definition of the cross-ratio
assumes successive points are in the order A, B, C, D. There are 24 different
orderings of these four points, and the cross-ratios in each of these definitions
are also preserved. As a matter of fact, we will find the ordering DBAC and
its cross-ratio

=P8 DBC
BA  CA

most relevant in what follows.

(2.2)

2.4 Projective Transformations of Points on a Line to
Points on a Line

The notion of the projective transformation of the points on line x to the
points on line x' can be made more general by first relating the points on
lines x and m by a perspectivity with respect to point O, and then relating
the points on m and x' by a perspectivity with respect to O' as shown in
Figure 2.6. In a similar manner, x can be mapped to x' via a series of
intermediate lines m, m', m", etc. Any such sequence of perspectivities is
called a projectivity.

It can be shown that any three points arbitrarily chosen on lines x and
x' can be mapped to each other under a projectivity. Since corresponding
lines from the pencils of lines through O and O' meet on a common line
m, Figure 2.6 also represents a perspectivity of these pencils of lines of the
kind shown in Figure 2.5. However, for a general projectivity, lines OA and
O'A', OB and O'B', OC and O'C' do not meet on a common line. It is of
fundamental importance to the study of projective geometry that these
pairs of lines do meet on a conic section. (Note that a pair of straight lines
can be thought of as the extreme case of an hyperbola.)

For a special class of projectivity called a co-basal projectivity, x and x'
are the same line as shown in Figure 2.7 where A transforms to A", and B
transforms to B' on line x. The transformation is carried out by first
transforming A to T on m through O, and then transforming T back to A'
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Figure 2.6 A projective transformation of points (it is also a perspective transformation of

lines).

Figure 2.8 A co-basal transformation generat
from a conic {circle}.
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through O'. In a similar manner, B is transformed first to U on line m
through O and then back to B' through O'. It is evident that for these
transformations, two points are generally fixed, the point X where lines m
and x intersect, and the point Y where OO' intersects x. Since, in a general
projective transformation, OA and O'A' meet on a conic m, the fixed
points can also be pictured as the intersection of a line x with a conic m
(circle), as shown in Figure 2.8, where A is projectively transformed to B
on x by first projecting A to T on m through O, and then transforming T
back to B through O'. In a similar manner, B is transformed to C via point
U on m, etc. on line x. Conversely, a co-basal projectivity can be generated
from an arbitrary conic (a circle in this figure) m and a base line x intersecting
it, by choosing two points O and O' on the conic and relating the intersection
points on the base line of pairs from O and O' that meet on the conic. It
follows from glancing at Figure 2.8 that this co-basal projectivity has two
fixed points X and Y. Co-basal projectivities have one fixed point when the
base line is tangent to the conic, or no real fixed points when the base line
and conic have no real intersection points (we shall see that it then has two
imaginary fixed points).

2.5 Growth Measures

Now that we have defined a co-basal projective transformation of a
line, let’s see what sequence of points is the result of applying such a
transformation repeatedly to an arbitrary point A on line x. Such a sequence
of points is called the trajectory of A under this transformation. Referring
to Figure 2.9, point A transforms to A', which we call B by first projecting
to line m through O and then projecting the resulting point back to x
through O'. Point B, in turn, transforms to C and C to D, etc. Such a
trajectory is called a growth measure. If A begins near the left fixed point X
and moves toward Y, then the trajectories start out with small step sizes,
which increase in the mid-section between the fixed points and then decrease
in size as they approach Y. To reach Y would take an infinite number of
steps. If the order of the projections through O and O' are reversed, then
the trajectory moves from A to the left fixed point X, which it also reaches
after an infinity of steps. Thus, the entire growth measure represents a
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Figure 2.9 A growth measure.

doubly infinite set of points. Using the points X, A, B, Y to define the cross-
ratio, or multiplier as we shall refer to it, from Equation (2.2):

LB AX
YB = YA

Therefore, once the fixed points are chosen, the cross-product and hence
the entire trajectory is determined by choosing the position of A and B.
The multiplier of the reverse transformation is determined by the sequence
YBAX, and it is the inverse 1/4 of the original multiplier.

Let’s see what the effect on the growth measure is if we project the
right fixed point Y to infinity. This is done by drawing an arbitrary line b
and drawing a line through Y parallel to b as shown in Figure 2.10. If we
project the trajectory of point A onto b from an arbitrary point on the line
through Y, then X projects to a finite point X; on b, while Y projects to the
infinite point on b and, since % approaches the value of 1 as Y approaches
e ) B " UXB . XG .
infinity, the cross-ratio or multiplier reduces to A = XA = XB = which
identifies the trajectory as the familiar geometric sequence (a sequence of the
form a, ar, arz, arj, ..., in which the ratio between adjacent terms is
constant, i.e., r in this case). In other words, growth measures can be
viewed as double geometric series seen in perspective. Also, we see that if
A=1 then all points of the growth measure are left unchanged, i.e., the
growth measure is the identity transformation.

(2.3)
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Figure 2.10 A growth measure with one fixed point mapped to infinity.

Next, consider the case of a growth measure in which the line through
O and O' meets at the left fixed point X. Here, the two fixed points
coalesce into one called a double point and the growth measure is called a
step measure. This corresponds to the case in Figure 2.8 of a tangent line to
the circle. In a manner similar to what we did for growth measures with two
fixed points, we can project a step measure onto an arbitrary line, so that
the double point is projected onto the point at infinity. We then discover
that a step measure is the perspective image of an evenly spaced trajectory
of points on line (an arithmetic series).

So we see that, even though projective transformations do not have
obvious metric properties, they represent geometric models of multiplication
in the case of growth measures and addition in the case of step measures.
From the point of view of geometry, growth measures are far more likely to
occur than the limiting case of a step measure. It is also interesting that it
is the geometric series that manifests in the organic world. It is well known
that shells of sea animals such as the Nautilus and the horns of animals
grow according to logarithmic or equiangular spirals. Equiangular spirals are
governed by the principle that radii from the center of the spiral at equally
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Figure 2.11 (a) Vertex points of an equiangular (logarithmic) spiral lie at a double geometric
series of distances from the center; (b) a spiral is constructed from the vertex points.

spaced angles about the center from a geometric sequence, as shown in
Figure 2.11. These curves were referred by [Coo] as “curves of life”.

We shall have more to say about this important curve in Sections 2.8, 7.5
and 18.4.

2.6 Involutions

There is one kind of growth measure that deserves special mention. It is
depicted in Figure 2.12. Here, O and O' are on opposite sides of line m, and
they are arranged so that point A transforms to B and B transforms back to
A. Such a transformation is called an involution. By reversing the order of
O and O', we obtain another involution that also transforms A to B and
B back to A. Both of these transformations are called breathing involutions
since the movement is back and forth across either of the fixed points with
related points close to one of the fixed points playing the role of shallow
breaths nested within the deep breaths of the point pairs more distant
from the fixed point. In this sense, involutions are analogous to mirror
reflections where the image approaches or recedes from the mirror as does
the object.

Consider the four points: A, O, B, O' in Figure 2.12. A complex of six
lines can be drawn through these four points. A cycle of four of these lines:
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B X A Y

Figure 2.12 An involution sets up a pair of points A, B harmonic with respect to fixed
points X, Y.

AO, OB, BO'" and O'A forms a quadrilateral. The other two lines OO’ and AB
join opposite wvertices of the quadrilateral and are considered to be its diagonals.
The two diagonals intersect at the fixed point Y. On the other hand,
opposite lines of the quadrilateral intersect in two additional points P and
Q and line PQ intersects AB at the other fixed point X. It is fundamental
to projective geometry that A and B are harmonic with respect to X and Y
which means that the cross product of BXAY equals —1. Note that a
composition of two successive applications of the involution results in the
identity with A=1.

It is an interesting fact of projective geometry, and one that can be
tested by construction, that if a single pair of points are found to be in
involution then all points of the line are also in involution, or harmonic,
with their transforms. Involutions carry with them another metric property,
namely, the point harmonic to the point at infinity with respect to X and
Y is the midpoint between X and Y. Any point between X and this midpoint
is in involution with a point on the other side of X which serves as the
center of the involution, whereas a point between the midpoint and Y is in
involution with a point on the other side of the center, Y. Therefore,
involutions can be directly correlated with the fixed points. Edwards has
shown that involutions provide the key to understanding growth measures
when the fixed points are not visible (see Section 2.7).
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Given two fixed points X and Y, there are an infinity of growth measures
that move between the two points. For example, any point A' between A
and B of the original growth measure leads to another trajectory with the
same fixed points. Likewise, points O and O' can be moved to different
locations so long as OO' passes through point Y, or equivalently, O and O'
can be moved to different positions on the conic (circle) in Figure 2.8. In
fact, the collection of growth measures with fixed points X and Y form what
is known in mathematics as a group. We have here a dynamic picture of a
line. The line is all motion with points forever changing their positions yet
with the configuration of the trajectory remaining unchanged. Only the
fixed points are motionless.

2.7 Circling Measures

To complete the picture, we must also account for growth measures of
co-basal projectivities for which there are no real fixed points. Edwards calls
such growth measures circling measures. They are set up by transforming an
evenly spaced set of lines from a pencil of lines centered at a point. For
example, the 18 lines in Figure 2.13 are spaced 10 degree apart and each
line undergoes a transformation of 60 degree in a clockwise direction. A
circling measure is set up by the points of intersection of an arbitrary line
such as the one shown in Figure 2.13, with this pencil. Unlike a growth
measure, all points on this line are in motion. There are no fixed points.
If we consider the line of the pencil that intersects the arbitrary line at
right angles, that is where the movement along the line is “slowest” and
this can be related to the imaginary value of the “fixed point”. If the
arbitrary line is moved towards the center in a perpendicular direction
the movement slows down and comes to a halt when the line intersects
the center. This is how a real fixed point emerges from the imaginary. It
would require more space than we have in this chapter to describe these
projectivities in further detail, so we direct the reader to Projective Geometry
[Edw2] and summarize some of the important results.

We have already seen in Figure 2.8 that a conic and a base line cutting
it sets up a growth measure on the line with the intersection points of conic
and line as the fixed points. If the line and the conic do not intersect in
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Figure 2.13 A circling measure.

“real points”, they intersect in imaginary points. We shall now see how these
imaginary fixed points come about. Consider a unit circle x* + y* = 1 and
the line y = «/Ep Solving these equations for the intersection points, we
find that (X, Y) = (2i,+/2 ) where i = J-1 (see Sections 13.6 and 19.3 for
a discussion of imaginary numbers). So we can say that, in some sense, the
circle and the line share these two points. Let’s now consider a circle and
a series of parallel lines going to infinity. Each line shares a pair of points
with the circle. We shall denote the two imaginary points on the line at
infinity as [ and J. Of course all circles share equally well these same points
Iand J.

Circling measures on a line induced by a circle or other conic can be
created by the identical construction shown in Figure 2.8. The fixed points
of this measure will be the two imaginary intersection points, I and J, and
there is, once again, a group of circling measures that have the same two
fixed points. In order to make these imaginary points and lines tangible,
Edwards prefers to deal with the two involutions set up on this line instead
of the imaginary points that correspond to them (the details are described
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in [Edw2}). In Figure 2.13, transformations of a line through 90 degree in
either a clockwise or counterclockwise direction results in an involution
since two successive mappings of this kind brings the line back to itself.
This transformation is known as a circling involution.

2.8 Path Curves

The remainder of this chapter deals with the mathematics of projective
transformations and its application to generating a family of curves known
as path curves. According to the research of Lawrence Edwards as described
in his books, Field of Form [Edwl], Projective Geometry [Edw2], and
The Vortex of Life [Edw3], these curves are close approximations to
the spiral shapes of plants and other biological forms, as well as to the
watery vortex.

Up to now we have been considering projective transformations of
points on a line to points on a line, or lines in a point to lines in a point.
Projective transformations of the plane that map points to points and lines
to lines are called collineations. It is fundamental to projective geometry that
collineations leave, in general, three points (real and imaginary) invariant
(fixed). If the fixed points do not all lie on the same line, they define a
triangle. Under a collineation any line in the pencil of lines centered at one
of the fixed points is mapped to another line in the pencil. The points in
which a pair of lines through a fixed point intersects the line making up the
opposite side of the triangle sets up a growth measure on that line. The
boundary lines of the triangle are invariant in the sense that any point on
one of them is transformed by the collineation to another point on the
same line, or sometimes, to the same point. This invariant triangle is the
setting for a remarkable set of curves, known as path curves.

Given a set of fixed points A, B, and C and invariant lines a, b, and ¢
as shown in Figure 2.14, a collineation is completely determined by choosing
an arbitrary point M within the triangle and its transform M' under the
collineation. This is obvious, since the projected points P, Q on line a and
P'Q' on line ¢ determine growth measures on those lines projected from
auxiliary points O, O' of Figure 2.14 as described in Section 2.5. Therefore,
the next point of the trajectory determined by the collineation is the point
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Figure 2.14 Construction of a path curve.

in Figure 2.14 at the junction of lines AR and CR' where R and R’ are the
next points of the growth measures set on their respective lines. Thus the
action of the collineation upon the initial point M sets up a trajectory of
points, and these points lie on a set of invariant curves, known as path
curves. As you can see, the path curves cut across the diagonals of the grid
of quadrilaterals determined by the growth measure, i.e., the diagonal between
M and M'. The path curves are invariant since any point that lies on such
a curve is transformed to another point on the same curve. In general, any
other pair of points not on the same path curve generates, by the same
construction, another family of path curves. In fact, all path curves keeping
the same triangle invariant form a group that mathematicians refer to as a
Lie group. It can also be shown in [Clop] that all families of path curves of
the plane can be described in homogeneous coordinates (see Appendix 2.A)
as the solutions to three dimensional linear differential equations with
constant coefficients.

One family of path curves is shown in Figure 2.15. All path curves have
in common with this figure the fact that they pass through two of the fixed
points, but not the third, and lie tangent to two of the invariant lines, but
not the third. Edwards has this to say about path curves:
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Figure 2.15 A typical family of path curves.

“We have a plane in which everything is moving. What can
live, can hold itself intact within the flux? It is the whole set
of path curves, and nothing else! Quantitatively we have a
similar situation in any living organism; the substance of which
it is made was not in it yesterday, and will not be in it tomorrow;
as far as its matter is concerned it is in a state of continual flux;
the substance flows in and flows out; if the organism was simply
its substance we would not be able to recognize it from one day
to another. Yet its being and largely its form are invariant from
one moment to another and from one day to another. The
form can live within the flux.”

A family of path curves can also be determined by specifying multipliers,
given by Equation (2.3) of the growth measures on any two invariant lines,
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Figure 2.16 Orientations of the growth measures ¢, 8, yof a family of path curves. Growth

measures a and y are counterclockwise while g = 1fayis clockwise. By permission of Floris
Books.

cross-ratio in the case of finitely situated fixed points, or geometric ratios
in the case of a fixed point at infinity. For example, take o on line a and
yon line c, along with the directions of the trajectories on these lines, say
counterclockwise. The growth measure B on the remaining line b is the
product or composition of the growth measures on lines a and ¢, and has
the effect of inducing a growth measure in the opposite sense (clockwise)
with multiplier equal to the product of the two, i.e., ay. Since reversing the
sense of a growth measure results in inverting its multiplier, then g8 = 1/ay
and @, B, and 7 are related by,

(Xﬁ)’: 1, (24)

when growth measures o and y have the same sense (counterclockwise) as
shown in Figure 2.16.

The equations of path curves have a surprisingly simple form. If we
work in homogeneous coordinates, then the equation of the family of path
curves is given by:



44 Beyond Measure

xaybzcz k, where a+b+c¢c=0

and a, b, and c are the logarithms of multipliers o, 8, and yand each value
of k pertains to a different path curve of the family (homogeneous coordinates
are described in Appendix 2.A). The fact that this equation is what
mathematicians call homogeneous means that the shape of the curves depends
not on the values of @ and y but on their exponential ratio A defined as,

_loga

A .
logy

Thus if @ = 16 and y= 4 the curves would have the same shape as if o =
9 and y= 3, only the step size of the trajectory along the curves corresponding
to the smaller values would be smaller. Three special cases of path curves
are of interest:

Case 1. Two multipliers are identical, but in opposite senses, say 8= 1/ay.
In this case the path curves (not shown) look much like the ones in

Figure 2.17 Path curves take the form of melons when one of the fixed points is transformed
to infinity.
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Figure 2.15 except that they are conics. But since, according to Equation
(2.4), B=1 (the points on AC are motionless), the pencil of lines centered
on B must be the other family of path curves. Together, the two families
form a grid of path curves.

Case 2. In Figure 2.17, point B is mapped to a point at infinity, while
multipliers are taken on lines a and ¢ in directions going counterclockwise
from B to C and A to B. Notice that the path curves turn out to be
egg-shaped, sharper at one end and blunter at the other. Much of Edwards’

1
Qalw

(o +) nt
ngle

Figure 2.18 Path curves take the form of logarithmic spirals when two of the fixed points are
transformed to I and J on the circle at infinity.
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recent work has involved applying Case 2 to an analysis of bud forms.
In the process he has discovered subtle changes in bud shape over fourteen
day periods that are synchronized with lunar cycles [Edw3].

Case 3. Points A and B are mapped in Figure 2.18 to the points [ and ] on
the infinite circle, while C remains fixed at a real point. In this case, the
line of the invariant triangle connecting C to a point at infinity is real,
while the other two lines of the triangle are imaginary. If the growth measures
on these imaginary lines are identical, then the path curves are conics and
the lines are as in Case 1, only now the conics are concentric circles and
the lines radiate from C. Also, the multiplier of the circling measures set
up on the circles result in points on the infinite circle (line) at equally
spaced angles, while the growth measure on the real lines form a geometric
series (see Section 2.5). The path curves are the equiangular (logarithmic)
spirals that cut across the diagonals of the curvy quadrilateral formed by the
path curves (lines and circles).

2.9 Path Curves in Three Dimensions

In three dimensions, collineations leave four points (real or imaginary)
invariant. In general, these four points define a tetrahedron (a triangular
pyramid with four faces and six edges). With the exception of these four
points, all points of the space are in motion under iterations of the
collineation.

Once again, by specifying the location of an arbitrary point within the
tetrahedron and its transform, the entire transformation is fixed. The
trajectory of this arbitrary point traces out a path curve through space. Most
of the surfaces of path curves of interest to Edwards’ studies of organic forms
arise from tetrahedra, two of whose fixed points are the imaginary circling
points I and J while the other two fixed points X and Y are finite and real
(the semi-infinite tetrahedron). It is very difficult to visualize this surface.
It is made up of two real planes at infinity (the equivalent in three dimensions
of lines at infinity in two dimensions) and two imaginary planes (planes
existing in the space of imaginary numbers), and two real lines, one joining
X to Y, and the other one being the line at infinity which carries points I
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Figure 2.19 Spiral path curves on an egg-like surface. By permission of Floris Books.

and J. The path curves on the two real planes contain a family of equiangular
spirals such as the ones shown in Figure 2.18. More details are given in
Edwards’ books.

Edwards’ fundamental surfaces are egg-shaped forms, shown projected
onto a plane in Figure 2.19, created by choosing a pair of congruent spirals
on each of these real planes with spirals that lead out of Y and into X. The
path curves on these surfaces are spirals of the type shown in Figure 2.18.
Edwards then characterizes the shape of these surfaces by a parameter much
like A but suitable for three dimensions, not mentioned here.

2.10 Field of Form

According to Edwards:

“When our attention is drawn to the various path curve surfaces
previously described, and especially the egg-like forms which
occur with the semi-imaginary tetrahedron, we immediately
become aware that forms very similar to these are to be found
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Pine Cone: Scots pine Inflorescence: Flowering currant
Leaf bud: Elm Flower bud: Buttercup

Figure 2.20 Four ways in which path curves are to be seen in the plant kingdom.

in at least four situations in the plant world (illustrated in

Figure 2.20):

a) the numerous families of pine cones and related seed
formations;

b) tightly packed bunches of flower buds (e.g., thododendron
and flowering currant) in which the separate buds are nearly
always arranged in spiral formations;

c) leaf buds of deciduous trees (oak, beech, elm, etc.) in which
the little leaflets are themselves set in spirals;



Chapter 2 The Vortex of Life 49

d) the large domain of flower bud where in a large proportion
of cases the petal edges climb spiralwise around the
egg-shaped form of the bud itself.”

Edwards then sets out to meticulously measure, using statistical methods,
the outer shapes for many such plants, and he has been able to make a
convincing argument for their being path curves. A typical path curve
within the tetrahedron takes the form of a spiral on the surface of an
egg-shaped form. When two of the points of the tetrahedron are mapped to
points at infinity, the path curves take on forms remarkably like the shape
of plants, buds, and other organic forms. He has also applied his methods
to studying the shape of eggs of different species of animals, the shells of sea
animals, the shape of the hearts of animals, and the living human heart as
seen through an angiogram. All of these have corroborated his ideas about
the relation of path curves to living forms.

Edwards reports on an odd form that, until recently, resisted all of his
techniques of analysis, namely, the seed chamber buried within the depths
of the rose form with yet another fundamental idea of projective geometry
[AdamG]. He projected one of the remaining finite fixed points of the
semi-imaginary tetrahedron to infinity and applied a transformation which
he calls a pivot transformation in which the original transformation that
generated the rose bud, forms the basis of a new transformation between
elements from the dual spaces of planes (positive space) to elements of
the space of points (negative space). In this transformation, shown in
Figure 2.21, the plane at infinity, the absolute “point™ of the positive space,
representing the “cosmic realm” is related to the pole at the remaining
finite point Y, the absolute point of the negative space, which represents
the “seed”. The points on the infinite plane are dual to a cone of planes
centered at the absolute point.

The shape of the family of path curves of this transformation resembles
a “watery vortex”, and this family was so named by Edwards. These path
curves have proven very good in describing the shape of the ovaries of
plants. Much to his amazement, using an apparatus for measurement designed
by a colleague, Edwards discovered that this form fits exactly to the shape
of actual watery vortices.
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Figure 2.21 The form of the rose led to the concept that the bud would mediate between a
planewise vortex and the form of the rose hip.

2.11 Comparison of Three Systems

Three systems of thought have been presented in Chapters 1 and 2: Guidoni’s
analysis of some primitive myths and rituals, Schwenk’s observations of the
living forces within water, and Edwards’ field of form. Although these
systems are quite different in their representations of the natural world,
they also have much in common.

The most striking similarity between them is their dynamic vision of
nature. For example, the act of conception is presented in the Bamba ritual
of the Australian aborigines (Section 1.2) as a movement toward a sacred
center. All creation in the Fali myth (Secton 1.3) is represented as a series
of vibrations. Schwenk represents the genesis of form in terms of movements
of waves, vortices, and meanders. The particles of water continuously change
but the outward form is stable. The same holds for Edwards’ path curves,
which can be viewed as the trajectories of a moving series of points.

The three systems agree with each other concerning the role that
astronomical influences have on earthly events. The sacred pole of the
Achilpa serves as a direct link to transmit some form of life energy from
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heaven to earth to nourish the tribe. The vortex, by opening up sensitive
membranes of water to external influences, plays the same role in Schwenk’s
system. These influences are sucked toward the vortex center by negative
pressure (Section 1.9). Edwards’ watery vortex transformation places a plane
at infinity to absorb distant influences that pass along spirals to a fixed
center at the base of the plant’s ovaries.

Each system is built on the notion of sacred centers with no fixed
location within an otherwise undifferentiated chaos. Wherever the chief of
the Achilpa placed the sacred pole, that is where the center lies. Each
watery vortex functions as a closed system and carries the center of its
own “universe”, complete with its built-in direction to the “fixed stars”.
Edwards also sees every plant as being a closed system with its center
located at the base of the ovaries.

The logarithmic (equiangular) spiral plays a key role within each of
these systems. In the Bamba ceremony, the dancers crawl toward the sacred
center along logarithmic spirals. Each of the fundamental patterns of water
manifest in the natural world in spiral formations. The fundamental patterns
of water manifest in the natural world in spiral formations. The fundamental
surfaces from which Edwards develops organic forms are derived from
logarithmic spirals. Even meandering streams can be looked at as helices
that have been flattened onto a planar surface.

The mythic beginnings of the Fali people go back to two cosmic eggs.
Schwenk feels that the forces of water are instrumental in the development
of the embryo from the egg. Edwards’ path curves always generate
egg-shaped forms with spiral striations.

In Fali myth, all creation comes about through alternate and opposing
movements. These alternate and opposing movements are evident in the
oppositely directed spirals of vortex trains, and are also incorporated in the
spongy structures of joint formations of humans and animals. Involutions
that characterize the group of growth measures can be viewed as alternating
and opposing movements or vibrations, and these growth measures are the
key to deriving Edwards’ field of form.

Finally, every element of Fali society either partakes in a positively or
negatively directed motion or is a fixed center. As we saw, the “feminine”
cylindrical walls of their huts are positively directed while the “masculine”
conical roofs are negatively directed with respect to the fixed center at the
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vertex of the cone. Is it far-fetched to imagine a connection between this
image and Edwards’ pivot transformation? Here, the infinite plane and the
center of this transformation are conceived of as positive and negative dual
spaces. Points of the positive space are transformed to planes of the negative
space that envelope a cone about the center.

2.12 Conclusion

We have shown that spiral forms are ubiquitous in the natural world.
Primitive people, understood the importance of the spiral as an expression
of nature. Projective geometry and the mathematics of the spiral may help
to bridge the enormous chasm between ancient systems of thought and the
modern world of science. There are also benefits to be gained for science
by bridging this gap.

Appendix 2.A. Homogeneous Coordinates

The points of a projective transformation can be described by a system of
homogenous coordinates. First consider the points on a line. Each point on
the line is represented by a pair of homogeneous coordinates, (kx, k) for any
value of k # 0. Thus, a point on the line has many different representations.
For example, the point one unit to the right of the origin can be represented
by, (k, k) or (1, 1),(2, 2),(3, 3),..., for k =1, 2, 3,..., etc. The point 2 units
to the right of the origin is: (2k, k) or (2, 1), (4, 2), (6, 2),... fork =1, 2,
3,..., etc. The origin of the coordinate system is also represented by (0, k).

Notice that the usual cartesian coordinate of the line is the x-coordinate
of the homogeneous coordinates when k is set equal to 1, eg, x=1
corresponds to homogenous coordinate (1, 1) while x = 2 corresponds to
(2,1), and the origin x = 0 is (0, 1). The value of this system is that it
enables the point at infinity to be represented by finite coordinates. The
point at infinity is represented in homogeneous coordinates as (g, 0) for q
finite. This makes sense since, as k approaches 0 in (kx, k), kx remains finite
only if x approaches infinity. Thus, with all generality the point at infinity
can be represented by (1, 0), with ¢ set equal to 1. The geometry of this
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system will be described in Section 4.2 in connection with a representation
of the tones of the musical scale.

In terms of homogeneous coordinates, a co-basal transformation between
fixed points X and Y, as shown in Figure 2.9, can be represented on the unit
interval, in homogeneous coordinates where X represents the origin (0,1)
and Y represents the point at infinity, (1, 0).

In a similar manner, the points of the plane can be represented in
homogeneous coordinates by (kx, ky, k) for k # 0. The line at infinity consists
of all points of the form: (p, g, 0).



3

Harmonic Law

Music is the hidden arithmetical exercise of a
soul unconscious that it is calculating.

Gottfried W. Liebniz

3.1 Introduction

In this chapter and the next two I will present some of the materials that
make up the study of what may be termed “speculative music”. There have
been many attempts to trace the significance of the musical scale in ancient
cultures as a tool for understanding astronomical and cosmological
phenomena [Boe]. Scientists such as Kepler and Newton, in their search for
the musical harmonies in the natural world, felt themselves part of a chain
which stretched back through the logic of Ptolemy, Plato, and Pythagoras
to the mythology of Apollo, Hermes, and Orpheus.

The musicologist Ernest McClain has gathered a great deal of suggestive
material connecting musical tuning systems with the numerology in such
ancient books as the Rig Veda, the Dialogues of Plato, and the Holy Bible.
McClain believes that quantifying the location of musical tones in the
cyclic octave presented early cultures with problems similar to those faced
in defining solar and lunar cycles. Rational numbers, the only kind then
available, proved inadequate. This fostered an art of approximating irrationals
by a slight excess or deficiency, a task demanding strict discipline and a
comfortable literacy. A spiritual “warfare” thus developed within the number
theory required for cosmology, and its metaphors were absorbed into the
sacred scriptures of surviving cultures. McClain believes that ancient

54
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mythology is thus inspired harmonical allegory, descending from an early
professional scribal virtuosity in algebra.

Drawing on the direct epigraphical evidence of Egyptian arithmetic,
Babylonian astronomy, Assyrian lyre tunings, Platonic musicology, references
to number in the Bible, Ptolemaic science, and later Alexandrian philosophy,
McClain imaginatively reconstructs a plausible musical correlation.
His methods must be evaluated by their self-consistency in shedding
new light on otherwise obscure passages in ancient literature. In the first
part of this chapter I present McClain’s archaic reconstructions, and then
follow with a modern explanation. To avoid assuming any musical knowledge
on the part of the reader, I will explain certain necessary musical
fundamentals.

My personal interest in McClain’s recreation of ancient harmonic law
are two-fold:

1) his portrayal of a tension between the incompleteness of the number
system when restricted to rational numbers and the continuum of
geometry;

2) the importance of the ratio of small whole numbers in the representation
of tones from the musical scale.

Part two of this book is devoted to showing that these are still issues of
importance in modern mathematics, only now in the context of dynamical
systems.

3.2 Musical Roots of Ancient Sumeria

The Sumerian culture of Mesopotamia during the fourth millennium B.C.
was far more advanced than its neighbors. Many aspects of this culture were
incorporated into the societies that followed, such as those of the Babylonians
and the early Hebrews. There is evidence from testimonials of Greek
historians such as lamblichus and Diogenes Laertius [Far] that much of
Greek knowledge and wisdom came from this part of the world, and that
this ancient knowledge may have been transmitted to Pythagoras. We know
little about the details of Sumerian civilization. However, from the
great storehouses of musical instruments found at Sumerian burial sites, we
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know that this was an aural culture in which music played a significant
role [Far].

McClain points to a great advance in mathematical thinking in ancient
Mesopotamia, based on the relationships inherent in the musical scale.
Certainly, man had conceived of numbers long before recorded history.
Early man used numbers to count objects of importance, such as animals or
arrowheads. But this is not real mathematics. It was a great revelation when
the first man realized that the sensation of sound was based on the ratio of
string lengths and not on their absolute lengths. For example pluck a string
and then shorten the string by -;— and pluck it again; you experience an
octave increase of the original pitch. The same sensation of an octave
occurs independent of the fundamental tone giving alternate aural images
of the same reality. Although there is no clear record of these events,
McClain believes that this discovery may have taken place in Mesopotamia
between 3 and 4 millennia B.C. [McC4].

Harmonic law may have been the first organized system in which rational
numbers played a major role. In fact the ratio of small whole numbers
organized in a cyclic pattern is the key to understanding the musical scale.
Divorcing number from pure magnitude and centering it on showing the
relation between things (in this case musical intervals) was a big step in the
direction of abstract mathematical thinking. By early in the third millennium
the Sumerians had achieved considerable musical development and may
have created a sophisticated musical theory to accommodate these
developments, although there is only circumstantial evidence to support
this view.

The theory of the musical scale may have been one of several factors
that led the Sumerians, sometime in the third millennium, to create the
sexagesimal (base 60) system, and with this, the ability to do mental
arithmetic of a high order. The sexagesimal system represents numbers in
terms of powers of 60 much like the decimal system uses powers of 10
[Barr]. The musical matrix that I shall describe in Sections 3.3-3.5, based
on the sexagesimal system, may have been the equivalent of the first digital
computer in its ability to facilitate rapid calculations. Whereas the
origin of this base 60 system is unknown, it was known to the Sumerians
[McC4). At the same time, there is some evidence that the musical scale
was used as metaphor in mythology and sacred scriptures. The pantheon of
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Sumerian gods were assigned numbers relating to the musical scale [Hoo],
[McCH4].

Around 2100 B.C. the Babylonians developed a particular virtuosity
for computation and began to apply it to astronomy. The ideas were
somewhat transformed and diffused into the numerology of the Hebrew
Bible (cf. [McC5,6], [McC-S]). The musical scale is based on ratios of the
first six integers, 1:2:3:4:5:6. McClain feels that this may be related to the
Biblical six days of creation, with the number 7 reserved for the realm of
the sacred or God. Pythagoras brought these ideas to Greece from his
travels to the East. They became part of the basic education of every Greek
youth. Recent research of Anne Bulckens [Bul] shows that many of the
measurements within the Parthenon can be expressed as integers related
to the musical system of Pythagoras. Even as late as 150 A.D., Ptolemy
was still using the base-60 system to do his very accurate astronomical
calculations. Indeed our system of angle and time measurement in degrees,
minutes, and seconds reflects this ancient system.

These themes will be explored later in this chapter. The musical scale
will be shown to be based on a symmetry of opposites, a rising and falling
scale. The tension between opposites has been also illustrated by such star
hexagon symbols as the Hindu Sri Yantra and the Star of David shown in
Figure 3.1, and in Schwenk’s and Edwards’ theories, described in the previous
two chapters, in which plants are both rooted to the earth and open to the
heavens. It is McClain’s theory that these star hexagons lie behind the
structure of the musical scale.

3.3 Musical Fundamentals

Sound manifests itself in the form of vibrations of air. Vibrations of high
frequency give rise to high-pitched sounds while low frequencies are perceived
as low tones. Our perception of sound is very much bound up with the
anatomy of the ear. Any pair of tones whose frequencies are in the ratio 2:1
are perceived as being of the same pitch class although at differing pitches.
Such tones are said to differ by an octave. This latter term (eight) reflects
the now almost universal acceptance of an ancient Middle Eastern preference
for cyclic heptatonic (seven-tone) structures which repeat on every eighth
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Figure 3.1 The tension of opposites illustrated by the (a) Hindu Sri Yantra diagram; (b) the
star of David.
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Figure 3.2 The 12-tone spiral with sample vibration rates at four quarters.

tone (i.e., like our names for the seven days of the week). The present
musical scale known as the equal-tempered scale, involves placing twelve
evenly spaced tones into the space of one octave, where what we mean by
evenly spaced will be made clear. The letters A through G are used to
represent tones along with sharps and flats, called accidentals.

If the 12 tones of the equal-tempered scale are placed on a polar coordinate
graph at equal angles, and the ratio of frequencies is represented by the
radial distance to the origin of the coordinate system, the equal-tempered
scale lies on a logarithmic spiral (see Section 2.5 and Figure 2.11) as shown
in Figure 3.2. Appendix 3.A gives a brief introduction to logarithmic spirals
and logarithms, and its relationship to the equal-tempered scale. Higher
octaves spiral outwards while lower octaves spiral inwardly, with the radial
distance of the fundamental note represented by the sequence:
,1,2,4,8,...

b

023,270,2711,2,25, 23, or ...,%,

S|
o | =
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falling rising

Ab = G#

Mandaia of The Singie-Wheeled Chariot of the Sun

This hypothetical "‘tonal zodiac™” shows how a twelve-spoked mangala harmonize«
music and astronomy at an abstract'geometrical level. In ancient times neither thn
constellations nor the intervals of the chromatic scale divided the cycie equally.

¢ Taurus (Bull) m Scorpio (Scorpion)

TI Gemini (Twins) ,7‘ Sagittarius (Archer)
g3 Cancer (Crab) "V} Capricorn (Goat)

S)‘ Leo (Lion) AN Aquarius (Water bearer)
T} virge (Virgin) H Pisces (Fish)

== Libra (Balance) " Aries (Ram)

Figure 3.3 The equal tempered rising and falling scale depicted as a mandala of the single-
wheeled chariot of the sun. This hypothetical “tonal zodiac” shows how a 12-spoked mandala
harmonizes music and astronomy at an abstract geometrical level.

Because doubling and halving is an octave relationship, a twelve-tone cyclic
group is generated by the 12th root of 2, that is by the ratio of 1.059..., very
close to 6%. The radial distance of the spiral grows about 6% per tone, and
like compound interest, the frequency (principal) doubles after 12 tones
(years).

If we are indifferent to the physics of sound and concerned only with
tonal function, as musicians normally are, then the spiral can be collapsed
into a tone circle as shown in Figure 3.3. The twelve signs of the zodiac
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have been placed on the circle. This hypothetical tonal zodiac shows how
a twelve-spoked mandala harmonizes music and astronomy at an abstract
geometrical level although in ancient times neither the constellations nor
the intervals of the chromatic scale divided the cycle equally. The ratio of
frequencies between any tone and the central tone D are indicated on the
circumference. (Note that in comparing the tones of Figures 3.2 and 3.3 the
following tone pairs are equivalent to each other: A sharp = B flat, C sharp
= D flat, D sharp = E flat, F sharp = G flat, G sharp = A flat). On either
circle or spiral, the scale can be thought of as rising in pitch by reading the
circle or spiral in a clockwise direction or decreasing in pitch by reading it
counterclockwise.

Each division is called a semitone and the distance between tones,
measured in semitones (s), is referred to as an interval. Some common
intervals and their semitone values are listed in Table 3.1 assuming D as the
fundamental tone.

Note that in Figure 3.3 the octave from D to D' can be subdivided into
a perfect 4th from D-G (four tones from D to G: D, E, F, G) and a perfect
5th from G-D (five tones from G to D). Such pairs of intervals are called
complementary. Similarly, the major 3rd and minor 6th, and the minor 3rd
and major 6th are also complementary.

From the viewpoint of the 12-tone theorist, any diameter through
opposing points in Figure 3.3 locates the square root of 2 which defines the

Table 3.1 Tonal intervals.

semitone D-D sharp 1s
wholetone D-E 2
minor 3 rd D-F 3
major 3 rd D-F sharp 4
petfect 4 th D-G 5
tritone D-G sharp 6
perfect 5 th D-A 7
minor 6 th D-B flat 8
major 6 ¢h D-B 9
minor 7 th D-C 10
major 7 th D-C sharp 11
octave D-D' 12
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Figure 3.4 Cyclic subgroups represented on 12-pointed stars; (a) four-cycle (major thirds);
(b) a two-cycle (whole tones); (c) five-cycle (fifths).

musical tritone for its own pair of tones. The twelve pointed stars of
Figure 3.4 illustrate cyclic subgroups of the 12 tone scale. In Figure 3.4a,
every fourth point is connected (the star {12, 4}). The sides of any triangle
in this figure define major thirds. If every second vertex is connected, as
shown in Figure 3.4b (the star {12, 2}), the sides of any hexagon define a
wholetone scale while the sides of any square of star {12, 3} define minor
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thirds shown in Figure 3.4c. These exhaust the cyclic subgroups within a
model octave, but the gamut, of piano, organ, and orchestra (eight to nine
octaves) creates a “space” for cyclic subsets of even larger intervals.

Notice that star {12, 5} in Figure 3.4d does not disconnect into cyclic
subsets but results in a connected star (the mathematical consequence of 12
and 5 having no common factors). This so-called circle of fifths will be
exploited in the next section to determine the relative frequencies of the
12-tone scale in the manner of modern piano tuners. However, we shall see
that this tuning tradition goes back beyond recorded history.

3.4 Spiral Fifths

In the ancient world, with its restriction to rational numbers, harmonic
theory was essentially the study of numerical coincidences in approximating
the idealized structures described above. The relationship between pitch
and the length of a plucked or bowed string was probably the first instance
of a relationship that required the concept of rational numbers. When
other factors are held constant, the doubling or halving of string length
produces, respectively, a lower or higher octave respectively. This is illustrated
on a single string lying above a resonating chamber called a monochord, as
shown in Figure 3.5(a). Here, a string is stretched between two fixed bridges
at the ends of the string. The length of the vibrating portion of the string
is controlled by a movable bridge. If the movable bridge is set at an arbitrary
position, shown in Figure 3.5(b), and the string is plucked it gives off a
resonant tone called the fundamental or tonic. If the movable bridge is moved
to the location % (see Figure 3.5b), the resulting tone is the fundamental
raised one octave. Any octave is suitable for a theoretical model (i.e., the
string length is arbitrary).

Pitch names are merely local conventions. Arithmetical reciprocals
produce the same intervals, but in opposite directions. In other words, if the
bridge is moved to the location 2 thus lengthening the string, the plucked
tone is the fundamental lowered one octave. In this way any ratio, x:y
or y:x, can be represented by a monochord bridge position. Thus tuning
theory concerns a two-dimensional realm (measured by x,y-coordinates
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Figure 3.5 (a) A monochord; (b) schematic diagram of a monochord showing the positions of
the octave, fourth, and fifth, and their reciprocals.

[see Section 4.2]) of perfect inverse symmetry whose matrix or “Great
Mother” is the ratio 2:1. For this reason all even numbers are similarly
considered by ancient cultures to be “female”. Harmonic theory also shows
us that the ratio of pitch frequency of an interval is inversely related to the
string ratio. The most remarkable of all coincidences is that intervals within
the octave 1:2 which musicians prefer to tune by ear — namely, perfect
fifths have a ratio 2:3 while complementary perfect fourths correspond to
the ratio 3:4 (they neatly divide the octave double into 2:3 and 3:4) — are
worth almost precisely seven semitones and five semitones respectively (the
ratio of frequencies of the fourth and fifth, or the wholetone, is only slightly
more than its counterpart in the equal-tempered scale). Notice that according
to the definition of the logarithmic spiral in the last section, whereas intervals
add, the ratio of frequencies (or string lengths) multiply, e.g., % X % = %
(an octave) while 5s+ 7s=12s, and %% = % while 7s — 5s = 2s
(a wholetone).

An up and down succession of these intervals in preferred tuning order
is easily contrived to closely simulate 12-tone tuning. This musician’s spiral,
with tones descending a fourth and ascending a fifth is illustrated in
Figure 3.6. There is a very slight cyclic excess in the tuning ratios by
comparison with the equal-tempered scale, unnoticeable until it accumulates
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Figure 3.6 Serpent power: the spiral tuning of fourths and fifths. Courtesy of Ernest McClain.

through several pitch classes. This excess is just sufficient to make the
distinction between the first tone (A-flat) and the 13th tone (G-sharp)
noticeable under laboratory conditions. Thus the natural tuning process
proves intrinsically cyclic if it is continued this far! (Five to seven pitch
classes were the usual ancient norm, East and West.) The barely perceptible
overlap between the 1st and 13th tones is known as the Pythagorean comma.
Its value is computed in Appendix 3.A. Notice that alternate tones in this
sequence belong to wholetone progressions easily mapped (and with adequate
accuracy) by a hexagon (see Figure 3.4b), so that an ancient scientist
possessed tools as convenient as our own for explaining tuning theory via
visual geometrical aids. The cumulative cyclic excess encourages us to view
this system from its center, taking pitch-class D (center of symmetry in
our modern naming system) as representing an all-purpose “Deity” (and
immutable reference center), embracing the universe with his two “arms”.
There is a gradually increasing internal dissonance as we move outward from
the center into a world considered as “emanating” from “Him”. Thus the
ancient Pythagorean dedication to the symmetry of opposites was required by
the model it used, and it continues to encourage us to view the tone system
from its middle; we introduce sharp and flat symbols only as needed (raising
and lowering pitch class by a semitone), and use them as sparingly as
possible. Pentatonic and heptatonic scale systems suffered no problem with
this concept of tuning for as long as musical styles remained essentially
melodic and the word “symphony” implied, as it did in Greece and many
Eastern ensembles, playing and singing in parallel octaves. Twelve-tone music
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Figure 3.7 Sumerian double-serpent symmetry; from the steatite vase of Gudea in the Louvre,
Paris.

requiring all pitches to be pre-tuned appears only much later in history with
the advent of polyphonic music; ancient examples pertain only to theory.

McClain suggests that this musical spiral may be the basis of ancient
dragon and serpent myths such as the one shown in Figure 3.7. Tuning
theory begins with the arithmetization of this serpentine tuning progression.
And it proves astonishingly simple. Some ancient maker of harps or panpipes,
McClain assumes, must have noticed that successive lengths needed for this
sequence vary about one-third, and so a rule was born:

“Add or subtract one-third”

(i.e., from successive string or pipe lengths). Pitch-class remains indifferent

to this addition and subtraction because % and % are octave equivalent, i.e.,
% X %= % It is never necessary for a workman to know that the rule is
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perfectly accurate only on an idealized monochord, and only approximately
accurate for pipes of particular diameters, because ancient pipes and strings
themselves were never perfectly uniform; final tuning always was, and
still is, done by final adjustment of individual string tension (of pipe and
tone-hole diameters, and breath control). Thus an approximate ancient
craftsman’s rule eventually would have been sufficient to give birth to a
theory in somebody’s mind. Judging from the contents of ancient ritual
burials, pipes and strings were sufficiently abundant in the ancient Near
East by the beginning of the third millennium B.C. to suggest such
knowledge. Chinese ritual flutes appear at least 2000 years earlier, and a
seven-holed flute was recently found in the Yellow River valley in Henan
Province in central China dating to around 7000 B.C. in a condition playable
today [Fou]. Therefore, the invention of tuning theory cannot be localized
either in time or space, and may never have been thought of as an invention
at all. Man simply awoke to an observation, a truth evident in the tuning
of any harp.

The oldest expression of the “plus or minus one-third” rule is attributed
to Kuan Tzu (7th century B.C.) [Nak], who explains how to apply it
arithmetically and geometrically to the standard pentatonic scale. Since
four new values (of relative string length) are to be computed from the
reference value, he tells us to first “take three four times” (meaning
3x3x3x3=3"=81) to compute four successive values from 81 through
108, 72, 96, to 64 (= 26), where factors of 3 are exhausted. For example,

81+§x81=108, 108—%x108=72, etc.

Taking C as the reference value results in the tone series,

C G D A E
81 108 72 96 64

which can be increased or decreased by powers of 2 and reordered into any

(3.1)

one of five descending pentatonic scales, e.g.,

G E D C A
54 64 712 81 96

each tonally equivalent to the succession of black keys on the piano.
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Analogously, a heptatonic calculation begins on 3= 729 and ends on
2° = 512 producing the Pythagorean scale. To arithmetize the entire spiral
of thirteen tones, merely start with a reference value of 3= 531,441 and
zigrag appropriately to end on 2 = 524,288 (the Pythagorean comma is
related to the difference (or ratio) between these values, as is shown in
Appendix 3.A).

Notice that this process always begins with the largest “male”, yang odd
number (a power of 3) and ends with the largest “female”, yin even number
(a power of 2), e.g., 81 and 64. Thus the prime numbers 2 and 3, female
and male respectively, inspire Chinese “five element” theory and yin-yang
dualism, and are projected from Chinese musicology onto Chinese culture
as a whole. These notions are indigenous also in Western theory under
analogous rubrics such as the pentatonic structure of folk melodies, somewhat
obscured however by the wider success of heptatonic thinking. Figure 3.8a
shows that multiples of either frequency or string length by powers of 3
result in the seven-tone scale while Figure 3.8b illustrates that powers of 2

D —
391 2P=1
c3? 3*E
B 33 3-3 F

3 3!

A G

Circle of the Same Circle of the Different

373%313°3' 373 222221 202 22 2
(a) (b)

Figure 3.8 From Plato’s Timaeus, (a) the “circle of the same” showing generation of the
heptatonic scale from powers of 3; (b) the “circle of the different” showing octave identity
between tones.
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preserve the tone, merely altering the octave. McClain [McC2] sees these
as the “circle of the Same” and the “circle of the Different”, pertaining to
the creation of the “World Soul” in Plato’s Timaeus. The two systems
reflect the fact that Chinese astronomy never counted the Sun and Moon
as planets (“wanderers”), as Western astronomy did, requiring a heptatonic
model (representing the seven wandering stars known to the ancients). In
both East and West, for reasons we do not understand, heptatonic and
pentatonic structures were both well-loved, enjoyed the same arithmetic,
fueled the same cultural metaphors, and encouraged the same modal
permutations. Any tone in a set of five or seven could be lowest, highest,
or middle, and function as a modal identifier merely by doubling and/or
halving its values appropriately, and so musical practice did not affect
mathematical theory.

All of these spirals can be tuned in reverse order by inverting the
tuning rule, and working from right to left. The reformulation proves less
elegant:

“subtract one-fourth or add one half’

(i.e., to reach % and %, which are octave equivalents), and thus exposes
the superiority of the Chinese rule, which seems to have been forgotten in

the West.

3.5 Just Tuning

We should expect that in the high civilizations of the ancient world, expert
in handling fractions, arithmetized tunings suffering from an obvious cyclic
excess would be paired with another tuning showing a compensating cyclic
deficiency by comparison with the equal-tempered scale. It was in both
Taoist China and ancient Greece that brilliant alternatives arose [Barb).
In the West we know this alternative tuning, with cyclic deficiencies, under
the rubric of Just tuning.

