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ABSTRACT

 

Phyllotaxis, the arrangement of leaves around a stem,
shows in the vast majority of cases a regularity in the diver-
gence angle of subsequent leaves which divide the whole
circle into regular fractions. These are in most cases rational
fractions of two Fibonacci numbers in an alternating series,
converging towards the irrational limit of the golden sec-
tion, corresponding to the golden divergence angle of 137.5
 . . . degrees. This peculiarity was a long-standing mystery.
Here, it is related to the evolutionary pressure of optimal
light capture for maximal photosynthetic activity. A model
is established which relates minimal shadowing for the
lower leaves to the divergence angle. Numerical results of
this model agree well with semi-empirical data on the
dependence  of  light  capture  from  the  divergence  angle.
The basic shadow function of the model is also related with
the demand of minimal shadowing for the angular separa-
tion of leaves and obtain, using elementary number theory,
as solution the golden section. Further numerical studies
show that the rational approach to the golden section
(Schimper–Braun series) is related to the leaf width and the
number of leaves of the plant.
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INTRODUCTION

 

The angular position of leaves follows spiral arrangements
around the stem (Sitte 1998). This phyllotaxis obeys rules
which in the vast majority of higher plants (approximately
250 000 species) divide the divergence angle of subse-
quent leaves into regular fractions of the whole circular
angle of 360

 

∞

 

 (Cummings & Strickland 1998). It is a long-
standing observation that these fractions belong to a
series where numerator and denominator are Fibonacci
numbers, for example, 1/2, 1/3, 2/5, 3/8, 5/13,
 . . . [Schimper–Braun principal series, Adler, Barabe &
Jean (1997)]. The series converges to the irrational limit
of the ‘golden section’ 0.382 . . . , which corresponds to the

‘golden angle’, 

 

a

 

 = 137.5 . . .

 

∞

 

 (see Fig. 1). There is a vast
literature on this phenomenon, starting with observational
phyllotaxis (Bonnet 1754), followed by mathematical
phyllotaxis in the first half of the nineteenth century with
the pioneering work of Braun (1831), Schimper (1836)
and Bravais & Bravais (1837). Almost as numerous are
the attempts to understand the building principle of this
series (for a rather complete survey, see Jean 1994). A
convincing explanation why phyllotaxis follows the ratio-
nal Fibonacci series is, however, still missing. Recent
attempts, based on the Gierer–Meinhardt activator–inhib-
itor model can produce a regular series (Meinhardt 1984)
by adjusting parameters properly. This describes how
plants grow, but does not explain why nature chooses the
Shimper–Braun series, or the golden angle. It has even
entered leading textbooks (Sitte 1998) that the concept of
the Schimper–Braun principal series has hampered under-
standing of phyllotaxis more than supporting it. The mys-
terious connection that might exist between nature’s
construction principles and the aesthetic concept of the
‘golden rule’ always remained intriguing.

It has been argued (Adler 

 

et al

 

. 1997; Sitte 1998; Cum-
mings & Strickland 1998; d’Ovido & Mosekilde 2000) that
leaf arrangements are the simple result of an optimal, that
is densest, packing of the leaf buds on the growth cone of
the shoot axis as determined by morphogenous signalling
compounds in the apex. However, the problem of finding
the densest packing of finitely many objects is very difficult
from a mathematical point of view. Mathematicians studied
the problem of finding densest packings with respect to
various notions of density (e.g. the parametric density).
However, even for the basic problem of packing a finite
number of unit circles into a disc-shaped container of min-
imal radius there is no hope for a general solution (Fejes
Tóth 1953; p. 157 onwards). Exact results are only known
for a small number of circles (Kravitz 1967; Melissen 1994).
Although the optimal packing of infinitely many unit circles
in the plane is a regular hexagonal lattice, it is known that
finite densest packings have no lattice symmetry, for many
typical notions of density (Schürmann 2002). Of course, the
problems become even more difficult and the densest pack-
ings even more irregular when one tries to pack circles of
different size. In some cases, it is optimal to pack small
circles into the gap between adjacent large circles (Fejes
Tóth 1953; pp. 71–79). This packing strategy is not compat-
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ible with the arrangement of leaf primordia on the growth
cone. Certainly, in order to produce a good packing, it is
good heuristics to arrange the successive leaf buds accord-
ing to the phyllotactical spiral. We are, however, not con-
vinced that phyllotaxis is the result of an optimal solution
of any classical mathematical packing problem, unless the
growth parameters of the leaf buds are very specially and
carefully chosen. Thus it seems difficult to explain in that
way the regularity of the phyllotactic spiral by optimal
packing arguments. We also remark here that one of the
main characteristics of phyllotaxis is fivefold symmetry,
banned from regular crystal growth by the crystallographic
restriction (Jean 1994).