Ancient harmonicists loved its arithmetical parsimony. It permits all
twelve tones to be defined with integers of no more than three digits. In
the previous section, the pentatonic scale was easily defined in either tuning
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with two-digit numbers, but remember that spiral-fifths tuning requires six
digits for the complete 12-tone system. This is numerically grotesque because
nobody can hear the difference of plus or minus one unit beyond the third
digit, and few of us notice such a distinction even in the third digit. Thus
human convenience, affection for arithmetical parsimony, and the ear’s
benign tolerance of very small differences combine to encourage attention
to a Just tuning whose smallest heptatonic pattern, we shall see, is placed
within a 30:60 octave and whose 12 tones are placed in the 360:720 octave.
The tones of the Just scale are arranged in a circle (see Figure 3.9), with
their corresponding ratio of frequencies relative to the fundamental, D.

Notice that the semitones are not of equal length, as they would be in
the equal-tempered scale, and that numerators and denominators of these
fractions now have factors of prime 5 in addition to 2 and 3 of the “serpent”
tuning.

This Just tuning arises from a very slight contraction in the two ends
of the “Great serpent” shown in Figure 3.6. If we merely drop a unit from
our pentatonic base of 81, we end up with the ratio 64:80 = 4:5, a pure third
(Ce, or inversely, E:c rather than E:C). As a consequence of this contraction
(by a syntonic comma of 80:81, imperceptibly smaller than our previous
comma), the tones: e-b-f sharp-c sharp-g sharp are each a comma lower in
pitch; and the tones: a flat-e flat-b flat-f-c are each a comma higher in pitch.
We have merely shrunk the “serpent” a bit at two symmetric loci, just
sufficiently to create a gap between a-flat and g-sharp (whereas before we
had an overlap). These alternate Just pitches are designated in lower case
letters by McClain to call attention to this slight modification.

The result is a fusion between perfect fifths and fourths with pure thirds
at several loci. Figure 3.10 maps the resulting system through several stages
of development. The original serpent is now distributed symmetrically in
three successive rows, and more serpents are growing in adjacent rows.
Although standard notation has been used for the tones in this matrix, the
ones in rows 1 and 2 are excessively sharp while the ones in rows 6 and 7
are excessively flat compared to the equal-tampered scale. We are watching
the tones multiply with each effort to bring the process to a close. Ancient
tunings generate infinite groups, not cyclic ones as does the equal-tempered
scale.
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Figure 3.9 The Just scale with tonal ratios.
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Figure 3.10 Thirty seven tones of the musical matrix generated by the ratios of the Just scale.

Figure 3.10 can be arithmetized by thinking of it as a multiplication
table for the numbers A and B as shown in Figure 3.11a. This table is the
origin of the sacred symbol of the Pythagoreans known as the tetractys and
it is found in the writings of Nicomachus, the Pythagorean philosopher
(2nd Century C.E.) (cf. [Kap10], [D’Oo], [McC2]). If A =2 and B = 3, the
powers of 2 and 3 give rise to the lambda figure found in Plato’s Timaeus
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Figure 3.11 (a) The tetractys: basis of the musical matrix; (b) Plato’s “world soul” conforming
to the format of (a).

and known as the “World Soul” (see Figure 3.11b) (cf. [McC2], [Kap3]). If
“one” is taken to be the frequency of the fundamental, then three successive
multiples of 3 along the left leaning diagonal (\) of Plato’s lambda along
with their reciprocals correspond to the tones of the heptatonic scale
represented in Figure 3.8a. The right leaning diagonal (/) of the lambda
figure are powers of 2 which do not alter the pitch classes of a tone from
one octave to another as shown in Figure 3.8b.

If A=3 and B =5, then a similar multiplication table for 3 and 5 arises
shown in Figure 3.12a. Each number in the matrix is multiplied by successive
powers of 3 going from left to right, and powers of 5 going up the right
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64 48 36 27

(a) (b)

Figure 3.12 Multiplication table for tones based on primes 3 and 5, (a) smallest integers 3° x
5%, (b) 4:3 mated with 5; (c) diatonic scale order; (d) tonal reciprocals.

leaning diagonal. If the 1 in Figure 3.12a is raised two octaves to a 4, then
Figure 3.12b is the end result of the following sequence of matrices. (Notice
that the integers at the vertices of the triangles are powers of 3, 4, and 5):

125
25

5 1
- > - 20 15 - 00 &
1 3 4 3 80 60/30 45

16 12 9
64 48 36 27

Three ratios of a 3:4:5-relationship at the basis of the Just scale present
themselves: 4:3 or a musical fourth from right to left « (e.g., 80:60), 5:4,
or a major third along the right-rising diagonal ~ (e.g., 75:60), and 3:5, or
a decrease in tone of a major 6th along the left-falling diagonal v (e.g.
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falling
pitch rising
pitch

ratios 30 32 36 40 45 48 (50) 54 60
rising b eb f G A bb (b) c D
falling D ct b A G f (£) e D

Figure 3.13 Poseidon and his five pairs of twin son’s from Plato’s Laws, representing all the
tones from the seven tone rising and falling heptatonic scales.

36:60) where the ratios represent frequencies rather than string lengths. All
of the tones shown in Figure 3.12b satisfy these same relations.

In Figure 3.12¢, the numbers are multiplied or divided by powers of
2 (which do not alter their pitch classes) until they lie within the octave
limit of 30:60, and the triangle is truncated to a ziggurat shape, allowing
entry only to those numbers within the 30:60 octave limit. Notice in
Figures 3.10 and 3.12b that tones equidistant but oppositely directed
from the central tone are complements, and are represented by inverse
ratios. Therefore, Figure 3.12c defines the inverted diagram of Figure 3.12d
corresponding to a falling scale. All tones within the intersection of the
inverted ziggurats have inverses within the octave 30:60. In this way all of
the ratios of the seven-tone rising scale and its symmetric falling scale are
derived and shown in Figure 3.13 in terms of integer values. Also notice
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500 375
400 600 450 675

640 480 12 540 40S

360
512 384 576 432 648 486

¢) Chromatic Order within

3°8% < 720 720:360 Octave
(a) (b)
Fourths and Fifths
L s
Major Thirds

Minor Thirds

a) Tonal 18 T
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Figure 3.14 Multiplication table for 11 of the 12 tones of the Just scale. (a) Irreducible integers
3P59 < 720; (b) chromatic order within the 720:360 octave; {c) inverted ziggurats showing
tones invariant under inversion.

that the three tones of the Pythagorean scale fundamental to the Western
music, do fa sol do (e.g, D G A D) lie on the central axis.

In a similar manner, the matrices can be extended to encompass 11 of
the 12 tones of the 12-tone scale within the inverted ziggurats by merely
enlarging it to one encompassing the octave from 360 and 720 as shown in
Figure 3.14. The ratios of the 13 tones within the ziggurat reproduce the
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Figure 3.15 Tonal symmetries in the “calendrical” octave of 360:720. Symmetries in base
60-arithmetic naturally result in this smallest integer approximation to our equal-tempered
12-tone scale whose equal divisions are marked by short radial lines on the rim of the

circle.

tones of the Just scale shown in Figure 3.9 along with the pairs e-E and
¢-C differing by the comma of ratio 80:81. Five tones of the Pythagorean
tuning lie on the central axis, forming a pentatonic scale. The symmetry
of the 13 tones of this so called yantra diagram (the same picture occurs
by turning the page upside-down) results in the bilateral symmetry of
Figli}‘g 3.15. The missing 12th tone is A flat or G sharp, the approximation
to V2.
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3.6 Music and Myth

We see through these tonal matrices the genesis of a number system
base 60 which originated in Sumer about 3000 B.C. along with a calendar
based on a canonical 360-day year and 30-day month which were musically
if not cosmologically correct. Key numbers from this sexagesimal system
were associated with a pantheon of gods. About 2100 B.C., the Babylonians
became politically ascendant and reorganized the Sumerian pantheon,
preserving the names of its gods, and keeping its mathematical terminology.
They developed base-60 computation to a level of arithmetical virtuosity,
as did the Egyptians. Between 500 B.C. and 150 A.D., Babylonian and
Greek astronomy developed base-60 computation. The musical scale
with its 12-tones became a model for the solar and lunar cycles. The
incommensurability of solar and lunar cycles may have been associated
with the need for a comma to close the tone cycle as is shown in
Appendix 3.B. The yantra diagrams serve as a kind of cultural Rosetta
Stone through which McClain has been able to show the common roots of
many ancient mythologies with metaphorical imagery pertaining to the
musical scale. I provide three examples.

Example 3.6.1 The Great Gods of the Babylonian Pantheon

Figure 3.12¢ can be associated with the great gods of the Babylonian
pantheon — Enki 40, Enlil 50, Sin 30 (the moon god) and Anu 60 [McC4].
Notice their positions in the diagram, with Enlil 50, the “Lord Atmosphere”
at the peak and Anu, the head of pantheon, in the center setting up a
3, 4, 5-relationship within the octave interval —g% . According to McClain,

“Anu is essentially a do-nothing deity; a reference point,
perfectly suited to represent simultaneously the middle band of
the sky, the center of the number field, and the reference tone
in a tuning system.”

“EafEnki, is ‘god of sweet water’. In its double role of 40:60
and 60:40 it ‘organizes the Earth’ (as represented by the string)
into do, fa, sol, do, the harmonic basis of the modern scale.”

“Enlil, the ‘mountain god’ was the active head of the pantheon.”
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Example 3.6.2 The Yantra for the Precession Cycle of the Equinoxes

We discussed the precession of the equinoxes in Section 1.4. The discovery
of the precession of the equinoxes —a slow westward motion of the
equinoctial points along the ecliptic — is generally credited to Hipparchus
in 127 B.C. De Santillana and von Dechend [de-D] suggest that Hipparchus’
discovery was actually the rediscovery of a fact known some thousand years
previously. In Oriental Mythology, Joseph Campbell calculates the
precessional cycle, which he believes may have been known to the ancient
Babylonians, as 50 seconds of arc per year which amounts to a complete
cycle in 25,920 years also known as the “great year”. This compares within
3 parts in 500 to the currently accepted figure of 25,726 years. Now 25,920
divided by 60, the standard Babylonian unit of sexagesimal arithmetic,
yields 432. By legend, 432,000 years was given by the last priest of Marduk
(c.290 B.C.) as the sum of the reigns of the ten antediluvian Kings [McC1].
The seven tones of the Pythagorean scale (integer ratios divisible by primes
2 and 3) can also be placed in the octave interval between 432 and 846
(see the bottom row of Figures 3.14a and b). McClain has shown in
Figure 3.16 that the yantra diagram can be widened to accommodate the
seven tones of the Western scale along its transverse axis within the octave
ratio 25,920: 12,960. Equivalent tones such as E, e and C, ¢ are related to
each other by the syntonic comma of 80:81. According to the computation
scheme illustrated in Figure 3.12a, the fundamental tone D in Figure 3.16
corresponds to the integer 3 X3 x3x3 x5 X% 2% = 25,920, or the “great
year”. McClain believes that these tonal mandalas reflect the musician’s
problems with a tuning theory based on “perfect” relations between integers
and symbolizes the astronomer’s problems in defining celestial cycles from
the platform of an earth which wobbles on its axis while viewing planets
which wander by about the distance of our commas from the planes of the
ecliptic.

Example 3.6.3 The Yahweh Diagram

McClain points out that — in Mesopotamian base 60 arithmetic — the
13 tones in the spiral of fifths require the monochord reference unit
to be interpreted arithmetically as 60 to the fifth power, that is, as
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Figure 3.16 Yantra for the precession cycle of 29,520 years. Figuring from the lower left-hand
corner, the fundamental tone D=3 x3x3x3x5x 26= 29,520.

777,600,000 in base 10. And traditional Kabbalist interpretation of YHWH
as 10-5-6-5 can be read as 10 to the fifth power (meaning 100,000) times
6 to the fifth power (meaning 7776)= 777,600,000. Is it possible that this
reading is cleverly implanted in Genesis as the age of Noah'’s father (777)
when the flood came in his 600th year, when his three sons were already
100?

The rationale is easy to follow if we remember that 60 integrates three
pitch classes in the middle of this series. The musical proportion 6:8::9:12
multiplied by 5 into 30:40::45:60 defines D:G::A:D' rising (or falling). Each
multiplication by 60 adds another pair to this series. This corresponds to a
multiplication by 5 for an upward movement » in McClain’s yantra, 3 for
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a horizontal movement «, and multiplication by 4 for an increase of two
octaves, i.e., 3 X 4% 5=60. At the fifth power, eleven values are defined
symmetrically (God surrounded by his minion of 10 men) and a twelfth is
defined asymmetrically (at either G-sharp or A-flat) near the middle of the
octave. But the Chosen People are taught to accept reversals of fortune as
a normative life experience, and this twelfth value oscillates in the narrow,
almost subliminal “comma” between these extreme values to define both
beginning and end (prime aspects of Deity) in the 13-tone series. The
following schematic diagram of the rising portion of McClain’s yantra
summarizes this musical state of affairs:

[ 60° ]
[ 60* ]
[ 60’ ]
[ 60" ]
[ 60 ]
A-flat Eflat Bflat F C G D A E B F-sharp C-sharp G-sharp

Thus Jewish logic, both loving and playful when it is understood, remains
irrefutable through the ages, and Bible mathology can help in this
understanding (cf. [McC5], [McC-S], [McC3]).

3.7 Musically Encoded Dialogues of Plato

The reader may ask where the elaborate musical structure that forms the
basis of McClain’s musical matrices comes from, given the absence of explicit
information about Sumerian musical theory. There are numerous suggestions
by Greek philosophers of antiquity that Pythagoras’ knowledge of music
came from the East. McClain has made a careful study of the dialogues of
Plato and has seen in them numerous references to the structure of the
musical scale and its relationship to ethics, society, and politics.
The yantra diagrams were based on the concept of limit [McC2Z]:

“In political theory as in musical theory, both creation and the
limitation of creation pose a central problem. Threatening
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infinity must be contained. Conflicting and irreconcilable
systems, be they of suns and planets, of even octaves and odd
fifths, or of divergent political members of a republic must be
coordinated as an alternative to chaos. What the gods have
shown to be possible in the heavens, what the musicians have
shown to be possible with tones, the philosopher should learn
to make possible in the life political. Limitation, preferably
self-limitation, is one of Plato’s foremost concerns. His four
model cities correspond to four different tuning systems each
with its own set of generators and an explicit population limit.”

The structure of the musical matrix found in Figure 3.12 is alluded to
in Plato’s Republic — the formula four-three mated with five, thrice
increased, produces two harmonies.

This refers to the 3:4:5 “god” relationships that lies at the basis of the
yantra as it is expanded three-fold to obtain Figure 3.10.

In “Laws”, Plato refers to Poseidon who “begot five twin births of male
offspring”. This appears to be a reference to the eleven tones that can be
derived from the yantra of Figure 3.14 symmetrically placed in Figure 3.15
excluding the tritone.

The 37 tones of Figure 3.10 are related to the 37 guardians of Magnesia
described in “Laws”. McClain has hypothesized that these 37 tones are
also related to the 37 right triangles with integer lengths that exist at
approximately 1 degree intervals up to the 3, 4, 5 triangle with base angle
of approximately 37 degrees [McC2]. This discovery goes back to Babylonian
times where the theory of Pythagorean triples is developed on a cuneiform
tablet known as Plimpton 322 dating to 1900-1600 B.C.

McClain suggests that the tones on the central axis of the yantras,
associated with the Pythagorean tuning, correspond to Plato’s “Rulers” or
“citizens of the highest property class” in the “marriage allegory” of Plato’s
Republic. The rows above and below the central axis, associated with the
Just scale, refer to the “auxiliaries” or “citizens of the second property
class”. Beyond these rows the tones become more and more dissonant and
they correspond to the “slave classes”. In the Plato’s Republic, Socrates
comments that “our young have become more unmusical”, a possible
reference to the tones in distant rows.
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Plato’s metaphor requires imaginative interpretation, hence we can never
achieve more than a “likely story” based on them. Nevertheless, McClain
has shown them to be a rich source of information.

3.8 The Mathematical Structure of the Tonal Matrix

Now that we have seen how ancient civilizations computed the matrix
of musical tones, | will summarize the mathematical structure of the
musical matrices of Figures 3.12 and 3.14 in modern terms [Kapl2]. All
tones capable of being generated by primes 2,3 and 5 are also related by
the series 3,4, 5, as we saw in Figure 3.12. Taking the ratios of these
numbers in reverse cyclic order gives rise to three primary tones: :5;, %,
and % , the musical major third and fourth, above a fundamental reference
tone, and the major sixth below where these ratios represent frequencies.
In what follows I shall interpret these ratios to refer to frequency rather
then string length. It should be noted that if -g— is raised an octave, (% X2

= %) it can also be interpreted as the ratio %, a minor third above the

fundamental.

In Figure 3.17a, the three primary tones are represented by arrows or
vectors in a musical coordinate system with three axes. (Appendix 3.C is
devoted to a brief introduction to vectors.) The center of the coordinate
system signifies the fundamental tone, which I shall take in this discussion
to be D. The endpoints of the vectors then refer to f sharp, a major third,
G a fourth above D, and f, a major sixth below D. The “sum” of two vectors
(see Appendix 3.C) corresponds to multiplying their ratios. A vector in
the opposite direction corresponds to the reciprocal ratio. In Figure 3.17b,
which is a numerical and geometrical representation of Figure 3.10, these
ratios are summed along their lines of action to yield higher powers of the
primary tones.

In Figure 3.18a, % results from the sum of % and % (i.e., % X % = %),

and the sum of %, 3, and % yields 1 or the fundamental (i.e., % x 4

3
% = 1) which functions as the neutral or zero vector. In a like manner,
every counter in Figure 3.10 represents a tone attainable from D by the

appropriate sum of the primary vectors. For example, in Figure 3.18b, the
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Figure 3.17 The musical matrix seen as a vector diagram based on the number 3, 4, 5.



84 Beyond Measure

4/3 3/a
3/5 5/4 5/4 15/16
Sfax4/3x3s=1 5/ax3/4=15/1¢
(a) (b)
5/3
4/3 4/3 /3

5/3x 43X 4/3X%/3=80x4/5 =80/g,

(c)

Figure 3.18 Application of the tonal vector diagram to representing tones, (a) a cycle of
vectors yields the fundamental tone; (b) raising the fundamental by a major third and lowering
it by a fourth yields a semitone below the fundamental; (c) generation of the syntonic comma

80:81.

note a semitone below D in the Just scale, i.e., the ratio -{% , is obtained by

adding % and % (i.e., %g= % X %),

You will notice in Figure 3.10 that some tones such as C, c and e, E are
repeated. These unavoidable discrepancies are the result of representing
tones by rational numbers, which creates an endless proliferation of distinct
tones in contrast to the closed circle of 12 tones for the equal-tempered
scale. Let’s compute these discrepancies. Using our vectors, we see in
Figures 3.10 and 3.18d that to get e from E requires the addition of three

% and one % vector, i.e.,

3

3 81

[4 TX 5 (80x4)
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Bringing this tone down two octaves yields the comma of 80:81 that results
from cutting the “serpent” (see Section 3.4). By using this vector approach,
you can find rational approximations to+/2 by computing the ratios
associated with A flat and G sharp.

3.9 The Color Wheel

It is much debated among philosophers and musicologists as to whether
ancient cultures were oriented more towards the visual or aural senses. In
either case it is fascinating that the tonal structure described in the last
section also forms the mathematical basis of the color wheel shown
schematically in Figure 3.19. The three primary colors take the place of the
three primary tones, while the complementary colors are analogous to the
reciprocals. (A complementary color is the color that is created by the
mind’s eye and superimposed on the object when you stare at a primary

color.) Anharmonic shades (A) of white, black, or gray play the role of
the fundamental.

The primary colors:
Cyan (C) with =
Magenta(M)  with

Yellow(Y) with —

The complementary colors:

Orange(O) with g
Green (G) with %

. L 3
Violet (V) with Z

The anharmonic color (white, black, gray) A with 1.
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Figure 3.19 Analogy of tonal vector diagram to the color wheel.

IVARViRVAN

Y+C=G M+Y+C=A M+C=V

Figure 3.20 Vector addition of colors.

If the schematic diagram of the color wheel in Figure 3.19 is taken to
be a vector diagram, then the primary and complementary colors are shown
in the diagram in clear analogy to Figure 3.17.

Furthermore, (see Figure 3.20) if equal amounts of C and M are “added”
(i.e., the ratios are multiplied) they make V, i.e.,

C+M=V,
also,
M+Y=0 and Y+ C=G.

The result of adding all three primaries is a shade of gray (see Figure 3.20),
ie.,

M+Y+C=A.

Therefore the musical scale and the color wheel have analogous structures.
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3.10 Conclusion

To ancient mathematicians and philosophers, the concept of rational number
was thought to lie at the basis of cosmology, music, and human affairs.
Using imagery of the Rig Veda, McClain says:

“The part of the continuum which lies beyond rational number
belongs to Non-being (Asat) and the Dragon (Vtra). Without
the concept of an irrational number, the model for Existence
(Sat) is Indra. The continuum of the circle (Vtra) embraces
all possible differentiations (Indra). The conflict between Indra
and Vtra can never end; it is the conflict between the field of
rational numbers and the continuum of real numbers.”

Chapters 20—25 will show that this battle between rational and irrational
numbers continues to the present where it lies at the basis of chaos theory
and the study of dynamical systems:

The impossibility of rationalizing either the musical scale or the cycles
of the heavenly bodies was the great lesson of Mesopotamia, Kuan Tzu, the
Rig Veda, and the allegories of Plato. It also led, as McClain states, “to the
insight that number must be dethroned as an absolute and viewed instead
as a tool for human rationality to order as best it can the evidence of the
eye and ear”.

Looking back to the way in which musical metaphor led ancient people
to an understanding of the universe reinforces the modern notion that
there is not a single path that leads to truth. The kind of relativistic thinking
in both music and projective geometry in which all tonal frames of reference
and all locations of the observer are equally valid prepares the mind well
for absorbing this lesson.

Appendix 3.A

3.A.1 Logarithms and the logarithmic spiral

Consider the geometric series,

U N N LN SN
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Table 3.A1 The logarithmic spiral.

90 d
-2 272=1
-1 =1
0 20 =1
1 y LR
2 2 =4
3 23 -8
4 4 =16
5 2 =32
X 2X =y

x=logzy

If successive numbers from this series are taken to be the distance to
the origin of an x,y-coordinate system at increments of 90 degrees, then
they determine a set of wertex points of a logarithmic spiral as shown in
Figure 2.11a. Notice that the radii form a geometric series while the
corresponding angles of the spiral and the exponents of the series form
arithmetic series. Table 3.A1 shows the points on a logarithmic spiral for
k=2.

Although this table defines only the vertex points of the log spiral, the
other points can be computed by inputting other angles, e.g., the radial
distance at 45 degree is 2" since g—g = %

Besides defining the points on a logarithmic spiral, Table 3.A1 also

represent the following pair of inverse functions:

i) exponential to the base 2 written as, y = exp; (x) and y = 2%, and
ii) logarithm to the base 2 written as, x = log; y.
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3.A.2 Properties of logarithms

Table 3.Al also illustrates four major properties of logarithms:

i) the logarithm of 1 to any base equals 0; e.g., log; 1 = 0;

ii) the log of the base equals 1, e.g., log; 2 = 1;

iii) as two numbers multiply their logarithms add. For example, while
the numbers 2, 3, and 5 from the left hand column of Table 3.A1 add,
ie.,, 2 + 3 =5, the corresponding numbers in the right hand column
multiply, i.e., 4 X 8 = 32.

iv) as a number is taken to a power, its logarithm is multiplied by the power.

We have limited ourselves in Table 3.A1 to finding logarithms of numbers
that are powers of 2. How can we compute log;3? You may be inclined to
use your calculator, but you will be disappointed to find that calculators
have no direct way of computing log;3. The answer is found in a formula
that we introduce without proof,

log,y= logby. (3.A1)
logy a

If we take b = 10 then we see that calculators are able to compute logarithms
to the base 10, and for a = 2 and b = 10, we find that,

log; y= logioy =3.322 logyoy.
logyp 2

Therefore,
log; 3 = 3.322 log1p 3 = 1.585.

To summarize the properties of logarithms to any base k > 0, -

log k=1,
log,1=0,

logi(ab)=logxa+loggb and logy % =logr a—log b,

logka? =blogca.
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3.A.3 Logarithms and the musical scale

The frequency ratio, r, of each of the 12 tones of the equal tempered scale
from the fundamental tone of value 1 to the octave of value 2 is given by
the following geometric series,

1

1,2%,2% 21, . 21 2. (3.A2a)

The corresponding log, series is,

) s )---)—_;1' (3.A2b)

Since the product of tonal ratios is equivalent to the sum of their
intervals, the logarithm can be used to measure intervals since logarithms
have this property. In order to give each interval a value of 100 cents
we multiply the tones of Series (3.A2b) by 1200 so that, each of the 12
semitones within an octave are assigned a value of 100 cents. Since
the interval scale is logarithmic, to convert a ratio 7, to cents use the
formula,

Teents = 1200 log; r = 1200 x 3.322 logior .

Appendix 3.B The Pythagorean Comma

The Pythagorean comma approximates the degree to which the canonical
year of 360 days differs from the solar year of 364.25 days and the lunar
year of 354 days (twelve 29.5 day months). Twelve musical fifths amount
to approximately seven octaves, the degree of approximation being the
comma, i.e.,

3\
(5) =129.746 and 27 =128.

Therefore, the comma is related to the ratio,

129.746 =1.01364.
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In units of cents,

Teents = 1200 X 3.322 x logyg 1.01364 = 23.45 cents

or 0.2345 part of a semitone.

However, the ratio of the solar to the canonical year is 2 g‘gés =1.0118
or 20.31 cents differing from the comma by about 3 cents. The ratio of the
lunar to the canonical year is, %’% = 1.0169 or 29.10 cents differing from

the comma by about five cents.

Appendix 3.C Vectors

Why use vectors to represent tones! A vector is a quantity with
magnitude and direction but is independent of its point of origin as shown
by vectors a and b shown in Figure 3.Ca. In other words, move a vector in
space without altering its length or direction, and its identity does not

(a)

(b)

Figure 3.C (a) Equivalent vectors; (b) addition of vectors.
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change. We say that vectors are translation invariant. On the other hand,
musical tones are independent of their identification with a particular
fundamental tone, i.e., they are tonally invariant. In Section 3.8, we used the
concept of addition of two vectors to represent the product of musical
intervals. In Figure 3.Cb, vector b is added to a by translating b so that the
tail of b touches the tip of a. The vector sum is then the vector obtained
by connecting the tail of a to the tip of b.



4

The Projective Nature of the Musical Scale

Music is the true element from which all poetry springs
and to which it flows back.

Richard Wagner

4.1 Introduction

McClain’s research suggests that the musical scale was a key factor in the
advancement of mathematics and cosmology in ancient civilizations both
Eastern and Western. Pythagoras became a student of these ideas and through
him they became a part of Greek culture.

After the fall of Greece, the ideas expressed by the musical scale went
underground and were revived during the Renaissance when the writings of
classical Greece that survived the passage of time, formed the intellectual
basis of this age. The artists and architects of the Renaissance are considered
by historians to be among the greatest mathematicians of their age. The
development of perspective is often considered to be the most significant
mathematical creation of the Renaissance, and it is interesting that it is
based on the same concepts of projective geometry as the musical scale.
In fact perspective presents the eye with multiple versions of reality
depending on the position of the observer in much the same way, for the
ear, that the perception of tone does for the ear is dependent on the choice
of the fundamental tone.

This chapter explores the direct connection between projective
geometry and the musical scale.

93
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4.2 A Perspective View of the Tonal Matrix: The Overtone Series

Section 3.4 stated that the pitch classes can be mapped onto a two-
dimensional grid. Assign a pair of integer values (p,q) to the coordinates
of a Cartesian coordinate system in the positive quadrant to form what
mathematicians refer to as a lattice shown in Figure 4.1a. A rational number
is defined to be the ratio % when p and q have no common factor, i.e., they
are in lowest terms, or as mathematicians say, they are relatively prime. If
(p,q) is connected by a line to the origin (0,0), the line with slope % can
be associated with the rational number £. The first lattice point encountered
by the line is (p,q), e.g., (3,2) in Figure 4.1a, and each line contains an
infinite number of lattice points, e.g., (6,4), (9,6), etc. An irrational number
I, e.g., V2 cannot be represented by the ratio of integers so that a line
with slope 1/], e.g., 12 intercepts no lattice point. The family of lines
representing the rational numbers cuts the line y = 1 at coordinate points
(—Z—, 1). In Figure 4.1b a subset of lines representing several musical ratios
from either the Just or Pythagorean scales are shown with the lattice points
deleted. For example, % represents the interval of a fifth, while % represents
the fundamental tone and % represents an octave interval below the
fundamental. Below the line x =y, the tones are from the falling scale,
while above x =1y, the tones are from the rising scale.

In Figure 4.1b the intersection of lines: %, %, %, %, % and % with
y = 1 is shown. These are the positions on a monochord at which the
movable bridge should be placed to give rise to string length corresponding
to the intervals of an octave, fifth, and fourth above the fundamental
located at the bridge position (1,1). Tones from the rising scale are found
to the left of the bridge while and their reciprocal values from the falling
scale are found to the right. What we have here is a perspective transformation
of points in the plane to points on the line from a projection point located
at the origin, {(0,0). The points (%, 1) are known as the homogenous coordinates
of line y = 1 (see Appendix 2.A). The point at infinity on the line y = 1
has projective coordinates (1,0). The projective coordinate (0,1) represents
the placement of the monochord bridge to the point of zero string length.

If the tonal values are interpreted as frequencies, then the tones and
lines are represented by the ratio, % . The series of tones % , %, % , ..., OCCUT

quite naturally. When the string of an instrument is plucked, not only the
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Figure 4.1 (a) Coordinates of a Cartesian Coordinate System are assigned integer values;
{b) Representation of tones on a two dimensional grid. The numbers on the line y =1 are

expressed in homogeneous coordinates and represent the ordering of tones on a monochord.

fundamental tone is heard, but also a less prominently expressed sequence
of overtones, known as the acoustic scale emerges with the tonic. The
frequencies of the overtones are all multiples of the fundamental, i.e., if the
fundamental has frequency f, then the overtone series is: 2fo, 3fo, 4fo, ---
The first eight overtones when lowered to fit into a single octave are given
in Table 4.1, along with their tonal names considering the fundamental
at C.

The 7:4 ratio defines the natural seventh slightly lower than B flat in
the scale. In Figure 4.2a these ratios are placed on a number line, and they
are seen to subdivide the octave interval between 1 and 2 evenly into four
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Table 4.1 The overtone series.

fo fo lowered to the octave Tone name

1 1:1 C

2 2:1 c

3 3:2 G

4 2:1 C

5 5:4 E

6 3:2 G

7 7:4 B flat

8 2:1 c

| |

| |

1 2

1 1
(a)

| | |

' ; L

2 o

2 2 2
(b)

| | | | |

I | | | |

4 2 & 7 8

4 4 4 4 4

Figure 4.2 Overtone sequence: (a) subdividing the octave into one interval; (b) two intervals;
(c) four intervals.
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intervals. In Figure 4.2b the first 16 overtones divide the interval between
1 and 2 into eight subintervals. This can continue indefinitely in theory,
although all but the first few overtones are inaudible.

While the owvertone series, 1,2,3,4,..., is manifested, its reciprocal
series, the undertone series, -;—, %, %,..., is a kind of phantom in that it
is implied by the first series but not present in naturally occurring sound.
The overtone series and its reciprocal can be viewed in a revealing way

in the Lambdoma diagram of the 19th century musical scholar, Albert
Von Thimus,

o

—
— e
=
o Jr—

k4
1

ENES

in which the overtone series is placed on the right-leaning diagonal ( /)
while the reciprocal undertone series is on the left-leaning diagonal (< ).
Both emanate from the point % . When the lambda is expanded to the grid
shown in Figure 4.3, it is seen to be none other than a somewhat transformed
version of the perspective diagram of Figure 4.1 with the lines identified by
the inverse ratios, Z.

The Lambdoma has been endowed by the musicologist, Hans Kayser,
with much theological and philosophic importance [Haa]. Whether this
figure arose first in ancient neo-Pythagorean writings as Von Thimus says,
or as others say in modern German texts, it does serve as an interesting
metaphor. For example, the idea developed in Timaeus, is that there is a
highest divinity who created the plan of the world and who then instructed
an under-god, the “demiurge”, to create the material world according to the
model of the plan. In the Lambdoma, the demiurge can be represented by
the symbol, 1, while the highest divinity is %. The Lambdoma itself will
then be the created world. (The demiurge can also be identified with
the founders of religions — Buddha, Christ, Mohammed, Moses, etc.) The
fact that every point of the Lambdoma connects by a line to % was seen
by Kayser as an expression of the “inherence of the divine in all that is
created” [Haal].
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% //// OVERTONE SERIES
\\\\\ UNDERTONE SERIES
] \k\\\ — — — EQUAL-TONE SERIES

Figure 4.3 The “lambdoma” diagram of Von Thimus representing tones in a perspective diagram

projected from the point %

Another example of the relationship between projective geometry and
the musical scale was discovered by R.A Schwaller de Lubicz on an ancient
Egyptian table. Before describing this discovery we must take a brief detour
in order to gain an understanding of the concept of the three means of
importance to music.
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4.3 The Three Means

Various intervals of the scale can be related to each other by splitting the
octave by its arithmetical, geometrical, and harmonic means, all good
candidates for the title mese, or mean between the lowest tone of the octave
known as the hypate and the highest tone an octave above the fundamental
called the nete.

i) The arithmetic mean of an interval [a,b] is the midpoint, ¢, of the segment
and the points a,c,b form an arithmetic progression (e.g., 1,2,3,4,...),
i.e, b—c=c—a and c="—;b.

ii) The geometric mean is the point, c, such that £ = {, i.e,, c=+vab and
a,c,b form a geometric progression (e.g., 2,4,8,16,...).

iii) The harmonic mean, which is less familiar, is a point, ¢, such that the
fraction by which ¢ exceeds a equals the fraction by which b exceeds

c, i.e., %=%. As as result,
1 1(1 + 1 o 2ab
—-—=2 4= r c=
¢ 2la b a+b - @D
and the series a,c,b is referred to as an harmonic sequence (e.g., %, %,
1
%, 4 beno)

In Chapter 7 these three means will be seen to be the key to relating the
musical scale to systems of architectural proportion used by the ancient
Romans. A geometrical construction of the harmonic mean of two lengths
is presented in Appendix 8.A.

4.4 Projective Analysis of an Egyptian Tablet

We have seen that the same mathematics, namely projective geometry, can
be used to characterize both the musical scale and visual perspective. This
is another instance, in addition to the color theory discussed in Section 3.9,
of the similarity of underlying mathematical structures. I will now present
another example of this relationship between the senses.
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Figure 4.4 An ancient Egyptian harmonic grid.
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There is a suggestion that Egyptian art and architecture of the Old,
Middle, and New Kingdoms was set out upon a grid of 19 squares. R.A.
Schwaller de Lubicz is an archaeologist who devoted his life to studying the
metaphysics and meaning of the Temple of Luxor in Egypt [Schw], [Lam].
In the process he discovered the Old Kingdom tablet shown in Figure 4.4
displayed on a grid of 18 by 19 [Wes]. Note that the grid cuts through the
top of the figure’s head. This is the location of the neocortex, thought to
be the seat of consciousness and sense of self or ego.

The grid shown in Figure 4.4 was drawn on the back of the tablet and
then superimposed by Schwaller de Lubicz over the front in order to show
its relationship to the actual drawing. Notice that the human figure has
been divided into 19 equal parts with the uppermost grid line cutting off
the nineteenth unit of the grid. Then 18, 16, 14 £, 12, 9, and 6 of these
parts from head to foot have been selected as heights for key elements of
the engraving.

How can we make sense of this sequence! Figure 4.5, adapted by
[Ebe], from a diagram found in West, shows that if the height, 18, is taken
as unity, the numbers of the series correspond to ratios of the Just scale.
But this is only part of the story. To delve further into the mathematical
significance of this series requires us to take a brief detour in order to
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Figure 4.5 Harmonic construction of a lyre scale correlated with the Egyptian grid of
Figure 3.21 adapted from West by Eberhart.

gain an understanding of the concept of the three means of importance to
music.

4.4.1 An andlysis of Schwaller De Lubicy’s Number Sequence

Returning to Schwaller De Lubicz’ Egyptian number series, Eberhart
[Ebe] recognized that each number of the series: 6, 9, 12, 142, 16, 18
is the harmonic mean of 18 and the preceding number, e.g., using
Equation (4.1),

9_2x6x18
6+18

In fact, this sequence can be extended to a doubly infinite series extending
from 0 to 18. The series can then be seen to be a manifestation of a
projective transformation of the interval of [0,18] onto itself in the manner
described in Section 2.5 (i.e., growth measures) in which both 0 and 18 are
transformed to themselves, i.e, they are fixed points of the transformation.
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The transformation is carried out with the aid of the auxiliary lines shown
in Figures 4.4 and 4.5 and is characterized by a cross-ratio of 4 = 2
(see Section 2.3 for a definition of cross-ratio). The details of this
transformation are given in Appendix 4.A.

The length from O to 18 is now considered to be the string length of
a monochord corresponding to the fundamental tone, C. If a typical number
in the Egyptian series is denoted by P then ratio r = P:18 is the interval
above C corresponding to P, and it can be thought of as the tone emitted
by the string when the bridge is placed at P and the string is plucked on
the side of the bridge nearest to 0. If the length of string on the other side
of the bridge is plucked, then the interval of the emitted tone is 1- 1.
Table 4.2 lists the points, P, for which the emitted tone is an interval from
the Just scale. The fifth column of Table 4.2 shows that the two tones r and
1— r differ by an integral number of octaves represented by the tone given
in the fourth column (the superscripts denote the number of octaves that
1- r lies above the fundamental).

Eberhart has shown that if the Egyptian series is mapped by a perspective
transformation in which the fixed point, Y = 18, is mapped to infinity, then

Table 4.2 Di Lubicz’s analysis of the New Kingdom Tablet

in terms of the musical scale.

P P:18 = r 1-r Tone  r(l-r) P
0 0 1 C o o0
2 1:9 8:9 D 1:8 é
33 1:5 45 E 4y
6 1:3 2:3 G 12 g
9 1:2 1:2 c! 11
12 2:3 1:3 G' 21 2
14% 4:5 15 E? 41 4
16 8:9 1:9 D’ &1 8
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the other points P are mapped to the geometric sequence P' with ratio 2
(the cross-ratio of 2 is preserved and becomes the multiplier of the geometric
series) given in the last column of Table 4.2.

There may be a relationship here to the “right eye” of Horus, the hawk,
symbol of Pharoah, shown in Figure 4.6. McClain conjectures that the
glyphs for %, %, %, %6, 3%, and 31; which constitute this eye — Horus
always symbolized the ruling Pharoah — may be musically determined. It is
McClain’s hunch that the “left eye” of Horus, usually not shown, may have
symbolized integers (i.e., arithmetic ratios) while the right Eye symbolizes
the intellectual artistry inherent in the ability to manipulate integer inverses.
This fits nicely with the late historian of ancient mathematics Otto
Neugebauer’s observation [Neul] that the only ancient “book of secrets” he
ever discovered concerned computation with fractions.

So we see that the harmonic mean is related to a kind of generalized
octave. Looked at in another way, if the bridge of the monochord is placed
at a length from the Egyptian series, the preceding length is the generalized
midpoint. For example, if the bridge is placed at 9, which projects to 1, then
the preceding length, 6, corresponds to % This justifies the reference to
harmonic means in music as mese. Details about how to carry out this
perspective transformation are given in Appendix 4.A.

It is not likely that the ancient Egyptians had any knowledge of projective
geometry, yet the similarity of the structure of projective transformations

and the musical scale is dramatically demonstrated by this example.
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4.5 Conclusion

Music is not built around an absolute space of tones. Each musician can
define his or her own fundamental tone, and build a musical fabric from
this base. A musical composition is essentially unchanged by the choice of
a different fundamental tone, although certain emotional elements are
determined by such a choice. McClain refers to this lack of absoluteness in
music as “the myth of invariance”. It is the relative basis of the tonal
matrix that also makes projective geometry the natural framework within
which to express the structure of the musical scale.

Appendix 4.A

The most general projective transformation with two fixed points (co-basal
transformation) is shown in Figure 4.A1 (see Section 2.5). The fixed points
are located at X and Y on line I. An arbitrary line m is drawn incident to
X and an arbitrary point of projection is placed at O. Locate a second point
of projection, O’, on the extension of line segment, OY. The location of O’
on this line is determined by the location on [ of an arbitrary point A and
its transformed point B. Line segment OA transforms A to A” on m while
the location of O’ is determined by the intersection of A’B with the line
through OY. The pair of transformations of first A to A’ through O, and
then A” to B through O’ results in the projective transformation of A to B.
Notice that any point between X and Y has a projective image under this
pair of perspective transformations. Only X and Y are transformed to
themselves. The cross-ratio of this transformation is defined as:

z:[%)/(%). (4.A1)

Now let’s see how the Egyptian number series conforms to this picture.
Let line | be the x-axis of a coordinate system in Figure 4.A2. Let X be the
point x = 0 (the origin of the coordinates) and locate Y at x = 18. Choose
arbitrary line m drawn through the origin and choose O located at infinity
in a direction perpendicular to line | (remember that in the projective plane
there are different points at infinity in each direction, (see Section 2.2)).
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Figure 4.A1 A co-basal projective transformation (see Section 1.4.3).
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Figure 4.A2 Projection point O is transformed to infinity to yield the harmonic sequence of
tones in Figure 3.22.
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Therefore O’ is located on the line perpendicular to I through x = 18. Call
this line YO. To determine O’ consider the point, A, located at x = 9 and its
transformed point, B, at x = 12. The line perpendicular to [ at point A
intersects m at A’. The extension of line A’B intersects line YO at point O’.
This determines the transformation. A careful analysis (not given) shows that
B is the harmonic mean of point A and Y given by the equation for the

2AY
B= .
A+Y
Using A =9 and B = 12, the cross-ratio is computed from Equation (4.A1):

(e )5

The other points of the Egyptian transformation are generated in a similar
manner by a growth measure (see Section 2.5) and all pairs of transformed
points have cross-ratio 2. It can also be seen that points X and Y are indeed
fixed.

The fact that the cross-ratio is 2 suggests that by mapping the fixed
point Y on line ! to infinity on an arbitrarily line I’ in the manner shown
in Figure 2.10 of Section 2.5, the points of the series can be transformed
to a geometric sequence with common ratio 2 on line . Figure 4.A3 shows
how this perspective transformation is carried out. An arbitrary line I’ is
drawn intersecting | on the far side of Y = 18. Line XX’ maps X = 0 on |
to an arbitrary point X’ = 0 on I'. Draw a line through Y parallel to I'. This
maps Y = 18 on | to the point, Y’, at infinity on I'. The point of perspective,
O, is located where YY” intersects XX’. Now the point P = 9 is transformed
to the point P’ = 1 at the intersection of the extension of line OP with I’
(this defines the length of a unit on line ). The other points of the
Egyptian series are mapped in a similar manner to I'. Their values are
determined from the cross-ratio which is preserved by all perspective
transformations (see Section 2.3 and Equation (2.2)). To do this, rewrite
Equation (4.A1) as follows for two transformed points A and B on line [ and
their corresponding transformed points, A" and B’, on I

BX Y YA’
2= —— =< |
|3

(4.A2)
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Y =00
Figure 4.A3 Transformation of the fixed point at Y = 18 to o yields a growth measure on a

semi-infinite line.

(fixed) (fixed)

0 2 3% 6 9 12 14% 16 18

3

Figure 4.A4 West’s Ancient Egyptian grid revealed by Eberhart to be geometric, doubling
when carried out in one direction, halving in the other.

But since Y’ has been transformed to infinity, the ratio % =1, and this
equation reduces to

=22,
AX
the multiplier of a geometric sequence for the transformed points on line ",
If A’ is taken to be the point 1. Then it follows from this equation that
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X'B” = 2, i.e, point B” is located at P"= 2 on I'. Other images of the
Egyptian sequence are members of the double geometric sequence:

,1,2,4,8,...

casy ) y

o | =
-
0| =

as Figure 4.A4 shows [Ebe].
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The Music of the Spheres

Next I saw the most lucid air, in which I heard... many kinds of musicians praising
the joys of the heavenly citizens... And their sound was like the voice of a

multitude, making music in harmony.

Hildegard von Bingen
5.1 Introduction

According to the research of Ernest McClain, the relation of music and
number to cosmology may go as far back as the ancient civilizations of
Mesopatamia, India, and China. Twenty five hundred years later Pythagoras
was recorded as saying:

“There is geometry in the humming of the strings. There is
music in the spacing of the spheres.”

To a degree that we have difficulty understanding in modern terms,
there exists a rich ancient lore expressing the belief in a cosmic harmony
loosely referred to as “the music of the spheres.” In this chapter I will
relate some of this lore and then examine its influence on Johannes Kepler
(1571-1630).

Although Kepler is known primarily for his astronomical discoveries, he
also attempted to relate his observations of the movement of the planets to
imagined sounds they created during their motion. I shall explore Kepler’s
musical theories and another number series discovered by the German
astronomers Titius of Wittenberg (1729-1796) and Johann Elert Bode
(1747-1826) that predicts the positions of the planets.

109
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Kepler is the last of an ancient tradition that sought to find meanings
in the natural world for musical harmonies. This chapter is dedicated to
examining the root of this tradition. Although Kepler put forth a Herculean
effort to find a workable correlation between the movement of the planets
and the tones of the musical scale, we shall see that he largely failed in his
effort. In Section 5.6 1 will describe a musical correlation between the
planets discovered by atronomer Gerald S. Hawkins and myself, that is
statistically meaningful. Also, in the last chapter, I will show that Kepler’s
hunch that phenomena of the heavens are related to the ratio of small
whole numbers (tonal ratios) now have a plausible explanation in terms of
dynamical systems theory.

5.2 The Music of the Spheres

The Greek myths of Apollo, Orpheus, and Hermes Trismegestus illustrate
the spiritual power of music. Joscelyn Godwin [God] has examined the rich
ancient lore pertaining to the “music of the spheres” as it appears in all of
the religions of the world, as discussed in his book Harmonies of Heaven and
Earth. In this section I shall excerpt some of his writings on this subject.

“There is a characteristic passport to the Celtic Otherworld, reminiscent
of the Golden Bough with which Aeneas descended to Hades in Book VI
of Virgil’s Aeneid. It is a silver branch with golden fruits, three or nine in
number, which strike together to make an enchanting melody. In Sickbed
of Cuchulain we meet the tree again in the island palace of Labra, actually
giving off its music:

From a tree in the forecourt
Sweet harmony streams;

[t stands silver, yet sunlit
With gold’s glitter gleams.

The hero, Bran, was lulled to sleep by sweet music coming from he knew
not where. When he awoke, he discovered a musical branch by his side.”
“Another legendary king of Ireland, Cormac MacAirt, came upon this
same branch in the hands of an unknown man. Its music seduced him so
that he sold his own wife and children in exchange for it. It was his quest,
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Orpheus-like, to retrieve them that led him through the mist of a Paradise
teeming with white birds and watered by a fountain with five streams ‘more
melodious than mortal music’.”

Godwin follows the approach of the French savant Henry Corbin in
referring to “this World of the Imagination” or of the “Soul” as an “Imaginal”
world. The Imaginal World has its elements, its cities, and its heavenly
spheres even they have no material substratum.

“Armed with the concept of the Imaginal World, we can make an
intelligent approach to the age-old myth of the Ascent through the Spheres
and the music that is heard there — Pamphylian soldier in Plato’s ‘Myth
of Er’ saw the system of the seven planets (Mercury, Venus, Mars, Jupiter,
Saturn, the Sun, and the Moon) and fixed stars with a siren standing on
each sphere ‘uttering one tone varied by diverse modulations; and the
whole eight of them composed a single harmony’.” (See Figure 5.1.)

“Following Plato, Cicero ended his Republic with a cosmic vision,
presented as a dream. The Roman hero Scipio Africanus saw nine spheres
(including the Earth) making a ‘grand and pleasing sound’. His deceased
grandfather, acting as a guide, explained that it came from the rapid motion
of the spheres themselves, which although there are nine, produce only
seven different tones, ‘this number being, one might almost say, the key to
the universe’.”

“The Indians of the Peruvian Andes, who have a rich cosmological
system, say that the Sun makes a sound when rising. A passage in the
Talmud regards the Sun’s noise as something to be taken for granted,
unnoticed by its very familiarity like the din of the Nile cataracts, the
Catadupa, which classical writers often compared with the music of the
spheres. ‘“Why is the voice of a man not heard by day as it is heard by night?
Because of the wheel of the Sun which saws in the sky like a carpenter

2

sawing cedars’.

“During the Dark Ages the hymns of the Church Fathers blossomed
into plainchant. What we know today as Gregorian chant is only one branch
from the fertile stem of Christian monophony. The others were suppressed,
lost, or largely forgotten. The seven tones can be heard as the notes of the
planets, the wandering of the melody through them feels like a journey
around the spheres. Plainchant, like the mystery of the Mass, offers to each
what he or she is able to receive.”
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[ [ [/ 7/

. —
tetrachord utn:h:::n l
meson Synemm
(motionless)

Figure 5.1 The seven planets of ancient times (Mercury,

Venus, Mars, Jupiter, Saturn, the
Sun, and the Moon) each assigned to its own sphere.

“The writings of the Kaballah contain a vision of a harmonious universe
in which not only the angels sing: the stars, the spheres, the merkavah
(Chariot—Throne) and the beast, the trees in the garden of Eden and their
perfumes, indeed the whole universe sings before God. Although this source
says that only Moses and Joshua could hear such music, in later Kaballistic
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schools, particularly the Hasidim, the privilege is extended to the zaddiks,
or living spiritual masters.”

“In the public worship of Islam, music has no place beyond the simple
chanting of the Koran. As if in compensation, the Moslem esoteric orders —
the Sufis — have made music one of the strongest features of its religious
practices. The general term for it sama, stresses the passive nature of this
musical way. The Whirling Dervish of the Near East is one such development.
Properly called the Mevlevi Order, and founded in Konya, Turkey by the
Persian poet Rumi (1207-1273), these people still practice a sama or whirling
dance accompanied by the music of the nay, or reed flute. They dress in tall
felt hats shaped like truncated cones, and white gowns with broad skirts
that stand out as they whirl. Their hats are said to be tilted at the same
angle as the Earth’s axis, and their dance to symbolize the movement of the
planetary spheres as they circle in perfect order and love for their Lord.
Rumi, explains the purpose of this devotion:

We all have been parts of Adam, we have heard these melodies in
Paradise.

Although the water and earth of our bodies
have caused a doubt to fall upon us,
something of those melodies comes back to our memory.”

The Kaaba is the most sacred structure in Islamic tradition. Each year
pilgrims make a tawaf, a counterclockwise walk consisting of seven
revolutions around the Kaaba starting at a meteorite set in a silver yoke at
the southeast corner. They make 3 revolutions quickly and 4 more slowly.
Some traditions say the tawaf ritual represents the cosmos: 3 circuits for the
fast-moving moon, Mercury, and Venus, and 4 for the sun and outer planets
Mars, Jupiter and Saturn. In this sense the tawaf represents a kind of silent
music of the spheres [Hawl1].

“In the Hindu world, the use of music for the attainment of higher
states merges into a whole science of sound and its practical application to
Yoga. In Shabda—yoga, one sets out to discover the Inner sound and to
identify oneself thereby with the universal Sound Current. The inner ear
may perceive it at first in a variety of forms: noises as of bells and other
instruments, of animal and human voices, of waters and thunders, sometimes
in systematic sequence and with reference to various energy-centers in the
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body in which they seem to occur as one’s practice progresses. Clearly the
Shabda—yogin is exploring the same worlds, or states as the Jewish and
Muslim mystics, only more particularly in aural mode:

Terrestial music lets us hear a feeble echo of those sweet
modulations which the ear of common mortals cannot grasp,
and awakens in them the uplifting memory of what they heard
in a previous life — Of all instruments, the seven-stringed lyre
is the most apt for recalling to men the eternal concert of the
grand cosmic symphony. Those who cultivate the art of music
are preparing themselves a path through the heavens to the
place of the Blessed, just as surely as the most powerful geniuses
— Macrobius says that ‘The laws of many people and lands
set down that one should accompany the dead to their burial
with song: this usage is founded upon the belief that souls, on
quitting the body, return to the origin of music’s magic, that

ERRT)

is to heaven’.

The music of the spheres and other neoPlatonic ideas were embraced
by Pico della Mirandola and Marsilio Ficino (1433-1499) and found their
way to the Italian Renaissance.

5.3 Kepler’s Music of the Spheres

Throughout his life, Kepler pursued his quest for evidence of a harmony of
the world alluded to in ancient writings. He believed that the geometry of
the planetary orbits was in some way connected to the musical scale.
Kepler's Mysterium Cosmographicum, was his first attempt to explore these
connections. Published when he was 23, long before he discovered that the
planets revolved around the sun in ellipses, the orbits of the six known
planets, were correlated with the harmonic relations between the five
Platonic solids each inscribed and circumscribed about each other as shown
in Figure 5.2. Twenty five years later, making use of the observations of the
astronomer Tycho Brahe, he published Harmonices Mundi which included,
coincidentally, his famous three laws which led Newton to his discovery of
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Figure 5.2 The planetary system of Johannes Kepler.

the laws of motion [Kep]. However, these laws were not of primary
importance to Kepler. It was actually his hypothesis that the movements of
the planets coincided with musical intervals that captured his imagination.
[t was Kepler who first introduced the notion of major and minor scales in
a modern sense in order to study the harmony of the planets. He was a
serious student of music who learned the relationship between pitch and
string length directly from experiments with a monochord [Gin].
Kepler’s most important discovery was that the planets move around
the sun in ellipses and not in circles as in Copernicus’s model and as all
previous geocentric models required. In Chapter 4 of Harmonices Mundi,
Kepler examines the ratios of many different data for the planetary orbits
including their distance from the sun, solar years, daily arcs, etc. and compares
these ratios to corresponding musical ratios from the Just scale. The results
did not satisfy him until he tabulated the motion of each planet at perihelion
(the closest approach in its orbit to the sun) and aphelion (the furthest
approach from the sun in its orbit) as measured from the sun over a 24-hour
period and took the ratio of the angular traversal of one planet at aphelion
with either the same planet at perihelion or an adjacent planet at perihelion.

The results are tabulated in Appendix 5.A (Table 5.A1).
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Figure 5.3 Kepler’s ascending and descending scales representing the music of the Earth, Moon,
and the five planets known to antiquity.

It was not enough for Kepler to relate data for two adjacent planets to
musical intervals. He had to then place these intervals into a musical scale
into order to create the music of the spheres. Kepler made a point of the
fact that while a pair of planets can be simultaneously at perihelion and
aphelion and thereby harmonize with each other in their musical tones, a
single planet must sound its musical tones sequentially as was referred to in
ancient polyphony as figured song. As a result, Kepler created musical phrases
encompassing the musical interval of each planet as shown in Figure 5.3 in
order to recreate how the planets might have sounded on the first day of
creation.

5.4 Results of Kepler’s Analysis

Kepler’s first two laws state:

a) the planets circle the sun in ellipses with the sun at one facus, and
b) the planets traverse equal angles in equal times as seen from the sun.

The ratio of the angular traversals between a planet at perihelion to another
planet at aphelion, A8, and A8,;, can be determined from these two laws
as follows [Kap-HI,

372
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where e is the eccentricity of the planet’s orbit and 7, and r, are the radial
distances of the planets at perihelion and aphelion. However, Kepler, not
being privy to Newton’s Laws, based his computations on the observational
data of Brahe. Table 5.A1 compares Kepler's results with the results computed
from Equations (5.1) and compares both with the value of the appropriate
musical ratio.

Just how close were the musical tones to Kepler’s ratios? Two historians
of Kepler’s musical theories have concluded in their excellent treatises that
his analysis was reasonably accurate [War], [Ste]. In my analysis, of the
16 tones tabulated by Kepler, five values of the angular ratios were
within a tolerance of 15 cents (100 cents equals a half-tone) to their
corresponding tone, taking C as the fundamental. This is roughly the accuracy
that the equal-tempered scale of the piano approximates the Just scale. Five
more had a distance between 15 and 32 cents from each of its associated
tone or about the proximity of a Pythagorean comma (about 25 cents). Five
were off by approximately a quarter-tone while one was off by nearly a
semitone. However, using the theory of probability, it is over 90% certain
that five tones out of 16 are within 15 cents of an musical tone purely by
chance. Kepler was well aware of the discrepancies between planetary ratios
and tones but nevertheless considered them to be tolerable. However, this
falls far short of the standards of modern science.

While Kepler’s association of angular ratios with tones are questionable
based on these results, the data from which he made his deductions are
remarkably accurate as has been noted by other researchers [Gin]. Using
modern data and the benefit of Newton’s laws of motion, I checked Kepler’s
computations and found them to be close to the exact values computed
from Equations (5.1). In order to make the computation I assumed that the
orbits have constant eccentricities which modern astronomy knows to be in
error. However, the errors in eccentricity have only minor effects on the
computations, not changing them significantly. Perhaps more seriously, the
center of gravity of the solar system is not centered about the sun as Kepler
assumed but is a wandering point over time, and therefore his angular
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traversals with respect to the sun, do not have quite the significance that
he attributed to them.

Despite these inaccuracies, we are struck by how steadfast Kepler was
in the pursuit of a relationship between planetary ratios and consonant
musical tones. Kepler considered the discovery of these musical laws to
be his greatest discovery, and in the ninth chapter of Harmonices Mundi
he says that “the eccentricities of the individual planets have their origin
in the concern for harmonies between the planets”. Kepler argues that
the elliptical form is necessary for the intervals to have been generated
at all since this would have been impossible with circular orbits. The
world was merely following the creator’s will so that “thy Church may
be built on Farth, as Thou didst erect the heavens themselves out of
harmonies”. In this way he claimed his discoveries appeared to support the
view that since neither the elliptical forms of the planetary orbits nor the
musical laws governing these orbits made sense on their own, they must
have been related through a common source, referred to as the “music of
the spheres”.

5.5 Bode’s Law

Kepler recognized that there was a vast expanse between the orbits of Mars
and Jupiter when he once declared, “I have become bolder, and now I place
a planet between these two”.

Johann Elert Bode was a German astronomer famous for publishing a
catalogue of 17,240 stars and nebulae. He is ironically now more famous for
re-publicizing, in 1800, a number series postulated a few years earlier by
Titius of Wittenburg that approximately predicted the planetary distances
of the seven planets known at the time. In this series, a number appeared
between the numbers associated with Mars and Jupiter with no planet
correlated with it. In 1801 Ceres, the largest asteroid in the asteroid bel,
was discovered by Guiseppi Piazzi in the gap between Mars and Jupiter, and
thereafter Titius’ number series became known as the Titius-Bode law.

This law can be illustrated with the aid of a structure invented by
Buckminster Fuller known as the “jitterbug” [Kap3]. Figure 5.4 shows how
the jitterbug works. It can be used to transform a point (O edges) to an
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Figure 5.4 The jitterbug of Buckminster Fuller.

Table 5.1 Bode’s Law.

Predicted Actual

Value Value
0 +4=4 4 .39 Mercury
3 +4=17 v .72 Venus
6 +4=10 1.0 1.0 Earth
12 +4=16 1.6 1.52 Mars
24 +4=128 2.8 2.8 Ceres
48 +4 =52 5.2 5.2 Jupiter
96 + 4 =100 10.0 9.5 Saturn
192 + 4 = 196 19.6 19.2 Uranus
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equilateral triangle (3 edges) to a tetrahedron (6 edges) to an octahedron
(12 edges) to a cuboctahedron (24 edges). This leads to the series: 0, 6, 12,
24, which can be continued to 48, 96, 192. Adding 4 to each number of
the sequence as shown in Table 5.1 results in Bodes law where the numbers
represent astronomical units in which the Earth’s distance to the sun, 93

million miles, represents 1 unit.
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Notice that Ceres was found at 2.8 astronomical units, precisely where
it was predicted to be by Bode’s Law.

Bode’s law has always been controversial since it has no scientific
mechanism associated with it. To this day we must ask the question as to
whether its success is coincidental or does it represent an underlying law
not yet understood? Astronomers link it to the disc of dust and gas from
which the planets formed [Whip]. With the help of Buckminster Fuller, we
have also found, in the spirit of Kepler, another example of the Platonic
polyhedra related to the spacing of the planets.

5.6 A Musical Relationship that Kepler Overlooked

Near the end of his life, Kepler formulated his third law which states:

The periods of the planets are proportional to the % power

of their mean radij, i.e., %=(:—j)3/2 where T is the

period of the planet and r is the mean radius.

Working backwards from this law, Isaac Newton discovered the universal
law of gravitation. However, in his search for an harmonic law governing the
planets, Kepler considered and then rejected ratios between the periods of
the planets. “We conclude that God the Creator did not wish to introduce
harmonic proportions into the durations of the planetary years”.

In Harmonices Mundi he states that the periods of the planets are
directly related to the angular traversals of the planets at perihelion and
aphelion, but he does not derive this relation, finding it instead by
interpolating Tycho’s observations. Equations 5.1 make this relationship
clear. If the orbits are taken to be circles (i.e., eccentricity equals zero in
Equation 5.1) and the mean distances to the sun are used, then the ratio
of the angular traversals between two planets equals the ratio of their periods.
In this way we are reconsidering a result based on periods that Kepler
rejected [Kap-HJ.

The ratios between the periods of adjacent planets are given in
Table 5.2 based on values of the sidereal period listed in Table 5.A2. The

sidereal period of a planet is the time it takes to make one revolution in
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Table 5.2 Comparison of period ratios of the planets with
tonal ratios where C is taken to be the fundamental.

Planet Period Tonal  Pitch Error
Ratios Ratio Ratio  Class (cents)
Mercury/Venus 3915 2:5 E 37
Venus/Earth 6152 5:8 A flat =27
Earth/Mars 5317 8:15 B -5
Mars/Ceres .3985 2:5 E -6
Ceres/Jupiter 3979 2:5 E -9
Jupiter/Saturn .4025 2:5 E 11

its orbits as seen from the stars. I have added the asteroid Ceres to this table
and taken it to have a period of 4.72 years, the geometric mean between
the periods of Mars and Jupiter, and corresponding to the radial distance
from the sun of Bode’s law. Four out of the six ratios are now within 13
cents of a corresponding tone from the diatonic scale (C, D, E, F, G, A, B)
taking C as the fundamental tone.

Notice that the ratio of the period of Venus to Earth is approximately
5:8 (G sharp) although too small by 27 cents. But it had long been accepted
in the ancient world that Venus makes five closest approaches to the Earth
for each eight revolutions about its orbit as shown in Figure 5.5 which
accounts for the period ratio of 5:8.

The ratios of Mars to Earth gives a musical ratio of 8:15 (B) while the
next three ratios are close to 2:5 (E in the next octave). Today’s celestial
mechanics experts attribute “the great inequalities” between Jupiter and
Saturn as due to the 2:5 relationship in the periods [Encyclopedia Brittanica).
Furthermore, astronomers and space scientists know that Mars makes its
closest approaches mostly in 15-year intervals. Only the ratio between
Mercury and Venus deviates by an unacceptable amount. Using the law of
probability, 1 and astronomer Gerald S. Hawkins have determined that,
assuming that period ratios are randomly distributed, there is only a 0.5%
chance of the period ratios approximating the diatonic tones by accident to
the accuracy that we have found.
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Figure 5.5 Venus makes five closest approaches to Earth in eight years.

It has recently been reported that the star, Gliese 876, 15 light years
from the Earth has a pair of planets with orbital periods of 61 and 30 days,
close to an octave ratio [Mal]. A discovery reported at the 2002 meeting
of the American Astronomical Society indicates that 10-15% of the small
objects in the Kuiper belt beyond Pluto known as Plutios are tuned to the
periods of 2:1 [Hol-Der], [Mal]. Also the orbital periods of the adjacent
moons of Saturn and Jupiter have close to octave ratios.

Can these have been the harmonic intervals that Kepler sought?
Since he already suspected the existence of the missing planet Ceres, he
could have gone one step further and computed the geometric mean 4.72.
Only adjacent planets are correlated to the musical tones, and an accurate
musical scale involving all of the planets cannot be found [Gin]. If
Kepler had narrowed his sights to pairs of planets, then he would have
found his music. Moreover, modern theories of dynamical systems have
taught us to expect correlations between frequencies of revolution of
gravitating bodies under the direct influence of each other’s gravitating
fields. For example, the moon shows us only one face since its rotation
about its own axis matches the rotation about the earth. (see Chapter 25).
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Pairs of gravitating bodies such as the asteroids or orbiting particles
around Saturn tend to create gaps in which gravitating bodies are
repelled (see Section 14.6). However, there is yet no theory to explain
these dynamics.

5.7 Conclusion

Scientists of the caliber of Kepler and Newton had a firm belief that the
universe expressed a certain harmony, and that they were following
representatives of a line of inquiry that went back to antiquity. Despite the
fact that Kepler was using Tycho Brahe’s data obtained before 1600 without
the aid of a telescope, the difference between Kepler’s observed values and
our values computed with idealized equations and modern data amounted,
in 14 out of 16 cases, in an etror of less than 18 cents and were, in several
cases, in nearly exact agreement. If Kepler had used adjacent planets and
focused on periods he would have found the “music”.

In Chapters 14 and 25 of this book, we shall see that, in modern
terms, there is reason to expect that natural resonances, be they of
quantum phenomena, spacing of the asteroids and the rings of Saturn, or
positioning of leaves in a plant, are related to the ratios of small whole
numbers.

Appendix 5.A Kepler’s Ratios

Table 5.A1 lists musical ratios (column 4). The deviations of the theoretical
and the observed ratios from the musical ratios in units of cents are listed
in columns 5 and 6 while the deviation of Kepler’s ratio and the theoretical
values from each other are listed in column 7. The letters in column 1
correspond to angular values of the various planets at aphelion and
perihelion, i.e., Planet (A6,, A6,) where Satum (a,b); Jupiter (c,d); Mars
(e,f); Earth (g,h); Venus (i,k); and Mercury (I,m).

The data for mean eccentricity, perihelion, and aphelion radii of the
planets are listed in Table 5.A2.
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Table 5.A1 Comparison of theoretical and computed values of Kepler's musical ratios of
angular traversal for adjacent planets (C is taken to be the fundamental).

Computed ~ Observed ~ Musical Comp. Obs.  Comp.—Kep.
Ratio Ratio Tone Error Error
(cents) (cents) (cents)

ab .8000 7562 4:5(E) 0 -32 32
ad 3272 3272 1:3(G) =32 -32 0
cd 8253 .8180 5:6(E flat) -20 -32 12
bic 4963 .5000 1:2(C) ~13 0 -13
cf .1189 .1183 1:8(C) 86 95 -9
ef 6872 .6900 2:3(G) 53 60 -7
dee .2099 2097 5:24(E flat) 13 12 1
gh 4282 4280 5:12(E flat) 47 46 1
fg 9335 9307 15:16(D flat) -4 -1 -3
fg 6661 6664 2:3(G) -2 -1 -1
gk .5873 .5844 3:5(A) =317 —41 10
itk .9867 9715 24:25(C sharp) 26 21 5
hi 6444 .6464 5:8(A flat) 53 58 -5
im .2492 .2470 1:4(C) -5 =21 16
Im 4343 4270 5:12(E flat) 71 45 26
k:l .5889 5952 3:5(A) -32 -14 -18

Table 5.A2 Planetary data.

Planet €mean 1, (km) 1, (km) Sidereal Angular
Period Traversal
(yrs) Harm. Mundi

(sec. of arc)
aphel. perihel.

Saturn .05564 1347.6 1506.4 29.4707 106 135

Jupiter .04844 740.6 8160 11.8628 270 330
Mars .09346 206.6  249.2 1.8809 1574 2281
Earth 01671 147.1  152.1 1 3423 3678

Venus .006470 107.5 108.9 61520 5810 5857
Mercury  .2055 46.0 69.8 .24085 9840 23040
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Tangrams and Amish Quilts

The artist is like Sunday’s child; only he sees spirits.
But after he has told of their appearing to him everybody sees them.,

Goethe

6.1 Introduction

While driving with my family on a vacation in Lancaster County, the home
of the Pennsylvania Dutch, 1 began to make plans for my course on the
Mathematics of Design. | wanted to find a way of linking ideas from the the
history of design to the world around me.

I had just been reading Secrets of Ancient Geometry by Tons Brunes [Bru]
in which he analyzes an enigmatic eight-pointed star that will be the subject
of Chapter 8 (see Figure 8.1). He describes his theory that this star, along
with the subdivision of a square by a geometrical construction that he calls
the “sacred cut”, formed the basis of temple construction in ancient times.
To construct the sacred cut of one side of a square with compass and straight
edge, place the compass point at a corner of the square and draw an
arc through the center of the square until it cuts the side as shown in
Figure 6.1. This arc cuts the side of the square to a length :}7 as large.
Four such cuts determine the vertices of a regular octagon as shown in
Figure 6.2.

Kim Williams, an architect living near Florence, also described to me
how she had found the system related to Brunes’s sacred-cut geometry
embedded in the proportions of the pavements of the baptistry of the church
of San Giovanni which itself is shaped like a regular octagon [Willl].

125
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Figure 6.1 The sacred cut.

Figure 6.2 Construction of a regular octagon from four sacred cuts.
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The pavements themselves had many star octagonal designs engraved
in them. The star octagon, an ecclesiastical emblem, signifies resurrection.
In medieval number symbolism, eight signified cosmic equilibrium and
immortality.

6.2 Tangrams

Recently, I had been showing my son the fascinating tangram puzzle in
which thousands of pictograms, such as the one shown in Figure 6.3a, are
created from the dissection of a square into the seven pieces shown in
Figure 6.3b. A tangram set can be created from a single square piece of
paper by simply folding and cutting. The pieces consist of a 45-degree right
triangle at three different scales along with the square and diamond formed
by juxtaposing two 45-degree right triangles as shown in Figure 6.4. The
side of the larger triangle is equal in length to the hypotenuse of the next
smaller. Each pictogram must be formed from each of the seven pieces with
no repeats and no overlaps. Enlarge the pieces, cut them out, and try your
hand at constructing the pictogram shown in Figure 6.3b. Exactly 13 convex
polygons (polygons with no indentations) can be constructed from the
tangram set including one rectangle (other than a square) and one triangle
(other than an isosceles right triangle). However, it is enough of a challenge
to reconstruct the square.

(a) (b)

Figure 6.3 (a) The tangram set; (b) a pictogram constructed with the tangram set.
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Figure 6.4 The 45 degree right triangle is the
geometric basis of the tangram set.

6.3 Amish Quilts

On our vacation to Pennsylvania Dutch country we were able to explore
the countryside, visit working farms, and delve briefly into the rich history
of the people. The Amish and Mennonites settled in Pennsylvania during
the eighteenth and nineteenth centuries as refugees from religious persecution
in Germany and found a haven of freedom and rich farm lands in Lancaster
county. While the Mennonites are devoutly religious and live simple lives
devoid of materialistic pursuits, they do enjoy a few of the comforts of
modern society. The Amish, however, attempt to insulate themselves as
much as possible from outside influences and live a plain existence in
which they farm without electricity, drive horsedrawn carriages, and wear
unostentatious clothing. Amish women live extremely proscribed lives caring
for the house and children. One of the few outlets for their creativity is the
practice of quilt making [Ben].

The oldest known quilts date to about 1850. However quilting designs
have changed only slightly through the years. Geometric patterns consisting
of squares, star octagons, diamonds and 45-degree right triangles are used in
simple designs. While the geometric patterns are the manifest content of
the quilts the fabric is stitched with a variety of subtle patterns such as
tulips, feathers, wreaths, pineapples, and stars.

I purchased a quilt with the design shown in Figure 6.5a. I was amazed
to see that it consisted almost entirely of pieces from the tangram set.
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(b)

Figure 6.5 (a) A traditional Amish quilt
illustrating the tangram pieces; (b) an Amish
quilt made up of “Amish diamonds™; (c) the
(c) Anmish “nine-square” pattern.

You can see that it has 45 degrees right triangles at three different scales,
squares, and diamonds that have the same internal angles as the tangram
diamond, namely 45 degrees and 135 degrees. However, the Amish quilt
diamonds differ from the Tangram diamonds by having all equal edge lengths.
The ratio of the diagonals of the Amish diamond is 1+ V2:1 , an important
number that will be considered in greater depth in the next chapter. This
is identical to the ratio of line segments into which the sacred cut divides
the edge of a square. I shall refer to these as Amish diamonds.

I also purchased a larger quilt which utilizes the pattern of the star
octagon shown in Figure 6.5b. It is made of the tangram diamonds in



130 Beyond Measure

rhythmically alternating colors so that it appears to be pulsating energy into
a room. Finally I purchased two potholders in the basic Amish nine-square
pattern (Figure 6.5c). I was soon to discover that the nine-square was
intimately related to Brunes’s star figure (see Section 8.3). At last | had the
connections that would give unity and substance to my course.

I shall now summarize some of the geometric connections related to
these personal discoveries, as I reported them to my class.

6.4 Zonogons

A regular octagon can be tiled with two squares and four Amish diamonds
in two different ways, as shown in Figure 6.6 (if the tangram diamonds are
used, the octagon will not be regular).

This is an example of a more general result that says an n-zonogon can
be tiled by "(';_1) parallelograms in two distinct ways [Kap3], e.g. when
n=4by4x % = 6 parallelograms. An n-zonogon is a parallelogram with
n pairs of parallel and congruent edges, i.e., the edges of its parallelogram

tiling are oriented in n vector directions as shown in Figure 6.6 for the
4-zonogon with its four vector directions. The central angle of the regular
octagon is represented by 8= -3% =45 degrees in Figure 6.7a, while the two
different types of two parallelogram derived from the 4-zonogon are shown
in Figure 6.7b to have angles of 16,36 and 26, 26. We are using this
notation to represent the two distinct angles of a parallelogram (the other
two angles are repeated). Notice that the angles add up to 46, or 180
degrees, whereas the angles surrounding each vertex in Figure 6.6 sum to
86 [Lal3]. This can easily be generalized to n-zonogons and their derived
parallelograms [Kap3].

A key property of n-zonogons is that their edges line up in a series of
n sets of parallel edges or zones. The edges of each zone are oriented in the
direction of one of the n vectors that define the zonogon. You can observe
this in Figure 6.6 for the 4-zonogon. If the length of one of the vectors is
shrunk to zero, then one of the zones is eliminated and the n-zonogon
collapses to a (n—1)-zonogon. Alternatively, each of the n vectors can be
expanded or contracted, with the effect that the shape of the zonogon is
distorted without altering the internal angles of its parallelograms.
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Figure 6.6 A regular octagon tiled with two squares and four Amish diamonds in two ways.
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(b)

Figure 6.7 (a) The parallelograms defined by a 4-zonogon; (b) the two angles of the
parallelograms add to 4.
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Figure 6.8 The rhombic dodecahedron as the structure of the beehive.

6.5 Zonohedra

The two sets of parallelograms that tile the 4-zonogon in Figure 6.6 can
be seen to be a schematic drawing of a twelve-faced, space-filling polyhedron
known as a rhombic dodecahedron (RD) [Kap3]. This polyhedron is
representative of a class of polyhedra with opposite faces parallel and
congruent known as zonohedra. If the two sets of three-connected edges are
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removed from this figure it is easy to see that it represents an hexagonal
prism. In fact if all the faces of the RD are taken to be rhombuses
with diagonals in the ratio /2:1 the polyhedron that results is precisely
the form that caps the hexagonal prisms that make up the structure of
the beehive (see Figure 6.8). It also represents the configuration of
the garnet crystal. Here are the links to the natural world that I was looking
for. Similar to zonogons, n-zonohedra are defined by n zones of parallel
edges. Likewise, if the zonohedron is made of linear rods, one zone of
parallel rods can be eliminated and the sticks reconnected, the result
being a zonohedron of one order less [Kap3]. This concept was cleverly
used by Steve Baer [Bool], [Bae] to create zonogon shaped houses which
could be easily renovated by changing their size and shape in a manner
forbidden by geodesic domes. Change a single edge of a geodesic dome and
all edges must change size accordingly. However, transformations of
zonohedra can be limited to one zone at a time.

6.6 N-Dimensional Cubes

Just as the n-zonogon can be subdivided into parallelograms, an n-zonohedron
can be subdivided into two interlocking sets of,

n{n—1}(n~-2)

C(n,3)= 6

(6.1)
parallelopipeds where C(n,3) is the number of ways one can choose three
objects from a group of n where order is not important. If this is done, then
n edges are incident at each vertex giving a projection of an n-dimensional
cube in 2 or 3 dimensions. But what do we mean by an n-dimensional cube?

Let’s consider a 4-dimensional cube, or tesseract as it is called, the
boundary of which, in one of its two-dimensional projections, is a 4-zonogon.
We see it pictured in Figure 6.9 as the fifth in a series of 0,1,2,3, and
4-dimensional cubes. The O-dimensional cube (see Figure 6.9a) is a point
with no degrees of freedom. The surface of a 1-dimensional cube (line
segment) is gotten by translating the O-dimensional cube (point) parallel
to itself (see Figure 6.9b). One has freedom to move left or right along the
line. The surface of a 2-dimensional cube (see Figure 6.9¢) is gotten by
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Figure 6.9 Diagrams of 0,1,2,3, and 4 dimensional cubes.

translating the line segment parallel to itself to obtain a square. Movement
is possible on the surface of the square: left—right or up—down. A 3-
dimensional cube (see Figure 6.9d) is obtained by translating a square parallel
to itself, resulting in a surface with freedom of movement: left—right, up—
down, in—out. Finally, the 4-dimensional cube (see Figure 6.9¢) is obtained
by translating the 3-dimensional cube parallel to itself. You can see that
now 4 degrees of freedom are possible: left—right (x), up—-down (y), in—out
(z), and movement in the elusive fourth direction (w). Of course Figure
6.9¢ is only the projective image of a 4-dimensional cube the same way that
Figure 6.9c is only a projection of a 3-dimensional cube. In an actual
4-dimensional cube there would be no intersecting lines, planes, or volumes
just as a 3-dimensional cube has no crossing edges despite the crossing edges
that appear in its 2-dimensional projection.

As predicted by Equation (6.1), the tesseract has two sets of 4 intersecting
cells projected into the 4-zonogon. Notice the star octagon in Figure 6.9e,
reminiscent of my Amish quilt.
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6.7 Triangular Grids in Design: An Islamic Quilt Pattern

A 3-zonogon is shown in Figure 6.10. The two sets of 3 parallelograms that
tile the hexagon can be seen to be an ordinary cube in perspective. The
hexagon is also subdivided into a triangular grid. This triangular grid is
useful as a design tool.

In Figure 6.11b we see a triangular grid developed from a family of
closely packed circles shown in Figure 6.11a and created as shown in
Appendix 6.A. Repeating patterns can be created by deleting lines from
Figure 6.11. Two examples are shown in Figure 6.12, and additional designs
recreated from a square grid of circles are shown in Appendix 6.A.

‘ Figure 6.10 A 3-zonogon viewed as either a
3-dimensional cube or as a triangular grid.
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Figure 6.11 (a) A triangular grid of closely-packed circles; (b) a triangular grid.
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Figure 6.12 Two patterns conforming to (a) the grid of close packed circles; (b) the triangular
grid.

Figure 6.13 “Cairo Quilt” by Margit Echols©
1994, Cotron, 90" x 110", machine pieced, hand
quilted.

Margit Echols [Ech] has developed geometrical principles suited to the
particular requirements of the art of quilting. One of her quilts is based on
an Islamic pattern generated from the triangular grids of Figure 6.11a and
b. Her quilt pattern, illustrated in Figure 6.13 contains twelve pointed stars.
Three pairs of bounding edges of the star, when extended, traverse the
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entire pattern and form a triangular grid. Notice that pentagonal star-like
figures make a surprise appearance in the final design.
Echols has the following to say about the art of quilt making:

“The quiltmaker is faced with tremendous restrictions inherent
in both the laws of geometry and the technology of patchwork.
How is it we can bear the time it takes to make a quilt? —
Besides the obvious rewards of accomplishing technical
challenges, of making colors sing, the tactile sensuality of
textiles, and the meditative quality of repetitive handwork —
there is the pleasure of problem solving of putting the puzle
together, of playing the game, a serious game of a battle against
chaos which has deep intellectual appeal.”

6.8 Other Zonogons

For a 5-zonogon, the central angle is 8 = 3% = 36 degree and the two
species of parallelogram are 16, 40 and 26, 30 (adding up to 56). These
parallelograms have interesting properties since the ratio of their edge length
to one of their diagonals is related to the golden mean, a number whose
value is 7= These parallelograms will be discussed further in
Section 20.4 and will arise in Section 25.2 in the context of quasicrystals.
Designs with these parallelograms, such as the one in Figure 6.14, have
approximate five-fold symmetry.

The design possibilities are all the richer for tiling a 6-zonogon. Tiling
the 6-zonogon by its parallelograms, 16, 56; 26, 46; and 36, 30 where 6 =
% = 30 degrees, results in perspective diagrams of the rhombic triacontahedron
(30 parallelogram faces) and the truncated octahedron (with 6 square and 8
hexagon faces) shown in Figure 6.15. By successively removing zones the
6-zonohedron (rhombic triacontahedron) collapses to a 5-zonohedron
(rhombic icosahedron), then to a 4-zonohedron (rthombic dodecahedron),
and finally to a 3-zonohedron (parallelopiped). In the last phase of this
transformation there are two possible parallelopipeds, type 1 and type 2,
that are the building blocks for all the other zonohedra derived from the
6-zonohedron, much as parallelograms are building blocks for zonogons
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Figure 6.14 A pattern with approximate
five-fold symmetry made up of the two
parallelograms of the 5-zonogon from the
Mathematics of Design class of Jay Kappraff.

(a) (b)

Figure 6.15 (a) The truncated octahedron; (b) the rthombic triacontahedron.

(see Figure 6.16). All faces of this family of zonohedra are congruent
rthombuses and have diagonals in the ratio, 7: 1 and for this reason they
are called golden iso-zonohedra [Miyazaki 1980]. Each zonohedron can be
tiled by the number of parallelopipeds given by Equation (6.1). For example,
the thombic dodecahedron with n = 4 is tiled by 4 parallelopipeds, 2 of type
1 and 2 of type 2 as shown in Figure 6.17. The rhombic triacontahedron,
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Figure 6.16 A golden parallelopiped of type 1 and type 2.

<> [X

# .

Figure 6.17 A rhombic dodecahedron tiled by by two golden parallelopipeds of type 1 and
two parallelopipeds of type 2.

shown in Figure 6.18, with n = 6, is tiled by 20 parallelopipeds, 10 of type
1 and 10 of type 2.

The 6-zonogon can also be viewed as a distorted 2-dimensional projection
of a 6-dimensional cube, and as for the 4-zonogon, it too has a star dodecagon
(12 pointed star) at its center (see Figure 6.19). We also encountered this
star in Figure 3.4c in connection with tone cycles of musical thirds, fourths,
fifths, and wholetones. The cover of Connections [Kap3] shows the
extraordinary result of truncating a 6-dimensional cube at one of its vertices.
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Figure 6.18 A rhombic triacontahedron tiled
by golden parallelopipeds.

Figure 6.19 A star dodecagon.

Figure 6.20 A 60-foot long rhombic triacontahedron sculpture with a quasicrystal interior at
Denmark’s Technical University in Copenhagen by Tony Robbin.
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Alan Schoen [Schoe] has created a puzle called Rombix in which
multicolored tiles which are composites of 8-zonogons are used to create a
prescribed set of designs. The artist Tony Robbin [Rob] has built a 60-foot
sculpture, shown in Figure 6.20, based on quasicrystal geometry for the
three story atrium at Denmark’s Technical University in Copenhagen. The
dome is a thombic triacontahedron with a quasicrystal interior.

6.9 Conclusion

The concept of the zonogon is the key to understanding the system
of design used by the Amish. It leads to a means of visualizing the
two-dimensional projection of an important class of three-dimensional
polyhedra known as zonohedra, and it places an understanding of the nature -
of three-dimensional geometry firmly in the context of higher-dimensional
geometry. The 4- and 5-zonogons define systems with a repertoire of
two parallelograms, the first related to V2 and the sacred cut, the second
related to the golden mean. A system of architectural proportions developed
by the Le Corbusier, known as the Modulor, is based on the golden
mean [Kap3]. In the next chapter we shall explore the V2 system of
proportions in greater depth. We shall also see that these two systems
share a unifying structure with roots in the musical scale. The number of
parallelograms proliferate for zonogons of a higher order which inhibits
their usefulness to serve as systems of proportion.

My visit to the Amish country, examination of the quiltwork of Margit
Echols, and the structures of Tony Robbin have reinforced my feeling that
artists, and practitioners of the folk arts have infused their work with patterns
that share themes of common interest to mathematicians and scientists.

Appendix 6.A

6.A1 Steps to Creating a Triangular Grid of Circles

1. Begin with a point at the center of a circle of arbitrary radius.
2. From an arbitrary point on the circumference of this circle draw
another circle of the same radius through the center of the first circle
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(a) (b)

(c) (d)

Figure 6.A1 Creation of a triangular grid of circles.

(Figure 6.Ala). This pair of circles is known as the Vesica Pisces. In
ancient sacred geometry the Vesica had spiritual significance, and
engravings of Christ were often found within the central region [Kap3].
A pair of equilateral triangles can be placed within the central region
(Figure 6.A1b).

3. Where any pair of circles intersect, draw circles of the same radius with
these points as centers to obtain a set of six circles surrounding a central
circle, the beginning of a triangle circle grid (Figure 6.Alc).

4. If lines are drawn connecting the intersection points, a triangular grid
results. Four circles create a ten-pointed grid known as the tetractys
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(Figure 6.A1c) of great significance in Platonic numerology and discussed
in Sections 3.5 and in the next chapter.

5. This process can be continued to generate a triangle circle grid covering
the plane (see Figure 6.11a).

6.A2 Steps to Creating a Square Circle Grid

1. Begin with a pair of Vesicas generated by three circles (Figure 6.A2a).
A pair of circles (light lines) are added to create two axes at right angles.

2. Six additional circles are added to create a circle grid based on a square
of nine circles (Figure 6.A2b).

(c)

Figure 6.A2 A square grid of circles
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3. This procedure can be continued to generate a complete square circle
grid. In Appendix 10.A we will show that the sacred cut is subtly
embedded throughout the square circle grid.

4. You can create designs related to the square circle grid by drawing lines
between any pair of defined points. You are also permitted to delete any
lines or curves. Try recreating the designs shown in Figure 6.A2c.
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Linking Proportion, Architecture, and Music

The harmony of proportions should be achieved in such a manner that nothing
could be added, diminished or altered except for the worse.

Leon Battista Alberti

7.1 Introduction

Throughout the history of architecture there has been a quest for a system
of proportion that would facilitate the technical and aesthetic requirements
of a design. Such a system would have to ensure a repetition of a few key
ratios throughout the design, have additive properties that enable the whole
to equal the sum of its parts, and be computationally tractable — in other
words, to be adaptable to the architect’s technical means. The repetition of
ratios enables a design to exhibit a sense of unity and harmony. Additive
properties enable the whole to equal the sum of its parts in a variety of
different ways, giving the designer flexibility to choose a design that offers
the greatest aesthetic appeal while satisfying the practical considerations of
the design. Architects and designers are most comfortable within the realm
of integers, so any system based on irrational dimensions or incommensurable
proportions should also be expressible in terms of integers to make it
computationally acceptable.

Three systems of architectural proportion that meet these requirements:
the system of musical proportions used during the Renaissance developed
by Leon Battista Alberti, a system used during Roman times, and the Modulor
of the twentieth-century architect, Le Corbusier [LeC]. All of these systems
draw upon identical mathematical notions already present in the system of

145
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musical proportions as we shall show in Section 7.2. While the Roman
system is based on the irrational numbers \/E and 8=1+ /2 the Modulor
is based on the golden mean 7 =—1—+Z£ . Both of these systems can also be
approximated arbitrarily closely (asymptotically) by integer series, and these
integer series can be used to implement the system with negligible error
[Kap6]. I shall demonstrate this for the Roman system since the Modulor
has been adequately covered elsewhere (cf. [LeC], [Kap3]). I will also show
that the basis of the Roman system is a geometrical construction discovered
in the Renaissance, known as the law of repetition of ratios. The sacred cut
will be shown to lie at the basis of the Roman system. I shall illustrate, by
way of Kim Williams’ analysis of the Medici Chapel [Will2], that both the
law of repetition of ratios and the sacred cut are geometric expressions of
the additive properties of the Roman systems and insure the presence of
musical proportions in a design. I will conclude with a discussion of Ezra
Ehrenkrantz’ system of modulor coordination based on both musical proportions
of Alberti and Fibonacci numbers [Ehr].

7.2 The Musical Proportions of the Italian Renaissance

During the Italian Renaissance Leon Battista Alberti and Andreas Palladio
developed a system of architectural proportion based on proportions inherent
in the musical scale (cf. [Schol], [Wit]). This movement was a response to
the neoPlatonic ideas prevelant at the time. According to Alberti [Wit]:

“The numbers by which the agreement of sounds affect our
ears with delight are the very same which please our eyes and
our minds. We shall therefore borrow all our rules for harmonic
relations from the musicians to whom this kind of numbers is
well known and wherein Nature shows herself most excellent
and complete.”

Alberti modeled his system on the Pythagorean scale based on the octave,
musical fifth, and fourth. To achieve an octave above the fundamental
tone, the bridge of a monochord instrument is moved to the midpoint of
the string, (i.e., ratio of 1:2 as shown in Figure 7.1), and the string is
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Figure 7.1 A sliding bridge on a monochord divides the string length representing the
fundamental tone into segments corresponding to musical fifth (2:3), fourth (3:4), and octave

(1:2).

plucked. The fifth is obtained by shortening the string by a ratio of 2:3
while the fourth shortens the string by a ratio of 3:4.

All musical proportions of the Pythagorean scale (see Section 3.4) can
be expressed as ratios of powers of the prime numbers 2 and 3. For example,
the whole tone corresponds to the ratio 8:9. The system of Palladio was
based on the Just scale (see Section 3.6) which also included the prime
number 5 [Kap3]. What is of greater relevance is the manner in which a
system of architectural proportion was built from these scales. The first
suggestion appears in the lambda figure (see Figure 3.9b),

8 27

found in Plato’s Timaeus and referred to as “world soul.”
Consider the sequence,

1,2,4,8,16,...
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Next, construct additional integer series made up of the arithmetic means
of adjacent numbers as shown below,

Table 7.1 Integer sequence of
Alberti’s system of musical
proportions.

Proportions

1 2 4 8 16..
3 6 12 24..
9 18 36...

27 54..

I shall refer to this as Nicomachus’ table since an identical table of
numbers appeared in the Arithmetic of Nicomachus of Gerasa (circa 150
A.D.) (cf. [D'Oo], [Kapl4]).

Notice that Plato’s lambda appears on the boundary of these series. It
is also evident that the ratio of successive terms in the horizontal direction
is in the octave ratio, 1:2, while the vertical direction represents the ratio
2:3 (musical fifth) and the right-leaning diagonal (/) exhibits the ratio 3:4
(musical fourth).

The placement of the numbers in Table 7.1 is governed by the three
means described in Section 4.3. Each number x of these scales is the
geometric mean of the numbers y and z to its left and right, i.e., x = \/y_z
By its construction, each number x is the arithmetic mean of the two
numbers y,z above it, i.e., x = ’JZ' z
mean of the two numbers y,z below it, i.e., x = (%JZ(—) . Alternatively, any

. Finally each number x is the harmonic

integer from Table 7.1 is either the arithmetic mean of an increasing octave
or harmonic mean of a decreasing octave. For example, 12 is the arithmetic
mean of the increasing octave, 8:16, bracing it from above, while it is
the harmonic mean of the decreasing octave, 18:9, bracing it from below
(see Section 4.3). As the result of these relationships, any sequence x,u,v,y
that includes the arithmetic and harmonic means u,v of its endpoints x,y
insures a repetition of ratios as illustrated for the sequence 6, 8, 9, 12. Here,

9:6 = 12:8 and 8:6 = 12:9.
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2:3 3:4 3:4 2:3
/ N/ N\ /T N/ T\
6 9 12 6 8 12 (7.1)
A N VAN /
1:2 1:2

Musically, it is said that “when the musical fifth is inverted in the octave
it becomes the musical fourth”. All the tones of the Just scale can be
produced in a similar manner by placing the arithmetic and harmonic
means in the gaps formed by the intervals of Sequence (7.1) and in the
successive gaps thereby formed (not shown). Architecturally, any relationship
that incorporates musical proportions insures that key ratios repeat in the
context of a design.

Alberti used this system in Table 7.1 to design his buildings [Alb). The
dimensions and subdivisions of the rooms of his buildings had measures
given by adjacent numbers within the table. Therefore a room could exhibit
a 4:6 or 6:9 ratio but not 4:9. This insured that ratios of these lengths would
embody musical ratios. Wittkover [Wit] describes Alberti’s use of musical
proportions in the design of S. Maria Novella and other structures of the
Renaissance.

Although the Renaissance system of Alberti succeeded in creating
harmonic relationships in which key proportions were repeated in a
design, it did not have the additive properties necessary for a successful
system. However, a system of proportions used by the Romans and
the system of proportions developed by Le Corbusier, known as the Modulor,
both conform to the relationships inherent in the system of musical
proportions depicted in Table 7.1 with the advantage of having additive
properties.

7.3 The Roman System of Proportions

The well known integer sequence
1,1,2,3,58,13,21,... (7.2)

in which each term is the sum of the preceding two terms possesses is an
example of a Fibonacci sequence or F-Sequence. The ratio of successive
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terms approaches the golden mean 7 =1 2 in a limiting sense. The

T-sequence (see Section 20.2):
1

1 2.3
= L1,7°,17,...
Tt 7T

is not only a double geometric sequence but also a Fibonacci sequence
(each term is the sum of the preceding two terms). It is the additive properties
of this sequence that led Le Corbusier to make it the basis of his Modulor
series of architectural proportions. It can also be shown that the Modulor
conforms to the relations inherent in Alberti’s pattern of the musical
proportions exhibited in Table 7.1 [Kap6].

Another integer sequence possessing additive properties is

1,2,512,29,70,... (7.3)

known as Pell's sequence in which twice any term in the sequence
when added to the previous term gives the next term. Theon of Smyma,
a second-century A.D. Platonist philosopher and mathematician first
presented this sequence in his book The Mathematics Useful for Understanding
Plato [The]. The ratio of successive terms from any Pell sequence such as
Sequence (7.3),

Ty Y oy Ty Ty (7.4)

approaches the irrational number 8 =1++/2, called the silver mean, in a
limiting sense. We have already seen that the sacred cut (see Section 6.2)
divides the edge of a square in the ratio 1:8. Since the sacred cut is associated
with the construction of a regular octagon (see Figure 6.2), it is not surprising
that the diagonals of an octagon divide each other in the ratio 1:0 as shown
in Figure 7.2. This number is also known as the silver means since it is
second in importance to the study of dynamical systems (see Chapters 22
and 25).
The @-sequence

L

p ,é—,l,9,92,03,... (1.5)

is the only geometric sequence that is also a Pell sequence.
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Figure 7.2 A star octagon. The diagonals cut each other in proportions 1:6.

Table 7.2 The roman system of proportions based
on 6.

.ZJ_ ZJ— 2\/— 29\/_ 292\/_ 263\/— Ze"\/_

9

lz 2,2,29,292,293,2&,
0
...,£2,£ V2,672, 0842, 0°V2, 042, ..
%) 0
,%,1,1’9’92’63’64,
o’ o
Thus,
.,$+z=e, 1+20=6%, 6+20°=6°,... (7.6)

Therefore, a Pell sequence possesses many additive properties which is why
it was used in ancient Rome as the basis of a system of architectural
proportions (cf. [Schol], [Kap3], [Wat-W1], [Willl]).

Table 7.2 illustrates the infinite sequences that underlie the Roman
system of proportions, and it is identical in its mathematical structure to
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Nicomachus’ Table 7.1 [Kapl]. Each element in this table is the arithmetic
mean of the pair above it, e.g., & is the arithmetic mean of 842 and

0242,
0N2+0°V2 _ s
R R

Also each element is the harmonic mean of the pair below it, e.g., 84/2
is the harmonic mean of 0 and ¢,

200°
- =6+2. (7.7b)
6+6

The algebra to carry out these operations can be seen more clearly by
comparing the @-sequence in the first three lines of Table 7.2 with the
discrete version of this sequence.

(7.73)

2,4,10, 24, 58,140, ...
1,3,7,17,41,99,...
1,2,512,29,170,...

(7.8)

Both of these triples of sequences have the Pell’s sequence property:
anyy = 20,4 + a, and the ratio of successive terms of Sequences (7.8)
approaches € in a limit sense as n — . Any algebraic operation that holds
for the integer sequence also holds for the 8-sequence. This sequence has
many additive properties, although we list only four fundamental properties
from which the others can be derived.