Here we first establish a model that optimizes light cap-
ture of the plant under limiting light conditions, as prevails,
for example, for forest understorey plants. This guarantees
maximal photosynthetic activity, and hereby maximal car-
bon gain. Pearcy & Yang (1998) showed by computer sim-
ulations based on empirical data that the light capture for
the Redwood forest (Northern California) understorey
plant 

 

Adenocaulon bicolor

 

 is optimal for a divergence angle
very close to the golden angle. The maximum of their sim-
ulated light gain curve lies at 136.7

 

∞

 

. Thus, strong evolution-
ary profit explains the occurrence of divergence angles
close to the golden angle in nature. Our model reproduces
these empirical results almost perfectly.

Our paper is organized as follows. We start with the for-
mulation and motivation of our model for light capture and
shadow cast. Then, we evaluate the model numerically and
compare it quantitatively with the empirical results of
Pearcy & Yang (1998). We study the influence of the model

parameters on the qualitative behaviour of the results. In
the final part we consider a simplified version of the model
that allows for an analytic solution. We show by using
abstract number theory that the golden angle assures max-
imal light capture of the leaves. Besides the mathematical
beauty of this analytical solution, it shows why nature, in
its evolutionary course, chose the golden angle, the most
irrational number, as the ultimate goal of ecological
optimization.

 

METHODS

The model

 

Our model is based on the observation that most plants
grow towards the light. Hence, normally light comes in
roughly parallel to the shoot axis, at least on average. For
plants that do not match this condition, optimal light cap-
ture may be obtained by a distorted phyllotactic spiral. An
example is provided by the horizontally turned needle
leaves of the fir (Adler 

 

et al

 

. 1997). We keep the model as
simple as possible in order to bring out the salient features
of optimizing light capture in a clear way, and to guarantee
generality, independent of special plant morphologies. One
could employ, of course, different and especially more com-
plex model assumptions. We justify, however, our model
with the almost perfect reproduction of the semi-empirical
results of Pearcy & Yang (1998).

We denote the divergence angle of spirally growing
leaves by 

 

a

 

 = 

 

x

 

 · 360

 

∞

 

, with 0 

 

£

 

 

 

x

 

 

 

£

 

 1/2, and number the
leaves successively, starting with the oldest leaf, i.e. with
zero at the bottom: 0, 1, 2, . . . 

 

n

 

, . . . (Fig. 1). The angular
distance 

 

w

 

(

 

n,x

 

) between the 

 

n

 

-th leaf and the 0-th leaf is
given by

 

w

 

(

 

n

 

,

 

x

 

) = |

 

x

 

 · 

 

n 

 

-

 

 [

 

x

 

 · 

 

n

 

]| · 360

 

∞

 

(1)

where [

 

x

 

 · 

 

n

 

] stands for the integer next to 

 

x

 

 · 

 

n

 

. The shadow
cast by the 

 

n

 

-th leaf on the 0-th leaf is denoted by 

 

s

 

(

 

n,x

 

).
Then the total shadow on the 0-th leaf is, of course, the sum
of 

 

s

 

(

 

n

 

,

 

x

 

) over 

 

n

 

.
We now introduce two model assumptions for the

shadow function 

 

s(n

 

,

 

x)

 

i Since the light comes predominantly in parallel to the
stem, 

 

s(n

 

,

 

x)

 

 is minimal if 

 

w

 

(

 

n

 

,

 

x

 

) = 180

 

∞

 

, and maximal if

 

w

 

(

 

n

 

,

 

x

 

) = 0

 

∞

 

. The maximal value is assumed to be constant
for 

 

w

 

(

 

n

 

,

 

x

 

) 

 

£

 

 

 

B

 

 (‘zero point shadow’). The constant 

 

B

 

 

 

>

 

 0
combines several physiological and environmental
parameters: leaf width (because the shadow function

 

s

 

(

 

n

 

,

 

x

 

), Eqn 2, starts to decrease only for 

 

x 

 

>

 

 

 

B

 

); leaf
transparency (since the leaf on top of another is not
completely opaque); light diffuseness (because scattered
light and light incident not exactly parallel to the stem
reaches the lower leaf independently of higher up
leaves). We treat 

 

B

 

 as one of the three fit parameters of
the model and do not attempt to calculate it from the
physiological conditions, which anyhow depend on the
special species and its environment. The constant 

 

B

 

 

 

>

 

 0
therefore has the meaning of an effective leaf width. The

 

Figure 1.