(i) Each Pell sequence has the defining property,

x,x,x Property 1: a+2b=c, eg, 1+2x2=5 and 1+20=07%,
a,b,c

(ii) and (iii) Other additive properties are,

cd
x x Property 2: a+b=d, eg, 2+5=7 and 1+6 =042,

x x Property 3: a+c=b, eg, 2+3=5 and 02+06=02.
ab
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(iv) Property 4: Any element is the double of the element two rows
below it.

Using these properties, it is an exercise to verify Equations (7.7).
The integer Sequences (7.8) exhibit the same geometric, arithmetic,
and harmonic mean relationships as Table 7.1 in an asymptotic sense.
Thus each term is the approximate geometric mean of the terms to its right
and left, e.g., 5° = 2 x 12. Each term in the Sequence (7.8) is the average
of the terms above it, e.g., 5=%i. Each term from Sequence (7.8) is

approximately the harmonic mean of the two terms that below it, e.g.,

3= %1— =~ S = 270 with the approximation becoming asymptotically

better for terms further to the right in the sequence. Finally, any term in
the first sequence divides the interval below it approximately in the ratio
(41-29) _ 12 1:6

o (70-41) ~ 29

Also the ratio of any term from Table 7.2 to the one below it equals
V2 while the ratio of any integer from Sequence (7.8) to the one below
it approximates vZ with the approximation asymptotically approaching
J2 in the limit as n — oo. For example,

3 717
20 512
approaches V2 ina limiting sense. It should be noted that since the sum
of two integers in any row equals an integer from the row above it, an
infinite number of rows are needed to insure that this proportional system
has additive properties.

D. Watts and C. Watts [Wat-W 1] have studied the ruins of the Garden
Houses of Ostia, the port city of the Roman Empire, and found that they
are organized entirely by the proportional system of Table 7.2 or its integer
approximation, Sequence (7.8).

1:6, e.g

: 8
T (7.8)

7.4 The Geometry of the Roman System of Proportions

The algebraic properties of the Roman system of proportion can be made
understandable by considering the equivalent geometric properties. We find
that three rectangles of proportions 1:1 (square — S), 1: V2 (square root of
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a. SR-S=AR > RR
] 1
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S+S+RR=RA
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1 |
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Figure 7.3 The square (S), square root rectangle (SR), and the Roman rectangle (RR) are
interrelated.

R

Figure 7.4 Subdivision of a square by four sacred cuts into squares (S), square root rectangles
(SR), and Roman rectangles (RR).
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Figure 7.5 Mosaics and paintings in the Garden Houses of Ostia are in many cases laid
out according to the geometry of the sacred cut. This photograph, following the pattern of
Figure 7.4, shows a floor mosaic found in one of the houses. (By Tom Prentiss, photographed
by John Moss. Reprinted with permission by Scientific American.)

2 rectangle — SR) and 1:0 (Roman rectangle — RR) form an interrelated
system. For example, if S is either removed or added to SR, this results in
RR as Figure 7.3a illustrates. This is equivalent to Properties 2 and 3. The
relation, 2S + RR = RR, is equivalent to Property 1 (see Figure 7.3b).
Finally, if SR is cut in half it forms two SR at a smaller scale, while two SR
added together form an enlarged SR (see Figure 7.3¢) corresponding to the
doubling Property 4.

The key to understanding the Roman system of proportions is the sacred
cut shown in Figure 6.1. Four sacred cuts drawn from each of the four
corners of a square form a regular octagon as shown in Figure 6.2. These
four sacred cuts also divide the square into four S at the corners, a larger
central S, two SR, and two RR (see Figure 7.4). The Watts have discovered
a tapestry preserved from the ruins of the Garden Houses of Ostia organized
according to the pattern of Figure 7.4 shown in Figure 7.5. Figure 7.6 shows
the breakdown of a square of dimensions & x & into 16 sub-rectangles with
lengths and widths from Table 7.2 satisfying,

0°=1+20+20+0642,

9
0°=0J2+20+06+0642. (7.9)
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Figure 7.6 Subdivision of a square into 16 rectangles from the Roman system of proportions.

It is another exercise to verify Equations (7.9) using Properties 1—4 of the
Roman system. These rectangles can be juxtaposed in many ways to give
alternative riles of the original square. A design by Mark Bak using the
three species of rectangle, S, SR, and RR at three different scales is shown
in Figure 7.6.

7.5 The Law of Repetition of Ratios

The computational properties of the Modulor and the Pell series are also
the result of the law of repetition of ratios, well known in the Renaissance
and revived by Jay Hambridge as the key to his concept of dynamic symmetry
(cf. [Ham], [EJE]). To illustrate this law, draw a diagonal to a rectangle and
intersect it with another diagonal at right angles as shown in Figure 7.8a.
This subdivides the original rectangle or unit (U), of proportions a:b, into

a rectangle referred to as gnomon (G) and a similar unit of proportions (U)
(see Figure 7.8b) b, i.e.,
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Figure 7.7 A design illustrating the tiling of a rectangle by S, SR, and RR at three different
scales.

o
(¢} 1-2

[ —

L‘—c_.

Figure 7.8 The “law of repetition of ratios” divides a unit rectangle into a gnomon and a
proportional unit.
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a P— and G+U=U. (7.10)
b ¢
This has the effect of reproducing ratios in a rectangle just as the insertion
of arithmetic and harmonic means did within the octave for the musical
scale (see Sequence (7.1)).

This process can be repeated many times to tile the unit with whirling
gnomons and one additional unit

U=G+G+G+---+U

as was shown in Figure 2.11b where we see that the vertices of the gnomons
trace a logarithmic spiral. Figure 7.9 shows how the law of repetition of ratios
might have been used by Alberti to remodel the facade of S. Maria Novella
in Florence and an ancient Greek temple.

In Figure 7.10 this procedure is applied to a square root of 2 rectangle
(SR). We see that the gnomon equals the (SR), and SR is therefore
subdivided into two identical SR’s. However, this construction also possesses
a second important geometrical relationship well known to ancient
geometers. Notice the upward and downward pointed triangles in Figure
7.10. It can be shown that for any rectangle, the intersection of such triangles
with the diagonals of the rectangle results in a trisection of the length and
width of the rectangle (see Figure 7.11). As a result, the law of repetition
of ratios not only results in a bisection but also a trisection of SR. Therefore

=

ITTTITITTTJTIL

i

(a) (b)

I

Figure 7.9 Use of the law of repetition of ratios to proportion of (a) a Greek temple, and
(b) S. Maria Novella in Florence.
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Figure 7.10 Application of the law of repetition of ratios to an SR rectangle.

1
3

W
W=

Figure 7.11 Trisection of the width of a rectangle.

SR achieves through the medium of geometry what the Pythagorean scale
achieves of whole numbers with factors of 2 and 3. The design in Figure
7.12, based on two intersecting SR rectangles, [EdE], captures these
relationships. In the next section I will show that these twin relationships
lay at the basis of the architecture of the Medici Chapel as uncovered by
Kim Williams.
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Figure 7.12 A design based on two intersecting square root rectangles.

7.6 Relationship between the Roman System and the System of
Musical Proportions

Since the time of the Greeks, there has been a tension in architecture and
design between the use of commensurate and incommensurate lengths, i.e.,
lengths governed by rational or irrational numbers. It was Pythagoras who,
it is said, first discovered that the ratio of the diagonal to the side of a
square was incommensurable, i.e., no finite multiple of one equals a multiple
of the other. On the one hand, incommensurate ratios were distressing
since they did not fit the model that the Greeks had of number [Kap3].
On the other hand, they were easily constructible with compass and
straightedge and had interesting geometric properties some of which have
been outlined above. Although incommensurate measurements were equally
incomprehensible from a number theoretic point of view to architects of
the Italian Renaissance, Wittkover says:

“Medieval geometry (with its use of incommensurate ratios
such as 1: Ji or l: \/5 } is no more than a veneer that enables

practitioners to achieve commensurate ratios without much
ado.”

The architect, K. Williams, believes that one function of the system of
musical proportions may have been to integrate the Roman system of
proportions based on the incommensurate ratio 1: 2 with the commensurate
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R
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“D‘ Figure 7.13 Plan of the Medici chapel. The
proportion of the rectangular spaces are

indicated over the diagonals of these spaces.
Photograph of the Medici Chapel.

B B

ratios at the basis of the musical scale. Williams made these discoveries
while surveying the Medici Chapel in Florence built by Michelangelo [Will2).

The ground plan of the chapel is a simple square with a rectangular
apse, called a scarsella, added to the north end as shown in Figure 7.13. The
sides of the square which form the main space of the chapel measure 11.7
meters. The height of the chapel walls measure 11.64 meters, suggesting
that the main space of the chapel was meant to be a cube. The overall
perimeter of chapel and apse fit into a J2 rectangle. Williams recognized
that a v2 rectangle is embedded in a cube as the rectangle formed by any
pair of opposite edges. Thus the volume of the chapel and the shape of the
ground plan are intimately related.

A second +/2 rectangle is found in the chapel in the ensemble of the
altar and the scarsella. Williams makes the important point that the altar
protrudes into the Chapel to the extent that the ratio of the distance
between the face of the altar and the opposite wall to the width of the
chapel is 8:9, the ratio of the musical whole tone. Other dimensions within
the chapel were derived from a combination of application of the law of
repetition of ratios and the method of trisection illustrated in Figure 7.11.
The method of trisection is itself a means of generating the musical ratios.
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A 3

Figure 7.14 Construction of a door using the method of trisection. From Serlio’s first book.

Figure 7.14 illustrates how this construction was used by the 16th century
architect Serlio to proportion the portal of a church [Witt]. Notice the key
ratio 1:2 (octave) in the proportion of the door and the ratios 2:3 (fifth)
and 1:3 (fifth above an octave) in the positioning of the door.

K. Williams constructs a /2 rectangle with dimensions 27 x 27 V2 as
shown in Figure 7.15. Applying the law of repetition of ratios to this
rectangle, the diagonal BJ bisects the long side while vertex C, the
intersection point of BJ with diagonal AK, is at the trisection point of the
long side (see Figure 7.11). As a result of this construction, another 2
rectangle is formed with side CD, % of 27 or 18. This construction is
repeated to yield a family of 2 rectangles, beginning with ABKL with
short side 27 and proceeding to 18, 12, 8,.... As is evident from Figure
7.15, the ascending sequence: 4,6, 8,9, 12,18, 27 inherent in this
construction is obtained. These numbers are recognized as being components
of the musical proportions of Table 7.1 derived from Plato’s lambda.
Furthermore, geometric sequences were important to Renaissance architects.
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Figure 7.15 Derivation of the proportions of the Medici Chapel. Courtesy of K. Williams.

It was stated by Alberti [Alb]:

“The geometrical mean is very difficult to find by numbers but
it is very clear by lines, but of those it is not my business to
speak here.”

Williams supplies the demonstration that length BC is the geometric means
of AB and CD, i.e.,, BC = /27x18. In a similar manner, the zigzag path
AB, BC CD, DE, EF, FG, GH, ..., yields a geometric sequence with common
ratio and another sequence of J2 rectangles beginning with the rectangle
with 51des BC:CK = 1:4/2 . Choosing a key dimension of the chapel, 3.52
meters, which is the overall width of the lateral bays from perimeter wall
to the far edge of the pilaster, and using this as the value for side GK of the
diagram, Williams found that the other proportional lengths generated in
Figure 7.16 corresponded with other dimensions which appear in the chapel.
For example side EM, calculated at 4.31 meters, corresponds to the clear
width between pilasters of the scarsella, which actually measures 4.33 meters,
with a deviation of only 0.46%. Making this the long side of a V2 rectangle,
its short side, EF, is found to be 3.048, which corresponds to the dimension
of half of the rectangle mentioned previously as circumscribing the ensemble
of scarsella and altar, deviating by only 0.9% from the measured dimension
of 3.02 meters. The altar completely fills the other half of the J2 rectangle,
and likewise measures 3.02 meters. Work by historian Guglielmo De Angelis
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D’'Orssat has revealed proportions in vertical elements of the chapel which,
like the ground plan dimensions, may be seen in relation to the repeated
trisection of the 2 rectangle. In a diagrammatic analysis of the portal
found in each of the lateral bays of the chapel, he points out the ratios 1:2,
1:3, and 2:3. He has also found the ratio 1:2.4, which will be recognized as
the proportions of the Roman rectangle [D’Or]. This indicates that all the
elements of the chapel were designed with regard to a comprehensive
proportional system, and geometric series and musical proportions appear to
have been the means of unification for all dimensions of the chapel.

7.7 Ehrenkrantz’ System of Modulor Coordination

The architect Ezra Ehrenkrantz has created a system of architectural
proportion that incorporates aspects of Alberti’s and Palladio’s systems made
up of lengths factorable by the primes 2, 3, and 5, the factors of all integer
representations of musical tones from the Just scale, along with the additive
properties of the Fibonacci sequence [Ehr]. To picture this system requires
a three dimensional coordinate system as shown in Table 7.3. As a number
moves from left to right, in the X direction, it doubles in value. As a
number moves from back to front, in Z direction, the number triples in
value. The sum of two numbers in the vertical, or Y direction, equals the
next number in the series. Also notice that the upper edge of Plate 1 and

Table 7.3
Y Z PLATE 3 A B C D E
9 9 18 36 72 144
18 36 72 144 288
27 54 108 216 432
3 45 90 180 360 720
72 144 288 576 1152
PLATE 2 A B C D E
1/ 2 4 3 37 6 12 24 48
X X 6 12 24 48 9
h 9 18 36 72 144
15 30 60 120 240
3 24 48 96 192 384
PLATEl /A B C D E
5 1 2 4 8 16
7z 2 4 8 16 32
3 3 6 12 24 48
5 10 20 40 80
Y 8 16 32 64 128
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the upper-left corner points of Plates 1, 2, and 3 of Table 7.3 recreate
Plato’s lambda. The lambda, along with the Fibonacci sequence 1, 2, 3, 5, 8
that comprises the first column of Plate 1, provide the boundary conditions
upon which all other numbers of Table 7.3 are generated. The Fibonacci
sequence is truncated at 8 because the next number of this series 13 is a
prime number other than 2,3, and 5.

This system is successful at providing the architect with standard lengths
that insure many possibilities for the subdivisions of any length that appears
in Table 7.4. For lengths up to 144 inches, 35 dimensions are available, 20
of which are greater than 2 feet. Of course, dimensions which do not appear
in Table 7.4 such as 99 inches can be created as the sum of elements from
the table, e.g.,, 99 = 27 + 45 + 27. However, compare all the possibilities

Table 7.4
Forc Forc
Intervals Dimensions Intervals Dimensions
12 ft. 144 in, 360 cm. 3 ft. 36 in. 90 cm.
11 ft. 135in. 337.5 cm. 32 in. 80 cm.
128 in. 320 cm. 30in. 75 cm.
10 ft. 120 in. 300 cm. 27 in. 67.5 cm.
9 fr. 108 in. 270 cm. 2 fu. 24 in. 60 cm.
8 fr. 96 in. 240 cm. 20 in. 50 cm.
7ft. 90 in. 225 cm. 18 in. 45 cm.
81 in. 202.5 cm. 16 in. 40 cm.
80 in. 200 cm 15in. 37.5 cm.
6 ft. 72 in. 180 cm. 1 ft. 12 in. 30 cm.
64 in. 160 cm. 10 in. 25 cm.
5 ft. 60 in. 150 cm. 9in. 22.5 cm.
54 in. 135 cm. 8in. 20 cm.
4 ft. 48 in. 120 cm. 6in. 15 cm.
45in.112.5cm 5in. 12.5cm.
40 in. 100 cm 4 in. 10 cm.
3in. 7.5 cm.
2in. 6 cm.
lin. 2.5 cm.
0fe
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Table 7.5
96~
48 48
99~ 32 32 32
27 45 27 64 32
36 27 36 56 60

30 36 30
24 48 24
36 24 36
24 24 24 24

24 32
24 45 217
40 32 24

for creating 96, a number from the table, with 99 a number not in the table.
Table 7.5 shows that there are 11 possible summations for 96 as compared
to only two for 99.

According to Ehrenkrantz, and referring to Table 7.3:

“This system helps to coordinate dimensions which may come
from different base modules and therefore be normally
considered [sic] incompatible. More directly, if one wishes to
use multiples of 3 inches with those of 4 inches, one can move
to the right on the X axis from 3 in. and down along the Y axis
from 4 in. They intersect at 12 (Plate 2, Column C) and all
the numbers below, to the right, or behind 12 are multiples of
both 3 in. and 4 in., i.e., foot intervals. Multiples of other base
dimensions may be related in a like manner.”

7.8 Conclusion

I have discussed a series of relationships inherent in the musical scale well
known to the Greeks and Roman civilizations. I have shown that they form
the basis of three successful systems of proportionality (in addition to the
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Modulor of Le Corbusier not discussed here): a system used by Alberti and
other Renaissance architects, the system of proportions used by the Romans,
and a System of Modulor Coordination of Ezra Ehrenkrantz. These systems
insure a repetition of key ratios, and possess properties related to the musical
scale, while the latter two systems provide for additive properties that enable
designs to be carried out in which the whole equals the sum of its parts.
These systems can also be expressed in terms of integers to facilitate their
use. At the basis of the Modulor and the Roman system of proportion are
two numbers, the golden and silver means. Chapters 20 through 23 are
devoted to an extensive exploration of these numbers and to their application
to the study of dynamical systems.

Appendix 7A An Ancient Babylonian Method for Finding the
Square Root of 2

Neugebauer and Sack [Neu2] in their book Mathematical Cuneiform Texts
report on a recursive algorithm that the Babylonians used to compute the
square root of 2 to great accuracy. The Babylonian algorithm was expressed
in base 60 numbers. McClain translated this method to base 10. 1 reproduce
a facsimile of the method, give a recursion formula based on the method,
and show that it is connected to the square root of 2 sequence derived from
Pell sequences shown in Equation (7.8). The method draws upon harmonic
law and makes use of the fact that v/2 represents the tritone located between
the arithmetic and harmonic means placed in the octave. The method
converges rapidly and the 3rd iterate already agrees with +/2 in five decimal
places.

Begin with the octave: 12
Double it: 2 4
Insert the mean: 23 4
The initial approximation is : n =‘;‘ =15
Multiply by 3: 6 9 12

Subtract 1 from 9
to get harmonic mean: 6 8 9 12 (7.A1)
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nd o 85 _17
The 2™ approximation is : n=—=—=14166...
6 12
(8.5 is the average of 8 and 9)
Double Sequence (7.Al) : 12 16 18 24
Insert the mean between 16 and 18: 12 17 24
Multiply this sequence by 17: 204 289 408
Subtract 1 from 289: 204 288 289 408 (71.A2)
od o _ 2885 577
The 3™ approximation is : = 204 208" 1.41421568...
Continuing 74 2@‘5‘2 = 1.4142135612...
470832

Motivated by this algorithm the approximations to+/2 = 1.414213562...

are generated by the following recursion formulas:

Qay

™ =

b
where,
an=2a’, -1 b, =2a, b, for a;=3 and b =2.

It can be shown by mathematical induction (not shown) that sequences {a,}
and {b,} are subsequences of the following pair of Pell sequences:

Pell's sequence: 1 3 7 17 41 99 239 577 ... 665857 ...
1 2 5 12 29 70 169 408 ... 470832 ...

Term number: I 2 3 4 5 6 7 8 16

Approx. number, n: 1 2 3 4

Therefore the nth approximation to N corresponds to the 2" th Pell’s
approximation to \/-7: .
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A Secret of Ancient Geometry

To enter a temple constructed wholly of
invariable geometric proportions is to
enter an abode of eternal truth.

Robert Lawlor
8.1 Introduction

The quality of the work of an architect or designer is determined by how he
or she comes to grips with the mathematical constraints on space inherent
in all designs — “what is possible”, in contrast with the designer’s intention,
“what ought to be” The history of architecture reflects the history of ideas
in that “what ought to be” has changed from metaphysical perspectives of
the natural world to explorations of the individual artist. Additionally, the
history of technology is reflected in the changes of “what is possible”.

There are two kinds of constraints on space that the architect or designer
must confront:

® constraints imposed on a design because of the geometrical properties of
space.

e constraints imposed on a design by the designer who creates a geometrical
foundation or scaffolding as an overlay to the design. The designer’s
choice is based on the context of the design and on the effect that he
or she wishes to achieve.

Without constraints, a design is chaotic, irrelevant and lacking in focus.
Where do the designer’s constraints come from? In ancient times they were
derived either from spiritual contexts or handed down from generation to
generation by tradition. The results were cathedrals such as Chartres and

169
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Hagia Sophia or structures such as the Egyptian Pyramids and the Great
Temple of Jerusalem or the temples of ancient Greece.

Modern architecture has replaced spiritual —and tradition-bound
contexts with the private vision of the designer or architect and substituted
diversity for tradition. However, the designer is left with few tools to deal
with such a lack of constraint. After all, what should the designer do when
each design breaks new ground? In an effort to recover the principles of
ancient architecture, many researchers have studied the geometric and
spiritual bases of ancient structures (cf. [Tyn], [Ghy], [Ver], [Wat-W1]).

This chapter will discuss the work of Tons Brunes, a Danish engineer,
who hypothesized a system of ancient geometry that he believed lay at the
basis of many of the temples of antiquity (cf. [Bru], [Kap4], [Kap11]). It was
Brunes’s belief that there existed until about 1400, a network of temples
and a brotherhood of priests originating in ancient Egypt which had a
secret system of geometry. At the basis of Brunes’s theory is the eight-
pointed star illustrated in Figure 8.1. Brunes claimed to have seen this star
on a floor mosaic in a temple ruin in Pompeii where the public is not
admitted. He tried to photograph it, but was forbidden to do so. I encountered
this star as the ceiling structure in the entranceway of Antonio Gaudi’s
unfinished cathedral, Sagrada Familia, in Barcelona. From the geometry of
this star he was able to reconstruct reasonably close facsimiles to the plans
and elevations of the ruins of ancient temples such as the Pantheon,
Theseum, Ceres, and the Temple of Poseidon, noting that certain
intersections coincide with features of the temples [Kap4]. Unfortunately,
although the examples he uses to illustrate his theories are cleverly rendered,
there is no historical record to support his claims. As a result his research

Figure 8.1 The Brunes star.
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has been met considerable skepticism. Nevertheless, as we shall see, the
Brunes star expresses a geometry consistent with the ancient architecture,
folk art, and the musical scale portrayed in the previous chapters. Even
though it is unlikely to have played the all-pervasive role for temple
construction that Brunes conjectured, it may well have been one of the
organizing tools along with others such as the sacred cut (see Section 6.2)
and the law of repetition of ratios (see Section 7.4). At any rate, the beauty
of its geometry is reason enough to study it.

8.2 The Concept of Measure in Ancient Architecture

While modern scientific method relies on observation and measurement as
the primary way to arrive at truth, ancient civilizations used myth and
metaphor through the medium of poetry, music, and sacred scriptures to
describe their realities.

R.A. Schwaller di Lubicz [Schw] felt that the combination of myth and
symbol conveyed by ancient writings was the only way information about
the workings of the universe could be conveyed. According to Di Lubicz for
the ancient Egyptians:

“Measure was an expression of Knowledge that is to say that
measure has for them a universal meaning linking the things
of here below with things Above and not solely an immediate
practical meaning — quantity is unstable: only function has
a value durable enough to serve as a basis (for description).
Thus the Egyptians’ unit of measurement was always variable —
measure and proportions were adapted to the purpose and the
symbolic meaning of the idea to be expressed. (For example) the
cubit will not necessarily be the same from one temple
to another, since these temples are in different places and their
purposes are different.”

Even when standard measures were available, they may have been used
only as an adjunct to pure geometry in the design of structures. In place of
numbers to describe a measurement, a kind of applied geometry was
developed in which lengths were constructed without the need to measure
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them. All that was needed was a length of rope and a straightedge (the
equivalent of our compass and straightedge). Methods were then devised to
subdivide any length into sub-lengths, always by construction. Evidence of
construction lines have been discovered on the base of the unfinished
Temple of Sardis in Turkey and also in the courtyard of the Temple of Zeus
in Jerash in Jordan [WatC]. Artmann [Art] has shown how such methods
were used to construct the windows of the Gothic cathedrals. The geometry
needed to build these cathedrals was learned from boiled-down versions of
the first books of Euclid, known as pseudo-Boethius which highlighted the
constructive methods while eliminating the proofs of the theorems. The
knowledge to implement this geometry was taught to the guilds of masons,
other artisans, and builders and then passed on from generation to generation
by oral tradition. One can imagine learned constructive techniques based
on the Brunes star being transmitted by this tradition and applied to the
construction of sacred structures.

8.3 The Ancient Geometry of Tons Brunes

In ancient times it was an important problem to find a way to create a
square or rectangle with the same area or circumference as a given circle —
squaring the circle [Jos], as it was known. Since the circle symbolized the
celestial sphere while a square or rectangle oriented with its sides
perpendicular to the compass directions of north, east, south, and west
symbolized the Earth, the squaring of the circle could be thought to
symbolically bring heaven down to earth. Brunes demonstrates one way in
which ancient geometers may have attempted to solve this problem using
only compass and straightedge (we now know that this cannot be done
exactly). In Figure 8.2 the reference square has a side of 1 unit. Arc AB of
the sacred cut (see Section 6.1) and the diagonal CD of the half square are
approximately equal (see Figure 8.2a). In fact,

N

AB = 7r7= 1.1107 ... while
]
2

CD = =1.1118 ....
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Figure 8.2 The Brunes star approximately “squares the circle” in circumference: (a) four sacred
cuts; (b) AB = CD; (c) circle with arc AB approximately equals the perimeter of the square
with side CD.

In Figure 8.2¢ four sacred cuts AB are placed into a square to form a
circle equal in circumference to the perimeter of a square with edge CD to
within 0.4%.

In Figure 8.3a, we see that a circle is drawn that is tangent to an outer
square (inscribed circle) and touching the vertices of an inner square
(circumscribed circle). This square -within-a-square, called an ad-quadratum
square, was much used in ancient geometry and architecture [WatC]. The area
of the inner square is obviously half the area of the outer square since the
smaller square contains eight congruent triangles, whereas the larger square
contains 16. In a sequence of circles and squares inscribed within each
other, each square is —12- the area of the preceding. Figure 8.3b shows a
sequence of ad quadratum squares which are shaded to form a logarithmic
spiral known as a Baravelle spiral. It is easy to construct, and with color
makes an interesting design.

The upward-pointed triangle ABC in Figure 8.4 also has half the area of
the circumscribing square BCFE. If the downward-pointed triangle DEF is
constructed, then rectangle HIJK, formed by the vertical lines through the
intersection points of the upward-and-downwards pointed triangles and the
circle, has approximately the same area as the circle. It can be determined
(not shown here) that the width of this rectangle is % of the diameter of
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{c)

(a) (b)

Figure 8.3 (a) An ad-quadratum square, the area of the inside square is half the area of the outer
square; (b) geometric series of ad quad squares forming a Baravelle spiral (logarithmic) (c).

B J D K C

Figure 8.4 The Brunes star approximately squares the circle in area.

the circle. Taking the square to have length equal to 1 unit, i.e., the radius

of the circle equals %,
2

1854...,

——
]

1
Area of circle = n’(i

.80,

(G, RN
]

Area of rectangle

an error of 1.8%.
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In Figure 7.11 we showed that for an arbitrary rectangle of proportion
a:b the line from a vertex to the center of the opposite side AB cuts
the diagonal CD at the %— point. We now use this geometrical property to
describe the structure of the Brunes star.

Take the circumscribing square and subdivide it by placing perpendicular
axes within it, as shown in Figure 8.5. This divides the outer square into
four overlapping half-squares. Place two diagonals into each of the four half
squares and add the two diagonals of the outer square. Notice that the
resulting diagram (also shown in Figure 8.6) is the Brunes star.

A
)
1 K
D
Q H (o] L c
G
M
N
B
R P

Figure 8.5 The construction lines for the Brunes star.

Figure 8.6 The relationship between the Brunes star and the inscribed circle within a square
showing how the star divides the square into a nine-square grid.
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Therefore, this star contains all the information needed to square the
circle in both circumference and area. Also hidden within the Brunes
star are numerous 3, 4, 5-right triangles. For example triangle ABC is a 3,
4, 5-right triangle because,

1,40 1
tanz —QC—Z.

Therefore using the trigonometry identity,

taniC
tan C =2 (l—tanz—;—C) ’
it follows that,
AB_nc=—L -4
BC -5 3 (8.1)

If the Brunes star with all of its construction lines, depicted in
Figure 8.5, is placed on each face of a cube, it can be shown that the
vertices of all the six Archimedean solids and two Platonic solids (cube and
octahedron) related to the cubic system of symmetry as well as the
tetrahedron coincide with the points of intersection of the construction
lines [Kap5], [Lal4]. The Brunes star also succeeds in providing the
geometrical basis for dividing an arbitrary length into any number of equal
sublengths without the use of measure.

8.4 Equipartition of Lengths: A Study in Perspective

Figure 8.5 contains the construction lines and points with which to subdivide
lengths into 3 and 4 equal parts without the need of a standard measure,
i.e., points I and M divide diagonal AP into thirds (see Figure 7.11) while
H, O and L divide QC in quarters. The central cross and the diagonals are
therefore subdivided by the central irregular octagon GHIJKLMN into four
and three equal parts in a similar way. Points I, K, G, and M then provide
the points that subdivide the outer square into a 3 x 3 grid of subsquares,
as shown in Figure 8.6, similar to the Amish nine-square in Figure 6.5c.
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Figure 8.7a indicates that the Brunes star can divide a line segment into
2,3,4,5,6, 7, and 8 exactly equal parts using a procedure described in
Appendix 8.A. Notice that the square framing one-quarter of the Brunes
star has construction lines that can be completed to form a Brunes star at
a smaller scale. The same is true for each of the squares of the nine-square
grid. As a result of these and other self-similar properties of the Brunes star,
it can be shown that line segments can be equipartitioned into any multiple
of the integers from 2—7 without the use of standard measure, using only
a stretched rope. Other self-similar objects known as fractals will be discussed
in Chapter 18.

A sacred cut drawn from a vertex of the outer square in Figure 8.7b
defines the level that partitions a line into approximately seven equal parts
to within 2% error. In Figure 8.7c construction lines are shown to use the
inscribed circle to partition the line into seven parts, again to within 2%
error. In this construction, Brunes has shown the square subdivided into
28 approximately equal rectangles suggestive to Brunes of the 28 days of the
lunar month (the lunar month is actually between 28 and 29 days).

This equipartitioning property of the Brunes star has its roots in another
geometric construction [Kay] which was first related to me by Michael Porter,
a Professor of Architecture at Pratt Institute. In Figure 8.8a the outer square of
the Brunes star has been extended to a double square. The principal diagonals
of the double square divide the width of the upper square into two equal parts.
The principal diagonals intersect the two diagonals of the upper square at
the trisection points of the width. At the same time, the trisected width
intersects the long side of the double square at the % point. Continuing one
more step, two diagonals of the %-rectangle intersect the principal diagonal
at points which divide the width into four equal parts. This width also divides
the long side of the double square at the % point. This construction may
be continued to subdivide a line segment into any number of equal parts as
is shown in Figure 8.8b up to eight subdivisions.

As is often the case with mathematics, a diagram set up to demonstrate
one concept is shown to have a deeper structure. We could also view
Figures 8.8a and 8.8b as a pair of railroad tracks receding obliquely to the
horizon line. The diagonal and the right side of the double square play the
role of the railroad tracks as shown in Figure 8.8c. If the observer is at an
arbitrary location in the foreground (see the eye), then the distance between
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Figure 8.7 The Brunes star equipartitions a line segment into (a) 3, 4, 5, 6, 7, and 8 equal
parts; (b) approximate equipartition into 7 parts; (c) Brunes’s division of a square into
approximately 28 equal parts.
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Figure 8.8 (a) Equipartitioning property of the Brunes star seen as a perspective diagram. The

diagram shows the relationship between apparent width W and receding distance D from an
observer; (b) extension to eight subdivisions; (c) equipartition seen as a pair of railroad tracks

receding to the distance.
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Table 8.1 Relationship between apparent width
and distance from observer.

Apparent width (W) Receding distance (D)

1=14° 0=log; 1
%=—;—1 1=log;2
%=%? I=log,3
14! 2=log: 4
%=%3 3=log;8

the tracks appears half as great as at the base of the double square at some
measured distance in the direction of the horizon referred to as a standard
distance, or 1S. At a distance from the observer of 2S the distance between

the tracks appears to be % as large as the base width. In a similar manner,

the tracks appear to be % as wide at 3S (not shown). How many standard

units S make the tracks appear % as wide!? To answer this question requires
us to analyze the pattern in greater depth.

Table 8.1 shows the relation between apparent width between the railroad
tracks W and the receding distance D (in units of S) towards the horizon
where the width of the tracks at distance D = 0 is taken to be 1 unit. The
receding distance is also expressed in terms of logarithms to the base 2.
The relationship between logarithms and exponentials is described in
Appendix 3.A.

In other words, the relation between D and W in Table 8.1 can be
expressed by the formula:

1
W .
Setting W = % in this formula and making use of Equation (3.A1), it follows
that the value of ? is,

D (in units of S) = log;

login3
7= log3 = 10222 = 1.58S.
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If the left side of the double square in Figure 8.8a is considered to be a
monochord, then the bridge positions of %, ;1; , % ,.-. correspond to integral
numbers (1, 2, 3,...) of octaves above the fundamental when the bridge
position is at 1. The sequence, 1, %, %, %,..., is an harmonic sequence of
reciprocals (see Section 4.2). Any number from this series is the harmonic
mean of the ones preceding and following it (see Equation (4.1)).
Appendix 8.A shows how the Brunes star can be generalized to enable the
harmonic mean of any two lengths to be geometrically constructed. It is
generated by a projective transformation. This sequence is projectively
transformed in Appendix 8.B to a sequence of evenly distributed integers,
1,2, 3,..., by a step measure (see Section 2.5). The tones generated by either
the harmonic or integer series correspond to the series of overtones that are
heard when a violin string is plucked and a sequence of multiples of the
fundamental frequency is generated, as we described in Section 4.2. In fact,
if the line segments in Figure 8.7a are considered to be violin strings, the open
circles are the positions at which a violinist evokes an harmonic tone (up
to the eighth harmonic) by placing his finger lightly on the string at that
position and bowing midway between a pair of partition points (see Section
25.7). So we see, as did Leonardo Da Vinci, that a similar law governs both
eye and ear [Wit].

8.5 The 3, 4, 5-Triangle in Sacred Geometry and Architecture

8.5.1 Construction of the Brunes Star from 3, 4, 5-triangles

I have shown in Section 8.3 that triangle ABC in Figure 8.5 is a 3, 4,
5-right triangle. The 3, 4, 5-right triangle was called the Egyptian triangle
by Vitruvius, the architect of the Emperor Augustus, and was used in the
construction of the pyramid of Cheops (cf. [Ver], [Kap3]). Plutarch described
this triangle as the symbol of the Egyptian trinity, associated with the three
significant Egyptian deities [Ver]:

3 & Osiris,
4 & Isis,
5 <> Horus.
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(a)

(b)

4
(c)

Figure 8.9 (a) Representation of the 12 seasons of the Zodiac by a knotted rope; (b) the rope
is cut open to a straight line; (c) the line is bent into a 3, 4, 5-right triangle.

The key to understanding the geometry of the Brunes star lies in its
construction. But how did ancient architects construct this star diagram? This
diagram is easy to construct if one begins with a square, but it is not an easy
matter to construct a large square if one has only a length of rope and some
stakes to work with. However the entire diagram can equally well be
constructed beginning with the 3, 4, 5-right triangle. The 3, 4, 5-right
triangle can be constructed from a loop of rope with 12 knots, as shown in
Figure 8.9. The 12 sectors of the circle shown in Figure 8.9 can also represent
the 12 regions of the zodiac visited by the sun during the course of the year,
as viewed from a geocentric standpoint. If we regard the 12 sectors of the
circle as tones of the equal-tempered chromatic scale, we see in Figure 8.10a
that a subdivision of the tonal circle into 3, 4, and 5 semitones gives rise
to the tones A, C, E of the musical A minor triad [Ebe).
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Figure 8.10 (a) The 12 sectors of a tonal circle viewed as the tones of a minor triad;
(b) tonal circle related to the color spectrum.

I have created a videotape of a group of students constructing this star
on an open field using four lengths of 50-foot clotheslines anchored by
camping stakes [Kap5]. To construct the Brunes star, begin with four lengths
of rope each length divided into 12 equal sections by 12 knots as shown in
Figure 8.11a. Although the rope is shown stretched out in a straight line,
the ends are connected so that it forms a loop. Four such loops: ADBGCA
(see Figure 8.11a), FJDBEF, IBGJHI and LGJDKL are stretched into four
3, 4, 5-right triangles, each providing one vertex of the outer square of
Figure 8.11b.The right angles of these 3, 4, 5-triangles are located at the
vertices of the inner square DBG]J.

We have succeeded in constructing the outer square AILF along with the
midpoints of its sides HKEC. Now that the outer square has been formed,
we can stand back and observe the harmony of this figure. In order to better
appreciate its geometry, we must make a brief digression and consider the
geometry of the 3, 4, 5-right triangle.

8.5.2 The 3, 4, 5-triangle and its musical proportions
Let the 3, 4, 5-right triangle ABC in Figure 8.12 have lengths in the ratio:
Li:L;:L3=3:4:5. (8.2)
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Figure 8.11 (a) Subdivision of line segment ADBGCA to construct one of the four 3, 4,
5-right triangles that make up a Brunes star as shown in (b). Lengths of the line segments
are shown.

B
5
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cL—2® - k
[ 1= <2 |

Figure 8.12 The geometry of a 3, 4, 5-right triangle.
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It follows from trigonometry that the angle bisector of angle A cuts the
opposite side L; in a length, a = %, while the angle bisector of angle
B cuts its opposite side Ly in b = % . In other words,

A 1 B 1
tan—=-— andtan—=—. 8.3
2 2 2 3 (8.3)

These two fractions have special significance in terms of the Pythagorean
musical scale. In fact they represent the four tones:

1:1,1:2, 1:3, 2:3

the unison, octave, and fifth above an octave, and the musical fifth. These
ratios were displayed in proportions of the door constructed by the 16th
century Renaissance architect Serlio shown in Figure 7.14.

Making use of Equations (8.2) and (8.3), it follows that:

2a:3b:c=3:4:5. (8.4)
From Equation (8.4) it follows that:
a 9

b= 38 (8.5)

(the ratio of a whole tone in the Pythagorean scale [see Section 3.4]). Using
the Pythagorean theorem:

= (2a) + (3b)°.

g =az[4+9(§)2].

e[ 2
=3 o (8.6)

Let a =9 in which case it follows from Equations (8.5) and (8.6) that b =8,
¢ = 30. So from Equation (8.4), triangle ABC has proportions:

18:24:30.

With some algebra

Using Equation (8.5),
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So our ancient geometer has now subdivided his rope into 18 + 24 +
30 = 72 units. The number 72 has great significance in ancient geometry.
Its factors are arranged in Table 8.2:

Table 8.2 English measures based on
human scale and Plato’s World Soul.

2 8
3 6 24
]

Thus, Plato’s “world soul” (see Sections 4.5 and 8.2) has made another
appearance:

27 8

Section 7.2 demonstrates how the Pythagorean musical scale was derived
from this series. The boxed numbers in Table 8.2 also correspond to English
measures based on human scale, namely, the inch, hand (4 inches), foot
(12 inches), span (9 inches), yard (36 inches) and fathom (72 inches).
Without a standard ruler, our geometer could call upon human scale as a
kind of personal scale of measure.

8.5.3 The geometry of the Brunes star

From Equation (8.1) it follows that triangle ABC is a 3, 4, 5-right triangle.
All other right triangles in Figure 8.5 are either 3, 4, 5-right triangles or
fragments of a 3, 4, 5-triangle obtained by bisecting its acute angles.
(Compare this with the eight-pointed star of Figure 10.Alh which creates
numerous 45 degree right triangles within a circle.)

In Figure 8.11b the dimensions of all the sublengths are indicated. These
may be gotten from Figure 8.11a by assigning each segment of the string a
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length of six units. The properties of 3, 4, 5-triangles given by Equation (8.1)
can also be used to verify these lengths.

Figure 8.11b shows the star diagram to have 3, 4, 5-right triangles at
four different scales. Referring to vertex labels of Figure 8.5,

ABC: 18 : 24 : 30;
ADJ: 9:12:15;
QDG: 6: 8:10;
DHI: 3: 4:5.

So we see that the star diagram is entirely harmonized by the 3, 4, 5-right
triangle.

As we previously mentioned, Brunes used these principles of geometry to
show how many of the structures of antiquity might have been proportioned.
He subsumed the principles of this geometry into a series of 21 diagrams (not
shown) related to the star diagram and the sacred cut [Kap4]. He claims that
each step in the creation of a plan for one of the ancient structures follows
one or another of these diagrams. Although Brunes has obtained close fits
between key lines of the elevation and plan (not shown) of these structures,
his constructions require an initial reference circle the choice of which is
quite arbitrary. Despite the close fits between Brunes’s diagrams and actual
temples, one never knows the degree to which they have been forced by his
imagination. In my opinion, it is unlikely that this method was actually used
as described by Brunes. Nevertheless, the simplicity and harmony of Brunes'’s
diagrams make it plausible that they could have been used in some
unspecified manner as a tool for temple design.

8.6 What Pleases the Ear Should Please the Eye

We have seen that 3, 4, 5-triangles pervade the Brunes star. However, not
all 3, 4, 5-relationships refer to right triangles. We have seen in Section 3.7
that 3, 4, 5-relationships between string lengths play a major role in the
structure of the musical scale and make a surprise appearance in the structure
of the color spectrum of light (see Section 3.9) which could be thought of
as a kind of “musical scale” for the eye. The association between tones and
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number ratios led the architects of the Italian Renaissance to build a system
of architectural proportions based on the musical scale (see Chapter 7).

Eberhart [Ebe] has made the observation that the wavelengths of visible
light occur over a range between 380 mu (millimicrons; mu = 107 cm) in
the ultraviolet range to about twice that amount in the infrared, or a visual
“octave”. He states,

“When the colors of visible light are spread out in such a way
that equal differences in wavelength take equal amounts of
space, it stands out that blue and yellow occupy relatively narrow
bands while violet, green, and red are broad (see Figure 8.13).
Observe that the distance from the ultraviolet threshold to blue
to yellow to the infrared threshold is very closely 4:3:5 of that
spectral octave, i.e., 383.333... x 212 = 483 my (mid blue)
and 383.333... x 27 = 574.333... my (mid yellow). This
means that if we subjectively identify the two thresholds of
ultraviolet and infrared, as is commonly done in making color
wheels, calling both extremes simply purple, then the narrow

INFRA-RED

RED

YELLOW

GREEN

BLUE

VIOLET
Figure 8.13 The color spectrum illustrating the

frequency ratios between purple: yellow: blue
as 3:4:5. Courtesy of Stephen Eberhart.

ULTRA-VIOLET
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bands of blue and yellow have approximate centers lying at
points on the circle that divide the circle into segments in 3,
4, 5-ratios as for the A minor triad (see Figure 8.10b).”

Eberhart’s observation adds some additional substance to the Renaissance
credo that what pleases the ear also pleases the eye.

8.7 Conclusion

According to Plato, the nature of things and the structure of the universe
lay in the study of music, astronomy, geometry and numbers, the so-called
quadrivium. Built into sacred structures would be not only a coherent
geometrical order but also a sense of the cosmic order in terms of the cycles
of the sun and the moon and the harmonies of the musical scale. The Brunes
star with its ability to square the circle, its equipartitioning properties, its
relationship to 3, 4, 5-triangles, and its relationship to Archimedean and
Platonic solids makes it a plausible tool for the builders of significant ancient
structures.

In Chapter 10, I will show that the Brunes star is a natural tool for Ben
Nicholson’s reconstruction of one of the pavements of the Laurentian Library
in Florence. In Chapter 11, I will show that the geometric mode of thinking
inherent in the Brunes star was not merely the modus operandi of advanced
urban societies of the ancient world but, it may have served equally well for
the civilization of farmers that settled in Megalithic Britain. Their sacred
spaces may also have been expressions of the spirit of the quadrivium.

In Chapter 20, I will show that the Brunes star serves as a natural
setting for expression of the golden mean. In the next chapter I illustrate
a Brunes star whose edges are composed of hyperbolic arcs related to the
golden and silver means introduced in Chapter 7.

Appendix 8.A Harmonic Means

The sequence
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Figure 8.A1 Geometric construction of an harmonic series.

x __N N
0 1+x " N+D x=D 1
1 d+N_X+] 0
a "~ 1

Figure 8.A2 Koepp’s construction of the harmonic mean of two lengths.

corresponds to the undertone series introduced in Section 4.2. Each number
of this sequence is the harmonic mean of the two numbers that brace it,
e.g., -%— is the harmonic mean of -%— and ;1;. Figure 8.A1 shows how to
construct this series. It can be seen to be equivalent to Figures 8.7a and
8.8b. If this construction is applied to the Brunes star, the series at the top
edge locates the positions at which a line segment is equipartitioned into
2,3,4,5, 6,and 7 parts.

In Figure 8.A2, this construction is generalized so that if a rational
number x = % (N is the numerator and D is the denominator) is located
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X

Figure 8.A3

on a number line between 0 and 1 on the top edge of rectangle, it gives rise
to a pair of rationals ﬁ = ﬁ and 5 = (ﬁl}zﬁ . The second number
is found by rotating the rectangle 180 degrees and reading its value on the
number line on the bottom edge of the rectangle. For example x = % gives rise
to % and % . This construction will be shown in Section 9.4 and (14.3.10)
to be the key to generating the Farey sequence, important to the study of
dynamical systems and the structure of numbers.

Dale Koepp [Koe] has generalized this construction to enable the
geometric mean of any pair of numbers to be constructed. In Figure 8.A3 the
harmonic mean of the numbers X and Y is sought. The harmonic mean is
twice the length of the number Z. For example if X represents a length of
string % (a musical fifth) corresponding to the fundamental tone of a string
of length Y = 1, the length 2Z represents the harmonic mean of % and 1
or —45- (a musical third). In this way the harmonic mean can be constructed
geometrically. The proof is given by Koepp:

By similar triangles,

Z R Z S
—= and —= ,
Y (R+Y9) X (R+9S)
zZ Z R S
_+_=_+-————~—-:
Y X (R+S) (R+9S)
Therefore,

1 1 1

=,

Z XY
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But from Equation (4.1),

1 __1/1. 1
HXY 21X Y
where H(X,Y) denotes the harmonic mean of X and Y.
Therefore H(X,Y) = 2Z.

Appendix 8.B Projective Analysis of the Equipartition Properties
of the Brunes Star

In Figure 8.B1 a projective transformation is set up between lines [ and m
representing a pair of “railroad tracks” from the double square diagram of
Figure 8.8a. Lines [ and m have been placed in a cartesian coordinate system
in which the horizon line is located on the y-axis and the point of projection,
O, is at (0,%). Since one of the “railroad tracks”, line m, is the diagonal
of the double square, its slope is % and its equation is:

y= (8.B1)

x
5
Consider point X, and its projection, X on line I, the x-axis. Point X is
projected first through O to point (X},Y;) on m and then to (X;,0) through
O’ at infinity in a direction perpendicular to line l. The line of projection
through O has the equation:

1
Y-—=cX where thesl =l
5 cX where the slope, ¢ X -%) (8.B2)

But since (X},Y}) lies on m given by Equation (8.B1), Equation (8.B2) can be

rewritten,

Lo XX
RETASRE (8.B3)

Setting Y = 0 and X = Xj in Equation (8.B3) and doing some algebra yields,

_ X
T+ %o) (8.84)

Xy
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0 X1 Xo 1

Figure 8.B1 Step measure transformation describes the structure of Figure 9.9a.

For example, if Xo= 1 then Equation (8.B4) yields, X; = % Likewise % maps
to %, % to % , etc. Also notice that the point at infinity on line | maps to 1

in this transformation.
Taking points A, B, C,and D as 1, %, %, % respectively, the cross-ratio
can be computed as follows,

(Y

That point C is the harmonic mean of B and D follows from the equation
for the harmonic means given by Equation (4.1), i.e.,

{3

The only fixed point of this projective transformation is located at (0,0).
Therefore this transformation differs from the one in Appendix 4.A in which
there were two fixed points. In a sense described in Section 2.5, the two fixed
points of the transformation have coalesced into one resulting in what is
called a step measure. To get another picture of this transformation we can
do as we did in Appendix 4.A and map the fixed point to infinity. To do
this, Draw an arbitrary line I’ as in Figure 8.B2. A parallel line from (0,0)
maps O on line [ to infinity on line I'. The point at infinity on | maps to
0 on I'. This also establishes the point of perspectivity, O. Now it can be
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o

Figure 8.B2 Perspective transformation of an harmonic series to an integer series.

shown that the harmonic series of points o, 1, %, %, % ,-.. map to an evenly
distributed set of points on (left to the reader), call them 0, 1, 2, 3, 4,....
You can check that the cross-product of 1, 2, 3, 4 is, A = (%) / (%) = %, and
is therefore preserved as it should.