 

Disperse leaf arrangement. The example chosen is 

 

Adenocaulon bicolor

 

 using the leaf angle given in Pearcy & Yang 
(1998). Successive leaves in the spiral are numbered.
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least bias ansatz is 

 

s

 

(

 

n

 

,

 

x

 

) 

 

~

 

 1

 

/

 

Max{

 

w

 

(

 

n

 

,

 

x

 

),

 

 B

 

}. This guar-
antees a smooth fall-off of the shadow from its maximal
value 1/

 

B

 

 to the minimum at 

 

x

 

 = 1/2.
ii In natural light the shadow cast by an object becomes

weakened by non-directional diffuse light with increasing
distance. In addition, with increasing 

 

n

 

 the leaf area tends
to decrease, since the leaves are younger. So we assume

 

s

 

(

 

n

 

,

 

x

 

) 

 

~

 

 1/

 

n

 

.

Conditions (i) and (ii) lead to the form

(2)

The meaning of the scaling constant 

 

c

 

 will be discussed after
the introduction of the light capture function 

 

L

 

(

 

x,B

 

) below.
In order to obtain the total shadow which is thrown on the
0-th leaf, we have to sum over all leaves 

 

n

 

 above the 0-th
leaf.

(3)

where 

 

n

 

max

 

 depends on the plant height. The light capture
function is then given by

 

L

 

(

 

x

 

,

 

B

 

) = 

 

S

 

-

 

1

 

(

 

x

 

,

 

B

 

) (4)

The model is characterized by three constants, the effec-
tive leaf width, 

 

B

 

, the scaling constant, 

 

c

 

, and the number
of leaves above the zero leaf, 

 

n

 

ma

 

x

 

. These constants have
to be adjusted to the given conditions for a specified plant
and its environment. There enter: the light conditions
(average angle of incidence, amounts of direct and diffuse
light), and the physiological conditions of light absorption
efficiency of the plant. For details, see Pearcy & Yang
1996, 1998). The minimum light absorption for two com-
pletely overlapping leaves on top of each other (

 

n

 

 = 1,

 

x

 

 = 0) is 

 

B/c

 

.

s n x
c

n w n x B
,

, ,
( ) =

◊ ( ){ }Max

S x B s n x
n

n

, ,
max

( ) = ( )
=

Â
1

 

RESULTS

Numerical analysis

 

We first compare our model with results, which Pearcy
& Yang (1998) obtained from empirical studies. These
authors investigated the understorey plant 

 

Adenocaulon
bicolor

 

 under a Redwood forest canopy. Utilizing the
three-dimensional canopy architecture model YPLANT
(Pearcy & Yang 1996) they were able to transform
their empirical data, obtained from 10 selected plants,
into numerical data on plant geometry, photon flux
density (PFD), and light capture efficiency. In addition
they were able, by changing the geometric parameters
of the model, to study variations in the light capture
efficiency for hypothetical plants with differing geomet-
ric parameters, notably differing divergence angles of
the leaves.

Figure 2 shows the comparison of our model calcula-
tions with the semi-empirical data on the efficiency of
light absorption as a percentage of the photon flux den-
sity (% PFD), obtained with YPLANT (Pearcy & Yang
1998). The data present the mean and standard deviation
for 10 plants in its dependence on the leaf divergence
angle 

 

a

 

. The continuous curve shows the light capture
function of our model, Eqn 4, evaluated for the same
angular region as presented in Pearcy & Yang (1998). Fix-
ing the scaling constant 

 

c

 

 of Eqn 4 by least squares fit to
the data, our 

 

a priori

 

 model reproduces the empirical
light absorption in its dependence on the divergence
angle a for the understory plant A. bicolor very closely.
Even the second (local) optimum of our model at
a ª 103∞ is found in the empirical study of Pearcy & Yang
(1998) as well. The peak structure of the light capture
function will be discussed in connection with the simpli-
fied version of the model, introduced in the next but one
section.

Figure 2. Comparison of empirical and 
simulated light capture in its dependence 
on the divergence angle a. Data show the 
percentage light capture (% PFD, photo-
synthetic efficiency of the photon flux 
density; Pearcy & Yang 1998). The points 
give the mean, and the error bars the 
standard deviation of 10 independent 
runs on samples of A. bicolor. The con-
tinuous curve represents the simulation 
in our model. In addition to the absolute 
maximum around the golden angle 
(a ª 137.5∞) there occurs a second, rela-
tive maximum around 103∞. Parameters 
in the calculation are: B = 25∞; 
c = 9.8 ¥ 10-2 from scaling to empirical 
percentage light capture; number of 
leaves above leaf number 0 (Eqn 3), 
nmax = 15 which was the maximal node 
number observed by Pearcy & Yang 
(1998) (not a critical value if light capture 
is properly scaled, cf. Fig. 3).
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Robustness of the model

Here, we present a sensitivity analysis with respect to
variation of the parameters in the model to see how robust
the model is with respect to parameter changes and how
sensitive it is with respect to a simplification which is
essential for the application of number theory in the next
section. We also study the relationship between the effec-
tive leaf width and the members of the Schimper–Braun
series.

The number of leaves in the summation over leaves on
top of the lowest one, nmax in Eqn 3, is an open parameter,
depending on the plant under investigation. We therefore
study the light capture curve in its dependence on nmax. The
result is shown in Fig. 3. Figure 3a shows a sequence of
seven runs with, from top to bottom, increasing values of
nmax in steps of 5. Of course, the light capture at the lowest
leaf decreases with the number of leaves higher up, but the
curves converge rapidly to an asymptotic form. This is

reflected in the narrow spread of light capture curves in
Fig. 3b, where the curves are scaled to the data by adjusting
the free parameter c in Eqn 2. Thus, leaf number is not a
critical parameter for the shape of the light capture curve
as a function of the divergence angle.

Next, we study the influence of fluctuations in the indi-
vidual divergence angles of the leaves. Pearcy & Yang
(1998) sampled 10 plants from representative microsites in
the Redwood forest. Naturally, they observed variations in
the plant geometry, notably in successive leaf angles. We
have simulated fluctuations in the leaf angle by allowing
angular fluctuations by replacing Eqn 3 with

(5)

where the function ‘Random’ generates random numbers
in the interval {–da, da}. Figure 4 shows the results for
fluctuations in the divergence angle a of ±5∞. This value of

S x B s x n B
n

n

, , ,
max

( ) = + ±[ ]( )
=

Â Random da 360
1

Figure 3. Dependence of the light 
capture function on the number of 
leaves above the bottom leaf. (a) Simu-
lations for increasing leaf numbers from 
top to bottom, nmax = 10 . . . 40, in steps 
of 5, and in relative units, obtained by 
setting the scaling constant in Eqn 2 to 
c = 1. (b) The same results scaled by 
adjusting the constant c of Eqn 2 to the 
data, together with the data (diamonds 
and error bars; Pearcy & Yang 1998). 
Effective leaf width in all simulations, 
B = 25∞. The golden angle is marked by 
the vertical line. In (b) the first four 
Schimper–Braun ratios are marked on 
the abscissa.
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Figure 4. Fluctuation studies with our model. 
(A) Adding divergence angle fluctuations of ±5∞ 
to the average divergence angle according to Eqn 
5 for a single run. (B) The same averaged over 10 
independent runs. (C) Since the average of 10 
independent runs with fluctuations fluctuates 
itself with each set of the 10 runs we present here 
the spread of 20 different evaluations of the mean 
of 10 runs each with fluctuations. This represents 
most closely the situation of the samples in the 
field study of Pearcy & Yang (1998). (B) and 
(C): Diamonds and error bars represent the data 
of Pearcy & Yang (1998). The golden angle is 
marked by the vertical line, and the constant c is 
adjusted to the data.
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da is about the maximal angular deviation which does not
destroy the structure of divergence angle variation of the
light capture curve, as shown in Fig. 4a for a single run.
Averaging over 10 runs, Fig. 4b, we simulate the situation
of Pearcy & Yang (1998). Calculating the standard devia-
tions of the 10 runs presented in Fig. 4b, they cover a range
of 0.02–0.06, in rough accordance with the empirical find-
ings. Since the fluctuations introduce a stochastic element
into each of the simulation runs, even the average over 10
runs (corresponding to the situation as employed by Pearcy
& Yang 1998) fluctuates for each individual set of the 10
runs. In Fig. 4c we present the result of 20 different evalu-
ations of the mean of 10 runs with fluctuations. The overlaid
curves show that the uncertainty introduced by the angular
fluctuations remains roughly within the width of the exper-
imental error bars.