So we see that, in general, while a sequence of transformed points can
always be mapped to a geometric series when the projective transformation
has two fixed points, they map to an arithmetical series when there is a
single fixed point.
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The Hyperbolic Brunes Star

Numbers are the sources of form and energy in the world.
They are dynamic and active even among themselves...
almost human in their capacity for mutual influence.

Theon of Symyrna
9.1 Introduction

The Brunes star can be transformed by replacing each line within it by a
segment of an hyperbola [Adam]. The mathematical functions that make
up the hyperbolic segments of the new star are involved in countless problems
in all of the sciences and we shall see them again in Chapters 14 and 22.
“The little end of the stick problem” (LES) is one such illustration [Mos]. In
this problem a stick is broken into two pieces at random. What is the average
ratio of the smaller to the larger piece and what are their average lengths?
Numbers that arise from the little end of the stick problem also make their
appearance in problems of exponential growth and decay. In problems such
as these, the probability that an event takes place either increases or decreases
exponentially with the number of trials. Two examples are:

(1) the probability of tossing n heads in a row, and
(2) the probability that a radioactive atom will decay in a given time
period.

LES also has a connection to Shannon’s entropy function which comes
up in many areas of mathematics and science.

195
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9.2 A Generalized Brunes Star

The Brunes star can be generalized by replacing the eight line segments
that make up the diagonals of its four half-squares by segments of an
hyperbola juxtaposed in eight different orientations within a unit square, as

shown in Figure 9.1.

Four of these hyperbolas intersect as shown in Figure 9.2 at three
characteristic points p, ¢, 7 with coordinates:

p=1(0.414...
q=(0.707...
r=(0.618...

1
9’

], where, 8 =1 +ﬁ;

}
1+45

), where, T = .

Sl

|-

1
ﬁ,

1

Q=

1
T 2

Therefore, the key numbers of the Roman system of proportions J2 and @
(see Section 7.4), and the golden mean 7 (see Section 7.3) are represented
in a single diagram. The hyperbolic Brunes star is shown in Figure 9.3. The

0 X 1 1 X 1-x
1+x 1+x 1-x X
I-x 1 I-2x 2x-1
2-x 2 1-x X

Figure 9.1 The eight hyperbolic segments that make up the “generalized” Brunes star inscribed

within a unit square.
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p=Q1/V2, 1)
P q=(1h, 1/)
r=(1/9, 1/v/2)

0 1

Figure 9.2 Two pair of these hyperbolas intersect at points related to the irrational numbers

7, 8, and ﬁ

Figure 9.3 The generalized Brunes star.

points of intersection lie on the edges of the three inner squares. The
edge length of the innermost square is 7~ 3 the middle square is %, and
the outer square is 6" = V2 - 1. The outer square is the central square in
the subdivision of a unit square into S, SR and RR in Figure 7.4.
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9.3 Zeno’s Hyperbolic Paradox

Consider, in Figure 9.4, an exploded view of the space between two segments
of a hyperbolic Brunes star, and compute the sum of the vertical and
horizontal line segments that make up the zig-zag path between this pair
of curves.

This leads to a modern version of one of three famous paradoxes expressed
by the Greek philosopher Zeno who lived at Elea around 450 B.C.E. In this
paradox, a tortoise traverses the distance between two points one mile apart.
First the tortoise moves half the distance between the points. Then he moves
half the remaining distance to the endpoint. He continues in this fashion
always moving half the remaining distance from a new point to the endpoint.
Since there are an infinite number of positions that he must pass before
reaching the endpoint, it was a puzzle how the tortoise would ever reach its
objective. At the end of the journey, the tortoise will have traveled distances
given by the following infinite series,

1—-l+l+l+i+...

27478 16 " (9.1a)
13715 i
21418)1 yooo (9.1 )

We no longer have difficulty summing such a series and resolving the
paradox. If we cut the series off at any point, the truncated finite series sums
to a number approximating 1. As we go farther out in the series these partial
sums are better and better approximations to 1, as shown by Sequence (9.1b),
approaching 1 in what mathematicians refer to as a limiting sense.
Returning to Figure 9.4 the tortoise moves from the lower left hand
corner to the upper right hand corner of the square moving along the
zig-zag path between the pair of curves of the hyperbolic Brunes star [Adam)].
It is clear that the total distance traveled by the tortoise will be two units.
Using the two equations for the curves:

1 and y=2x—1
2—x x

y:

’
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1
2!
l ]5!
Y=12: AR
bog
Y 05
%E Y= 2!
t X
. .
2
0 05 1

Figure 9.4 TA zig-zag path illustrating Zeno’s hyperbolic paradox.

we find that the horizontal distances sum to 1 as,

1 1 1 1
ot —t—+

=1 1
274 12 24 40

teeey (923)

Ty T g - (9.2b)

while the vertical distances sum to 1 as,

_2,2,2,2. 2, . (9.3a)
315 35 63 99 e

5)?1?)_9'111»"" (9.3b)
Notice the elegant pattern that the partial sums in sequences (9.2b) and

(9.3b) form as they approach their limiting value of 1. These are the distances
that the tortoise traverses in the hyperbolic Zeno’s paradox.
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9.4 Hyperbolic Functions and Number

The equations for the segments of the hyperbolic Brunes star are also
generators of an important sequence of fractions known as Farey sequence
that will be the focus of Chapter 14. For this reason I shall introduce this
generation process here.

From any fraction % with numerator N and denominator D, two

successor fractions can be generated whose ratio equals the original,

N

N+D' (9.42)
D

NiD' (9.4b)

This transformation is carried out graphically in Figure 8.A2. For example,
2 52 3 2-(2V/(3
s =% and 2 where 5—(7)/(7).

To recover the parent fraction from one of the successors, let the successor
equal %, in which case its parent is,

_.N_ if
D-N
D-N

N

y OrF (9.53)

(9.5b)

Now let % = x in Equations (9.4a) and (9.4b) to get,

N N N x
N+D=(6)/ Ea 06

D N 1
=1/{—=+1|=—.
N+D /(D ) 1+x (9.6b)

In a similar way, Equations (9.5a) and (9.5b) result in

X for XS%, and (9.6¢)

- X
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1-x for x2 l (9.6d)
X 2

The graphs of Equations (9.6) are shown in Figure 9.1. It can be shown that

each of them is a rotation or reflection of a segment of the hyperbola y =

% . Also, the pairs given by Equations (9.6a) and (9.6b), and Equations (9.6¢)

and (9.6d) are reflections of each other, and they are segments of the

hyperbolic Brunes star (see Figure 9.6).

9.5 Hyperbolic Functions in the Theory of Probability

The hyperbolic functions of Equations (9.6) arise in many mathematical
and scientific contexts particularly those related to the theory of probability.
For example, if p and q are considered to be the probability of guessing correctly
or incorrectly on the roll of a dice or the probability of winning or losing upon
the selection of a horse in a race, then the odds of winning or losing is defined
to be,

odds of winning = p:g = ~, or 1_, sinceq=1-p;

q - p
p 1-p

odds of losing = q:p = % p
Therefore, interpreting x as p in Equations (9.6), the parent value can
be interpreted as the odds of winning or losing when the probabilities
of winning and losing equal the successor values. For example, if a horse
has a % chance to win a race and a % chance to lose, then from Equation
(9.6c) the odds of winning are 1:2 and the odds of losing are 2:1 (the
odds of a horse race are generally expressed in terms of losing odds). The
payoff in a horse race is figured by multiplying the inverse of the probability
of losing by the amount of the bet. So a $2 bet results in 2 x 2 = $3
winnings.

I shall discuss two additional examples of how Equations (9.6) arise in
probability problems.
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9.6 Gambler’s Ruin

A gambler starts with $1 and plays against the casino. He has the probability
p of winning and 1 — p of losing. Visualizing his fortune on a number line,

I | 1
i 1

0 l-p«~ 1 —>p 2

If his fortunes ever reach 0, he has lost all of his money and is “ruined” and
the game ends. It certainly makes no sense for him to play if his probability of
winning is less than % Eventually, he is sure to be ruined. It turns out that
ifp= % then the probability that he begins with $1 and is eventually ruined

is p = -tpﬂ [Mos). Figure 9.5 shows the dependency of p; on p. Note that
when p = % then p; = 1 and he is sure to be ruined. As p increases above
% the chance of ruin decreases.

When the chance of winning p equals the chance of beginning with $1
and being ruined py,

p=p or p=—-. (9.7

The solution of Equation (9.7) is p = % where 7= 1_+2;/—_5_ , the golden mean
(see Figure 9.5). This is the value of p where the line intersects the curve.
If the gambler begins with m dollars, then [Mos] shows that the probability

Figure 9.5 A graph of probability of ruin p; vs probability of winning p.
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L - .
of eventual ruin is p,, = (Tp)m . Furthermore, it can be shown [Schr] that
if p 2 %, in order to maximize his winnings, the gambler must use Kelly’s
optimum betting strategy and bet the fraction 2p — 1 of his capital.

9.7 Little End of the Stick Problem

If a stick is broken into two pieces at random, what is the average length
of the small piece S,,,, the large piece L, and the ratio of small to large
(D)o
Consider the stick to have unit length. Certainly the longer length L
can have any value between % and 1 with equal probability, so that the
stick is divided into two parts,
€ x ¢ 1-x >

|
0

o= —
—_

whereL=xandS:1—xwhere%SxSI.

In the theory of probability, the average of some quantity f(x) that
depends on a continuous variable x whose probability of occurrence is given
by the probability density function p(x), is referred to as its expected value E[f(x)].
The variable x is called a random variable. If we wish to find the expected
value of f(x) where a < x < b, for those who understand calculus, it can be
determined by evaluating the following integral,

Elf(x)] = J:f(x)p(x)dx where ['p()dx=1.

When all values of the random variable x are equally likely,

p=1=—, and EIf]= 1 [ flaldx (9.8)

which is equal to the area under the curve y = f(x) divided by b — a.

Applying this to the little end of the stick problem,

1, 3
—= fixdx=1, (9.9a)

L,y = Elx]=
e == g =g
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1
Saug =1- Lavg = 74' y (99b)
Sevg : Lavg =1:3, and (9.9¢)

S 1 1 1-x
(leg=l_/i-“1/2 N dx=ln4—l=0.38629... (9‘9d)

where In stands for natural logarithm or log,.

Using knowledge of calculus to compute area A beneath the two
hyperbolic segments of the Brunes star given by Equations (9.6c) and (9.6d)
(see Figure 9.1), we find that area A is determined by Equation (9.9d), i.e.,
area A = 0.38629....

The evaluation of an average in mathematics is a tricky business. If we
use Equations (9.6a) to determine the lengths of S and L whose sum is 1
and whose ratio is (%)avg= 0.386..., then we find,

1
—— 1 _om.
X 14038629 (9-10a)
0.38629
= 03862 ougs
*=140.38629 (9.10b)

Therefore the unit stick with average value, with respect to x, of (%) g =
0.386..., has segments of length 0.278... and 0.721.... You will notice that
these are slightly different from the values obtained in Equations (9.9b) and
(9.9¢), reflecting the fact that, (%)a,,g # Save/Lavg

Malcomb Lichtenstein [Lic] carried out a computer experiment to
simulate the little end of the stick problem. He randomly selected 1000 values
of x between 0 and 1 and computed the ratios of + = 2y or “;x")— obtaining
an average value of 0.386.... He also found that the average values of
Sand L were 0.25... and 0.75... in agreement with results of Equations (9.9a)
and (9.9b).

Lichtenstein also simulated the breaking of a stick of unit length into
three segments and obtained the results:

1 1 2
L:—, L:——, d L=—.
1T Ty Y TS
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This can be verified analytically as follows. First compute the average
value of the largest segment L. Letting L3 = x. Clearly % < x £ 1. Using
Equation (9.8),

Ly=Elxl=—— [ xdc=
The remaining -;- of the stick is then broken into the other two segments
L, and L, in the ratio L;:L, = 1:3 as before (see Equation (9.9¢)), i.e.,

1

L1+L2= and L11L2=1:3.

w |

Solving these equations we find that,

L]=i and Lz =l.
12 4

Together with L; = % this is in agreement with Lichtenstein’s results. We also
see that,

Ly:L;:L3=1:3:8. (9.11)

Continuing in a similar fashion the result of Equation (9.11) can be used to
find the segment ratios for the subdivision of the stick into four parts, etc.
[ have determined the result of breaking sticks into n-segments, and | have
found that the ratio of segments exhibits a simple pattern. This pattern can
be generated beginning with the numbers 0 and 1 as follows:

01

013=3x1-0

0138=3x3-(0+1)
013820=3x8-(0+1+3)
01382048=3%x20-(0+1+3+38)
01382048112=3x48—-(0+1+3+ 8+ 20) etc.

n=

AN bW

Some of the numbers generated by the little end of the stick problem will
be shown to have significance in the theory of numbers (see (14.4.11)).
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9.8 Shannon’s Entropy Function and Optimal Betting Strategy

There is a connection between the LES problem and Shannon's entropy
function important in information theory [Adam]. Imagine trying to get
information from someone by asking him to choose from a list of four equally
probable possibilities. The correct answer carries more information H than if
he chose an answer from only two possibilities. In the first case the probability
. .1 . 1 )
of his choice is p= 3 and in the second case p = 7 . In terms of p, Shannon’s
entropy function H is expressed as,

H =—(p log; p+(1- p)loga(1 - p)). (9.12)

The lower the entropy, the greater the information content. If p = % then
H =1, a maximum value.

The entropy function is pictured in a unit square in Figure 9.7. The areas

under (B) and outside (C), the entropy curve, equal the average values of
the small and large portions of the broken stick, i.e.,

Area B = 0.72134..., and
Area C = 0.27865..., while

AreaC
AreaB

= 0.38629...

which has the same value as Area A in Figure 9.6.

0 1

Figure 9.6 Area A under Equations (9.6c) and (9.6d) gives the ratio 0.386... of the small to
large portions of the “little end of the stick problem”.
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C C
A=0.3862...
B=0.7213...
B C=10.2786...
0 1
E =
c-A

Figure 9.7 Areas under and over Shannon’s information formula relates to the “little end of
the stick” problem.

Schroeder shows that when the optimum betting strategy, 2p — 1, is used
the gambler in the previous example of gambler’s ruin will see his fortunes
grow at the rate r of,

r=21-HOP) _1 (9.13)

dollars per turn at the gambling table if his winning probability is greater
than p = % In this equation C(p) = 1 — H(p) where C(p) is referred to in
information theory as the channel capacity. Notice that if p = % then H=1,
and this formula indicates no growth, whereas if p = 0.6 (an exceptionally
good probability at a gaming table), using Equation (9.12), H = 0.971 and
the rate of growth is 2170971 _ 1 = 0.0288 dollars per toss. At this rate the
compound interest formula predicts that the number of tosses n (time periods)
that it would take to double his fortune is given by n = ln% or about
34 tosses.

By a more direct route the growth rate of the optimal betting strategy
2p—1is

1=2Q0-1 where Q=pP(1-p)r*. (9.14)

Figure 9.8 relates the probability p along the x-axis to growth rate r along
the y-axis. For a probability of winning greater than 0.5 we refer to the right
half of the graph which has bilateral symmetry (right half is the mirror image
of the left half). However, the left half with p < 0.5 refers to negative growth
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08

In2
0.6

Growth Rate

© o4

0.2

0 02 04 06 08 1
Probability (P)

Figure 9.8 Rate of growth of “winnings” r plotted against probability of winning p.

rates. Notice that when p = 0.96043... the growth rate is In2. At this rate
the gambler’s fortune doubles on each “toss”.

What if we attempted to use Shannon’s formula to arrive at an estimate of
the rate at which an evolutionary process in nature increases its payoff which
could be a measure of the adaptability of the organism to its surrounding
environment over some number of unknown time periods or tosses? A rough
measure of the average rate at which an entirely random process grows is 2
raised to a power equal to Area C (the expected value of the channel capacity)
in Figure 9.7 or 2047885 _ 1 = 0.213 increase in adaptability per toss. The
doubling time for this rate is 3.25 tosses or time periods. So we see that
evolutionary processes may be, intrinsically, quite adaptable at least compared
to the rate of winning at a gaming table.

9.9 The Generalized Little End of the Stick Problem

The little end of the stick problem makes a surprise appearance in a class
of problems in which the probability y that an event takes place either
increases or decreases exponentially with the number of trials x. In other
words, y = k™ or y =1 — k" where k > 1, which predicts the probability of
tossing x heads in a row, the probability that a radioactive atom will decay
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0 llog2 2log2 3log2 4log?2

B

llog,2 2log2

Figure 9.9 Probability that an event occurs y plotted against the number of trials x. The
probability decreases exponentially.

in a given time period, the discharging of a capacitor, the cooling of a warm
object and many other applications.

Figure 9.9 shows that when x increases from nlogi2 to (n + 1)log,2 the
value y is reduced by % Within each increment of this diagram there is a
generalized increment rectangle (see insert). The total area beneath the
curve is h+k , while the area beneath the curve in each increment rectangle
is m . (Note that logi2 = }3—% by Equation (3.A1).) The ratio of the area
beneath the curve y = k™ (white area) to the area of the increment rectangle
is 0.72134... while the area above the curve (black area) is 0.27865... (note
that both numbers are independent of k), the lengths of the little end
of the stick problem (see Equations (9.10a) and (9.10b)). Therefore, the
increment rectangle acts as a kind of two dimensional stick. Although
the value of y decreases by a factor of % over the increment rectangle, its
average decrease is 0.72134....

Special Case 1. k = e. The curve corresponds to radioactive decay with a
unit decay constant, and the x values: In2, 2In2, 3In2,... represent the
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successive half-lives of the decaying material. The half-life of a radioactive
substance is the time that it takes for half of the atoms to decay. The area
under the entire curve is 1 while the areas under the curve within each

increment rectangle are given by the geometric series: %, %, %, Tlg -

Special Case 2. k = 2. Increment #1 is a unit square and the area under the
curve in the first increment is the random probability constant 0.7213....
The other areas decrease according to the formula %nlnz. This time the
generalized half-life is x = 1 and successive half-lives increase according to 1,

2,3 4,....

Special Case 3. Let k be less than 1. Using an example from gambling, the
probability of throwing a 12 with two dice is p = 36 , while the probability
of not throwmg a 12 is 1- p = 22 . The probability of not getting 12 on two
throws is (33 while the probablllty of not getting a 12 on x throws is (35)

We seek the number of tosses x needed to give us even odds (probability

of % of getting at least one 12).

Solution. Take the inverse of the probability of losing ( 36) and turn it into

a function y = k™ where k is the inverse of losing, i.e., k = 36 . The value

1 In2 _ 0.693.. _
of x at which y = 3 is log, 2= :: oo = 24.6..

. therefore it will take
25 tosses to get a probabrhty of 1 5 of getting at least one 12. In other words,
you get at least one twelve at most 50% of the time when you toss two dice
24 times.

The problem of getting a 12 on the throw of two dice can be generalized.
Certain gambling problems ask for the number of trials necessary to insure one
success given any probability of a success or failure. The number of trials n
is given by,

_ InF

LN (9.15a)

where N is the probability of non-occurrence of the event, and F is

the chance of failure to obtain a success during n trials. If k = ﬁ then
Equation (9.15a) can be rewritten,

1
=l ey} .
n =logy E (9.15b)
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the equation for the decay problem in which a fraction F of the original
material remains after one emptying period. For example, if F = %, we get
n = logZ, the half-life. In other words for the dice problem, N = ;—2 and
F= % resulting in n = 24.6 or 25 trials. Likewise, to determine the number of
tosses to guarantee a 12 on a pair of dice 90% of the time, let F=1~0.9=

0.1 in which case, using Equation (9.15),

1
= l_r%_ =81.7 or 82trials.
ln%
As another example, let’s say you want to find someone whose birthday
matches yours. How many people are you required to ask to get a 50:50
chance of making a match?

Answer. Each time you ask someone his or her birthday the chance that their
birthday is the same as yours (a success) is %, and the chance that their

birthday is not the same as yours (failure) is N = 2. Since the chance
¥ y 365

of failing to get a match in n trials is 0.5, F = % Therefore, using
Equation (9.15), you must ask 252.65 or 253 people.

Compare this with the result of the more standard birthday problem in
which one asks how many people, selected at random, are required in order
to insure that there is an even chance (50% probability) that at least two of
them have birthdays on the same day. The theory of probability shows that
only 23 people are required.

9.10 Conclusion

There is a relationship between the Brunes star generalized to hyperbolic
functions and a problem in probability theory known as the “little end of
the stick” problem. The hyperbolic relationships arise naturally in the theory
of odds making and betting. The solution to the little end of the stick
problem also yields a constant that corresponds to the average value of an
exponentially decaying material during its half-life. We shall again meet up
with' the little end of the stick problem in Chapter 14 in the context of
number theory.



212 Beyond Measure

These wide ranging applications of mathematics leading from geometry
and pure number have drawn people through all ages and civilizations to a
study of this subject. During the Renaissance artists and architects such as
Durer, Brunelleschi, Alberti, and Leonardo da Vinci with their studies of
perspective and the theory of proportions had a profound influence on
mathematics. In the next chapter I will explore the underlying geometry of
a set of pavements which may have been designed by Michelangelo.
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The Hidden Pavements of the Laurentian Library

I would have nothing on the walls or floor of the temple that did not
have some quality of Philosophy... I strongly approve of patterning the
pavement with musical and geometric lines and shapes so that the
mind may receive stimuli from every side.

Alberti

10.1 Introduction

In the preceding chapters, | have conjectured that the architects of antiquity
used such tools of the trade as:

(1) the sacred cut (Section 6.2);

(2) the Brumes star (Chapter 8);

(3) the square-within-a-square or ad-quadratum square (Section 8.3);
(4) circle grids (Appendix 6.A);

(5) the Roman system of proportions (Section 7.3);

(6) the law of repetition of ratios (Section 7.4); and

(7) the golden mean (Section 7.3).

Unfortunately, there is scant evidence that the component parts of this
body of knowledge were ever considered as a whole; few architectural
drawings or mason’s manuals from ancient times have survived. Several
scholarly investigations have been made of ancient Roman ruins that support
the existence of a geometer’s “tool kit” (cf. [Wat-W1], [WatC]). However,
even in these studies there is a great deal of speculation. Therefore, it was
with great interest that I received a telephone call from Ben Nicholson, a
professor of architecture. He had become privy to a set of facsimiles of 15
pavement designs — possibly created by Michelangelo — that lay hidden

213
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beneath the floorboards of the Laurentian Library in Florence. He was
trying to decipher their geometries in order to reconstruct them at full
scale. One thing led to another and I found myself part of Nicholson’s team
of researchers devoted to the study of the pavements. The results of this
work have given additional evidence for the use of the ancient geometer’s
“tool kit”.

10.2 The Laurentian Library

The Laurentian Library, which was designed by Michelangelo, is situated on
the second floor of the San Lorenzo church complex in the heart of Florence.
Work on the library was begun in 1523 by Pope Clement VII, alias Givlio
Medici, the nephew of Lorenzo di Medici, as a monument to his uncle; it
was opened to the public 48 years later by Grand Duke Cosimo 1. The library
was meant to be a home for the books from antiquity that survived to the
Renaissance.

In 1774, a portentous accident occurred in the Reading Room of the
Laurentian Library [Nic], [NKH1]. The shelf of desk 74, overladen with
books, gave way and broke. In the course of its repair, workmen found a red
and white terra-cotta pavement which had lain hidden for nearly 200 years
beneath the floorboards. The librarian had trapdoors, still operable today,
built into the floor so that future generations could view these unusual
pavements. In 1928 the pavements were photographed for the first time when
the desks were removed temporarily while structural repairs were made to
the subflooring. Figure 10.1 shows a photograph of the Library both with
and without the desks and floorboards.

Overall, the pavement consists of two side aisles and a figurative center
aisle. Desks situated on a raised wooden dais have been placed over the
pavements. On the side of each desk are listed the books that were to be
stored in it. Beneath the desks are a series of 15 panels, of different designs,
each about 8’6” x 8’6”. The 15 panels along one aisle mirror the ones on
the other aisle, but differ in subtle ways. When juxtaposed, the fifteen pairs
of panels appear to tell a story about the essentials of geometry and number.

The design of each panel reflects a specific geometric structure: for
example, the tetractys (Panel 5; see Section 3.5), Brunes’s star (Panel 13;
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(a)

(b)

Figure 10.1 The Laurentian Reading Room -— with and without desks. Details of the floor of
the Hall of Michelangelo. With permission of the Ministry/Department (further reproduction
by any means is prohibited).
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see Chapter 8), root-two and the sacred cut (Panels 7 and 11), Plato’s
lambda (Panel 14; see Sections 3.5 and 7.2), or the golden mean (Panel 13;
see Section 7.2 and Chapter 20). When assembled together they
encompass the essential principles known to early geometers.

Although hidden from view today, Nicholson believes that the panels
were arranged according to a plan for a furniture layout that would have
exposed the panels, but this plan was changed after the panels had been made.
Thus, while walking through the Reading Room of the Laurentian Library, a
person would have been surrounded by the foundations of ancient geometry, a
perfect compliment for the 3000 classical texts chosen to reveal the body of
ancient and modern learning of that day. In fact, it is Nicholson’s belief
that the pavements may have formed a pictorial catalog for the books
adjacent to the panels, the geometry of the panels corresponding to the
categories by which the books were to be arranged. Details of a system
correlating pavements to books can be found in Thinking the Unthinkable
House [Nic].

10.3 Reconstruction of the Pavements

Ben Nicholson has worked with students for 13 years to reconstruct the
system which the team of geometers and theologians, perhaps including
Michelangelo, might have used to create the original designs. He has recently
collaborated with artist Blake Summers and architecture graduate student
Saori Hisano to replicate all 15 panels at full scale, working with straightedge
and compass. In the process, they have discovered tenets of geometry which
may have formed the basis of an organized system or taxonomy. An early
version of Nicholson’s taxonomy has been described elsewhere [NKH1].
At first glance, the panels all appear to be square. However, curious
irregularities guide the dimensions of each panel. Each panel is set into
a rectangular frame that measures approximately 4 braccia (233 cm)
by 4% braccia (248 cm), but the size of each panel is slightly different.
Nicholson proposes that the geometric grids and associations to number
found in the pavements respond to the essential theological and scholastic
questions posed in the 16-th century. For example, Plato’s Lambda orders
panel 14, shown in Figure 10.2. The panel aligns well in its general
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Figure 10.2 Panel 14, the Timaeus panel.

appearance with descriptions in the Timaeus which set the Lambda within
four interconnecting circles [Kap8]. Nicholson’s proposition that each pair
of panels differs very slightly from East to West now becomes relevant to
the discussion. For example, there is evidence to suggest that Panel 14 East
is laid out on a grid of 81 parts, and that Panel 14 West is laid out on a grid
of 80 parts. As discussed in Section 3.5, 80:81 is a measure of the comma’s
difference between the Pythagorean and Just musical scales. Could this have
been intentional? In the remainder of this chapter, I will present details of
three panel reconstructions.

10.4 The Sacred-Cut Panel

Nicholson refers to Panel 11, shown in Figure 10.3, as the “Sacred Cut
Panel” because it is constructed from the sacred cut at four different scales.
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Figure 10.3 Panel 11, the Sacred Cut panel. With permission of Biblioteca Medicea Laurenziam.

Appendix 10.A describes a series of elements from the Nicholson taxonomy
showing how the sacred cut and its relationships follow naturally from the
square circle grid (see Appendix 6A). As with any mannerist design, there
is always more than one way to view it, and when viewed along its diagonal,
a cartesian grid structure reveals itself.

The panel can be seen to be made up of three classes of white strips: the
eight strips radiating from the center square are referred to as white bands,
the strips surrounding each of the squares are referred to as white strips,
while the wider strips connecting one square to the next are referred to as
white band connectors. What follows is an analysis of Panel 11.

10.4.1 In Figure 7.4 I showed how, using the sacred cut, a square could be
subdivided into four corner squares, a central square, and SR and RR
rectangles. I will refer to this subdivision as a sacred cut subdivision of a
square or SCSS. Figure 10.4 shows this subdivision along with its dimensions:
they assume that the corner squares have unit length. From Figure 10.4 we
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8 2

Figure 10.4 Sacred cut subdivision of a square showing dimensions assuming that the corner
square has unit length.

s€e that:

(a) The ratio of the sides of the outer square to the corner square is
0 \5 :1;

(b) The ratio of the overall square to the central square is 6:1 where
6=1++2; and

(c) The sacred cut divides the side of the overall square in the ratio 6:1.
These relationships can also be deduced from Table 7.2. If integer
approximations are desired, corresponding values from Table 7.2 can be
used.

10.4.2 The process of subdivision can also be carried out in the reverse
direction. Begin with the central square and reconstruct the outer square from
which it was derived. To do this draw four circles about the four vertices
of the central square with radii equal to the distance from the vertex to the
center of the square. The outer square inscribes these four circles as shown
in Figure 10.5.
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Figure 10.5 Reconstructing the outer square
of the sacred cut subdivision given the central

-
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square.

Figure 10.6 Schematic subdivision of panel 11
into a series of three sacred cut subdivisions of a
square.

10.4.3 In Figure 10.6 this method is used to explode the central square
outwards to three successively larger scales. This series of sacred cut
subdivisions of a square (SCSS) can be observed on Panel 11 (see
Figure 10.3). If the central black square has a length of 1 unit, then the
sequence of squares have lengths that increase in the series 1, 6, &, & as
can be determined from Step 1b, Figure 10.Ale of Appendix 10.A, or by
using the Roman system of proportions described in Section 7.3. Using
Sequence (7.8) we can also represent all lengths approximately in terms of
integers.

10.4.4 Nicholson’s team of empirical geometers note that if a square is
rotated about its center through 45 degrees, the pair of squares recreates the
SCSS as shown in Figure 10.7 and Appendix 10.A1b. Also a square-within-
a-square creates a 4 X 4 grid of congruent squares as shown in Figure 10.8.
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Figure 10.7 Rotating a square by 45 degrees
creates a sacred cut subdivision of a square.

Sacred cut squares are drawn in the corner
squares to show how white band connectors are
created.

R
RO

' Figure 10.8 A square-within-a-square creates

a 4 x 4 grid of congruent squares.

10.4.5 A sacred cut is drawn in one of the corner squares of the outer
square of Figure 10.7. Since the outer square is the third in the sequence of
SCSS, it measures 6. Therefore, by step 1a, the corner square measure GTZZ
and the band connector is determined from step 1b to be %.

10.4.6 In Figure 10.9 the first technique of Step 5 is applied to a pair of
squares superimposed on panel 11. Within the first square the sacred cut
geometry is evident. The second square, inclined at 45 degrees to the first,
is subdivided into a 5 x 5 grid of squares. The central white square of the
panel is inscribed as a square-within-a-square within the central square of
the 5 X 5 grid. This provides the grid with a natural refinement into 4 x 4
subgrids. In this way the positions of the white strips are determined. The

design becomes an elaborate interplay between sacred cut squares and
congruent squares.
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Figure 10.9 Panel 11 superimposed on a pair of rotated squares. Viewed in one direction the
panel is organized by the sacred cut subdivision. Viewed at 45 degrees the panel isa 5 x 5 grid
of congruent squares.

width of white stripe

P

Figure 10.10 Subdivision of the central square to create the widths of the white bands and
white stripes.
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10.4.7 The width of the white strips are found by considering the central

black square of width 1 unit to be the central square of a SCSS with the

outer square measuring @ units. By step la, the white strips then have a

width equal to the sides of the corner squares measuring ﬁ To find the

white bands we must descend one more step into the black square to create
1

another SCSS in which the center square has of width 3z shown in
Figure 10.10. The width of the white band is the width of the corner square
of this SCSS measuring 5-1*7 by step 1a. This white band can be constructed
from a sacred cut of the central black square by the compass and straightedge
construction shown in Figure 10.10.

It is worth noting that Nicholson has also drawn this panel without the
use of geometry upon a series of four overlapping grids of 4, 5, 6, and 7 parts.
Nicholson believes that the error of this construction was small enough to

be buried in the grout of the interlocking terracotta pieces.

10.5 The Medici Panel

Panel 2, shown in Figure 10.11, is called the “Medici panel”. It seems to be
wholly symmetrical and it has the same appearance as the antique rosettes

Figure 10.11 Panel 2, the Medici panel.
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of which there are many examples in Renaissance design. At the center of
the rosette lies the Emblemata of Cosimo | from the house of the Medici,
advertising the 3-fold symmetry of the pattern. However, at second glance
the panel exhibits the mannerist tell-tale irregularities that are common to
all the Laurentian pavement designs. First, the panel is not square; it is a
rectangle whose sides are in the ratio of 12:13 (the Laurentian Library kindly
permitted Nicholson to make rubbings of this panel from which it has been
possible to assemble a set of accurate measurements); second, curving white
bands radiate from the center, never present in the antique form; and finally,
ovals are set into the residual spaces between these bands. The following steps
show that Panel 2 is created by superimposing 96 circles on a 12:13 rectangle
that is composed upon a 13 x 13 square:

Step 1. The ratio of 12:13 is the ratio between the radius of an octagon
and the radius of the circle circumscribed about the octagon, to 0.1%
accuracy. This is also the ratio of a pair of sides of a 5:12:13 right triangle
as shown in Figure 10.12a.

Step 2. Draw a second 12:12 square within the 13:13 square (see
Figure 10.12b) and place the x and y axes at the center of the squares.

Step 3. Draw an equilateral triangle with side equal to the base of the 12:12
square. The distance from the apex P of this triangle to the center of the
square determines the radius of a circle. This circle is called the pitch circle
(see Figure 10.12b). The radius of the pitch circle differs from % the diameter
of the 12:13 rectangle by less than 1%. Either value can be used for this
construction. However we use the first because of its elegance. This
construction was also described by Paul Marchant {Mar], a member of Keith
Critchlow’s London based group studying traditional geometry.

Step 4. Place x and y axes at the center of the rectangle and draw a rosette
pattern with 24 circles by the following procedure:

(a) Draw six circles whose radii are the same as the radius of the pitch circle.
The first circle has its center point at the intersection of the pitch
circle and the upper y-axis; each of the other five circles’ center points
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(b)

Figure 10.12 (a) An approximate 12:13 ratio of lengths constructed from an octagon;
(b) a 12 x 12 square placed within 13 X 13 square. An equilateral triangle is placed on the base
of the 12 x 12 square to locate the pitch circle.
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are intersection points between the pitch circle and the preceding circle
(see Figure 10.13a). The centers of these circles define two sets of three
axes through the center of the rectangle corresponding to the 3-fold
axes of the Cosimo symbol in the center of the design (see Figure 10.11).
Notice that four of the circles intersect the vertices of the 12:12 square.
It is also worth noting that the rosette produces a series of intersections
between adjacent circles, known as the Vesica Pisces, a key figure of sacred
geometry [Kap3]. It was in this region that images of Christ were placed
in many sacred designs.

(b) Draw six more circles using the same method as Step 4a starting, this
time, with the intersection point of the pitch circle and the right hand
x-axis as the first center point (not shown).

(c) Repeat Steps 4a and 4b by using intersection points between the pitch
circle and diagonal lines of the 13:13 square as center points to create
12 additional circles forming the 24 circle rosette pattern shown in

Figure 10.13b.

Step 5. The rosette is composed of a grid of curvaceous diamonds formed
by the intersection of the first 12 circles and the second 12 circles (see
Figure 10.13b). Using as centers the midpoints of the arcs on the pitch circle
connecting adjacent circles of the rosette pattern draw 24 additional circles
(not shown) to make a total of 48 circles.

Step 6. The small mismatch between the diagonals of the square and
rectangle leaves space to construct a reference circle as shown in Figure 10.13c.
Replicate this reference circle at the intersection points of the pitch circle
and the latest 24 circles. These 24 circles intersect the pitch circle at 24
points. Four of the 24 replicated reference circles are shown in Figure 10.13c.

Step 7. Draw 48 circles with the same radius as the pitch circle and centers at
the 48 intersection points of the pitch circle and the 24 reference circles from
the previous step as shown in Figure 10.13c. These circles are to become the
white bands of the Panel 2. This step demonstrates how the panel makes
“Mannerist space” out of the difference between the series of circles generated

by the 12:13 and 13:13 diagonals.
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Figure 10.13 (a) Six circles with radius equal to the pitch circle are drawn; (b) a rosetre of
24 circles; (c) 24 additional circles are drawn bisecting the curvy diamonds of the rosette, and
a reference circle is shown with diameter equal to the gap between the diagonals of the square
and rectangle. The intersection of 24 reference circles with the pitch circle {four circles are
shown) locates the center of 48 additional circles marking the white bands of panel 2.
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Figure 10.14 The reconstructed terracotta design of Ben Nicholson and Blake Summers. The
panel is shown to be organized around 96 identical circles.

Step 8. In the final step ovals of eight different types are created, to fill the
diamond shapes. The details of this step are beyond the scope of this book.

The painted reconstruction of the terracotta design by Nicholson and
Summers is shown in Figure 10.14. Nicholson hypothesizes that this design
represents an interplay between the circle representing the heavenly realm
and the square and rectangle representing the earthly domain. The ratio of
12:13 represents the solar and lunar cycles since the sun goes through the
12 signs of the zodiac approximately in the time that the Moon makes 13
revolutions about the Earth. The 96 circles that make up the pattern and
the original pitch circle are grouped in the series: 1, 3 + 3, 6, 12, 24, 48.
We recognize this sequence to be the sequence that was used in the Titius—
Bode law (see Section 5.4) to determine the relative distances to the sun
of the planets up to Saturn (all the planets known in the year 1550).
Therefore the designer of this pavement was able, either consciously or
unconsciously, to compress a great deal of information into a geometrical
setting.
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The panel on the other side of the library is identical except that it fits
into an 11:12 rectangle. Nicholson believes that the numbers 12 and 11 may
refer to the number of Christ’s disciples before and immediately after the
removal of Judas from their midst. However it could also refer to the fact that
fitting all 12 tones into the chromatic musical scale was seen in ancient times
as a struggle between the rational and irrational, the finite and the infinite.
We have seen in Section 3.5. that only 11 of the 12 tones of the musical scale
can be expressed as the ratio of small whole numbers. The twelfth tone must
be represented by an awkward approximation to J2.

10.6 The Mask Panel

Nicholson has chosen to name Panel 13, shown in Figure 10.15, the “Mask”
panel. When looked at either directly or from the side it appears like the
classical masks of the theater popular at the time with either a happy or sad
face. In fact Michelangelo made a number of carvings of the “mask of night”.
Two members of Nicholson’s team Saori Hisano and Hingan Wibisono
were able to use a combination of the golden mean and the Brunes star to
reconstruct this panel.

Figure 10.15 A terracotta reconstruction of Panel 13, the “Mask” panel.
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Figure 10.16 Schematic of the mask panel. A central square is juxtaposed with two golden
rectangles. The central square is trisected by the Brunes square construction. Each trisection
is then subdivided again into fourths by the Brunes star at a smaller scale. This produces a
12 % 12 grid.

Rather than go through his detailed explanations, we present in
Figure 10.16 one of the diagrams in which Nicholson has defined a central
unit square and two symmetrically placed golden rectangles (proportions 1:7).
The construction lines to create the golden rectangle are shown in the figure
and will be described in greater detail in Section 20.4. The central square
is trisected by the methods of Brunes into first a 3 X 3 grid. Then each third
is divided again by the Brunes star into a 4 X 4 grid. As a result the original
square is divided into a 12 x 12 grid. Notice that the Brunes star and the
golden rectangle share construction lines. Once again, the panel is just off
from being a square, with the difference between the length and width being
equal to %, i.e., a width of -117 placed on either side of short side.

In Figure 10.17 four circles of radius % are drawn about each vertex
of the central square as centers. The width of the four oblong regions of
intersection of these circles equals the diameters of the four black circles of
the mask pattern. They are equal to T% units. These oblong regions are
somewhat reminiscent of the Vesica Pisces regions that formed the basis of
panel 2. From this construction, Nicholson was able to deduce that the widths
of the white annuluses around the black circles and the narrow white
annuluses in the left and right sections of the pavement were related to the
golden mean and summed to -113 , the width derived from the Brunes star.

The reconstructed terracotta Mask panel created by Nicholson, Hisano,
and Wibisono is illustrated in Figure 10.15. The geometer appears to have
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Figure 10.17 Four circles of diameter % drawn at the vertices of the central square proportions
the four black circles of the Mask panel.

found ingenious ways of wedding two geometrically different worlds, the one
of the golden mean and the other of the Brunes star.

10.7 Conclusion

The pavements of the Laurentian library have presented us with a set of
geometrical puzzles. They are remarkable because they present an almost
complete set of the predominant forms of ancient geometry. The extensive
occurrence in the pavement panels of particular geometries and the numbers
they spawn suggest that the pavement designers were cognizant of the bond
between number and myth that modern scholarship is once again making
available for us.

Nicholson believes that the panels are an unambiguous expression
of Mannerism. He considers that the pavement constitutes a document of
Mannerist number theory, albeit expressed in the language of geometry,
and that, in a wholly reasoned way, it presents issues of paradox and a
confrontation with the status quo for which Mannerist art is so famous. It
is also possible that the pavement forms the treatise on proportion that
Michelangelo wanted to write and that was alluded to by Condivi in his
1553 biography — The Life of Michelangelo.
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Appendix 10.A The Sacred Cut and the Square Circle Grid

10.A.1 The sacred cut subdivision (SSCS) lies dormant within the square
circle grid described in Appendix 6.A. Saori Hisano [NKH1] has brought
attention to these sacred cut relationships by focusing upon the square
circle grid in the proper way. In Figure 10.Ala, a square and its diagonals
are highlighted within which the center circle of the nine circles making up
the square circle grid of Figure 6.A2b is inscribed. This square is divided into

(a) (b)
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(c) (d)

Figure 10.A1 Relationship between the sacred cut and the square circle grid.
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four smaller squares, and a central square is highlighted in the upper left-
hand square (Figure 10.Ala). This highlighted square represents the central
square of a SSCS (see Figure 10.4).

10.A.2 Within the central circle lies a pair of squares rotated at 45 degrees
with respect to each other (Figure 10.A1b). Figures 10.A1b and 10.Alc show
that this pair of rotated squares leads again to the SSCS. In Figure 10.Alb
the central square of the SSCS of Figure 10.Ala is now the corner square
of a new SSCS. In Figure 10.Al¢, the arcs of the four sacred cuts shown in
Figure 6.2 have been completed to circles showing their proper context.

10.A.3 In Figure 10.A1d, square abcd is exploded outwards to square ABCD,
and the sacred cut subdivision is replicated at a larger scale. Square ABCD
is inscribed in a circle, and if this circle is considered to be the central
circle of another square circle grid of nine circles (as in Figure 6.A2b), this
process can be repeated to create sacred cut subdivisions at ever larger or
smaller scales. Figure 10.Ale represents a hierarchy of three SSCS’s. If the
centermost square of Figure 10.Ale is given the value 1 the sides of the four
concentric squares have values 1, 6, ¢ , 0. In Figure 10.A1f, square efgh is
exploded outwards to EFGH resulting in another sacred cut subdivision.

10.A.4 The final display (Figure 10.Alg), the Hisano diagram, shows how
a star octagon is related to squares, circles, and triangles. Within the circle
are numerous 45 degrees isosceles triangles with hypothenuse to base in the
ratio 1: /2 , in contrast to the numerous 3, 4, 5-right triangles of the Brunes
star (see Chapter 9). The diagonals also cut each other in the ratio 1:6. The
sacred cut subdivision is sitting in the midst of this diagram. This star is a
testament to the geometric integrity of the Roman system of proportions.
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Measure in Megalithic Britain

On Apollo’s birth: The swans, the god’s prophetic singers,
circled Delos seven times. These Muse’s birds sang at the delivery bed
like bards. Because of this, the child later bound seven strings to his lyre.

Callimachus

11.1 Introduction

There is a difference of opinion as to whether ancient cultures did or
did not possess standard measures. Some students of ancient cultures feel
that in place of a standard measure each construction site was developed
independently, using pure geometry as a guide to planning and construction.
Furthermore, many archaeologists simply feel that ancient cultures did not
possess the level of social organization required to institutionalize a standard
measure. However, there is evidence that in Megalithic Britain, as far back
as 3200 B.C., standard measures may have been used. Anne Macaulay was
an amateur archeologist who dedicated many years to a study of these
questions. In this chapter I will report some of her discoveries and conjectures
based on the measurements by the British engineer Alexander Thom of more
than 200 of the approximately 900 megalithic circles throughout England,
Scotland, Wales, Ireland, and Brittany (cf. [Bur], [Mac], [Lin], [Tho-T1],
[Thom] and [Tho-T2]). It was Thom’s belief that one of the functions of

the circles was to serve as astronomical observatories.
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11.2 A Standard Measure

What is the origin of the idea of the standard measure? The archaeologist,
Colin Renfrew [Ren] has traced the movement of the first farmers from what
is now modern Turkey and the fertile crescent both East and Westwards from
before 6000 B.C. As a result, we now know that the first farmers to arrive
in Britain in about 4500 B.C. were Indo European. Renfrew believes these
first farmers brought with them a farming package consisting of grain; domestic
animals and pottery. Anne Macaulay conjectures that we owe the origin of
measure to these ancient farming communities. Farmers had to know how
much grain when sown in the earth would produce enough surplus to feed
their people. From this emerged the bushel type of measure. In order to know
how much land to sow grain upon, they produced a measuring rod or
yardstick. In order to make the corners of their fields square, the 3, 4,
5-triangle was used to produce a right angle. Thus was born another farming
package consisting of a measuring rod, a bushel type of measure, and the
knowledge of the 3, 4, 5-triangle that enabled local hunter-gatherers to
develop the skills to cultivate grain.

A proof of the Pythagorean theorem for a 3, 4, 5-triangle survives from the
Han period (c. 200 B.C. =200 A.D.) in China, shown in Figure 11:1 [Nee]. As
you can see, this proof is based on the division of the side of a square of
length 7 into 3 and 4 unit subdivisions. I leave the visual proof to the reader.
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Figure 11.1 The proof of the Pythagorean Theorem in Chou Pei Suan Ching.
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Not only is it likely that people of Megalithic Britain possessed
Macaulay’s farming package, but, based on the work of Thom, they may
have possessed a standard linear measure. Macaulay conjectures that word
about the standard measure was spread through England and Scotland by
Bards who wandered through the countryside bringing news, singing songs
and telling stories. She bases this on the discoveries by archaeologists of a
few Neolithic and Bronze Age British burial sites each containing a horned
ox-skull (no reference given). By studying ancient depictions of citharas, an
early form of the ancient lyre and modern guitar, Macaulay surmises that
they were constructed upon horned ox-skulls covered by a wooden casing
with the horns forming the arms of the lyre. Macaulay feels that the discovery
of ox-skulls in the ancient British burials suggests the possibility that they
were the tombs of Bards buried along with their lyres.

The people of Megalithic Britain were seafarers. At first, they settled in
France, then colonized all the islands around Britain — Man, the Inner and
Outer Hebrides, Orkney, and Shetland, etc. Macaulay hypothesizes that
they eventually established commerce with ancient Greece as tin traders.
Although there is only circumstantial evidence to confirm Macaulay’s
hypothesis, the coincidence between a recent discovery of a Greek standard
measure and the work of Thom in measuring megalithic stone circles and
grids adds some credibility to this conjecture.

11.3 Megalithic British and Greek Measures Compared

Macaulay has shown that there is a strong possibility that the Greek
fathom was identical to the Megalithic British rod. The megalithic yard (my),
32.64 inches, is % of a megalithic rod (mr), and is similar to the ancient Indus
short yard, 33 inches, and the Sumerian shusti, 33 inches.

Based on his exploration of megalithic sites throughout England,
Scotland, and Brittany, Thom hypothesized that the spacing of the stones
was related to integral numbers or simple fractions of megalithic rods,
megalithic yards, or megalithic feet to be described below. As a result of
these measurements, he conjectured that the megalithic rod was 2.072 meters
(6.80 feet) in length. This resulted in a perfect match with the length of
the Greek fathom reported in 1981 by E. Fernie [Fer] in the form of a
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Figure 11.2 Met Relief Michaelis: A sculptured metrological stone illustrating the measure of
the Greek fathom and the Greek foot. Courtesy of the Ashmolean Museum, Oxford, England.

sculptured Metrological stone in the Ashmoleam Museum, Oxford, thought
to come from Samos from before 400 B.C. shown in Figure 11.2. As you can
see, this artifact also represents one of several the Greek foot measures (see
Appendix 11.A) as -%- of a Greek fathom. I shall refer to this measurement
as a megalithic foot (mf). It is important to note that Thom died in 1978
before the discovery of the Greek measure and so he could not have been
influenced by it.