Numerical study of a simplified model

The sum over n leaves in the shadow function (Eqn 3)
introduces a difficulty for analytic studies, such as presented
in the number theoretical analysis. It also obscures some-
what the significance of analysing the occurrence of discrete
maxima in the light capture in its dependence on the diver-
gence angle. Because of this, we introduce the following
simplification of our original model: instead of the sum over
all leaves, we take as representative for the total shadow
the shadow thrown by the most shadowing of all the nmax

leaves onto the 0-th leaf

Srep(x,B) = Supn s(n,x) (6)

where ‘Supn’ denotes the supremum of s(n,x) with respect
to n, namely the maximal member of the set of all nmax

values of s(n,x) at fixed x.
By the same token, the light capture function, L(x,B)

(Eqn 4), is replaced by

Lrep(x,B) = Srep
-1(x,B) = c Infn[n · Max[w(n,x),B]] (7)

where ‘Infn’ denotes the inferior of s(n,x), namely the min-
imal member of the set. This is, because of the inverse
relation of Srep and Lrep, the selection operation for the most
shadowing leaf leading to minimal light capture.

This simplification gives a skeleton version of our model,
which is useful for analytic studies since the main charac-
teristics of the light capture curve are preserved as demon-
strated in Fig. 5. Here we compare the full model (Fig. 2)
with the smoothed result of the light capture function, Eqn
7. This shows that the essential structure of the light capture
in its dependence on the divergence angle a is indeed also
present in the skeleton version; that is, the main peak in the
vicinity of the golden angle, the second peak slightly above
100∞, and the shoulder to the right of the main peak. The
fall-off towards small and large divergence angles is, how-
ever, much stronger than in both, the full model and the
empirical data, indicating that the summation over all leaves
smears out the light capture over a larger angular range.

A qualitative discussion of the dependence of light
absorption on the divergence angle 360 x∞ can give insight
into the mechanism of leaf arrangement. The minimal value
of Eqn 7 with respect to n for very small but finite B is
obtained when leaf n overlaps almost totally with leaf 0.
According to Eqn 1, n · x then must be close to an integer,
so w(n,x) is close to zero, and the shadow function s(n,x)
(Eqn 2) takes its maximal value 1/B. For the lowest
Schimper–Braun ratio, x = 1/2 (a = 180∞), this is already the
case for leaf number 2. Consequently this ratio is for small
B a highly unfavourable leaf arrangement. For the higher
members of the Schimper–Braun series (x = 1/3, 2/5, . . .
<1/2) the steadily increasing denominators (which repre-
sent the number of turns in the spiral until total overlap is
again reached) shift this to increasingly higher n, and the
factor n in Eqn 7 leads to increased light capture. This is
the effect of the factor 1/n in the shadow function which

Figure 5. Comparison of the full (line 
close to data points), Eqn 4, and the sim-
plified (line with more pronounced max-
ima and minima), Eqn 7, models, together 
with data. Percentage light capture is 
scaled by adjusting scaling constants c to 
the empirical data, and smoothing of the 
piecewise linear angular dependence of the 
simplified model is obtained with third 
order polynomials to ease comparison with 
the full model and data. Full model, 
nmax = 15, effective leaf width in both mod-
els, B = 25∞. The golden angle is marked by 
the vertical line.
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weakens the shadow thrown on the 0-th leaf the more
higher up the shadowing leaf is located, and, in this way,
the light capture increases. For larger B this sharp conse-
quence for B Æ 0 is weakened because the increased angu-
lar range B of constant shadow with simultaneously
reduced shadow strength, 1/nB (Eqn 2) allows a lower n for
optimal light capture. Through this effect, the preference of
a special member of the Schimper–Braun series depends
on the effective leaf width B.

This situation is shown quantitatively in Fig. 6. Figure 6a
presents four light capture functions (without smoothing)
for successively decreasing effective leaf widths. It is clearly
seen how the angular structure breaks up from the rather
unspecific dependence at B = 40∞ to fine-structured peaks
in the angular distribution for decreasing effective leaf
width with a shift of the absolute maximum towards the
golden angle. The lower Fibonacci-fractions of the
Schimper–Braun series are successively more suppressed in
the amount of light capture with decreasing effective leaf

width. For B = 5∞ only the golden angle is optimal, in agree-
ment with the number theoretical result for B Æ 0. There
are also two peaks, around 110∞ and 150∞ (the lower one
also prominent in the data of Pearcy & Yang 1998), which
are not related to Schimper–Braun fractions. Figure 6b
shows the selection of Schimper–Braun ratios quantita-
tively. Here we calculated the (unscaled) light capture
L(xs,B) at discrete angular points xs for the first 10 members
(x1 to x10) of the Schimper–Braun series. For effective leaf
width B = 20∞ the light capture reaches its maximal value
already for a low phyllotactic fraction whereas for B = 1∞
the maximum is reached only very closely to the golden
angle (55/144 ¥ 360∞ = 137.5∞).

It is instructive to study the occurrence of the peak struc-
ture in the light capture function as the number of leaves
above the bottom leaf increases. This is shown in Fig. 7a.
The total number of leaves above the bottom leaf is succes-
sively increased from 2 to 8. For n = 2 (three leaves in total)
light absorption is not, as could be expected, optimal for

Figure 6. Increasing sensitivity of the 
light capture with decreasing effective 
leaf width in the simplified model. (a) 
Light capture in relative units (c = 1 in 
Eqn 2) as function of the divergence 
angle for four different effective leaf 
widths B. The angles of the Schimper–
Braun series are marked by their frac-
tions (angle = fraction times 360∞), and 
the golden angle by g. The suppression 
of the light capture at the lower 
Schimper–Braun fractions with 
decreasing effective leaf width is clearly 
seen. (b) Light capture (full model) at 
discrete values of the Schimper–Braun 
series, xi, for three different values of B. 
The highest Schimper–Braun ratio, 
x = 55/144, is already up to second and 
higher decimals equal to the golden sec-
tion g = 0.382. . . .
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a = 120∞ (tristar positioning of the three leaves), but shifted
towards a larger divergence angle. The reason for this is the
weakening of the shadow thrown from the higher-up leaves
in the spirally growing plant which optimizes light absorp-
tion for a larger separation of the close-by leaves. As can
be seen from the later diagrams in Fig. 7a, this effect is
crucial for the occurrence of the peak structure for increas-
ing total leaf numbers, and thus also for the absolute opti-
mum at the golden angle.

From total leaf number six onwards the structure of the
light absorption curve is practically stable, resulting in

four peaking groups around 70∞, 100∞, the golden angle
and 150∞. The absolute optimum is the golden angle at
a = 137.5 . . .∞. The relative optima are members of less
pronounced series, cf. Table 1. Next to the Schimper–
Braun series ranges the Lucas series, found in about 2%
of sampled species (Jean 1994), and reflecting itself in the
data as well as in the model with the peak a ª 100∞. The
number theoretical analysis (cf. Eqn 8 below, and Appen-
dix) shows that the optimum for the divergence angle will
be obtained for a continued fraction expansion of the
divergence angle which contains coefficients as small as

Figure 7. (a) Light absorption 
functions (Eqn 7), and (b) shadow 
functions (Eqn 6; relative units) in 
their dependence on the divergence 
angle and the number, n, of leaves 
above leaf zero for n = 2 . . . 8 (total 
number of leaves is n + 1). Effective 
leaf width B = 10∞, scaling constant 
c = 1. The vertical lines in each dia-
gram denote the endpoints of the 
Fibonacci type series presented in 
Table 1.
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possible. So, the golden angle separation is characterized
by the expansion xopt = [0,2,1,1,1, . . .] = (3 - ÷5)/2. Follow-
ing this number theoretical result, we can obtain the next
optimal divergence angles by successively increasing the
first digits beyond a0 = 0 and a1 = 1 (which restricts the
partial quotients, see Appendix, to the interval [0, 1/2] in
the continued fraction expansion. In this way, we obtain
the six values, corresponding to relative optima, as
marked by vertical lines in Fig. 7. It should again be
emphasized, however, that the vast majority of plant spe-
cies (> 90%) follow the Schimper–Braun series, asymptot-
ically leading to the golden angle. In reality, of course, the
discrete and piecewise linear peaking structure of our
simplified model is smoothened by the unavoidable
fluctuations and irregularities in the plant growing process
(cf. Fig. 5).