11.4 Statistical Studies of Megalithic Measure

Thom’s original measurements were reported in a paper written in 1955.
He subsequently re-approached the question of a standard measure with
new measurements, as reported in a paper written in 1962. Douglas
Heggie [Heg] has made an extensive survey of the statistical methods used
to examine Thom’s measurements. Heggie states,

“Thom [Tho] presented his measurements of the diameters of
the stone circles in a histogram. He discovered peaks at about
22, 44, 55, and 66 feet. This observation immediately suggests
that many of the diameters lie close to multiples of some unit.
Thus we are led to frame a quantum hypothesis that the diameters
were intended to be multiples of 11 feet. Actually Thom settled
on a unit or quantum of about 5-5— feet (actually 5.435 feet),
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and since it is likely that it is the radius of a circle which would
be measured out, Thom thought that a unit of about 2.72 feet
was in use, and this was subsequently called the megalithic yard.”

Thom also measured the perimeters of the stone circles and found that
units of about 2% megalithic yards (2.072 meters) were most prevalent. He
called this unit the megalithic rod.

The object of statistical studies of Thom’s work has been to test the
significance of the quantum hypothesis. If the hypothesis was correct, one
would expect that measurements of diameters would exhibit only small
deviations from the nearest multiple of 5.435 feet.

The problem of testing the null hypothesis was undertaken by several
statisticians, most notably, S.R. Broadbent and D.G. Kendall. Details of these
studies are described in Megalithic Science [Heg]. Although Thom derived his
measure for the megalithic yard from his earlier data, he returned again to
the megalithic yard in his later paper, and he reported measurements of many
new sites. If the old unit of 5.435 feet is applied to the new data, since this
value cannot have been influenced by the new data, a statistical test devised
by Broadbent was most applicable. Heggie states:

“Omitting sites already discussed in 1955, or those with diameters
noted as being particularly uncertain, we obtain a probability
level far below 0.1%. This is a highly significant result, for it
implies that such good agreement with Thom’s unit would
occur only once in many thousands of samples of random data.”

Heggie feels that as striking as these results are, there are several reasons
why they may not be as decisive as they seem. One of these is the suspicion
that the choice of geometry open to Thom allowed the operation of a quite
unintentional bias in favor of the megalithic yard. One way around this bias
would be to analyze the results of other workers who have measured the
megalithic sites but did not use Thom’s special geometries. Unfortunately,
there is sparse data of this kind yielding inconclusive results, and most of
the support for Thom’s theory comes from his own measured diameters.
According to Heggie, “This situation is unlikely to change until other
investigators summon the energy to survey comparable numbers of sites with
comparable care”.
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11.5 Measurements at Mid Clyth

One of the problems with measuring the diameter of a stone circle is that
one is limited to measuring the distance between two stones. A small error
in the placement of one of the stones invalidates the measurement. On the
other hand, Thom’s measurement of a fan of stone rows at Mid Clyth,
Caithness in 1964, shown in Figure 11.3, admirably satisfies statistical tests
and confirms Thom’s hypothesis of the megalithic rod being 2.072 meters.
The geometrical pattern Thom arrived at for this site resembles the lines
of latitude and longitude on a map. To measure this site, one chooses an
arbitrary latitude line, and then measures the distances in the direction of
the near-vertical lines of longitude of all stones from this line of latitude. If
these distances lie close to multiples of some unit, in a statistically significant
sense, then it may be inferred that the stones lie significantly close to
evenly spaced lines of latitude. Using Broadbent’s second paper, Thom
found overwhelming support for a unit of 7.743 feet at a probability level
much less than 1%. This unit happens to be close to %Q my.

Heggie found it a pity that the unit of 2—70 relates to the megalithic yard
by such an awkward ratio. However, his study was made before the discovery
of the ancient Greek measures, and this unit can now be appreciated in
light of the 1981 discovery by Fernie of the Greek foot = megalithic foot.
Since the megalithic foot is % of the megalithic rod, it then follows that,
the Greek foot is % of the Greek fathom, which equals the megalithic rod.
It then follows that,

20 2mr 8
—myX-——=—mr,
7 5my 7

8

? mr=8 Greek feet.

Therefore Mid Clyth divides equally into 17 lengths, each measuring 8 Greek
feet. Macaulay has found 42 examples among Thom’s data in which a
quantum, equal to the megalithic foot equated to the Greek foot, was used
for measurement.

Macaulay points out that the Megalithic rod = Greek fathom continued
to be used for church dimensions in northwest Europe (but not in Italy) up
until the latest Gothic churches (c. 1500 A.D.). It was a great surprise
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Figure 11.3 Thom’s measurements of a fan of stone rows at Mid Clyth.

to the team of Macaulay, Gordon Strachan, and Fred Robertson, that
measurements of the base lines of the Chartes Cathedral and St. Georges,

Windsor were integral numbers of megalithic rods. It was only after
discovering Fernie’s article on the equivalence of the megalithic rod and

the Greek fathom that this discovery began to make sense.
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11.6 The Stone Circles

Next we examine the geometry of the stone circles. Burl [Bur] estimates
that of the 900 rings still standing in Britain, there are about 600 circles,
150 flattened circles, 100 ellipses, and 50 eggs. Some were single circles and
many others were either two or three concentric circles (cf. [Mac], [Cril,
[Tho)). Unfortunately, in the 4000 to 5000 years since these sites were erected
there has been much damage, mainly since the Reformation, when most of
the sites in Skye, lona, and much of the west coast of Scotland were destroyed
by zealous reformers. In addition, in the last 200 years farmers have used the
sites as quarries to get stones for building.

Figure 11.4 shows the geometry that comes from sites with three
concentric circles. These are mainly Clava caimns and other similar burial
sites, as well as a few other sacred sites. The central area was used for burials
or deposition of cremated remains. The shaded area was built up and filled
with stones and outside this is the functional area marked usually with a
few tall standing stones.

In many instances, measurements of one of the pair of diameters of two
concentric circles were found to be integral numbers of a basic unit related
to megalithic yards, rods, or feet. In making his measurements, Thom assumed
that the center of a stone was placed over the measured point, and he
determined the measurement by measuring the distance to the four
extremities of the stone as seen from the center of the circle and averaging

Figure 11.4 Three concentric rings typical of megalithic stone circles.
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Figure 11.5 A ten-pointed star establishes the geometry of the stone circles at Farr West
(Tordarroch).

these values. If a site was so badly in ruins that he could not determine the
radius accurately, it is marked with its error, e.g., + 3 inches. Some of the
stones were rather large, weighing as much as 30 tons.

At the beginning of her investigation, Macaulay put a piece of tracing
paper over a plan and drew tangents to the central circle from the main circle.
To her surprise, a perfect star pentagon or pentagram emerged and with the
next one, a 14-pointed star. It became clear to her that these sites required
a proper geometrical framework. Macaulay has used Thom’s measurements
to infer a method of constructing the concentric circles by superimposing
star polygons in the form of stretched strings. Stretching the string between
equidistant points on the outer circle defines points of tangency or
intersection on the inner circle, as shown in Figure 11.5 for a ten-pointed star
at Farr West. Thom’s measurement of the diameter of the outer circle was
113.2 feet, and of the inner circle was 66.8 feet. Macaulay determined the
ratio of outer to inner diameter by geometry and trigonometry and then found
that, given an outer diameter of 113.2 feet, the diameter of the inner circle to
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Figure 11.6 A pentagram and a hexagram establish the geometry of the stone circles at Milton
of Clava.

be 66.54 feet, an error of 3.12 inches. An error this small is rather impressive
given the size of some of the stones. Appendix 11.B shows how to make this
computation.

A particularly interesting diagram shown in Figure 11.6, equally accurate
in its geometry, depicts Milton of Clava, which combines a star hexagon
(hexagram) and star pentagon (pentagram) in a single diagram. The position
of the stones is defined by the intersection of edges of the star polygons (see
Appendix 11.B).

It appears as though there was a starting dimension in each of the
megalithic sites established by marking of integral multiples of a basic unit,
after which the monument was completed using pure geometry. For example,
Macaulay has discovered several sites spread widely throughout England
in which the diameter of the stone circles measure exactly 51 units in
units of Greek feet, megalithic yards, megalithic rods, or simple fractions
of these measures. The size of the unit determines the overall dimensions
of the site. The dimension of 51 units is suggestive of a circle broken
into either 7 or 14 sectors since a chord of 22 feet then approximately
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Table 11.1 Measurements at Riverness.

Thom's measurements Calculated Error

Diameter of outer circle 69.1" = 35.04 my 69.36"= 51 my/, 3127
Diameter of main circle 29.5" =10.84 my 29.92" = 22 my/, 57

Cc

5125 222+ 462+ 1

A4 ACB
A4 A0B

25.5°
51.11°

Figure 11.7 A diameter of 51 units and a chord of 22 units divides the circumference of a
circle into seven equal parts.

spans % of the circle. In Figure 11.7 the diameter and chord are placed in
a semicircle to form a right triangle in which the chord subtends an arc of
51.11 degrees on the circle which differs from ;gg degrees by 0.6%. I have
used a geometric theorem which states that the central angle (< AOB) of
a circle equals twice the value of the inscribed angle (< ACB) that subtends
the same arc. As a corollary, it follows that every triangle inscribed in a
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semicircle is a right triangle. If the third side of the right triangle inscribed
in the semicircle equals 46 then the Pythagorean theorem is approximately
satisfied:

512=22"+ 46° + 1.

(Several Pythagorean relationships, off by 1, were noted by Thom.) Marking
the chord of length 46 units on the circumference of the circle results
in a 14 pointed star with every fifth point connected {%} . In this way the
outer circle could be constructed by subdividing the circumference rather
than from its center. Since the center of the circle may have been considered
to be a sacred space, entry to it may have been forbidden. Table 11.1 and
Figure 11.8 shows how the Riverness site, with a diameter of 515
(the unit of measurement is % megalithic yard, i.e., %), may have been
constructed in this way.

Figure 11.8 A 14-pointed star recreates the geometry of the stone circles at Riverness (Kinchyle
of Dores).
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Macaulay has also found other stone circles with a diameter of 13 units
(Greek feet, megalithic yards, megalithic rods, etc.) and chord 5 units, based
on a Pythagorean triple of 13, 12, 5 which divides the circle in a similar
manner into 8 equal sectors to within 0.5%. Yet other circles have diameter
and chord lengths of 37 units and 20 respectively, which divide the circle into
11 equal parts, and diameter of 14 and chord of 9 which divides the circle into
eneagrams (nine—pointed stars). In each of these circles, the diameter of the
inner circle is consistent with a star related to the given diameter. It is likely
that other diameter—chord pairs were also used. However further research is
needed to uncover them.

Since the relationship between circle diameter, chord length, and angle
requires a sophisticated understanding of geometry and trigonometry it
remains a mystery as to how ancient people gained knowledge of these
concepts. However, it appears as though they used a combination of
measurement and pure geometry to construct the stone circles. Macaulay
believes that the star polygons may not have been used for construction
purposes but had some unknown significance to the Megalithic British.

11.7 Flattened Circles and the Golden Mean

There are estimated to be about 150 remains of flattened circles spread widely
about mainland Britain. Thom determined that there were four types of
flattened circles which he identified as Types A, B, modified B and D. Of
the four types, modified type B shown in Figure 11.9 is the most prevalent.
Macaulay’s analysis of Thom’s diagrams indicates that all of the flattened
circles can be related to the pentagram which in turn is related to the golden
mean (see Section 20.4). The following construction of the Type B modified
flattened circle involves the golden mean directly:

Step 1. Begin with a series of four circles, as shown in Figure 11.10, of
diameter 1 unit from a square grid of circles (see Appendix 6.A).

Step 2. By the Pythagorean theorem, AC = ,/12 + (%)2 = \/g while CD = %
Therefore AD = #g— which is the golden mean .
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A

Figure 11.9 Flattened circle modified Type B.

Flattened circle, modified type B
MC/MN =,AB / MN = 0.8091
Perimeter / MN = 2.8746

Figure 11.10 Anne Macaulay’s reconstruction of flattened circle modified Type B.

Step 3. Swing an arc from D to E with point of the compass at A. Points F
and G on this arc along with A form isosceles triangle AFG with side AF
and base FG in the ratio 7:1, a golden triangle (see Section 20.4).

Step 4. The ratio of % =7 = 0.809... in agreement with Thom’s
measurement (see Figure 11.9). Macaulay uses the golden triangle to
construct a pentagram within the flattened circle as shown in circle at
Whitcastles, Dumfrieshire (6 miles from Lockerbie, Scotland) in Figure 11.11.
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Figure 11.11 The flattened circle at Whitcastle, Dumfrieshire with inscribed pentagram.

Table 11.2 Measurents at Whitcastle.

Thom's Measurements Error

Half the length of main diameter %MN 34 MY  exact
Short diameter (AB) 55 MY 0.43"

Macaulay conjectures that the Megalithic geometers made one
measurement exactly using Thom’s measurements, and that in every case that
she has studied, this measurement is one of the Fibonacci numbers from the
F-series: 1, 2, 3, 5, 8, 13, 21, 34, 55,.... The second measurement is then
approximated by the next Fibonacci number in the series since ratio of
successive numbers from the F-series are approximately 7:1 (see Section 20.2).
The results for Whitcastle are given in Table 11.2.

These are also the measurements of the base FG of the golden triangle
and its side AF. Macaulay found that in almost all of the sites corresponding
to flattened circles, a wide array of Fibonacci pairs were used as the side and
diagonals of the pentagram.

Macaulay has conjectured that the British system of modern linear
measure may trace its origin to megalithic metrology. Appendix 11.A shows
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that the imperial foot (the foot measure commonly used in Britain and the
United States) is derived from the equivalence between 7 mr and 11 imperial
feet and that all units of British measure are multiples of 11 feet. If Macaulay’s
conjectures are correct, it suggests that knowledge of Fibonacci numbers may
have existed in megalithic times.

11.8 Historical Perspective

Macaulay believes that the Megalithic British became one of several peoples
that settled Greece and its surrounding islands during the several centuries
prior to the classical Greek period. The traditional view is that Greek
civilization was the result of a cultural mixture that followed a conquest of
an earlier pre-Hellenic people by Indo—European people from the North.
A competing theory, put forth by Martin Bernal [Bern], suggests that the
primitive tribes that inhabited pre-Hellenic Greece were civilized by Egyptian
and Phoenician settlers. Bernal uses results of recent archaeology to account
for the fact that Greek is fundamentally an Indo—European language.

If Thom’s hypothesis of a standard measure in Megalithic Britain is
correct, and if this measure precisely matches the standard Greek measure,
then we have stumbled on a great mystery. How did the Greek measure of
400 B.C. derive from the megalithic measure which began well before
3500 B.C. and continued to the end of the megalithic period around
1200 B.C.? What would have brought people from Megalithic Britain to
the Eastern Mediterranean around 2100 B.C.? Macaulay has found much
evidence from historical and archaeological records, archaeo-astronomy,
mythology, and studies of musical instruments to support her theories about
the interaction between Megalithic British and classical Greek cultures.

Macaulay has hypothesized that the Megalithic British became involved
in the tin trade. Tin, though very scarce, when combined with copper formed
the bronze pertinent to the development of the European Bronze Age. There
was an unreliable source of tin near Poland, and an Eastern source near the
Gobi desert which was extremely expensive as it involved an overland
journey of about 2000 miles. There was also only a minimum amount of tin
in Brittany which was not worked until very much later. Cornwall, England
has been shown by archaeologists to have been an important center of tin
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mining from at least 2100 B.C., somewhat after the beginning of the
European Bronze age. Tin was continuously mined there until only a few
years ago [PenH]. Thus the British, who were known to be good sailors and
tradesmen, began to meet this demand.

According to Macaulay, two major calamities, namely the eruption of
Thera on the Island of Crete around 1628 B.C. and of Mount Hekla in
Iceland in 1159 B.C., may have resulted in climatic disturbances that caused
cultural upheavals in the Eastern Mediterranean region. This may have
enabled proto-Greek settlers from Britain and elsewhere to take political
control of mainland Greece. Whatever the truth is, the Iliad (c. 1250) reflects
this unsettled and bellicose period.

The story of the Aratus star globe [Roy] lends further support to the
idea of early British—Greek contact. Eudoxus, a Greek who lived from 409—
356 B.C., traveled to Egypt where he obtained an old star globe from about
2000 B.C. (£ 200) showing the constellations. What is of interest to us is
that, according to Roy, the globe had representations of Greek mythology
and that the latitude of the observations were at about 36 degrees North
(£ 1.5 degrees), the latitude of Gibraltor somewhat further south than Greece.
But 2000 B.C. was long before the origins of classical Greek culture. Is it
possible that proto-Greeks from Megalithic Britain were in the Mediterranean
around 2000 B.C. using the same mythological symbols?

Eudoxus described the globe in detail in two books. These works did not
survive, but a poet named Aratus recorded Eudoxus’s findings in a famous
poem, “Phaenomena” which exists in English translation [Mai]. In the
second century B.C. Hipparchus discovered that the account of the old star
globe as told by Aratus did not describe the constellations observed in his
time. He realized that this must have been due to a shifting of the equinoxes,
and he did a creditable approximation to the 26,000 year cycle governing
this precession (see also Section 1.4 and Example 3.6.2).

Macaulay has also found clues from mythology that add credence to
her theory of Megalithic British—~Greek connections. Apollo is connected
in Greek mythology with music and the lyre. The earliest lyres of the
Mycenean and Minoan periods period had swans carved on the arm terminals
[Ahl]. So Apollo’s lyre is connected with swans. Taking the swan and lyre
to be the constellations Cygnus and Lyra — Lyra being very close to Cygnus
in the sky — a Greek myth has Zeus approach his future bride, Lato, in the
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form of a swan (Lato being the mother of Apollo). Macaulay has found
some evidence to suggest that Lada was the original “Earth Mother” of the
neolithic era during which agriculture was developing. She conjectures that
this “Great Lady” of the farmers, was the same person as Lato, and that later
this name was misspelled as Leda, featured in swan myths.

If we trace the movement of Cygnus and Lyra as seen from Stonehenge
at around 3400 B.C., we find that they move in circumpolar circles, tangent
to the horizon. Note that recent dating of Stonehenge places its construction
at around 3100 B.C. However Macaulay believes that a cruder version may
have existed as far back as 3400 B.C. I checked this bit of archeoastronomy
at the Newark planetarium. By setting the heavens back to megalthic and
classical Greek times, I was able to verify this story.

Contrast this myth which makes sense when it refers to Megalithic
Britain with another myth dating to Minoan times. In this myth Apollo
was supposed to leave Delphi in the autumn for the land of the Hyperboreans,
not returning till the spring. Hyperborea, meaning “beyond the North Wind”
was to the Greeks a vague area in the north inhabited by unknown peoples —
it happens that in ancient Greece these constellations were not visible in
the night sky during winter, lying below the northern horizon. So Apollo’s
departure to and return from Hyperborea in the autumn and spring,
respectively, coincide with the disappearance and reappearance of Cygnus
and Lyra in the Greek night sky. In other words, Cygnus and Lyra were
visible through the entire year in Megalithic Britain but only part of the
year in Greece. Therefore the first Greek myth makes sense at the location
of Megalithic Britain while the second appears to refer to Greece, but at a
later date.

Apollo is also associated with a dolphin, implying navigational skills.
Legend has it that Apollo’s first act upon arriving at Delphi was to slay the
dragon or python only to reinstate it as the Pythia. Macaulay has suggested
an explanation to this puzzling myth. If the myth of Apollo had originated
in Megalithic Britain, at that time the pole star was in the constellation of
Draco the dragon. However, at the time of the settlement of classical Greece,
Draco was no longer usable as a pole star due to the precession of the
equinoxes (see Secton 1.4). It is therefore plausible that a remnant of the
importance of this no longer usable signpost of navigation was retained as
the name of the Sybil at Delphi.
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Figure 11.12 A full set of megalithic “Platonic
solids”. They are examples of megalithic carved

stones found throughout England and Scotland.

Other hints are found in the association by Greek legend of amber with
Apollo’s tears [Ahl]. In ancient times amber was found in abundance near
Glastonbury, which is near the site of Stonehenge. Finally, Figure 11.12
illustrates Megalithic carved stones in the form of the five Platonic solids as
evidence of the interest of ancient people in geometry and stereometry (the
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study of spherical forms for the purpose of astronomy). At least 400 of these
stones are in existence [Cri].

11.9 Conclusion

The work of Alexander Thom raises the possibility that standard measure
may have been used in megalithic Britain. Due to discoveries of Fernie,
we know that the linear measures in Megalithic Britain and ancient Greece
closely agreed. This invites hypotheses as to possible historical linkages
between megalithic Britain and ancient Greece.

Appendix 11.A

Anne Macaulay conjectured that standard units of a megalithic rod (mr)
equal to 6.8 British imperial feet and a unit a “foot” equal to 4 of a
megalithic rod or 0.971 British imperial feet (296 mm) were used in
Megalithic Britain. Since these measurements were found on the metrological
stone (see Figure 11.2), she saw this as a connection between Megalithic
Britain and ancient Greece. However, according to the archaeological record
there was no standard unit of a “foot” in ancient Greece. The typical foot
of Attica, measuring 293—295 mm was called the Attic-lonic foot (sometimes
called the Solonic foot and also the Cycladic foot) [Bul]. The foot on the
metrological stone measures 296 mm, slightly larger than the Attic foot.
Still other units of a foot were used for temple construction. For example,
297 mm is the foot length used in the Temple of Apollo in Delos while
328 mm was used for the Great Temple of Athena at Paestrum and the
Erechtheion in Athens, and 343 mm was the foot length Anne Bulckens
used to describe the proportional system of the Parthenon. Bulckens feels
that the Attic foot of 294 mm was scaled up a factor of £, the two integers
assigned to Athena, to get the Parthenon foot, i.e., 294 x % = 343. The
latter value differs from the Parthenon foot (308.76 mm) hypothesized by
Francis Cranmer Penrose whose measurements of the Parthenon made in
1888 are considered the most reliable. These values of the Greek foot are
summarized in Table 11.Al.
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Table 11.A1 Foot measurements in classical Greece.

Foot Type Measure in mm Measure in Brit. Imp. Feet
Acttic-lonic 293-295

Metrological Stone 296 0.971

Temple at Delos 297 0974

Temple of Athena at Paestrum 328 1.076
Erechtheion 328 1.076
Parthenon (Bulckens) 343 1.125
Parthenon (Penrose) 308.77 0.999

Brit. Imp. Foot 304.84 1

Macaulay felt that the metrological connection between Megalithic
Britain and classical Greece are made more vivid if one accepts her
hypothesis that many of the stone circles were measured out using units
based on the Fibonacci sequence. If one uses the best Fibonacci
approximation to the golden mean from her analysis of the stone circles,
1=22, then © mr is equivalent, using 6.8 Brit. Imp. feet/mr, to 11 Brit. Imp.
feet i.e.,

TX6.8=15—><6.8=11
34

Therefore {7 mr = 1 Brit. Imp. foot. Also after discovering the Erechtheion
foot of 328 mm in 1890, Dorpfeld [deW] concluded that a foot varying from

326 — 328 mm was used for the design and construction of sacred buildings.
While not universal for Greek sacred structures, this class of structures

adheres to a \/5 yardstick in that,

1£fm7‘5 1.071 Brit. Imp. feet = 326 mm.

By this analysis 11 imperial feet emerges as a natural standard of
measurement. This finds validation in the following units of Old English
land and sea measures all divisible by 11 illustrated in Table 11.A2.
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Table 11.A2 Old English Measurements.

3 feet = 1 yard

2 rods, poles or perches = 11 yards

1 chain = 4 rods (11 x 2 yards)

1 furlong = 40 poles (11 x 20 yards)

1 mile = 8 furlongs (11 X 160 yards)

1 nautical mile = 1870 yards (11 x 170 yards)

It is also curious that 1870, the number of yards in a nautical mile, factors
into 34 X 55, the highest Fibonacci pair commonly used in Megalithic
Britain.

Macaulay hypothesized that while the small metrological foot
(0.971 Brit. Imp. Feet) is found throughout megalithic measurements, the
imperial foot may have been used in megalithic times to measure fields
considered sacred areas where the Earth goddess produced grain to feed
mankind. Thus, this measure which was adopted in Medieval times in
England as the basis of all types of standard measurement may have had
its origin in Megalithic Britain. It is a mystery as to how this yardstick
disappeared after Megalithic times and then was reintroduced to England at
a later date.

Appendix 11.B The Geometry of the Stone Circles

We shall compute,

(a) the vertex angle of a regular polygon or star polygon;

(b) the ratio of diameters of the circumscribed and inscribed circles of the
polygon;

(c) the ratio of diameters of the circumscribed circle and the circle that
goes through the intersection points of the edges of a star polygon.

We will then apply these computations to check Thom’s measurements

of Farr West and Milton of Clava.
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30°

(a) (b)

Figure 11.B1

First consider the equilateral triangle shown in Figure 11.B1. [ts vertices
are distributed evenly around the circumference of the circumscribed circle,
the central angle between successive points being % = 120 degrees.

Note that the radius of the inscribed circle is perpendicular to a side of
the triangle tangent to it. Two such radii and two tangent sides form a
quadrilateral from which the vertex angle, x, of the triangle can be computed
as follows:

90 + 90 + 120 + x = 360 degrees or x = 60 degrees.

In Figure 11.B1b the radius of the circumscribing circle bisects angle x.
Therefore the ratio, g—i = g—i =5in30=1 where Ry and Ds are the radius and
diameter of the inscribed circle and R; and Dj are the radius and diameter of
the circumscribed circle.

Next consider the star pentagon shown in Figure 11.B2a. This star
pentagon is referred to as {%} because it has five vertices evenly placed
around the circumscribing circle, and each edge connects every second

vertex. The angle between adjacent vertices is 3—20 = 72 degrees. Using the
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same reasoning as for the triangle, we find that to determine the vertex
angle, x,
90 + 90 + 144 + x =360 or x = 36 degree.
Likewise, g—i = sin 18 where 18 degrees is half of the vertex angle.
In general, to find the vertex angle x of an {n, p} star polygon (a polygon
with n vertices connecting every p-th vertex by an edge), the computation
is carried out as follows:

90+90+360% + x = 360

or solving for x,

. 180(n—2p)

n

(11.B1)

and referring to Figure 11-B2b and using the trigonometry of a right triangle,

DS X

BL—=sin5- (11.B2)
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(a) (b)

Figure 11.B3

Figure 11.B3 shows a circle going through the five points of intersection
of a star pentagon. The vertex angle x is computed from Equation (11.B1).
However, Rs and Rp, are no longer sides of a right triangle, so to compute their
ratio requires use of the law of sines on Figure 11.B3b. Here x is half the
central angle of the pentagon, or 36 degrees while 3 = 18 degrees as before.

Therefore y = 180 — 18 — 54 = 54 degrees. Using the law of sines,

Ds x sinl8
o =|sing |/siny= =0.3819.
Dy (sz)/smy sin5 (11.B3)

Milton of Clava. Thom’s measurment of the diameter of the middle circle is
51.8 feet (8.5 MR, where MR stands for megalithic rods). The inner circle
is 22.0 feet. Therefore,

Ds _ 22 _43s01.
D, 518

Comparing this with Equation (11.B3) gives an error of 0.47%.
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The one measurement of the diameter of the outer circle is 100 feet. Use
Equations (11.B2) and (11.B3) to compute %SL- from geometry and compare it
with the value determined from the measurements,

P_S_:ﬂ
D, 100

=0.578.

Farr West. Thom’s measurement of the outer circle is 113.2 feet; of the inner
circle, 66.8 feet

Ds _ 0.5901.
D

L

By geometry, the star polygon in Figure 11.B4 is {%} . Computing the vertex
angle, x, using Equation (11.B1),

180(10—6)
X=——"7"7—"

o =72 degrees.

Using Equation (11.B2),

Ds o in36=05878
Dy
with an error of 0.3%.
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The Flame-Hand Letters of the Hebrew Alphabet

In the beginning of heaven and earth there were no words,
Words come out of the womb of matter.

Lao-Tse

12.1 Introduction

In Part One, | presented several examples of ways in which numbers and
geometry may have been used by ancient civilizations. I also described
Kepler’s attempt to create a planetary system from the music of the spheres
and Theodor Schwenk’s and Lawrence Edwards’ work to find unifying
principles that generate natural forms. Projective geometry, harmonic law,
systems of proportion, the Megalithic stone circles, and the designs found
in the pavements of the Laurentian Library can be thought of as symbolic
languages in their ability to express relationships found in art, architecture,
music, design, and patterns in nature.

In Part Two I take a more formal approach to number and geometry
and describe how certain systems evolve by continually feeding back
information about themselves. I will show that the dynamics of such
self-referential systems is governed once again by number and geometry.
[ ask the reader to ponder the question as to whether the patterns of
number and geometry that we observe in the natural world are intrinsic to
nature or do we subtly project aspects of our own thought processes onto
the world?

The ultimate self-referential system is written language. The biologist,
Lewis Thomas, has commented that written language functions much like
a genetic code; it serves as a carrier of meaning and culture across the

261
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generations. New meanings take the place of the old, yet remnants of the
original meanings become part of the philological roots. In this chapter, I
will present a hypothetical geometrical system developed proposed by Stan
Tenen, an independent researcher, that attempts to shed light on the origin
of the Hebrew alphabet and the meanings of its symbols [Tenl1]. The letters
are obtained by projecting a specially, meaningfully-shaped spiral, vortex
form onto a flat surface from a variety of points of projection. The spiral
vortex suggests a flame, and the projection source could be a flame, thus my
reference to the letters as “flame letters”. Likewise, this vortex form can
also be seen as an idealized human hand. When this model hand is placed
on one’s hand, the wearer sees each letter when making particular gestures
related to the meaning of the name of the letter, thus my reference to this
model as a “flame-hand” model.

Tenen’s primary interest is in the recovery of what he takes to be an
underlying geometric metaphor in Western traditions. My focus in this
chapter is on the geometrical forms and mathematical content. Tenen’s
story and mine share a common interest in the importance of systems
created from within themselves, or self-referential systems. In the next
chapter, I will study the mathematics of self-referential systems.

12.2 The Flame-Hand Letters of the Hebrew Alphabet

The Hebrew alphabet, or aleph—beth, plays an important role in the
historical evolution of written language. We attribute the first fully symbolic
written language to the Semitic tribes dating to 1500 B.CE. Before this
time written language took the form of pictorial systems such as Egyptian
hieroglyphics (which first appeared in 3000 B.CE.) in which stylized images
of humans and human implements were interspersed with those of plants,
birds, and other animals.

Although the Canaanite/Phoenician (“Old Hebrew”) written language
is entirely symbolic, (every sound-syllable had its own character or letter),
it does retain remnants of its pictorial predecessors. For example, aleph
XA (the equivalent of the English “A”) is the ancient word for ox (and the
Canaanite Aleph looks like an ox-head on its side) while mem (the
equivalent of “M”) is the Hebrew word for water and is symbolized by a
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Table 12.1 Shadowgrams of the 27 Meruba Hebrew letters.
They are all views of one physical system.
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Table 12.1 (Continued)
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series of waves Y). Qof (the equivalent of “Q”) is the word for skull and
is drawn with a circular top (the “skull”) and a vertical descender (the
“spinal column”) @.

It was only after the transfer of phonetic writing to Greece with the
transformation of the aleph—beth into the Greek “alphabet”, that progressive
abstraction of linguistic meaning reached completion. In his book, The Spell
of the Sensuous, David Abram [Abr] traces the origins of written language
and the effect this has had on the way we see the world.

The system proposed by Stan Tenen generates close facsimiles to the
shapes of the 27 letters of the rabbinic form of the Meruba Hebrew alphabet
shown in Table 12.1, while at the same time organizing them into a coherent
pattern of meanings [Ten]. This system is also capable of generating the
letters of particular forms of the Greek and Arabic alphabets. Tenen
sees this as evidence of a common thread spanning many ancient systems
of thought. The Hebrew letters in Table 12.1 are shown with English
correspondences and correlations to the English alphabet (not all are
phonetic equivalents).

It should be stated that Tenen’s proposal is historically controversial,
and while it has begun to be presented for peer review, it would be premature
to comment on its authenticity. There is little that scholars know for certain
about the origins of Hebrew letters. Scholars have never been able to fully
penetrate the meaning of particular sacred books of Jewish mysticism such
as the Zohar, nor related ancient Sufi texts. Yet Tenen believes that these
works become precise, unambiguous and meaningful when they are
interpreted through their inherently geometrical metaphoric imagery.

It is unlikely that our forefathers understood the geometrical concepts
that we shall present in the manner in which we understand them. After
all, they had their own symbolic languages. However, mathematical concepts
are fundamental and can be understood in many different ways. I shall
present Tenen’s work as a kind of mathematical poem or metaphor. It will
provide us with a model of a system generated from within itself.

12.3 The Vortex Defining the Living Fruit

Tenen first develops the concept of the life cycle of a living fruit. The
idealized fruit is modeled by a “dimpled sphere” or torus (inner tube) whose
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"Fruit tree yielding fruit whose seed is inside itself’ Genesis I,11
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Figure 12.1 ldealized fruit modeled as a dimpled sphere.

inner radius shrinks to zero, as shown in Figure 12.1. The central sphere
represents either the “seed-pod” of the current “fruit” or the next generation
“fruit” nested within the current generation.

In vertical (stem up, flower down) cross section, the “dimpled sphere”
or “generic apple” appears as two quasi-ellipses nested against and
surrounding the central sphere, which appears as a circle sitting over the
“kissing” point of the two ellipses. The ring of five seeds of the “apple” are
arranged in a five-pointed star (the seeds in the core of an apple form a
pentagon). '

A seven-stage dynamic process through which the idealized fruit passes —
the inherent propensity of the seed to grow — is modeled by considering
the seed to be “containing” an internal increment (or quantum) of angular
momentum. This is similar to the idea of spin in elementary particle physics,
where the particle is considered to carry a quantum of spin in units of
angular momentum. The seven-stage process unfolds as follows:

1) The potential angular momentum locked into the idealized seed-pod is
expressed as an “impulse” that ejects the “sprout” from the “seed” as the
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“fruit-tree” starts to grow. Initially all the angular momentum is expressed
by the ejection of the “sprout” along its erupting “stem”.

2) Later in the life-cycle of the fruit-tree, when the stem or trunk of the tree
has reached its maximum extent, the angular momentum — representing
the life-force of the fruit-tree throughout its life-cycle — must be
transferred into the unfurlment (around the tree-trunk) of the leaves
and branches of the fruit-tree.

3) The branches sprout buds.

4) Which give rise to new fruit.

5) From which emerge flowers.

6) Still later, near the end of the life-cycle, the angular momentum in the
volume of the mature fruit must be transferred to the next generation
of seed (represented by the central sphere), as its flowers decay (and fall
to the ground, now devoid of life-force and angular momentum), and as
this new seed (containing the passed-on life-force and increment of
angular momentum of the life-cycle) is thrown to the wind.

7) The new seed falls to the ground to restart the next life-cycle.

The Sefer Zohar, quoting Genesis, describes the entire living system as
a “fruit-tree, yielding fruit, whose seed is in itself”. Each generation of fruit,
in turn, is seen as nested within the previous generation giving rising to the
recursive sequence: ...—acorn—oak—acorn—oak—.... We have here the
quintessential self-referential process in which fruit is both a vessel and
its contents. (The vessel is modeled as a torus, which as with vortices
(see Section 1.11), is a minimal closed system, the first requirement for
self-reference.) For example, a smoke ring maintains its integrity in the
form of a torus.

The process of unfurlment and spin shown in Figure 12.2 is modeled by
a ribbon with three turns. Since the original seed and the new seed within
the new whole fruit are identical in their development, except for being a
generation apart, they can be taken to be the ends of the developmental
life-cycle strung between them. The ribbon represents the exchange and
transformation of angular momentum that takes place during the
seven-stage life cycle. This vortex form can also be taken to represent an
individual. The living spirit of the individual is symbolized by his/her whirling
motion as in Sufi or Dervish dancing. The philosopher, mathematician,
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Figure 12.2 Cycle of life of a living fruit. The idealized embryology of a fruit-tree is mapped
onw an ideal fruit.’

and engineer Arthur Young [Young| has written extensively in his book,
The Reflexive Universe, about the seven-stage process under which all natural
forms of the universe unfold. Tenen credits this system, and his fruit tree
conforms well to it.

12.4 The Torus

The torus is the first structure of mathematical importance that we encounter
in Tenen'’s proposal. What is a torus? Any circular (loop) cut made on the
surface of a sphere divides the sphere into two pieces. However, Figure 12.3
shows that two loop cuts leave the surface of a torus (inner tube) in one
piece and opens the torus up to a period rectangle. Each side of the period
rectangle is identified with its opposite, since they represent the two loop
cuts. The two circles that characterize the torus are its meridian and longitude,
shown in Figure 12.4.
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Figure 12.3 A torus is opened to a period
rectangle by cutting two loops on its surface.

Longitude

Meridian

Figure 12.4 A meridian and longitude on a torus.

UMBILIC TOROID Showing 7-Color Map on the 3-Turn Spiral Edge Arthur M. Young's Unique, 3-Turn Spiral Vortex, 7-Color Map Torus

Figure 12.5 The surface of a torus divides itself naturally into seven regions.
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In Figure 12.5, due to Arthur Young, we see that the ribbon of
Figure 12.2 not only defines the structure of the torus but divides its surface
in a natural way into seven regions. This is the seven-color map of the torus
which states that a torus can be subdivided into seven regions, each region
sharing an edge with the other six. If such a map were to be colored so that
regions sharing an edge have different colors, clearly seven colors are needed.
(It is well known that any map drawn on a sphere or the plane never
requires more than four colors.)

Figure 12.6a shows a seven-color map redrawn on a period rectangle.
Notice how the seven regions continue from the left to the right edge, and

Figure 12.6 (a)and (b) seven-color map drawn

as hexagons on a period rectangle; (c) hexagonal
(c) design on the shell of a turtle.



Chapter 12 The Flame-Hand Letters of the Hebrew Alphabet 271

from the top to the bottom edge. Also notice that they are all hexagons
(see Figure 12.6b). Tenen believes that this association of the torus with
hexagons may lie at the basis of the ancient myths in which the world is
brought into being on the back of a turtle whose shell is made of hexagons
(see Figure 12.6c).

12.5 The Tetrahelix

A tetrahelix is a spiral column formed by combining a column of tetrahedra
joined face to face, as shown in Figure 12.7. Three continuous spiraling ribs
can be seen on the surface of the tetrahelix, forming a double helix.
The tetrahelix can also be imagined to be formed by taking a triangular
prism (see Figure 12.8) and giving it a %-turn so that top face is rotated
120 degrees with respect to the bottom face for each 11-tetrahedra. Actually,
no integral number of tetrahedra results in a top face oriented identical to

Figure 12.7 A tetrahelix column.
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22-FACE, 1/3-UNIT TETRAHELIX WHOSE 3-EDGE-RIBBONS TWIST ~120°
TRANSFORMS INTO A 3-LOOP "PRE-KNOT". THE 3-LOOPS OF
THE "PRE-KNOT" ARE THE EDGES OF AN UMBILIC TOROID."\
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Figure 12.8 A triangular prism is twisted into a tetrahelix and then rotated to form an umbilic
toroid. Thirty three tetrahedra result in a column in which top and bottom faces are rotated
approximately 360 degree.

the bottom face. In other words, the tetrahelix is not a periodic structure
and so the column must be slightly strained to enable the top and bottom
faces to meet. A tetrahelix with 33 tetrahedra results in a column in which
top and bottom faces are rotated approximately 360 degrees with respect to
each other. Tenen has shown that the two ends of the % -unit tetrahelix
can then be bent around in a circular arc and joined together to form an
“umbilic torus”. Now the three disjoint spirals on the tetrahelix column
form one continuous arc with three loops on the umbilic torus that precisely
defines the edges of the seven color map on the torus (see Figure 12.5). A
tetrahelix with 11-tetrahedra can be easily constructed by folding the
triangular grid shown in Figure 12.9 up from the plane.

Notice that the outline of this folding pattern is a hexagon which can
also tile the plane, as shown in Figure 12.10a (see also Figure 12.6). Notice
how the % -unit of flattened tetrahelices form the six-around-one pattern
of the seven-color map that characterizes the surface of a torus. Figure

12.10b shows seven clusters of seven clusters of seven % -unit tetrahelices.
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22-LETTER HEBREW ALPHABET COILED ON
THE 22-FACES OF A 1/3-UNIT TETRA-HELIX
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Figure 12.9 Paper folding construction of a tetrahelix with 11 tetrahedra.

We could make groups of seven at higher and higher levels indefinitely.
The curve along the edge of this figure is called a “flowsnake” and is named
after the “snowflake”, or Koch curve, to which it is related (see Section
18.5). The 22 letters of the Hebrew alphabet “seed” this hierarchy.

When bent around and connected, the 11 tetrahedra exhibit 22 external
faces (see Figure 12.9). Tenen has placed the sequence of 22 letters of the
Hebrew alphabet (not counting the final letter forms) along these faces in
alphabetical order. Notice that the letters of the Hebrew alphabet occur in
sequential order on the hexagonal tiling of Figure 12.10b. In Figure 12.11,
the edge of the umbilic torus has been isolated as a string, and Tenen has
strung all 27 sletters of the Hebrew alphabet on the three turns of the string
with nine letters for each of the three loops. In Figure 12.12 the second
(bet) and last letter (tav) are merged to form the first letter (aleph) so that
aleph is seen as both “head” and “tail” of the “Oroboros” or “snake that
eats its tail”.
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(b)

Figure 12.10 (a) Seven clusters of seven tetrahelices forming a fractal curve called the
“flowsnake”; (b) the Hebrew letters superimposed on the hexagonal tiling.
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Figure 12.11 The 27 letters of the Hebrew alphabet sequentially strung on the three loops of
the umbilic torus form an enneagram (nine-sided} view of the three-levels of the Hebrew
alphabet.
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©'98 Tenen

Inverted
Final Zadi

/ Figure 12.12 The second letter of the Hebrew
alphabet (bet) combines with the last letter

(tav) to form the first letter (aleph).

12.6 The Meaning of the Letters

The umbilic torus necklace divides the alphabet naturally into three parts,
to form a connected enneagon (circular nine-pointed figure). Each triple of
letters in the enneagon can be associated with a common meaning but on
three different levels. The outer level, or level 1, is the archetypal meaning;
level 2 is inner/spiritual, while level 3 is outer/physical. Also notice in
Figure 12.11 the left-right symmetry at each level. Tenen sees this process
of moving from “oneness” to “wholeness” as represented by the 27 letters
of the Hebrew alphabet (including final forms);

Oneness — Aleph, Yod, Qof;
Distinction — Bet, Kaf, Resh;
Action — Gimel, Lamed, Shin;
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Division — Dalet, Mem, Tof;

Connection — Heh, Nun, Kaf-final;
Multiplication — Vav, Samek, Mem-final;
Projection — Zayin, Ayin, Nun-final;
Encompassment — Chet, Peh, Peh-final;
Wholeness — Tet, Zadi, Zadi-final.

So we have here the makings of a sacred alphabet, in which the letters
are not merely abstract symbolic forms but also have meaning in and of
themselves. Let’s look in detail at the meaning of the first two letters of the
alphabet at levels 1, 2, and 3.

12.6.1 Oneness

Level 1. Aleph Absolute, stands for All, Aloof, and Alp — a high point,
a high mountain. It is All-One-Wisdom-Consciousness. Phela (Aleph in
reverse) is a miracle and a mystery. Aleph as the singular is the sun-seed-
center (the primal point), the Source; Aleph as the Whole, is the idealized
Fruit — the Apple. Aleph represents the strongest most coherent Archetype.
That is why Aleph means Ox or Master.

Level 2. Yod Our personal, individual consciousness is represented by the
human hand, which projects our personal consciousness into the physical
world. The Yod is the “seed” and is therefore associated with the male
organ and with semen and it is a point (iota in Greek). Yod is an expression
of our being (the psychologist’s Id). That is why Yod means Consciousness,
hand or point/pointer.

Level 3. Qof This is our outer “mechanical” or Monkey consciousness.
It is the shell or physical copy of our inner Yod consciousness. When we
“ape”, we Copy. That is why Qof means Monkey, Copy or Skull.

Together Qia (Aleph-Yod-Qof) means Eruption. Qi is the name for the
life-force in the Eastern traditions and “eruption” is what happens at the
seed-center of Continuous creation — at the center of the torus.
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12.6.2 Distinction

Level 1. Bet Partitions the Unity and Wholeness of Aleph. Aleph by itself
is One. There is no opposition or polarity, and no need for action or
change. Bet as the first possible distinction differentiates what is within
from what is without. In his Laws of Form, G. Spencer-Brown [Spe-B]
showed that a single mark of distinction separating inside from outside was
capable of reproducing all of the laws of logic. From Bet on there is difference,
complement, and contrast. There is spirit and matter, wave and particle.
That is why Bet, two and duality is a “Housing” (which separates inside
from outside). As a prefix, Bet means In or With.

Level 2. Kaf As the inner aspect of Bet, represents holding in, as in cupping
in the palm of the hand. Cupping shapes the palm like that which it holds.
That is why Kaf means palm and why, as a prefix, it designates Likeness and
Similarity.

Level 3. Resh As the outer part of Bet, Resh represents the outer reaching
of Bet. If Kaf is what is in the palm of the hand, then Resh is what radiates
from the head. That is why Resh means Head, Reaching Rushing and
Radiation. Together Buker (Bet—Kaf—Resh) means “first born son”. These
letters break open Unity and signify the birth of distinction at each of
their levels.

In a similar manner Tenen has shown that all of the letters of the
Hebrew alphabet participate in this three level process that integrates the
inner world of our consciousness with the outer physical world. Mastery of
* the inner world leads to wisdom, while mastery of the outer world leads to
understanding.

12.7 Generation of the Flame-Hand Letters

Tenen proposes that the rabbinic form of the Meruba Hebrew letters can
be generated from a knot drawn on a dimpled-sphere-shaped torus. In order
to better understand this construction, let us first consider the concept of
a knot.
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(a) (b)

Figure 12.13 (a) Example of a trivial knot or “unknot”; (b) the unknot drawn with a single

Crossover.
()
.S 4SS )
Meridian ./* \ Longitude

The trefoil is a (3, 2)-torus knot.

(b)

Figure 12.14 (a) The trefoil knot, the simplest nontrivial knot, drawn as an under-over-
under pattern; (b) the trefoil knot on the surface of a torus.

The simplest form of a knot is gotten by connecting the ends of a string
together to form a loop or unknot (see Figure 12.13a) [AdamC]. In
Figure 12.13b the unknot, or trivial knot as it is called, is redrawn with a
single crossing. Since the crossing can be removed without cutting the
string, it is considered to be structurally identical or isomorphic to the
unknot. The edge of the umbilic torus is an unknot.

The first nontrivial knot is the trefoil knot shown in Figure 12.14a with
three crossings, none of which can be removed. The trefoil knot, as with
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all nontrivial knots, is basically three-dimensional. However, to represent
it schematically, mathematicians generally draw its projection in
two-dimensional space as an under-over-under pattern in which a broken
line indicates that the string passes under the over-stretched arc (see
Figure 12.14b). The trefoil map is redrawn around the surface of a torus in
Figure 12.14c. Notice that in a torus knot there are no crossovers. The
trefoil torus knot is called (3, 2), since every longitude of the torus intersects
the knot three times while every meridian intersects it twice. A (5, 3) knot
is shown in Figure 12.15. To draw this knot, place 5 evenly—spaced vertices
around the inner circle of the torus and 5 vertices on the outer circle,
directly opposite them. Connect any vertex on the inner circle with the
vertex on the outer circle displaced by 3 from it in a counterclockwise
direction.

—

N—r

Marking points on the equators.

Attach points by strands across the bottom of the torus.

Constructing a (5, 3)-torus knot.

Figure 12.15 Steps to drawing a (5, 3) knot on the torus.
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A torus knot can also be generated from a tetrahelix column by bending
a column formed of multiples of 11 tetrahedra around to a torus, as we did
for the umbilic torus. The spirals on the surface of the tetrahelix form
continuous curves on the surface of the torus in the form of (n, 3) torus
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Figure 12.16 Transition from a (10, 3) and a 33-tetrahedra column to a dimpled sphere in
the form of a braided structure.
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Figure 12.17 Creation of a hand-like structure emanating from the seed of the “fruit tree™.

knots for n, an integer greater than 2 and not divisible by 3, where n—1
is the number of multiples of 11 tetrahedra that form the tetrahelix when
n > 3 (the tetrahelix makes more than one complete turn). Two special
cases are the tri-loop (1, 3) or umbilic torus formed from 11 tetrahedra, and
the trefoil knot (2, 3) formed from 22 tetrahedra.