Also of interest is the shadow function for the same
sequence of total leaf numbers, as shown in Fig. 7b. Again,
for n larger than 6 the situation stabilizes, and the shadow
looks like acting as a barrier between optimal areas for light
absorption, that is, minimal shadow.

The diagrams of Fig. 7 provide direct evidence that our
model expresses the essential features of the evolutionary
pressure towards maximal photosynthetic activity. It is,
however, an open question how this evolutionary prefer-
ence is implemented in actual growth dynamics through
genetic and biomolecular mechanisms.

Number theoretical analysis

We determine the optimal divergence angle aopt = xopt · 360∞
from the requirement of maximal light capture for the 0-th
leaf, which, due to symmetry, is also optimal for all other
leaves. Thus, according to Eqn 7, the optimal divergence
angle in the limiting case B = 0∞ (cf. the discussion in the
last paragraph of the previous section, and the results pre-
sented in Fig. 6a) corresponds to the solution of

xopt Æ Maxx{Lrep(x,0)} = Maxx{Infn(n · |x · n - [xn]|)} (8)

In this form the optimization is a problem of number the-
ory. Due to a theorem of Hurwitz and its generalizations
(Prasad 1948; Cassels 1957), this has a unique solution in
the interval [0,1/2] (see Appendix).

that is, the golden section, that corresponds to
aopt = xopt ¢ 360∞ = 137.5 . . .∞, namely the golden angle. By
number theory it can be shown that the golden section has
the very worst rational approximations which means it is
least well approximated by rationals, i.e. truncated contin-
ued fractions (see Appendix). This ensures, according to
Eqn 8, maximal light capture if the divergence angle equals
the golden angle.

DISCUSSION

We have analysed the phyllotactic spiral under the assump-
tion that evolutionary pressure has driven plants to opti-
mize light capture under natural conditions which
guarantees maximal photosynthetic activity, and thereby
maximal carbon gain. With two quite natural and simple
assumptions for plants which receive light mainly coming
in parallel to the leaf stem, we can derive the ‘shadow
function’ which represents the shadow thrown upon a lower
leaf by leaves above, and thus diminishes light capture for
the lower leaf. Summing over all leaves above the lowest,
one obtains the total shadow function for the lowest leaf in
its dependence on the divergence angle of the phyllotactic
spiral. The inverse, the light capture function, measures the
light capture as function of the divergence angle. Compar-
ing this function with empirical results obtained by Pearcy
& Yang (1998) from data on the Redwood understorey
plant A. bicolor with the architecture model YPLANT
(Pearcy & Yang 1996) shows an almost perfect fit of our
model over the whole divergence angle range. The qualita-
tive behaviour of our light capture model is preserved when
one simplifies it according to Eqn 7. In particular, the global
optimum of the simplified model lies close to the optimum
obtained from numerical evaluation of the full model, cor-
responding to Eqn 3, and the data of Pearcy & Yang (1998).
Application of number theory then shows that within our
model, the golden angle is the divergence angle for maxi-
mum light capture, and that this limit will be more and
more approached with decreasing leaf width and increasing
total leaf number.

xopt = -3 5
2

Table 1. Table of Fibonacci-like series

Continued fraction First three rationals Asymptotic divergence angle (∞) Series classification

[0,2,1,1, . . .] 1/2, 1/3, 2/5, . . . 137.508 . . . golden angle Schimper–Braun series
[0,3,1,1, . . .] 1/3, 1/4; 2/7, . . . 99.502 . . . Lucas series
[0,2,2,1,1, . . .] 2/5, 3/7, 5/12, . . . 151.136 anomalous
[0,3,2,1,1, . . .] 2/7, 3/10, 5/17, . . . 106.447 . . . not classified
[0,4,1,1,1, . . .] 1/4, 1/5, 2/9, . . . 77.955 . . . normal
[0,2,1,2,1,1, . . .] 3/8, 4/11, 7/19, . . . 132.178 . . . not classified

The first digits after the zero (which defines the rationals as <1) are successively increased beyond the optimal Schimper–Braun series which
leads asymptotically to the golden angle. The first column presents the continued fraction expansions (see Appendix) of the irrational limits.
For the series classification (last column), see, for example, Jean (1994).
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We stress light capture as the selective pressure in the
evolution of spiral phyllotaxis optimizing Darwinian fit-
ness, and we present a mathematical model together with
analytical solutions which agree with experimental obser-
vations and an empirical model (Pearcy & Yang 1998).
However, one may ask why identical rules of phyllotaxis
not only apply to vegetative photosynthesizing shoots but
also to reproductive shoot structures, such as flowers and
cones of cycads and conifers, angiosperm flowers, capitu-
lae (Asteraceae), etc. Is it then not a packing problem
after all? One must, however, recall that reproductive
structures evolved from leaves. This is still seen in extant
fern allies, i.e. basic cormophyte taxa such as Lycopodium
and Selaginella, where spirally arranged leaflets at the tip
of the shoots bearing the sporangia in their axils mark the
very early stages of flower evolution (Ehrendorfer 1998a).
With respect to our theoretical finding that the golden
angle increasingly perfectly optimizes light capture as leaf
width decreases, it is also interesting to note that the
basic taxa Lycopodium and Salaginella have rather nar-
row photosynthetic leaves spirally arranged on their
shoots. Phylogenetically the early leaves in these groups
of Pteridophyta (Lycopodiopsida) evolving primordial
flowers certainly were microphylls, in contrast to the
mega- or macrophylls in the other Pteridophyta, namely
the ferns (Pteridopsida) in which flowers did not evolve
(Ehrendorfer 1998b).

In conclusion, we can explain the observed and long-
standing mystery of the golden angle in phyllotaxis with
quite natural assumptions on leaf sequence and shadow
casting by an appeal to the result of number theory that the
‘golden mean’ is characterized by the ‘most irrational num-
ber’. Thus, strong evolutionary profit explains the occur-
rence of divergence angles close to the golden angle in
nature and this aspect goes beyond the level of optimal
primordial packing at the shoot apex. The fact that the
mathematical result of nature’s optimization coincides with
that of aesthetical perception must remain intriguing.
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APPENDIX

Number theoretical relations

The Hurwitz theorem

The Hurwitz theorem is concerned with approximations
of real numbers x by fractions. The best approximating
fraction  with  denominator  n  is  [x · n]/n,  and  we  have
|x - [x · n]/n| £ 1/n by definition of [x · n]. A deeper study
shows that in fact |x - [x · n]/n| £ h/n2 for some constant h
depending on x. Equivalently, n|x · n - [x · n]| £ h. The
Hurwitz theorem tells us how close the approximation can
be, since it provides estimates for n|x · n - [x · n]|.

The Hurwitz theorem is based on the representation of
real numbers by continued fractions. Any positive real
number x has a (possibly infinite) continued fraction
expansion
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with an integer a0 and natural numbers a1, a2, . . . A
finite  continued  fraction  is  rational.  The  fraction
pm/qm = [a0, a1, a2, . . . , am] is called the m-th partial quo-
tient of x. With these definitions we state parts of the the-
orem of Hurwitz and its generalizations. Details are given
in (Cassels 1957).

1 For infinitely many n holds n · |x · n - [x · n]| < 1/÷5. In
general, the constant 1/÷5 can not be replaced by any
smaller constant.

2 If n · |x · n - [x · n]| < 1/÷5 then n = qm for some m. In
other words, the best approximations of x are the partial
quotients of x.

3 It holds Infn{n · |x · n - [x · n]|} = 2/(3 + ÷5) ª 0.382 if
and only if x = [a0, a1, 1,1,1, . . .] with a1 = 1 or a1 = 2.
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For  all  other  numbers  Infn{n · |x · n - [x · n]|}
< 6/17 ª 0.353.

Statement  3 implies that the unique solution of Eqn 8 in
the interval [0,1/2] is xopt = [0,2,1,1,1, . . .] = (3 - ÷5)/2.

Statements 1 and 2 can be found in (Cassels 1957), and
the first part of statement 3 is proved in (Prasad 1948). The
proofs are based on the equation

which holds for any m ≥ 1. The equation essentially means
that there are good approximations of x if there are big
coefficients in its continued fraction expansion. The second
part of statement 3 is a straightforward application of this
equation. It ensures that the ratio of the optimal light cap-
ture, obtained at the golden angle and at the next optimal
angles is greater than 1.082, a result borne out also by the
numerical evaluations, see Fig. 6.
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