The transition from a (10, 3) knot to a dimpled sphere in the form of
a braided structure with three entwined strands is shown in Figure 12.16.
The three strands of this braided structure span six hand-like structures that
encompass the generic apple shown in Figure 12.17. Three hands around
the top and three around the bottom of the apple surround the seed at the
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Figure 12.18 Image of a hypersphere.

center. From one of the strands, Tenen creates the hand-like strucrure
shown emanating from the “seed” of the “fruit tree” with a protruding
spiral “thumb”. It is beyond the scope of this book to describe the spiral
component of the hand in detail. However, its projection onto the plane
can be expressed when the spiral is properly truncated, by the simple equation
r=4 in polar coordinates. This is the same spiral curve illustrated in
Figure 4.6 as part of the “eye of Horus”. The reciprocal or hyperbolic spiral
transitions smoothly from being asymptotic to a line, to being asymptotic
to a circle. Unlike the common logarithmic spirals, the reciprocal spiral is
completely asymmetrical — and this is essential to Tenen’s proposal. Tenen
also suggests that his “generic apple” or “dimpled sphere” is actually intended
to represent the three dimensional projection of the surface of a four-
dimensional sphere or hypersphere an image of which is shown in Figure
12.18. (This is also presented by Arthur M. Young in The Reflexive
Universe.)

This vortex-like structure forms the “flame-hand” from which Tenen
projects all of the letters of the Hebrew alphabet. To get some idea as to
the versatility of this asymmetric form, Tenen places it within a tetrahedron,
the simplest embodiment of symmetry (see Figure 12.19). He likens this
metaphorically to the Old Testament reference to the “light in the meeting
tent” in which the light is sometimes referred to as a “flame”, while the
tent is referred to as a “coal”. A projected image of the flame is taken in
the direction of the tetrahedron’s seven axes of rotational symmetry, giving
rise to the seven distinctly different images shown in Figure 12.20.
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The LUGHT in the TENT of MEETING
The ETERNAL FLAME :

. VESSEL
Tetrahedron - TENT

The sow
in the sKky

PROCESS - INSIDE STRUCTURE - OUTSIDE
(a} (b

TETRA-FLAME
THE LIGHT IN THE MEETING TENT

(c)

Figure 12.19 {a) The hand model, or vortex, is referred to as the “flame™; {b) the tgtrahedron
is the “tent”; {c} the combination represents the “light in the meeting tent” from Exodus.
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v 3

Figure 12.20 Flame images projected in the direction of the seven axes of a tetrahedron.

According to some scholars, up until the Babylonian exile, the Old
Hebrew alphabet — that is the proto-Siniatic/Canaanite alphabet —
consisted of 22 pictograms. During the Babylonian exile, about 500 B.CE.
a new square-form alphabet came into use. The Assyrian-Babylonian square-
form Meruba letters replaced the Old Hebrew letters in sacred usage. The
new alphabet now had 27 letters, in which five additional final-form letters
were added to the original 22. Early examples of the Meruba letters were
found at Elephantine (circa 300 B.C.E.). These letters were also very similar
to examples of the Rashi-Nachmanides style of rabbinic handwriting in use
in Islamic Spain, but somewhat different from the formalized “squared-off”
forms of the Hebrew letters used on modern Torah scrolls to reduce the
possibility of ambiguous readings. The letters in the first column of Table
12.1 were created from projections of Tenen’s hand form. Notice the
similarity to the Spanish-era rabbinic forms of the letters, and even the
somewhat distant relationship to the Elephantine script.

Tenen has gone another step with his proposal. He has found that the
names of the letters give information as to a series of hand positions in
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which the eye projects his letter generator to the form of that letter. For
example when the position of the hand is in the area of the mouth, its
projection creates the letter “peh” (PAY) which means mouth. He has also
used his models to discover letter-level coding in the Hebrew text of Genesis
in the Bible, and he feels that the sequence of letters in the Torah may
have served, through his hand gestures, as a kind of sacred meditation. He
feels that it is the hand that projects consciousness from the inner to the
outer worlds. However these ideas take us beyond the scope of this book
and my own personal knowledge base.

12.8 Some Commentary on Tenen’s Proposal

As one would do for poetry, Tenen’s proposal of flame-hand letters should
be evaluated not only on its literal meanings but on its ability to ring true
at the level of metaphor. How well does it explain sacred texts and how
does it speak to our desire to make sense out of our present world?

Although Tenen has found no explicit evidence for the use of the
hand-gesture system fot generating the letters, he has found references
that point to the use of the reciprocal spiral (circle into line) in forming
the letters, and he has found allusions to this in the so-called “Credo” of
Judaism, the Sh’'ma, from Deuteronomy, and elsewhere in ancient texts and
practices. It is well known that Orthodox Jews wear two small cubical
leather boxes with passages from the Hebrew Bible on their arms and
foreheads during morning prayers. This is described immediately after the
opening lines of the Sh’ma, and the descriptive text is what is placed in the
two boxes.

The arm-tefillin (box with scripture) is held onto the upper arm by a
leather strap, which is wound on the arm seven times, and then wrapped
on the hand to form the outline shapes of some Hebrew letters, usually
Shin, Dalet, and Yud, which spell the Hebrew word “Almighty” (a God-
name). The letter Shin also appears on the tefillin-box worn on the forehead,
and additional letters are sometimes found in the knot on the strap holding
the tefillin-box on the forehead. So, in effect, Tenen is proposing an
underlying source for the tefillin-hand-alphabet tradition, which is retained
in the way tefillin are used by observant Jews today.
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Figure 12.21 Tenen's hand figure captures the imagery of Rumi’s verse.

There is also much imagery in the poetry of the medieval Islamic poet
Rumi that could refer to a structure akin to Tenen’s hand model. Some
excerpts of Rumi’s verse follow, correlated with the geometrical images in

Figure 12.21:

Come, Come! Let us whirl about in the rose-garden. —
Let us now whirl about the grain
which no granary comprehends. —
I am like a goblet
in the circle of dancers,
turning from one hand to the other
with my story. —
Come, come, O thou, who are the soul
of the soul of the soul of the round dance.
Come thou who are the walking cypress
in the garden of the round dance.
Come thou, under whose feet is the fountain of light.
The roof of the seventh sky —
does not reach where reaches the ladder of the round-dance.
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12.9 Conclusion

Tenen’s metaphor relating the genesis of the Hebrew letters to the creation
story relates, at least on the surface, to modem theories of consciousness
and self-referential systems. In the next chapter knots will be used to
mathematically characterize self-referential systems. Similar mathematical
structures to the ones that Tenen has chosen to use for his proposal arise
in other systems related to recent research into the nature of consciousness
that is the subject of the next chapter.

Tenen’s suggestion that the ancients made use of a torus knot (“basket-
weaving”) is also suggestive of modern theories of plant growth or phyllotaxis
that we shall present in Chapter 24. The human heart is also toroidal,
wound with microscopic tubular muscles [Pes).
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13

Self-Referential Systems

Before creation a presence existed,
Self-contained, complete,
formless, voiceless, changeless,
Which yet pervaded itself with
unending motherhood.

Lao-Tse
13.1 Introduction

We humans interact with the world externally through our five senses,
and internally through our sense of consciousness and identity. Any
system capable of portraying the inner nature of man must certainly be
self-referential. Meditation and prayer are two ways of reaching inwards.
In fact the Hebrew word TE-FEE-LAH ( 1—||7j | ] ) means both mirror
and prayer. However, self-referential systems are not readily described
by mathematics due to the unavoidable logical paradoxes that arise when
such systems are modeled by the standard theory of two-valued (true and
false) logic. However, drawing on the work of G. Spencer-Brown, the
mathematician Louis Kauffman has shown that the theory of logic can be
extended by adding elements, akin to imaginary numbers, in order to resolve
these paradoxes. He has also used the theory of knots to describe the logic
of self-referential systems.

Self-referential systems will play an important role in Part Two. Fractal
patterns will be seen to be self-referential as will relationships involving the
golden mean. I will examine how patterns of number created by our minds
are encountered in our observations of natural phenomena. Do we, by some

291
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self-referential process, project aspects of our minds upon our perceptions
of the world?

13.2 Self-Referential Systems in Mathematics

In Joseph and his Brothers, Thomas Mann portrays time before recorded
history as a spiral with no beginning. We are never sure at any moment
whether Mann is referring to the Joseph or the countless Josephs that came
before him. This is an excellent model for a self-referential system.

The theory of sets is the bedrock upon which mathematics is built. All
of mathematical logic, the structure of the number system, and geometry
rests on the notion of a set. In fact, a set is an undefined object and may
naively be considered to be “a bunch of things” along with a precisely
stated rule to determine whether a given entity is or is not in the set. For
example, the set of positive integers less than or equal to 5 is the finite set,
{1, 2, 3, 4, 5} whereas the set of even positive integers is the infinite set,
{2, 4,6, 8, ...}

At the beginning of the twentieth century, most mathematicians thought
that every mathematical truth, or theorem, could be proven from a
sufficiently complete system of axioms or premises, and that the entire
structure of mathematics could be expressed in terms of sets. The
mathematician and philosopher Bertrand Russell and the philosopher Alfred
North Whitehead set out to do just this in their classic treatise on logic,
Principia Mathematica. However, the program of Russell and Whitehead
began to founder when Russell discovered a class of sets that led to what
seemed at first to be a bunch of silly sounding paradoxes. For example,
consider a mythical town in which there lives a barber who shaves everyone
in town who does not shave himself. Russell then considered the set of
people who were shaved by the barber and asked whether or not the barber
himself was in that set. If he is in the set then he does not shave himself.
But this then implies that he is not in the set. In other words if he is in
the set then he is not in the set. As trivial as this conundrum appears, it
put an end to Russell’s and Whitehead’s attempt to axiomatize mathematics

and led eventually to Godel’s proof that such a program was futile. According
to Kauffman [Kau4],
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“At first it is not clear whether the difficulty with the
Russell set is in the notion of set formation, the idea of
self-membership, the use of the word “not”, the use of the
word “all”, or elsewhere. The Theory of Types due to Whitehead
and Russell placed the difficulty in the use of self-membership,
and solved the paradox by prohibiting this and other ways of
mixing different levels of discourse.”

However, the notion of self-reference has many connections to important
aspects of mathematical and cybernetic thinking. One of the pioneers in
the study of self-referential systems was David Finsler. His work has recently
been presented by David Booth in a book entitled Finsler Set Theory [Boo2].
Self-referentiality is connected not only with the concepts of feedback,
recursion, and self-similarity, but also to those of knots, weaves, fractals,
notions of infinity, and imaginary numbers. For this reason it is of great
importance to find a place for the notion of self-referentiality in the Pantheon
of mathematics, and to find some way to extend Russell’s notion of a set
to nonstandard sets.

13.3 The Nature of Self-Referentiality

The concept of self-referentiality is very elusive and difficult to express due
to the limitations of language. Kauffman has done much to place the notion
of self-referential systems on a firm mathematical foundation, and he has
presented the following description of it [Kau2].

“What is self-reference? At least one distinction is involved

in the presence of self-reference. The self appears, and an
indication of that self that can be seen as separate from the
self. Any distinction involves the self-reference of ‘the one
who distinguishes’. Therefore, self-reference and the idea of
distinction are inseparable (hence conceptually identical).”

“We explore self-reference by examining what appears to us as
distinctions. Through experiencing self-reference, we come to
understand the possibility of distinguishing.”
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“A mark or sign intended as an indicator is self-referential. The
self is the whole space including the mark and the observer.
But the mark points, in the first place, to its own location, and
in this process becomes a locus of reference. The mark refers
to itself. The whole refers to itself through the mark. Pointing
is represented by an arrow —. The anatomy of the arrow

consists of a body, , and a barb (or mark, or pointer) >.
Together they accomplish directionality and indicate the

possibility of movement from locale to locale:

Here To Here

When we turn the arrow on itself, we achieve self-reference
with the whole as the arrow itself, and the barb and the tail as
‘parts’” (see Figure 12.12).

“The self-pointing arrow becomes self-referential only through
the agreement of an observer. Thus, it achieves self-reference
through primary (primordial) self-reference. At the same time,
the self-pointing arrow is a symbol for the condition of
observation in which the self appears to divide itself into that
which sees and that which is seen. Thus do barb and tail
appear separate although they are joined.”

“The self-pointing arrow creates a directed circle which invites
us to travel around it from observed to observer to observed to
observer... This circulation binds parts back into the whole,
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and it has the geometry of what we might call the unidirectional
circular unfolding as shown below.

> & o > > > > > ® e 9

In this unfolding, the individual arrow bent around to form a
circle, has become an ordered infinity of arrows, each
representing a particular trip around the cycle. In total, these

arrows set tip to tail and create a directed line pointing off to
infinity.”

“Self-reference is the infinite in finite guise!”

This unfolding holds the simple aspects of any infinite form. These are
invariance and self-similarity. Invariance manifests itself through the
circumstance that after many turns of the wheel it is possible to lose count
— lose the sense of difference between corresponding places on different
cycles, just as with the countless Josephs at the beginning of this section.
How long has it been? When did this process begin?

In a simple example, consider an infinite string of arrows. The invariance
can be indicated symbolically as below:

A = DOSSSSSSSOS>>. ..
Hence,

a=>a when a=>>>>>>>>>>>...

The infinite arrow a is a form that remains the same when adding a single
arrow to the left. Note that the equation, a = > a is also an expression of
self-reference, in that it describes “a” in terms of itself. And within the



296 Beyond Measure

present context, this is sufficient for the reproduction of “a” as an unending
process. Quoting [Kau2]:

“Self-similarity is embodied in the expressed fact that ‘a’
has a copy of itself within itself [as we shall see again in
Chapter 18]. This is another reading of the equation, a = > a.
How is this formal self-similarity related to our intuition of
self—within—self through introspection? I suggest that, in form,
these circumstances are identical. It is in moving through the
cycle and seeing the invariance that we come to a reflection
of the self. But note that this personal process involves the
non-mechanical aspect of integration of the parts into a whole.
It is non-mechanical because there is no way to formalize the
entire circumstance of human self-reference in a system of
symbols devoid of an observer. But who or what is the observer?”

13.4 Self-referentiality and the Egyptian Creation Myth

The concept of self-referentiality as described by Kauffman is a kind of
creation story. Form is brought into being from within itself. Let’s compare
this to Egyptian creation myths as enunciated by Lucie Lamy [Laml], a
scholar of ancient Egyptian mythology:

“At Heliopolis the mystery of the Creation is described in its
archetypal aspect. Here the name Atum is given to the One,
the unique power which will become the Creator. Atum means
All and Nothing, the potential totality of the Universe which
is as yet unformed — for first Atum must ‘project himself or
distinguish himself from the Nun, and thereby annihilate the
Nun in its original inert state.”

In one version, Atum gives birth to himself through masturbation causing
“the seed from the kidneys to come”. He then brings the twins Shu and
Tefnut into the world. Atum is thus seen as the carrier of the invisible fire
or seed, the cause of the first definition to arise from the undefined Nun.
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He then brings forth from himself the group of nine divine principles (eight
of them plus himself) which order the Becoming — the Great Ennead.

The archetypes enunciated by Atum at Helipolis are materialized by
Ptah. The Shabaka Text (710 B.C.) enumerates Ptah’s eight qualities. Thus
Ptah incarnates the primordial Eight. It is said that the Ennead, which was
the “seed and hand of Atum”, becomes the “teeth and lips of Ptah” and
gives a name to each thing, bringing it into existence. Divine principles
and qualities (the Ennead) can now “enter into all the species of things”
— mineral, plant, or animal — and become manifest through them. This is
clearly an account of Creation by the Word. As Section 12.6 showed, the
Hebrew alphabet also had the effect of bringing things into being through
the letters of the alphabet.

The primordial Eight are called the “fathers and mothers of Re” where
Re or Ra represents the principle of light. Re is often said to be the Sun.
However, according to Lamy, Re is not the light but that which provokes
the phenomenon of light. Re is called Atum-Re at Heliopolis and
Amun-Re at Thebes. The Egyptians considered numbers to have a generative
function as evidenced by the association of number to the names of the
Theban sanctuaries. There exists a hymn consecrated to Amun-Re,
constructed on a series of plays on words and on numbers. This hymn
(Leyden Papyrus 1,350) is composed of 27 stanzas and numbered with the
first nine numbers. It is another reference to Tenen’s enneagon.

13.5 Spencer-Brown’s Concept of Re-entry

Another way to view self-referentiality is through the concept of re-entry.
The philosopher, Spencer-Brown [Spe-B}, was able to redevelop the system
of mathematical logic by considering the idea of a form that reenters its own
indicational space. A space is severed or taken apart; form appears in the
process, and the form appears to enter or re-enter the very space that
generated it, a kind of creation story. According to Spencer-Brown:

“A universe comes into being when a space is severed or taken
apart. The skin of a living organism cuts off an outside from
an inside. So does the circumference of a circle in a plane. By
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tracing the way we represent such a severance, we can begin
to reconstruct, with an accuracy and coverage that appear almost
uncanny, the basic forms underlying linguistic, mathematical,
physical, and biological science, and can begin to see how the
familiar laws of our own experience follow inexorably from the
original act of severance.”

The concept of re-entry can be illustrated by a rectangle with an arrow
indicating the placement of a copy of itself at the point of the arrow. This
results, in the limit, in an infinite sequence of rectangles, as shown in
Figure 13.1.

Another example is the Fibonacci form shown in Figure 13.2a [Kau4]
which represents the infinite sequence of boxes shown in Figure 13.2b. The
number of divisions of this form at depth n is the nth Fibonacci number,
i.e., one of the numbers of the F-series: 1, 2, 3, 5, 8, .... A division is said
to have depth n if it requires n inward crossings of rectangle boundaries to
reach that region from the outermost region in the plane. Each rectangle
divides the plane into a bounded region and an unbounded region. A
crossing of the boundary of a given rectangle is said to be an inward crossing
if it goes from the unbounded region to the bounded region. In Chapter 18
we shall see that the notion of re-entry results in fractal curves.

(a) {b)

Figure 13.1 The concept of reentry: (a) a copy of a square is inserted within itself; (b) this
results in an infinite sequence of squares receding to a vanishing point.
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Figure 13.2 (a) The Fibonacci form F seen as a reentry form, the entire diagram replaces F; {b)
this results in a sequence of rectangles in which the number of rectangles at depth n follows the
Fibonacci sequence: 1, 2, 3, 5, 8, ...

Such an unending form is evident when one attempts to find the truth
value of a statement such as: “This statement is false”. If the statement is
true, then it is false; if it is false, then it is true. The re-entering mark is
asked to satisfy the equation

fl=f.

In the form of the liar’s paradox, the equation 1= f becomes f = — {,
where — stands for negation. In other words any attempt to evaluate the
truth or falsehood of f leads to an iterative pattern:

I1=TFTFTFTFTHF...
or (13.1)

J = FTFTFTFTFTFT...
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depending on the initial truth value. The symbols I and ] were first introduced
in [Kau-V] and later expanded in [Kau3]. A discussion of the standard
theory of mathematical logic will be presented in Chapter 16.
Spencer-Brown uses his notion of the “form” as an alternative to the standard
approach and an introduction to form logic is presented in Appendix 16.A.
Self-referential statements such as those in Expression 13.1 are examples of
the so-called “liar’s paradox”. They are beyond the capabilities of the
standard logic.

13.6 Imaginary Numbers and Self-referential Logic

Complex numbers z have the form of a + bi where i = \[:—f where a and b
are real numbers. The number “a” is called the real part of z and “b” is the
imaginary part. Although imaginary numbers have always been mysterious
and a bit suspect to non-mathematicians, they are part of the tool—chest of
mathematicians, physicists, and engineers and have many important
applications.

Once complex numbers are described geometrically, they are easier to
comprehend. Each point x, y in the plane can be identified with a complex
number 7 = x + iy as shown in Figure 13.3. The complex conjugate of z is
defined as 7+ = x — iy. If z is multiplied by i,

z=i(x+iy)=—-y+ix where ixi=-I.

Therefore we see that the effect of multiplying z by i is to rotate z by 90
degrees in a counterclockwise direction.

Functions such as sin, cos, log, exp are generally defined for real numbers.
However, to truly understand the inner workings of these functions, one
must extend the domains over which they are defined to all of the complex
numbers. We find that when we enter the complex domain from the
real numbers, an unseen world opens. We saw this for growth measures
induced on lines whose intersection points with a conic are imaginary
(see Section 2.6). Although the fixed points of these transformations are
not visible in real terms, they nevertheless exist in the unseen realm of
complex numbers.
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DIAGRAMS
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iZ=-y+ix

Z=X+y

Re

* .
z" =x-iy

Figure 13.3 A complex number z = x + iy, its complex conjugate z* = x — iy, and a 90 degrees
counterclockwise rotation iz.

Besides being able to enter the imaginary realm from the domain of real
numbers, one can also enter the real numbers from the imaginary by
multiplying z by its complex conjugate z* to get,

¢ =(x+iy)x—iy) = X+ yz.

Complex numbers are used to solve differential equations that describe all
areas of physics and applied mathematics. For example, in quantum
mechanics the location of a particle is determined from a complex valued
function ¥ known as the wave function of the particle. The probability that
a particle is located at a certain position is determined by multiplying ¥ by
. . * . * ..

its complex conjugate ¥~ to obtain W¥', known as the wave probability
density function. This real-valued function numerically describes observations
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of the state of the particle, while the complex form provides the formalism
to describe the wave properties of the particle and its evolution over time
by way of differential equations.

Kauffman (cf. [Kau-V], [Kau2,3]), following the lead of Spencer-Brown,
has shown that by widening the scope of logic to include imaginary numbers
offers another way to enter the realm of self-referential systems. 1 showed
above that the solution to > a =g, = f, and fl ={ for the liar’s paradox

were indicative of self-referentiality. But T(i) = i where T(x) = "Tl (since

_Tl=_—il><f:=i where i X i = —1) which shows i to be governed by a
self-referential process. In Section 2.8 the imaginary number i was
expressed in terms of an infinite process as were I and J. Kauffman
has shown that the relationship between imaginary numbers and
self-referentiality is a strong one. In fact I and ] (different from the previous
I and J) of Expression 13.1 correspond formally to a complex number (a
number of the form a + ib) and its complex conjugate (a — ib) [Kau3]. We
encountered them in Section 2.6 as the intersection points of a finite circle
with the line at infinity. The connection between complex numbers and

logic is described more fully in Appendix 13.A. Quoting Kauffman:

“Both I and J may be regarded as particular ways of viewing
an unending oscillation of T and F. In this sense, they are like
two views of a Necker cube illusion (where a point on the cube
appears to oscillate from foreground to background), and
they represent the way the process of perception splits an
apparently existent form into a multiplicity of mutually exclusive
and vyet related views. The complex numbers, a + bi and the
imaginary values | and J are the simplest mathematical forms
that take into account a context combining evaluation and
multiplicity. The imaginary Boolean values become an image
of self-reference, a first description of the multiplicity in oneness
that is a return to the self.”

Kauffman believes that it is this resonance that accounts for the
unreasonable effectiveness of the complex numbers in mathematics and
physics and he concludes, “Only the imaginary is real”.
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13.7 Knots and Self-referential Logic

Kauffman has shown that knots lead to a natural means of characterizing
the notion of self-referentiality in finite guise [Kau4]. Objects are indicated
by non-selfintersecting arcs in the plane. A given object may correspond to
a multiplicity of arcs. This is indicated by labeling the arcs with labels
corresponding to the object. Thus the mark in Figure 13.4a corresponds to
the label “a”.

Membership is indicated by the diagram shown in Figure 13.4b. Here
we have shown that a € b. The arc b is unbroken, while “a” labels two arcs
that meet on opposite sides of b. Following the pictorial convention of
illustrating one arc passing behind another by putting a break in the arc
that passes behind, one says that “a” passes under “b”.

With these diagrams it is possible to indicate sets that are members of
themselves as shown in Figure 13.5a and sets that are members of each
other, as shown in Figure 13.5b.

/c / aeb

Figure 13.4 (a) An object is indicated by an arc; (b) two arcs indicating membership.

o @,

a = fal b = fal
(a) (b)

Figure 13.5 Representation of sets that are members of themselves.
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b a b a
b = faal b =¢3

Figure 13.6 Sets may contain a multiplicity of identical members. For example b = {a, a} is
equivalent to b ={ } (the empty set).

R Ya

Figure 13.7 Knots are considered indistinguishable under the three Reidemeister moves.

As they stand, these diagrams indicate sets that may have a multiplicity
of identical members. Thus for Figure 13.6, b={a, a} and a ={ } (the empty
set since it contains no element). However, identical terms cancel in pairs
since the two loops can be topologically pulled apart. This corresponds to
the second of three ways of redrawing a knot to an equivalent knot without
cutting the strings called Reidemeister moves illustrated in Figure 13.7.

Although knots are generally indistinguishable (or isotropic, as
mathematicians say) under Reidemeister moves, Kauffman has pointed out
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Figure 13.8 The first Reidemeister move can be distinguished if the strings are considered to
be bands with a twist.

Figure 13.9 A knot representing a self-
referential set.

that the first move can be used to distinguish knots if the strings are
considered to be bands rather than infinitely narrow strings. This time
when the first Reidemeister move is carried out, the band in Figure 13.8
shows a twist which indicates the self-referential nature of the set represented
by it. In this way the knot set gives a way to conceptualize nonstandard sets
without recourse to infinite regress. Infinity has been transposed into topology
where inside and outside can equivocate through the twist in the boundary.
In knot sets we obtain the multiple levels of ordinary set theory without the
seemingly necessary hierarchy.
Quoting Kauffman again:

“This is nowhere more evident than in the self-membering set
represented by a curl (shown in Figure 13.9). Here an observer
on the curl itself will go continuously from being container to
being member as he walks along the ramp. The unknot can
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represent a nonstandard set which is both ‘not a member of
itself and ‘a member of itself’ at same time, thus resolving
Russell’s paradox.”

13.8 Conclusion

Based on the work G. Spencer-Brown and L. Kauffman, imaginary numbers
can be used to study self-referential systems. Mathematical concepts from
the theory of knots can also represent self-referential systems.

Appendix 13.A

This part is excerpted from [Kau2]. In the language of [Spe-B], I and ]
(cf. [Kaull, [Kau5]) correspond respectively to initial assumptions of
markedness or unmarkedness for f in the equation f1 = £. If we think of the
solution to f] = f as the re-entering mark &) then we see that

=)

Any attempt to evaluate the re-entry will set it in an oscillation whose
phase is determined by the initial conditions.

The two solutions I and ] correspond formally to a complex number and
its conjugate. And they can be combined to create a real value. For example,
if I and J are regarded as oscillations between markedness and void, then
IJ (the simultaneous combination of the oscillations) is always marked and
hence represents a marked state.
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DIAGRAMS
1=FT] $IABI=[-B,A)
$ $
FeiF,F] Ta(T,T)
$ %
J=[T,F]

Figure 13.A1 A diagram illustrating an extension of logic to include self-referential states I
and J in addition to T and F.

If we represent I and ] by ordered pairs
I=[F, T], J=IT, F,

then we can create a cartesian cross of real and imaginary logical values as
shown in Figure 13.A1.

Here T = [T, T} and F = [F, F] represent true and false as indicators of
a constantly true and constantly false process. The artifice of the ordered
pair allows indication of the phase shift between I and J.

In Figure 13.A1, we have also indicated an operation $ defined by

$[A, B] = [-B, Al
Thus,
$T:[—T: T]=[F) T]:I)
$I = F)
$F = [T, F] = J,

$]=T)
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and so we see that this cross of real and imaginary (I, J) Boolean values
carries the same properties as the real and imaginary numbers +1, —1, +,
—i. In this formal version we even have an operator $ corresponding to the
90 degree rotation!

In fact it is very tempting to rewrite it in the form

$$ = -,
$(A + $B) = $A + $$B = $A — B = -B + $A,
and to compare this with
$[A, B] = [-B, A] and with
la+ib)=ia+ib=ia—b=-b+ia.

Kauffman makes one further comment about the cross of real and
imaginary values in logic (Figure 13A.2).

A useful interpretation ensues if we consider the vertical axis of
Figure 13A.2 to be an axis of possibility, while the horizontal axis represents
necessity. Thus “true” and “false” are states in the domain of necessity,
while “possibly true” and “possibly false” are states in the domain of
“possibility”. According to Kauffman, if a proposition is viewed as possibly
false, then one “looks for a counterexample”. If a proposition is viewed
as possibly true, then one looks for a proof. These are very different attitudes.
The attitude of possibility is very free. The attitude of necessity is
closed/complete. Possibility opens to verification or falsification.
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Nature’s Number System

All mathematical forms have a primary subsistence
in the soul so that prior to the sensible
she contains self-motive numbers.

Thomas Taylor
14.1 Introduction

Number has always been an object of fascination to both laypersons and
mathematicians. In this chapter I will take a fresh approach to number. When
organized according to a sequence known as Farey sequence, numbers are
immediately expressive of relationships found in chemistry, physics, biology,
and astronomy. It is for this reason that I refer to the Farey sequence as
“nature’s number system”. In preparation for a discussion of nature’s number
system some general concepts are necessary.

14.2 The Nature of Rational and Irrational Numbers

According to Philolaus, “All is number”. Yet Greek mathematicians did
not use numbers to represent magnitudes. Rather number represented the
relationships between magnitudes. Two lengths were said to be commensurate
if each could be constructed from a finite number of units, known as monads,
such that a finite multiple p of one equaled a finite multiple g of the other
as illustrated in Figure 14.1 for the lengths of two and three units respectively.
This relationship corresponds to what we now refer to as the rational numbers

% or % . In this way a rational number is defined to be a relationship between

309
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e
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Figure 14.1 The proportional relation 3:2 or 2:3. Three pairs of units equals two triples
of units.

commensurate lengths represented by % where p and g can always be assumed
to have no common factors (i.e., the fraction is expressed in lowest terms)
or as we say they are relatively prime.

We saw in Chapter 3 that the incommensurability of the solar and lunar
cycles, on the one hand, and the musical scale on the other hand, presented
great challenges to ancient cultures as they sought to express their
observations in terms of number. The limitation of number to rational
numbers finally broke down in the time of Pythagoras, when it was discovered
that the side and diagonal of a square were incommensurate. These lengths
have the property that no multiple of one equals a multiple of the other. This
presented Greek mathematics with a dilemma since there was no body of
knowledge with which to represent such numbers. No adequate theory was
available until the nineteenth century when Richard Dedekind (1831-1916)
tound a way to characterize irrational numbers.

What was astounding about Pythagoras’ discovery was the way he
accomplished it. It certainly could not have been done by the means that we
used to illustrate the rationality of % . After all, the monad might be small
beyond the ability to physically construct it. The argument had to be carried
out deductively — in other words, by using pure reason. Until Greek
mathematics, the concept of a deductive proof did not exist. Pythagoras’ well
known proof that the square root of two is irrational can be found in any



Chapter 14 Nature’s Number System 311

book on mathematical foundations [Kra]. In modemn terms, rational numbers
are characterized by decimal expansions that are either finite or repeat after
some point such as 0.35 = % or 0.43252525... = % . On the other hand
irrational numbers are represented by non-repeating decimals such as
0.1011011101111....

The profound differences between rational and irrational numbers also
extend to their denumerability. Between any two rational or irrational
numbers there is another rational or irrational. Thus the set of rationals and
irrationals are both infinite. However, we shall see that while the set of
rationals is denumerable, when the irrational numbers are added, it becomes
non-denumerable. A set is defined to be denumerable if each number can be
matched one-to-one with the natural or counting numbers 1, 2, 3, 4....
Loosely speaking, we say that a denumerable set has the “same” number of
elements as the set of natural numbers. In this way the set of positive even
integers is said to be denumerable since each even integer is 2 times some
natural number. This presents us with the awkward realization that there are
just as many even numbers as positive integers and makes it clear that when
dealing with the nature of infinity, mathematics provides the only guide.

Although the set of rationals and irrationals are both infinite, the order
of the infinity for irrationals is greater and so we are justified in saying that
there are more irrationals than rationals. In fact, the rationals are sparsely
distributed on the number line as compared to the irrationals, in a way that
mathematics makes precise [Ruc]. I will show that the set of rationals are
also denumerable and leave it to Rucker for a proof that the irrationals are
non-denumerable. In the process, 1 will illustrate the way in which all
numbers arise from the pair, 0 and 1.

14.3 Number

[ will proceed to generate all numbers of the number line from the
pair -?— and % . This can be thought of as a kind of creation story in which
a rich set of relationships arise from the duality initiated by 0 and 1. My
examination of these ideas were stimulated by a conversation with the
mathematician Irving Adler [AdI1].
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14.3.1 All positive numbers of the number line are generated from
the numbers % and %. Of course % = 0, but what does % signify? It is
undefined but it can be taken to represent infinity by considering the
sequence, 1—/1—2—=2, 1/%=3, T/l—4=4,...,1/¢n=n and letting n get large while

% approaches 0.

14.3.2 Set up a number line as follows:

I
Y
1

Of— WV

14.3.3 Define an unusual kind of addition between two fractions, @, in the
manner so tempting but forbidden to children in the early grades, in which
numerator is added to numerator and denominator to denominator. In this
way the numbers O and 1 enter as “marks of distinction” in the sense of
Spencer-Brown (see Section 13.5), upon the void, i.e., %@ % = % = % Such
an “addition” always produces a number intermediate between the two
summands, referred to as the mediant.

14.3.4 Place % on the number line. This defines two intervals, [-?—, ﬂ which
[ call the left (L) interval and H, %] , the right (R). Any numbers occurring in
these intervals will be referred to as left (I} or right (r) numbers respectively.

(14.1)

— o -T
L4

Pt { et
Ol

L R

14.3.5 Two such numbers are now defined by adding the numbers bounding
the L and R intervals, i.e., %®%=% and %@—é=%. With the mark of
distinction 1 as the vantage point, let =1 since it is in the left interval
and is gotten by addition of the endpoints of the interval; by the same
reasoning, % =7,

14.3.6 Placement of % and % on the number line now divides the original
two intervals into four intervals. Let [%, %] =LL since it is the left refinement
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of interval L and [%,%]=LR since it is the right refinement of interval L.
By the same reasoning, H,%]=RL and [l,%]=RR.

N d

(14.2)

—O -
MN— 4
— e
[ I

1
LL LR RL RR 0
Any number occurring in one of these four intervals will be referred to as
either a Il, Ir, 71, or an m number, their representations begin with I, lr, etc.
So we have two notations, the L, R-interval notation and the [, r-number

notation.

14.3.7 Four such numbers are gotten by adding the endpoints of these
intervals: %, %, —32-, 3 Therefore %*: I, %=lT, %zd, and %=TT. Notice
that all additional numbers to the right of 1 are reciprocals of the ones
to the left. Therefore, in what follows we shall only consider the numbers
less than or equal to } . The numbers, 4 and £ divide the interval [% %] into

the four subintervals

(14.3)

[ '

Gl

= -

Wit -
—_

LLL LLR LRL

14.3.8 In the next iteration, to the left of % we get the additional rationals:
i :;1*—, llr=%, lrl:%, lrr=;, and this gives rise to eight intervals to the
left of %

(14.4)

—_—] 4

14.3.9 The next iteration yields eight new rationals to the left of 1 . In fact,
each new group of rationals appears in the order found in successive rows
of a mathematical structure known as the infinite Farey tree (see Table 14.1).
Each number in the table is the sum @ of the two numbers that brace it
to the left and right from above, and each number is connected to the two
immediately below it by a left branch [ and a right branch r.
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Table 14.1 The infinite Farey tree.

Row 0 1 /
Row 1 _1-/ \%

-l
e[t

3
Row 2 %/ \% %/ \%
Row 3 l/ \_2_ .3_/ \.3_ i/ \i i/ \i
5 7 8 7 7 8 7 5

Taken together, the numbers in Rows 0—4 divide the interval [%, %] into
32 subintervals. Notice there is a unique path from % to any number in
the tree. For example, to go from % to % proceed in the directions
%—%;--—)%—9% or llr which was the value assigned to £ in last section.
This sequence represents the order in which% was generated from

% and 1 by adding endpoints.

14.3.10 Notice that the nth row of the Farey tree (see Table 14.1) contains
2" rationals (starting with % as row 0). Any parent fraction % in one row
gives birth to two successor fractions Nil 5 and Nl+) 5 in the next row whose

ratio is % and whose sum is 1 (see Section 9.4). A procedure for carrying out
this transformation graphically is given in Appendix 8.A. Therefore, the
successors can be considered to be the probability of winning and losing some
event such as a game of dice or a horse race, and the parent is the odds of
winning or losing that event. Also, if a successor % is less than %, its parent
is 5—% ; if the successor is greater than %, its parent is £ ;]N . For example,
the successors of £ are 5% = % and 3 = 725, whereas the parents of

2 5 2 _2_15
fand 7 are 755 =£= 3.

14.3.11 I claim that in this way we generate all of the rational numbers.
But how do we know this for sure!? By rearranging these numbers in the
manner illustrated in Table 14.2 we are assured that all rationals are listed.
In this sequence all rational numbers in lowest terms with denominators n
or less are listed in row n, F,. Table 14.2 is intimately involved in the



Table 14.2 Infinite Farey sequence.

Nlen

- -

-

= O~ Ol

SN

—]

ol

Nlen

~jeN

—~len

—~=

Ol

5

] —t

halsl

o<

Nlen

o

— N

(o {12}

— e

—i<r

—ly

]

<

o<t

[3a'L"e}

—lN

[o (170}

—ien

—i

-y

—{\0

Ol

Chapter 14 Nature’s Number System 315

L Ll

ol e~
o

<l

Lalln

Nien

Ny
<jc~

e~

NN

L [2a)

oy~

—l<

i

—\0
—~

(= ko]

] ot

~joo
o~

e~

Nlen

v
T~

—ieN

NI
enjoo

—leny

ol

—l<r

—|

] ot

t~joo
ole~
wi\o

<y

e~

el

e~

Njen

(30’1

<t~

o

—~ley

<t

Nl
Lag' -}

..I_3

— <t
(o[-}
-

—~lo
—e~
~—~}io0
—o

O =

]yt

NS
- [}
100
ole~
wio

<y
Lo {2}
o

i~
~S
afon

Uall- -]
(2 s}
<sle~
L g =)

—ieN
A g Lo}
e~
(11"}
oo
—len
S
o~

—|<t

— )

— i~

voaut gt

O] e

] p—
S
- 1=
t~fo0
o~
o
A
|
(AN
en| <
L hen
i~
~2
e
~z
wjoo
ey
e~
Ual[=)]
Yo hand
Lalle]
7o hemy
<t
enle~
[T
cnloo
=
—~len
S
N~
Lag b
—t
NN
—jn
[ hand
—ho
—le~
~] 00
—lan
-
—f

L= L)

N N NG



316 Beyond Measure

structure of prime numbers through Euler’s function. This is described in
Appendix 14.A.

14.3.12 The modulus of two rationals, p_: and £, is defined to be
IP19z — P2q1l where | | is the absolute value. Notice that any pair of adjacent
rationals in Table 14.2 have modulus 1. For example the modulus of
% and %— in F; is

23
X
1

=[14-15|=1.

The significance of the moduli of adjacent terms in Table 14.1 will be
discussed in Section 15.5.

14.3.13 In Table 14.3 the pattern of the Farey tree is reproduced so that
the vertices are labeled with O if they are a right branch or 1 if they are a
left branch of the tree and the numbers are counted in the manner shown. In
this way every number in the Farey sequence is assigned a counting number.

Table 14.1 can be assigned a binary number (see Section 15.2 for a
definition of binary numbers). For example, % =110, which reproduces its llr
pattern if [ =1 and r = 0. Converting 110 from binary to decimal notation,
1x4+1x2+0x1=6, and we see that % is numbered 6 in the tree. As
another example, §=llrl=1101, which in binary is 1 x 8 + 1 x 4 + 0 X

2+ 1x1=13. Thus % can be found as the 13th number in the Farey tree.

Table 14.3 Binary structure of the infinite Farey tree.
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14.3.14 We see that each rational number is associated with a unique
positive integer in terms of its binary representation, and each binary
representation corresponds to some rational number. In other words, there
is a one to one correspondence between the counting numbers and rationals,
which means that the rationals are denumerable.

14.3.15 Notice in Table 14.2 that the fractions between % and % in Fg
constitute ten out of the 12 tones of the octave either from the Just scale

(see Section 3.5) or the overtone scale (Section 4.2): % =octave, 4 =

7
natural minor seventh, —35- = sixth, % = minor sixth, % = fifth, % = tritone,

% = fourth, —g— = third, % = minor third, % = natural minor third, % =
natural wholetone. Farey series have been used by musical theorists to study

systems of musical intonation [Ras).

14.3.16 Beginning with %, the sequence
UL L ey .

corresponds to the sequence,

recognized to be the overtone and undertone series of music (see Section 4.2).
The left half of this series appears at the left boundary of Table 14.1.

14.4 Farey Series and Continued Fractions

14.4.1 Consider the number % = llr. We see from Sequences (14.1) to
(14.4) that % is located in intervals L, LL, LLR, and forms the left endpoint
of LLRR and the right endpoint of LLRL. Let us associate £ with the latter
two intervals in which it appears as left and right endpoints for the first
time. Justification will follow in (14.4.12).

Let LLRL = {2,1,1] and LLRR = [2, 2]. We have counted, here, the

number of contiguous L’s and R’s in the L, R-representation. The numbers
g P
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in brackets are the indices of a compound fraction known as a continued
fraction where,

LLRL =[2,1,1] =1 and LLRR=1[2,2]=1
2+1 2+1
1+1 2_ '
1

These expressions can be written in abbreviated form as:

[2,1,1] 1

+

1 and [2,21=1 1
1 2

¥l

=1
2+

[u—

The indices have been represented in boldface and each compound
fraction is easily shown to equal %

In general the two intervals associated with each rational number are
gotten by converting from the I, r-number notation to the L, R-interval
notation by setting l<> L, r¢<> R and adding either a final R or L. By
convention, we make this representation unique by insisting that there be
no final index of 1 so that % = 12,2}

14.4.2 Given a continued fraction [2, 1, 3] what is its value? By direct
computation,
11 4

13- L1 4
2+1+3 11

In other words, lil is located in the interval, LLRLLL, and it corresponds
to the number llvll. Converting to binary, {‘T = (11011), = 27, or
number 27 in the Farey tree, located in the 4th row 12th number from
the right.

14.4.3 If the continued fraction is truncated at successive stages in its
development, the resulting compound fractions approximate the value of
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the continued fraction. These fractions are called the convergents of

the continued fraction. For example, the first and second convergents of

4
T are

Of course, the last convergent is the number itself %. What's more, each
convergent is the best approximation to the continued fraction with the no
larger denominator. In other words there is no better approximation to %
than % with denominator less than or equal to 2, or % with denominator

less than or equal to 3.

14.4.4 The convergents of % can be generated directly from Table 14.2
by either of the following two procedures:

Locate % in row Fy;. Locate % in row Fy;.
Choose 1 to the left of +. Choose 2 to the right of .
3 11 8 & 11
Locate %+ in row F; (the top Locate % in row Fg (the
of the column). top of the column).
Choose ¥ to the right of %. Choose L to the left of 2
2 g 3 3 8
Locate % in row F;. Locate % in row Fj.
Choose € to the left of 1. Choose 1 to the right of 1
1 2 2 g 3

(Note the left—right—left~... pattern) Locate % in Row F,.

Choose % to the left of

(Note the right—left—right—

.. pattern)
In this way the two sequences of convergents to %:
i 0113 4
11 1'2°3'8’11

»—AIO

Nl'—-‘
ul»—‘

correspond to the two continued fraction representations of % It is easy
to see how this procedure can be generalized to any rational fraction. Try

: 1
it for G
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14.4.5 There is an easy and direct way to generate all of the convergents
of a continued fraction from its indices. Let me illustrate the method for

(2,1, 3]

a. Write out the indices. The first convergent is gotten by inverting the first
index (i.e., 2)

N N

b. The numerator of the second convergent is the second index. To get the
denominator, multiply the denominator of the first convergent by the
second index and add 1. For example,

21
11
23
c. If there are any further indices, multiply the index by the previous
numerator and add the numerator before; the denominator is gotten by

multiplying the index by the previous denominator and adding the
denominator before. For example,

213
114,
2311

It is important to note that the modulus between successive convergents
is always equal to 1, e.g., [(4 x3)—(11 x1)| = 1.

14.4.6 To make sense out of these convergents requires us to interpret the

continued fraction as a sequence of left and right intervals. For example,

=[2, 1, 3] = LLRLLL where f-*f is included in the sequence of interv;lls
-L, {LL}, {LLR], LLRL, LLRLL, [LLRLLL]. The intervals with the maximum
number of consecutive L’s and R’s have been placed in brackets; these
always form a set of nested intervals (the later intervals inside the earlier

ones) in which the convergents, marked by arrows, alternate as left and
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right endpoints. For example,

11 12 5 4
Tl 2oz ) —y T |
32 35 14 11
LL LLR LLRLLL

where the convergents are indicated by arrows.
These nested intervals are shown below.

4

| = Hr'

a n
Ll Ll

]
1
4

L
L
1
3 11

N ==

[
T
el
14

14.4.7 If I now have a fraction such as %, how do I write it as a continued
fraction? To expand %, or for that matter any rational number, as a

continued fraction,

a) write it as the inverse of an improper fraction, i.e., Tl_lﬁ , (if the number
is already an improper fraction go to Step b).
. 11 . o
b) write 7 as a mixed number and replace it in a):

c) repeat Steps a) and b) for % to get:

1 = [2, 1, 3].
2+1

1+

| -

14.4.8 This procedure is equivalent to a process known as the the Euclidean
algorithm which is based on the familiar division algorithm. To divide a by d
we get a quotient q and a remainder r:

qRr
dla or a=dg+r for 0<r<d.
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Let’s apply the Euclidean algorithm to the fraction Iil

4 u
a. Invert {7 to get .

b. Apply the division algorithm to 14—1:

11=4x2+3, ie.q=2and r, =3.
c. Apply the division algorithm to %:
4=3x1+1, ie,gg=1landr, =1.

d. Apply the division algorithm to %:

3=1x3, ie,g3=3and r; =0.

e. Since the remainder in the last step is O the process ends. The indices
of % are the sequence of quotients [q1, 42, ¢3] = [2, 1, 3].

14.4.9 The indices tell how to steer in Table 14.1 from s or T along a

zigzag path to the rational number of interest. For the 1nd1ces [2,1,3] = ” ,
begin in the 2nd row of the table (Row Q) with % directly to the right of
%. Move down 1 row to 3 directly to the left of 1 . Then move down 3
rows (Row 4) to ﬁ, the number dlrectly to the nght of 1 . This procedure
begms wnth for ratlonal less than 1 7 such as ﬁ For mdlces {1,2,3] =
10, begin in row 1 w1th +. Then move down 2 rows to l directly to the
left of 1 . Then move down 3 rows to '16 directly to the rlght of 2 . Since
110 is greater than %, the procedure begins with { .

14.4.10 In general, any number a on the number line between, n and
n+1 can be written as the continued fraction:

o=[na,a,a..]=n+1
(11+1
a2+1

as
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or abbreviated as,

Here n refers to the number of R’s at the beginning of the L, R-sequence.
If the sequence begins with an L, then n = 0 and we shall omit it and write
the continued fraction as [a;, a;, a3, ...] where the a; are the indices. This
always represents a number between 0 and 1.

14.4.11 Consider the decimal representation of a number between O and
1 gotten by randomly choosing its digits. Appendix 14.B proves that for
such numbers, on the average, the proportion of indices in their continued
fraction expansions that are odd are 0.69314... while the proportion that
are even are 0.30685... the difference being 0.38629... [Adam1], a number
related to the “little end of the stick (LES)” problem (see Section 9.7). For
a random fraction, on the average 50% of the indices are 1. Among the odd
indices, the fraction that are 1’s is 0.72134... while the fraction that are
odd numbers other than 1 is 0.2786..., two other numbers related to the
LES problem whose ratio is again 0.38629.... Malcomb Lichtenstein [Lich]
has verified this theorem by generating random numbers on a computer and
computing their indices. He also did this for the digits of &. He discovered
that, indeed, 50% of the indices equaled 1.

14.4.12 In Section 14.4.1 we saw that rational numbers can always be
represented by sequences of L, R-intervals and that each rational number is
the left and right endpoints of a pair of intervals related to the two continued
fraction expansions of the number. For example, we have seen that % lies
in the sequence of intervals — L, LL, LLR, and it is the right endpoint of
LLRL and the left endpoint of LLRR,

LLRR

o = —[—

i —
o= ==

LLRL
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Next, interval LLRL divides into LLRLL and LLRLR with % the right
endpoint of the latter; LLRLR divides into LLRLRL and LLRLRR with %
again the right endpoint of the later interval. Continuing in this way, we
find that % is the right endpoint of the sequence of intervals,

—_—
LLRLRRR..R, for all n.

Likewise, we find that % is the left endpoint of the sequence of intervals,

r—L———ﬁ
LLRRLLL..L for all n.

Thus, the intervals contract upon % from the left in the first case and from
the right in the second. They are the closest rational numbers to the left
and right of % in successive rows of the Farey tree. These series of intervals
can be translated directly to continued fractions. Just count the number of
contiguous R’s and L’s. For example,

——
LLRRLLL..L=1

—_—
LLRLRRR..R=1 1 1 11 1
2+2+ n

1
2+ 1+14n

As we take n approaching infinity, we find that the intervals converge upon
£=[2,1,1]and £ =[2,2]

In general, any rational number located in the infinite Farey tree
(Table 14.1) at the location given by the L, R-sequence — can be represented
by two sequences of intervals

LRRR...R and — RLLL...L. (14.5)

This accounts for the two continued fraction representations of rational
numbers.

14.4.13 In this way we can generate all of the rational numbers. But what
about the irrationals? Irrationals differ from rationals in that their infinite
strings are unique, and correspond to nested intervals of width decreasing
to 0. All infinite L, R-strings other than Series (14.5) represent irrational
numbers. For example, LRLRLRLR... = [1, 1, 1, ...], which is abbreviated
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T : 1 1 2 3 5 8
as [1], results in the number sequence 10 70 30 %0 3 ... and the

1 ]
corresponding sequence of nested intervals [$ l],[%,%],[%,%],[%,%] penen

Sloo € 17

=

]
>
8

e D

2
3

W

This sequence of numbers and nested intervals approaches % where

T = # = 1.618..., the golden mean, and has the continued fraction
expansion,

111 1.
I+1+1+1+4---

Each of the rational numbers in the approaching series to % is the best
approximation to % with no larger denominator.

Also note that RLRLRLRL... = [1;1, 1, 1...], referring to the number

line, gives the approaching sequence: 1, %, % , % , % ,... to the golden mean

1. We also see that t = RLRLRL... = R + LRLRLR... =1 + %

14.4.14 1 refer to any continued fraction whose convergents form a set of
nested intervals of the form ---- LRLRLR... after some initial sequence as
a noble number and symbolize it by 1. When noble numbers are multiplied
by 360 degrees, they yield special angles related to the growth of plants
known as divergence angles. These angles describe the placement of florets
on the surface of a plant such as the florets that result in the spiral whorls
of a sunflower. They will be discussed in Chapter 24. For example, the
irrational number,
- 1

LLRLRLRL...=[21]==
T
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PHYLLOTACTIC PATTERNS
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Figure 14.2 A global picture showing the relationship between Farey series and divergence
angles. Each 0 < 7S % corresponds to an angle 360 x 12 degrees. Number pairs on the edges
refer to phyllotaxis numbers discussed in Chapter 24.

is the most prevalent noble number, and it leads to the angle 1—620 = 1375

degree The next most important angle is LLLRLRL... = [3, 1] which, when
multiplied by 360 yields 99.5 degree. The next angle in importance is
LLRRLRLR... = [2,2,1] and gives rise to 151.1 degree. In fact it can be
shown that all noble numbers can be represented by the simple formula

[Mar-K],

_both7
qo+qi7T

TG (14.6)

P P

where « o 2re any pair of neighbors in Table 14.2 (i.e., they have

modulus 1). Successive convergents beyond %s— and %:— are found by
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zigzagging down the Farey tree one row at a time, % = 2—2@%, 2—; = 2—1
2

® £ etc. For example, corresponding to 2 and 2, the noble number,
6@ 12

5
T = 52;522 =[2,2,1], results in the unique zigzag series of convergents: %, % ,

3 1L
120 17 297 ***°

14.4.15 A global picture of how each of the noble numbers leads to a
unique divergence angle is shown in Figure 14.2. Notice that % lies at root
of this tree, and each fraction when multiplied by 360 degree yields an
angle between O degree and 180 degree Only the half of the Farey series
between % and % is needed, the other half corresponds to divergence
angles from O to —180 degree corresponding to spiral whorls in the opposite
direction.

Beginning at any fraction in Figure 14.2, a divergence angle
corresponding to one of the noble numbers is obtained by zigzagging left
and right through successive branches of the Farey tree. These sequences
correspond to the evolution in the growth of a plant. This hierarchy of
Farey numbers is observed in many physical phenomena, and we shall have
more to say about it in the the next section and in Chapter 24.

14.4.16 The numbers in each row of the infinite Farey tree of Table 14.1

can be pictured on an x, y-coordinate system as shown in Figure 14.3 where

x = Numerator and y = Denominator. Notice that the points, when

connected, take the form of “flames reaching towards heaven” [Adaml].

Also notice that the leading points of the flame in each row correspond to
2 3 5 2 3 5

the fractions %» 5%, 3+ and % 5y 35 13-+ the convergents —;— and

?12‘ where 7 represents the golden mean.
14.5 Continued Fractions, Gears, Logic, and Design
14.5.1 The subject of continued fractions can be elegantly pictured by

a mathematical structure known as Ford circles (cf. [Radl], [RadZ]. Each
rational number % is represented as a circle or “gear” with center at x
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INFINITE FAREY TREE FRACTIONS
MAPPED ON CARTESIAN COORDINATES

18 —

9 — N=4

N L U O I I O O
6 7 8 91011121314151617 18 19 20 21

- ]
N —
w —
> —

Figure 14.3 Numbers from the Farey series pictured as “flames reaching to heaven”. The
fraction = is graphed as point (p, g) of a Cartesian coordinate system. Golden mean convergents
are peak values of the flame.

coordinate = %, y-coordinate = 2—,1(1, and radius equal to ﬁ In this way

the circle of each fraction is tangent to the x-axis and no two circles cross,
as shown in Figure 14.4. However, two circles are tangent (“kiss”) when
their modulus equals 1 in the sense of Section 14.3.12. For example, the
zigzag pattern of circles marked 1, 2, 3, 4 represent the sequence of rationals:
% ) %, —% , % ... circles that are approaching % Notice that successive pairs
in this series have modulus 1 and that the circles form a kissing sequence.
For any number, its sequence of convergents always form a kissing sequence
of gears. Although we have been using the term gear in a figurative sense,
any family of kissing circles actually represents a series of compatible gears

in the sense that their teeth can mesh with each other (see Appendix 14.C).
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0.5

Figure 14.4 A sequence of Ford circles. Each Farey fraction % is represented by the center of
a circle with coordinates (% ,#) Farey pairs with modulus 1 are tangent (“kissing circles™).

The sequence of circles labeled 1, 2, 3, 4 represent fractions: % , % , % , % from the Fibonacci

series.

14.5.2 Notice that if the two golden mean sequences: LRLRLR... and
RLRLRL... are extended to double sequences: ...LRLRLR... and
...RLRLRL... they are identical to the two imaginary numbers I and J
introduced by Kauffman to represent the extension of Boolean logic to
self-referential systems (see Section 13.6 and Appendix 13.A). For that
matter, any sequence of the form: LLRRLLRRLL... or LLLRRRLLLRRR...
etc. can be seen to be self-referential. Each of these numbers corresponds
to a continued fraction with 1, 2, 3... or n down the diagonal, i.e., [7] (see
Section 22.10). For n = 1, this results in the % It is only fitting that the
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case of n = 2 is called the silver mean. The others are called nth silver means
(see Chapter 22). We have seen in Chapter 7 that [1] and [2] are important
to the study of architectural proportion.

14.5.3 If L is represented by the symbol d and R by b then LRLRLR...
represents the pattern, ...LRLRLR..., or,

...dbdb1dbdb... where M =Mirror.
M

Compare this with the pattern for LLR, i.e., ...LLRLLRLLR..., or,
...ddbddbddb....

The first has mirror and translational symmetry where a mirror is placed
between each pair of letters and each pair of symbols comprises a unit of
translation. If the pattern is reflected in a mirror it replicates itself; the
pattern is also invariant when translated through a pair of symbols. It is not
surprising that a self-referential system has mirror symmetry. The second
pattern has translation but no mirror symmetry. These two kinds of patterns
represent all of the line symmetries [Kap3]. Only the golden and silver means
have mirror symmetry (are self-referential), the sequences formed by all
other irrationals have translational symmetry only.

14.6 Farey Series and Natural Vibrations

The Greeks spoke of the harmony of the spheres in a kind of metaphorical
way. Plato felt that an understanding of the structure of the universe lay
within the grasp of the human mind, if only humans could think about it
in the correct manner. As we saw in Chapter 5, Kepler actually went so far
as to attribute a musical phrase to each separate planet and to the ensemble
of planets as they whirled about the sun. Modern science has shown that
Kepler’s ideas were not valid as he stated them. Yet scientists have recently
been reporting phenomena in which the vibrations or oscillations of complex
chemical reactions, quantum effects, vibrations of the beating hearts
of chicken embryos, the variation in the intensity of light from binary
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Figure 14.5 Number of asteroids plotted against distance from the sun (in units of Jupiter’s
orbital period).

stars, gaps in the asteroid belt, as well as the musical scale, and many
other phenomena can be read directly from the Infinite Farey Sequence
(cf. [Bakl], [Adaml]).

The distribution of catalogued asteroids at various distances from the
sun [Pet] are recorded on the graph shown in Figure 14.5. According to
Kepler's third law, the distance from the sun of an orbiting body depends
only on the period of revolution; the greater the distance from the sun, the
greater the period of revolution. The distance from the sun in Figure 14.5
is reckoned as a fraction of the period of Jupiter’s orbital period. It is a
remarkable discovery that there is an absence of asteroids with the following
simple orbital periods, %: %, %, %, —5-, %, %, %

Checking these fractions for unimodularity in the sense of
Section 14.3.12, we see that all of them have modulus 1 and can be found
as adjacent values of rows Fg and F7 of Table 14.2. Then we invert each
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of the fractions to get x-values %, and use the formula # to get the
y-values, i.e.,

x - values: 1

’o—o W |~
N = o
o Wl
(o3 ST RN
o W4

E]
2
y-values: 2 8
At each of these points a Ford circle (see Section 14.5.1) can be drawn
with a radius of y units. Adjacent circles will then be tangent to each other

and to the x-axis.

Without going into explanations of a quantum phenomena known as
the Fractional Quantum Hall Effect (FQHE) [KLZ] or oscillating chemical
vibrations known as the Belousov—Zhabotinsky Effect (BZ) [Hal], let us look

at the observed resonant frequencies of their vibrations.

(98
—
o
-J
—
[
—
(9,1
[om—s
\O
(o)
W
N

With the exception of % the other FQHE fractions appear in row Fy; of
Table 14.2 with modulus 1 between adjacent fractions. As for the BZ
11 14 17

reaction, all fractions except: [z, {5, 35 appear in row Fy). Furthermore,

3

0 and ;3; as follows: % is the mediant

the exceptions can be derived from

of TST and %, ie., % ® % = %, % is the mediant of % and %, while %
is the mediant of % and %

Why is it that the Farey series is a kind of “book of nature”? In
Chapter 25 we shall see that, to some degree, this can be explained by
an important phenomenon know as mode locking and a mathematical
structure called the Dewil’s staircase. Through the Devil’s staircase, the Farey
series will be shown to define a hierarchy of rational numbers in which
numbers higher in the Farey table are more “stable” in some sense than
lower numbers, e.g., % is the most stable of rationals since it is highest in
the table [Kap14].

Table 14.4 records the continued fraction values for FQHE and BZ.
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Table 14.4 Resonant values
of the fractional quantum

Hall effect.

FQHE BZ

7 1l 5 02l
£ 113 3 [1211)
3 4] & 1212
3 n3) 4 pa
3 2 & (1214)
2 nuy 3T nas
Lz 5 ney
2y

What is involved here? This appears to be a sorting mechanism akin to the
way electrons are filled in the outer shells of atoms. When I present, in
Chapter 24, the manner in which patterns of pine cones, pineapples, and
the florets of a sunflower organize themselves, a similar sorting mechanism
will be seen.

14.7 Conclusion

Number can reveal information about the natural world from quantum
phenomena to that of the universe. Just as number provides a framework for
patterns of plant growth, we can uncover the secrets of number only by
holding it up to the light in the proper way. Natural phenomena express
themselves through number itself without the need to measure. Observation
and measurement succeeds only in verifying what was already present within
number itself.
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Appendix 14.A Euler’s y-Function

The jump in the number of rationals from row n— 1 to row n of Table 14.2
is computed by Euler’s y function:

1 1 1
7(")=”[1_E](1_5{)(1_E}" (14.A1)

where py, py,... are the prime factors of n with no repeats. In general, this
jump is greatest when n is a prime number, i.e., it is divisible by only itself
and 1. When n is a prime, clearly n— 1 new rationals are added to the
previous row, %,%, - "n;l . For example, if n is the prime number 23,
Equation (14.A1) yields, ¥(23) = 22. However, if n =24 =2x2 x2 X3,
then the prime factors of 24 are are 2 and 3 and,

Y Rt
y(24)—24(1 2)(1 3) 8.

Thus, F33 jumps by 22 new members while F, increases by only 8: %4,

2 11 13 17 19 23
240 240 740 40 240 and 5.

So we see that the Farey sequence is intimately connected with prime
numbers. The 19th century mathematician J.J. Sylvester discovered a formula,

5
25°

3”%1, that approximates the total number of rational numbers in the nth row
of the Farey sequence or |F,| (or F, for short) as n — . Now we can
determine the probability, P, that any two randomly chosen integers are
relatively prime. Since all fractions in the Farey sequence have relatively
prime numerators and denominators, all we have to do is compute the total
number of fractions with denominator less than or equal to n, T, regardless
of common factors, and the probability that a pair or integers less than or
equal to n is relatively prime is:

P, =~ . (14.A2)

To compute T, list the fractions with denominator equal to n.
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Forn=1 %;
—972.0 1.
n=2:7,73;
=3.90 1 1.
n= 3 30 30 30
—-4.90 1 2 3,
n - 4 - 4 b 4 3 4 ’ 4 ’
.etc.
+1
We see that T, equals the nth triangular number or n(nz ), e.g, Tqg =
4 x % = 10. From (14.A2) we find that,
E, 6n2 6
B=—"=
T, mnan+l) n?(1+1)’

and as n — o, P = nz = 0.6079.... So in an asymptotic sense, about 61%

of the number pairs are relatively prime.

The relationship between Farey sequence, prime numbers, and the Euler
function may be connected with recent research on the spacing of energy
levels of Hydrogen in a magnetic field (cf. [Berr], [Gut]).

Appendix 14.B The Relation between Continued Fraction Indices
and the Little End of the Stick Problem

Gary Adamson [Adam1] has shown that the frequency in which indices of
continued fractions appear is related to the “little end of the stick problem”.

Section 14.4.7 described a procedure to convert a proper fraction x
to a continued fraction. This amounts to computing % mod 1. (See
Appendix 23.A for a discussion of mod.) In other words, invert the fraction,
extract the integer part and discard the fractional part. The integer part is
the index of the continued fraction. Repeat this operation on the fractional

part of the number. It is easy to see that if x is between 1 and 1 (an interval

of length %), % mod 1 (i.e., the fractional value of %) yields an index of

1; if x is between % and % (an interval of length %), the index is 2;
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between ;l; and —;— (an interval of length 1—12 ), the index is 3; etc. Therefore
the unit interval is subdivided into intervals corresponding to the following
lengths and indices:

1 2 3 4 5 6

_l_+l+i+L+_1_+L+...—1 (14B1)
2 6 12 20 30 42 ’ :
Next we examine the series for In 2 (where In is the abbreviation for log,).
It is shown in advanced mathematics textbooks that,
1 1 1

m2=1-141_1,1
3 45

1 1
—+—....
6 7
Grouping these by pairs, we get

1 1 1
s S :
2 12 30 (14.82)
which are alternate members of Series (14.B1), being all of the odd terms.
Series (14.B1) is represented graphically within the unit square of Figure
14.B1. The white area in the unit square equals the sum of the odd terms
in Series (14.B1). Therefore, using calculus to compute the area under the
1-x

hyperbolic function y = =X,

X

White Area = Odd Indices = In 2 = 0.69314...,
Black Area = Even Indices = 1 — In 2 = 0.30685....

Figure 14.B1
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In other words, the probability of getting an odd continued fraction
index is 0.693... and for an even index, 0.306... (the difference being
0.38629...). Now look at just the odd indices. The portion of the white
area to the left of the dotted line in Figure 14.B1 equals % the area of the
unit square and represents the probability that indices equal 1. As a
percentage of the white area, this equals 0.7213..., which represents the
probability that an odd index is 1. The white area to the right of the dotted
line represents the probability that odd indices are other than 1. As a
percentage of the white area this equals 0.27865.... Therefore, these
probability sets match our Little End of the Stick Problem (see Section 9.4)

where we showed that

Long end of the average stick = 0.72134..., and
Short end of the average stick = 0.27865...

with the ratio being equal to 0.38629. So we see that these numbers arise
in many different contexts.

Appendix 14.C “Kissing” Gears

Each rational number % can be represented as a Ford circle or gear. When
the modulus of two fractions equals 1, the corresponding Ford circles are
tangent. These are referred to as “kissing” circles or gears. Consider the
1 3 5 8 : 1

Ty % 8 G approaching . ;

In Figure 14.C1 we see a pair of gears corresponding to ¢ from this

sequence of kissing gears :

sequence. Gear 1 has a radius 3 units and has three teeth and three
indentations or slots numbered : 0, 1, 2, while gear 2 has a radius of 5 units
and has five teeth and five slots numbered: 0, 1, 2, 3, 4. Each tooth of a gear
with n teeth and radius n units spans a length of m units since,

circumference 2nn .
X number of teeth=""—-=m7 units.
n

Tooth length=

Since the teeth of gear 1 match the slots of gear 2, and vice versa, the
gears mesh. We find that as gear 2 turns counterclockwise through 3 complete
revolutions, gear 1 turns clockwise through 5 revolutions. Alternatively,
hold gear 2 stationary, and dip tooth O of gear 1 into a red dye and place
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KISSING GEARS

2mW=5

ES =2

10

Figure 14.C1 Meshing gears. Five clockwise rotations of a 3-tooth gear produces three
counterclockwise rotations of a 5-tooth gear.

it in slot O of gear 2, marking the slot with the red dye. As gear 1 rotates
clockwise, the next slot of gear 2 that is marked by the red dye will be slot
3, and then, after another rotation of gear 1, slot 1, followed by slots 4 and
2, before the marked tooth returns to its original position after making five
complete rotations. Whenever, the pair of tooth numbers (3 and 5 in this
case) are relatively prime (both divisible by only 1) each slot of gear 2 will
be marked by the dye, otherwise there will be unmarked slots. The movement
of the marked point traces a star pentagon {%} (See Figure 24.9a for a



Chapter 14 Nature's Number System 339

diagram of {%} ). During one rotation of gear 1, the marked point progresses
through an angle of %x 360 degree about the circumference of gear 2, an
approximation to % % 360 degree.

The same holds, in general, for any other kissing sequence {%}, the
continued fraction convergents of o Gear 1 rotates Py times clockwise
while gear 2 rotates Q) times in a clockwise direction. During a single
progression of gear 1 about gear 2, gear 1 turns through an angle of —3‘7 X
360 degree on the circumference of gear 2, where % approximates the
irrational number a. The sequence of turns follows the sequence of vertices

of star polygon {%} (See Section 22.5 for a discussion of star polygons.)



15
Number: Gray Code and The Towers of Hanoi

God made the integers;
all else is the work of man.

Leopold Kronecker

15.1 Introduction

In the last chapter rational numbers were expressed as continued fractions,
and each rational number was related to an integer expressed in binary
notation. A mathematical structure known as Gray code gives another way
to relate rational numbers to integers. In this chapter, I will explore Gray
code and its relationship to an old puzzle known as the Towers of Hanoi.

15.2 Binary Numbers and Gray Code

Any positive integer (i.e., counting number) can be represented in terms of
the numbers 0 and 1. In the binary system numbers are represented by a
kind of “decimal” system based on the number 2. In this system any integer
N is represented by N = (a,a,_;...a3a140); where

N:aﬂx2"+an_1x2"_1+__.+az><22+a1><2+ao
and ag, a;, d,..., a, can be either O or 1. For example,

(11010); = 2+ 8+ 16 = 26.

340
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Table 15.1 Rational fractions, Gray code, and the Towers of Hanoi.
Tower of Hanoi
Cont. Frac. Positions

N  Binary Modularity Gray +0 Sequence Indices Fraction Pegs A B C
0 0 00 [0} 0  (Start)
1 1 10 @ 3 1
2 10 11 0 n2 42 12
3 11 10 0 Bl 3 1/2
4 100 110 0 w3 3 3012
5 101 11 0 a2 2 1 32
6 110 101 ©0 22 % 1 23
71 100 0 4 123
8 1000 1100 0 n4 4 123 4
9 1001 1101 0 22 3 U3 14
10 1010 1111 0 L1120 3 2 30 1/4
11 1011 1110 0 IBEE] RV 3 4
12 1100 1010 0 31 2 1 3/4
13 1101 1011 0 212 3 2 1 34
14 1110 1001 0 B2 2 1 2/3/4
15 1111 1000 0 51+ 1/2/3/4
16 10000 11000 0 s 2 51/2/3/4
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Table 15.1 (Continued)

Tower of Hanoi
TOH Cont. Frac. Positions
N  Binary Modularity Gray +0 Sequence Indices Fraction Pegs A B C

17 10001 3 11001 0 1 32 I 1 5 2/3/4
18 10010 5 11011 0 2 g £ 25 34
19 10011 3 11010 0 1 1231 1 12/5  3/4
20 10100 7 11110 0 3 LL3 3 1125 4
21 10101 3 it o 1 L &3 25 14
22 10110 5 11101 0 2 22 L o2 5 1/4
23 10111 3 11100 0 1 L4 3 123 5 4
24 11000 9 10100 0 4 4 & s 4/5

25 11001 3 10101 0 1 2221 & w3 1/4/5

6 11010 5 10111 0 2 2112 & 3 145 2
27 11011 3 10110 0 1 2131 £ 3 a5 112
28 11100 7 10010 0 3 B3 345 12
29 11101 3 10011 0 1 B2 & 1 345 2
30 11110 5 10001 0 2 42 3 1 23/4f5

31 111 3 10000 0 1 6 1+ 12/3/4/5
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The integers from 1-31 are listed in the first column of Table 15.1.
However, the binary system has one disadvantage. Notice that more than
one digit changes its value between successive numbers. For example, integer
3 equals binary 11 while integer 4 equals binary 100, a change in the units,
2’s and 4’s places. Gray code is a system which avoids this problem [Gard3].
The numbers 1-31 are represented in column 4 of Table 15.1 in Gray
Code. The sequence of numbers is organized so that only a single digit
changes its value from one integer to the next, and this change occurs in
the least significant digit to give a number not already listed. Column 5 of
Table 15.1 indicates the Gray code position in which this change occurs
(this is also the binary position in which a 0 changes to 1). If the number
of I’s in Gray code is even, then the next number replaces the 0 with a 1,
or 1 with O in the last place; if the number of 1’s is odd then change the
Otoal,orl to0 in the place to the left of the rightmost 1 to get the next
number. For example, integer 14 equals Gray code 1001 which has two 1’s
(even). Therefore integer 15 Gray code 1000 (change from 1 to O in the
last place). Integer 13 equals Gray code 1011 has three 1’s (odd). Therefore
integer 14 equals Gray code 1001 (the 1 next to the rightmost 1 in 13 has
been changed to 0).

Note that the Gray Code numbers in Table 15.1 are organized in blocks
of size: 1, 2, 4, 8,..., 2" with the number of digits equal to n + 1. In this way,
each Gray code number is uniquely associated with a decimal number. Also
notice that each block reflects the digits of the previous block as in a mirror
with the exception of the leading 1 or 0. For this reason the sequence is
sometimes referred to as reflecting Gray Code. Figure 15.1 recreates the Gray
Code as a design. This design is a template for recreating Gray Code up to
7 digits. To read this wheel, the black areas represent 1’s, while the whites
are 0’s. In the outermost circle each black area and space represent a pair
of 1’s and 0’s. Gray code numbers are read radially from the innermost
black area to the outer ring. Reading clockwise from the top, the first
number is 1 the next number is 11, then 10 and 110. In this way the Gray
code sequence listed in Table 15.1 can be reconstructed. In Appendix
15.A, instructions are given for changing binary to Gray Code and Gray
Code to binary.
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Figure 15.1 Gray code design.

15.3 Gray Code and Rational Numbers

I will now correlate each Gray code number with a rational number
from the Infinite Farey Tree represented by its continued fraction (see
Section 14.4) by using the following set of deflation rules:

(a) Add a O to the end of the Gray code number, as shown in column 5
of Table 15.1. This insures the uniqueness of the continued fraction
representation by making the last index greater than 1 (see (14.4.1)).

(b) Then, let 1 — 1,

0 -2,
100 — 3, etc,,
and proceed from left to right in the Gray code to determine the
sequence of continued fraction indices, e.g. Integer 24 equals Gray code
10100. Add a zero to get,
1

101000=(2,4]= =
12,41 2+1

+|
NoJ =N

Try this for other Gray code values listed in Table 15.1.
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Figure 15.2 Adamson’s Continued Fraction Wheel maps Gray code to Farey sequence. Read
the sequence of 1’s and 0’s outwards from the center to each fraction to get the Gray code
equivalent.

Gary Adamson illustrates this mapping of Gray Code to the Infinite
Farey Tree with his Continued Fraction Wheel shown in Figure 15.2. Each
ring of this Gray Code wheel corresponds to a row of the Infinite Farey
Tree (see Table 14.1). The corresponding Gray Code is found by reading
the sequence of 1’s and 0’s outward from the center in a straight line to the
desired fraction. For example, a straight line from the center to the arrow
yields 1000111 for which the corresponding continued fraction is found by
adding one zero, i.e., 10001110 =10001110=1[4,1,1,2] = 2%

The continued fraction can also be derived from the binary
representation. As an example, Gray code 1000111 can be converted to
binary 1111010 as shown in Appendix 15.A and directly translated to
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[4, 1, 1, 2] by the method described in Section 14.3.13, i.e., duplicate the

last digit and count contiguous groupings of 1’s and 0’s, e.g.

1111 01 00
4 11 2.

Referring to Table 15.1, the following observations can be made about
the indices of the continued fractions:

a) The indices of the nth block sum to n+1 and represent all of the
ordered sequences of indices from 1 to n+ 1 with final index greater
than 1, e.g., the indices of block 3 sum to 4 : [1, 3], [1, 1, 2], [2, 2], [4].

b) The convergents of % are found approximately one-third down the
block and have indices of all 1’s except for a final 2; the convergents of
;17 are found approximately two-thirds down the block and have indices
of all I’s except for an initial and final 2. These two sets of indices are
among the most dispersed of all continued fractions in that block. For
example, for integer block 8-15, L%XSJ =2 and L%XSJ =5 where Lr_‘

is the notation for “the greatest integer less than 7. Therefore the

1
T

8+2 =10 and 8 +5 = 13 where -g— =12,1,2] and %: [1,1,1, 2], the

two most dispersed continued fractions among positions 8—15.

1 . .
convergents of + and 7, % and 2, are positioned at integer values

15.4 Gray Code and Prime Numbers

Gray Code is intimately related to prime numbers. In fact, to find the
integer corresponding to a Gray code number, take any Gray code number
and delete the first “1” starting at the left and replace the “0’s” with the
prime number from the sequence 2, 3, 5,7, 11, .... The integer associated
with this Gray code number is the product of these primes. Thus, 11010
becomes,

2331 _39.91
1010
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Figure 15.3 Adamson’s Prime Number Gray Code Wheel maps Gray code to numbers composed
of prime factors with no repeating primes. The prime factors of any number are located at the
positions of the zeros of its Gray code equivalent.

Adamson’s Prime Number Gray Code Factor Wheel is shown in Figure 15.3.
This wheel makes use of the Fundamental Theorem of Arithmetic which states
that any positive integer z can be written as a product of its prime factors
b1, b2, D3s ..., each raised to the appropriate power 1y, 12, 13, ...,

x=p b7 Py -ee -

The Factor Wheel considers only integers represented by primes to the 1st
power, i.e., the r’s are all 1. The probability that a positive integer has no
repeated primes can be shown to be identical to the probability that two
integers are relatively prime. Appendix 14.A shows that this probability is
approximately equal to 61%.
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In this wheel each ring of 2" units is composed of the product of various
combinations of the products of the first n primes, 2x 3 x5 X% ... X p, (the
highest prime for each row is indicated by the p radius). For example, all
numbers in the circle labeled 5 are divisible by 2, 3, and 5. To convert a
Gray code number to its corresponding integer, draw a line from the center
(ring zero) to the number, noting the sequence of 1’s and O’s in each
compartment along the way. Then replace all 0’s with the highest prime in
each circle, e.g., for 1365 (arrow)

12357TUD_ 5 o 7%13=1365.

Since the number to the left of p has all 0’s, its value is the product of all
primes up to 13 or 30030. Therefore any number on the wheel is a factor

of 30030. In fact, from the decomposition of 1365 into primes, it is evident
that 30030 = 1365 x 22. (Can you see why?)

15.5 Towers of Hanoi

A puzzle known as the Towers of Hanoi (abbreviated TOH), an invention
of the French mathematician Edouard Lucas in 1883, is rich in geometrical
and numerical relationships [Gardl,3], [Hin]. In this puzzle, disks of
decreasing size are placed on three wooden pegs, as shown in
Figure 15.4. The poles are arranged clockwise as seen from above in the
order A,B,C. The object of the puzzle is to transfer the disks from one peg
to another in the minimum number of moves, one at a time, in such a way
that a smaller disk always lies atop a larger one. For example, for three disks
labeled 1, 2, 3 from small to large lying initially on peg A, the puzle is
solved by the following sequence of moves.

Move 1 to peg B, 2 to peg C, 1 to peg C, 3 to peg B, 1 to peg A, 2 to
peg B, 1 to peg B.

The moves involve transferring the disks in the following order of their
numbers: 1213121 or 7 moves. The sequence for 4 disks is 121312141213121
or 15 moves. In general, n disks require 2" — 1 moves. In the above example,
note that odd numbered disks always move a single step in a clockwise
(CW) direction while even numbered disks move a single step in the
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(a)

TOP VIEW
A/\
< B B C
C é/ CW\ Aj:cw
(b)
Figure 15.4 The Towers of Hanoi puzzle.

counterclockwise (CCW) direction, e.g., disk 1 moves initially from peg A
to peg B (clockwise) while disk 2 moves from peg A to peg C
(counterclockwise). With the prescription that odd numbered disks move
CW while even numbered disks move CCW the solution to the TOH
problem is unique.

These moves can be related to Gray Code. In order to understand these
relationships, we must first reconsider the n-dimensional cube described in
Section 6.6. The sequence of winning moves for the Tower of Hanoi puzzle
is also the sequence of movements along a Hamilton path of an n-dimensional
cube. The Hamilton path through any connected set of edges and vertices
is a route through the edges that visits each vertex without revisiting a
vertex (although the edges may be retraced and all edges need not be
traversed). For example the Hamilton paths for the 1, 2, 3, and 4-D cubes
are shown in Figures 15.5a, b, ¢, d. (See Section 6.6). These paths
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Figure 15.5 (a,b,c,d) Hamilton paths for 1, 2, 3, and 4-dimensional cubes are represented by
the sequence of edges oriented as shown in (e). For the 3-dimensional cube the sequence
1213121 is the winning strategy of the Towers of Hanoi puzzle with three disks; the Hamilton
sequence of the 4-dimensional cube 121312141213121 is the winning strategy of TOH for four
disks.

are represented by the sequence of darkened edges oriented as shown in
Figure 15.5e. For example, the sequence of directions along the Hamilton
path of the 3-dimensional cube in Figure 15.5¢ is 1213121 and is identical
with the winning strategy for TOH with three disks. The winning strategy
for the TOH with four disks is 121312141213121 and is represented by the
Hamilton path of the 4-dimensional cube in Figure 15.5d.

In Figure 15.6 the 3- and 4-dimensional cubes have been placed in
cartesian coordinate systems and the vertices are labeled by 3 or 4
coordinates. Notice that by adding a leading 1, the sequence of moves
reproduces the Gray Code of the numbers 4—7 for the 2-dimensional cube,
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8-15 for the 3-dimensional cube, and 1631 for the 4-dimensional cube in
Table 15.1. So we have the connection between Gray Code and TOH.

The last column of Table 15.1 correlates the positions of the TOH for
n disks with Gray Code. In Table 15.1 the notation, 1/2/3, denotes disk 1
on 2 on 3 all on one of the three pegs. The notation, 1 2/3, means that disc
1 is on one peg while 2 is on top of 3 on another of the three pegs. I assume
that all n disks lie on peg A in the starting position.

For example, the correct movements of 3 disks from peg A to peg B in
the above example can be read directly from the last column for numbers
0-7 in column 1. Since disk 4 is now the top disk on peg A it moves to
peg C (even disks move counterclockwise), and numbers 0—15 mark the
solution to the 4 disk problem in which disks 1,2,3,4 move from peg A to
peg C. Likewise, 0-31 list the position for the movement of 5 disks from
peg A to peg B. This process can be continued ad infinitum.

To convert TOH position directly to Gray Code follow these rules:

(i) begin at the rightmost digit of the Gray Code;
(ii) if disk n lies atop n+ 1 then the nth place from the right gets a 0;
(iii) if disk n does not lie atop disk n+ 1 then it gets a 1.

For example consider, 1/2/3 4/5. Disk 1 lies on 2, 2 lies on 3, 3 does not
lie on 4, and 4 lies on 5. Therefore the Gray Code is 10100. You can also
carry out this process in reverse and reconstruct the TOH position from the
Gray code. In Appendix 15.A a procedure is given for converting a binary
number directly to its TOH configuration.

There is an even more intimate relationship between Gray code, binary,

and TOH. For the Nth move in the optimal TOH transfer:

1. The Gray code value corresponds to the number of moves per disk.

2. The binary representation corresponds to the cumulative total of moves
for all disks.

To see how this works, consider the 24th move in the optimal TOH
transfer:

a. Write decimal 24 as binary 11000.

b. Label the disk sizes, left to right, from large to small, i.e., 5,4, 3,2, 1.

c. Starting on the left with binary and proceeding to the right, if O then
double previous result, if 1 then double previous result and add 1. This
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Figure 15.6 Cartesian coordinate representations of 1, 2, 3, and 4-dimensional cubes.
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gives the cumulative total: 1,3, 6,12, 24. The cumulative totals
correspond to the integer values of the homologous binary numbers: 1,
11, 110, 1100 and 11000.

d. The differences in successive values of the cumulative total correspond
to the number of moves that the nth disk moves up to the 24th move
during the optimal TOH transfer.

disk 5 4 3 21

binary 1 1 0 0 0O

cumulative total 1 3 612 24

# of move perdisk 1 2 3 612
Graycode 1 01 0 0

The cumulative total of TOH moves gives an alternate way to change
a number from binary to decimal, always the last entry. Also notice that the
parity (even — 0, odd — 1) of 1,3, 6,12,24 and 1, 2, 3, 6, 12 reproduce
binary and Gray code, respectively for 24. This procedure follows directly
from the Farey sequence. In Table 14.3 successive numbers from the infinite
Farey true are labeled with the counting numbers. The cumulative total is
represented by the integers on the unique zigzag path from 1 to the decimal
value (24 in this case) and the numbers of moves per disk by the differences
in these numbers.

This procedure is quite simple and general. Check it for the 22nd TOH
move corresponding to binary 10110. Find the number of moves for each
disk and the cumulative total.

The pattern of winning moves of TOH arise from the moduli of the
numbers in each row of the Infinite Farey Tree of Table 14.1 (see Section
14.3.12). They are listed for each block in column 3 of Table 15.1. For
example, the sequence of moduli in Row 3 is 3537353, e.g.,

N

= =5, etc.
75 8 7( e

This is equivalent to the TOH sequence 1213121, where

13,25 3607 4609,....
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The winning moves for the TOH are also buried within each block of
binary and Gray Code sequences in column 5 of Table 15.1 where they
determine 'the place in which 0 changes to 1 or 1 changes to 0 in successive
binary or gray code representations as described in Section 15.3. For example,
the integers from 1-7 generated by these rules give rise to the sequence:
1213121 while the integers 1-15 generate: 121312141213121.

Notice that the TOH position with the greatest dispersion of disks

always corresponds to the Gray Code value with all 1’s, except in the first

. . 1 1
and last positions, and is a convergent of - or —7 . For example, a glance

T
at Table 15.1 reveals that within the 16—block, % and —153 are [11112] and

—

[2112] respectively.

Also observe that the number of disks on the three pegs of the TOH
puzzle that correspond to the convergents to the golden mean are the Mod
3 clock (see also Appendix 23.A). In this clock with three hours, noon
corresponds to 3, 6,9, ..., 1 o’clockto 1,4, 7, ... and 2 o’clock t0 2,5, 8, ...,
as shown in Figure 15.7. Observe this pattern in Table 15.1 for all TOH
positions corresponding to all 1’s in Gray code. This mod 3 clock also arose
in Section 12.7 in connection with the (10, 3) knot which generated Tenen’s
dimpled sphere. It is quite extraordinary that a simple puzzle like TOH
should be so rich in mathematical relationships. It has also been shown that
TOH is structurally identical to Pascal’s triangle (cf. [Hin], [Kap4-Al,
[Gardl]). In Chapter 17, TOH will be related to chaos theory. In
Chapter 20, the relationship of the winning sequences of the TOH and a
frequency of sound known as % noise that occurs in music will be discussed.

15.6 The TOH Sequence, Divisibility, and Self-replication

Consider the never-ending and never-repeating sequence of moves:
12131214121312151213121412131216 ...

that solves the TOH puzzle. Notice that this is the sequence of positions,
listed in column 5 of Table 15.1 in which O changes to 1 or 1 changes to
0 in the Gray code representation of successive integers. This sequence
has a self-replication property [Adam1]. For example, subtract 1 from
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0,36,9..

2,58.. 147..
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Figure 15.7 Tower of Hanoi positions for rational approximations of % and oL s represented

by a mod 3 clock.

each term in the series and remove the zeros, the TOH reappears.
This property of self-similarity will be studied in Chapter 18 as the defining
property of fractals.

This self-similarity conveys information about the divisibility of numbers
by 2 [Kap-A]. The sequence of integers are listed below along with the
number of times, n, that 2 divides into each integer:

Integer: 1 2 3 45 6 7 8 91011 12 13 14 15..
- n 01020103010 2 01 O0..

For example, 2% divides 12 while 2’ divides 8. Notice that if the 0’s 2 doeé
not divide odd numbers) are removed, then the TOH series remains. If the
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numbers in column 5 of Table 15.1 are reduced by 1, they represent the
highest powers of 2 that divide into integer N.

What happens now if the integers are divided by 3? Again, recording
the highest power of 3 that divides the integer results in the following
sequence:

6

5 141516 17 18...
01

Integer: 1 3
00100 2.

234 7891011121
n 0010 002 001
Another series emerges after the O’s are eliminated, namely,

112112113112

What can this series signify? Adamson has shown that this is the TOH
series for moving n disks from one peg to another for a TOH puzzle with
four pegs A, B,C, D, in which the four pegs are arranged in a circle
alphabetically in a clockwise direction as seen from above [Kap-A]. One is
only permitted to transfer a disk from a peg to an adjacent peg in a given
move with odd numbered disks moving CW and even numbered disks
moving CCW. For example, if all the disks begin on peg A, disk 1 moves
to peg B and then moves to peg C followed by disk 2 which moves to peg
D, and then disk 1 moves to peg D solving the two disk problem, etc.
As for the TOH series with three pegs, this generalized TOH sequence
also has a self-replication property. Likewise, the TOH puzzle with 5 pegs
leads to a series corresponding to division by the number 4 and so on. The
implications of the self-replication property for the divisibility of integers

has been explored in [Kap-Al.

15.7 Conclusion

Gray code was introduced and correlated with the integers. It was shown
that Gray code expresses fundamental properties of the decomposition of
integers into prime factors. Successive positions of the Towers of Hanoi
puzzle are represented by Gray code and binary. Each TOH position
corresponds to both a unique positive integer and to a rational number in
lowest terms. TOH and its generalizations are directly connected to the
divisibility properties of integers.
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Appendix 15.A

15.A1 Converting between binary and Gray Code

The trick to changing a number from Gray code to binary or binary to Gray
code is to use a triangular path and the following rules of combination:

11 or 0050, Ol or 10 > 1.
a. The following example shows how binary can be converted to Gray code:

Put a O in front of the binary number 11000 and use the two indicated
legs of the triangle along with the rules of combination to generate the
corresponding Gray code number 10100.

Gray code

!
Binary 0-1-1-0-0-0 -
b. The following example shows how Gray Code can be changed to binary:

Put a 0 in front of the binary number and use the two indicated legs of
the triangle below along with the rules of combination to convert the
upper Gray code number to binary.

Gray Code 1 0100

Binary 011000 A

15.A2 Converting from binary to TOH position

Decimal 44 equals binary 1 0 11 00. Under each group of

11 2 2
bits write the decimal number for the quantity of bits in each group as
shown.

Taking the sequence of decimals, start from the right, and for each
decimal number place that quantity of numbered disks, starting with disk
1, on a peg. Go to the next decimal number and do the same, continuing
until all decimal numbers are exhausted. However in this process you must
use the following three rules.
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(a) Disks for a given move must go on a different peg than the last move.

(b) Adjacent disk numbers must have opposite parity; no two odds or no
two evens together.

(c) If confronted with a choice of an unoccupied peg or an occupied peg,
choose the latter.

Let’s demonstrate this for our example.

The first decimal is 2, so place disks 1 and 2 on peg 1, i.e., 1/2. The
second decimal is also 2. By rule (a) the next two disks must be placed on
a different peg, i.e., 3/4 1/2. The next decimal is a 1. By rule (c) disk 5 must
be placed on an occupied peg if possible, so place it on peg 1 (peg 2 is
eliminated by rule (a)), i.e., 3/4 1/2/5 . The last decimal is 1. Disk 6 cannot
be placed on peg 2 because of parity rule (b) nor on peg 1 because of rule
(a). So the final configuration is: 6 3/4 1/2/5.
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Gray Code, Sets and Logic

You can find truth with logic if you have already
found truth without it.

G.K. Chesterton

16.1 Introduction

The foundation of mathematics rests upon the theory of sets and logic. Set
theory and logic have much in common; in particular they share a common
algebraic structure known as Boolean algebra. I will describe the analogies
between these twin subjects and show that they have strong connections to
Gray code and to the structure of DNA. The “Law of Form” developed by
G. Spencer-Brown to study self-referential systems will be shown to provide
an alternative path to the study of Boolean logic.

16.2 Set Theory

All of mathematics can be related to the undefined concept of a set. A set
is naively considered to be “a bunch of things” called elements along with
a rule for determining whether some entity is or is not an element of the
set. Before considering set membership, one generally limits oneself to a
certain a set of possibilities referred to as the universal set with all defined
sets being subsets of this universal set. For example, if the universal set
consists of the integers from 1 to 10, ie., U = {1, 2, ..., 9, 10}, then two
subsets of this universe are A ={3,4,5} and B ={4,5,6, 7}.

359
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00

Figure 16.1 Venn diagram for a pair of sets.
The sets are labeled by bit pairs in a Gray code
sequence from right to left.

Sets can be combined in three elementary ways. The union of sets A
and B, denoted by A U B, is the set containing all elements belonging to
either A or B or to both, e.g., A U B = {3,4,5, 6, 7). The intersection,
denoted by A N B, contains all elements that belong to both A and B,
e.g., A N B =1{4,5}, and the complement of A, symbolized by A’, is the set
containing all elements of the universal set not in A, eg., A" =
{1,2,6,1,8,9, 10}. The notation A N B’ is also used to refer to a set whose
elements lie within A but not within B, i.e., A N B’ = {3}. If two sets share
no elements in common, they are said to be disjoint.

A pair of sets A and B can be pictured in what is called a Venn diagram
shown in Figure 16.1. Here A and B partition the universal set U into four
disjoint sets: A’n B, A”nB, AN Band A N B’". I will refer to these
subsets as minterms for reasons that will become evident. These sets are also
represented by number pairs (bit pairs): 00, 01, 11, 10. The first bit of these
pairs refers to set A while the second bit refers to set B, with 1 representing
the presence of an arbitrary element of the universal set being in set A or
B while O corresponds to the absence of that element. Therefore,

U=00u01ullu0l. (16.1a)

With respect to the operations N and U sets satisfy all of the relationships
of a Boolean algebra. The operation of intersection may be considered to
be kind of multiplication so that A N B is denoted by AB, while the
operation of union is defined to be a kind of addition so that A U B is
denoted by A + B. As a result Equation (16.1a) can be rewritten as,

U=00+01+11+01. (16.1b)
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(a)

(b)

Figure 16.2 Venn diagrams representing two set functions: (a) (A’ B)U AN B’); (b)) AU B.

The Venn diagram defines 16 subsets related to A and B that I refer to
as set functions. Two of these subsets are indicated in Figure 16.2 by shading
the appropriate regions. These shaded regions can also be represented by
tables known as set builders notation. In this notation, whether an arbitrary
element of the universal set is or is not in a given set is indicated in
Tables 16.1a and b by a 1 or 0. The four regions are presented in the first
two columns; if the region is shaded its set function is represented in the
third column by a 1, otherwise by a 0.

The function of A and B can be read directly from the table as the sum
of the minterms corresponding to function values of 1. By referring to
Figure 16.2b, the rather complicated function in Table 16.1b is none other
than A U B or A+B.
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Table 16.1a Table 16.1b
A B f(A,B)=AB+AB’ A B f(A,B)=A'B+AB" +AB
0 00 0 00
0 11 0 11
1 01 1 01
1 10 I 11

Notice that the tables are organized so that the first two columns follow
the order of the integers written in binary, while the sequence of numbers
in the Venn diagram reading from right to left: 00, 01, 11, 10 are Gray
code. In other words, set builders notation is organized according to binary
while Venn diagrams are related to Gray code.

16.3 Mathematical Logic

The subject of mathematical logic pertains to a class of statements known
as statements or propositions p, q, 1, s,... from a universe of discourse U.
Propositions are defined to be statements that have intrinsic truth values.
For example “Today it rained” is considered to be a valid proposition while
“x+5=23" is not since its truth or falsity depends on the value chosen for
x. Paradoxically, mathematical logic is unable to determine whether a simple
proposition is true or false; it can only determine the truth or falsity of
compound propositions given the truth values of the simple statements that
comprise it.

Simple statements can be combined in three elementary ways. The
statement “p and ¢”, denoted by p A g, is considered to be true if both p and
q are true, otherwise it is false; “p and/or q”, denoted by p v g, is true when
either p, q or both are true, otherwise false; and the negation of p or p’ is
true when p is false and vice versa. Again, logical propositions satisfy a
Boolean algebra in which A is taken to be multiplication, i.e., p A g = pqg,
and Vv is addition, ie, pVv g=p+g.

Just as I did for sets, a Venn diagram can be used to represent the 16
compound statements, or logic functions, related to p and q. Statements p
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and q are represented as intersecting circles. If p or q are true, we denote
them by a 1, otherwise we denote by a 0. In this way the minterms are p'q’,
p’q, pq, pg, i-e., 00, 01, 10, 11 and compound statements are represented by
shaded sets. Just as I did for set builders notation, the truth values of
compound propositions are represented by tables called truth tables. For
example, if A and B in Figure 16.2 are now considered to be p and g, the
shaded regions lead to Table 16.2 with p and q replacing A and B.

If all of the regions of the Venn diagram are shaded, the truth function
is true for all truth values of p and ¢. Such a compound statement is called
a tautology T. Tautologies are analogous to the universal set in that,

T=00+01+10+11.

The concept of a tautology is fundamental to mathematics and science since
theorems of mathematics and laws of science are considered to be tautologies.

If none of the regions are shaded, the compound statement is considered
to be a contradiction and denoted by F. The statement p v p’ is a tautology
since it is true regardless of whether p is true or false, while p A p’ is a
contradiction. It states that a proposition cannot be both true and false and
is also referred to as the exclusion of the middle. It is a consequence of the
two-valued system of logic that underlies mathematics.

Once again truth tab