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Overview of Seminar

• Lattice-Boltzmann method
• An overview of the method
• Some GPU-related optimizations
• Validation / Results

• Immersed Boundary method
• Overview of the method
• Implementation of IB into LB
• Some GPU optimisations
• Results

• Realtime simulation
• OpenGL tweaks
• Live demos
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Lattice Boltzmann Method: Introduction

The Lattice Boltzmann Method might be considered to be a ‘Mesoscale’ approach

• Macroscale approaches:

• In the limit of low Knudsen number one can assume a ‘Continuum’.

• The Navier Stokes equation can be applied to infinitesimal elements

• Microscale approaches:

• In the limit of high Knudsen, one might resort to Molecular Dynamics

• While this approach is impractical for macroscale applications

• Mesoscale:

• Broadly, one can consider that Lattice Boltzmann Method operates
between these constraints.

• on one side it can be extended to macroscale problems, whilst retaining a

strong underlying element of particle behaviour.
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Lattice Boltzmann Method: Introduction

[Raabe, 2004, ]
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Lattice Boltzmann Method: Introduction

• Focus on a distribution of particles f (r , c , t)
• Characterises the particles without realising their individual dynamics
• Instead considers the distribution of particle velocities

• For given equilbrium gas, one can obtain the Maxwell-Boltzmann
distribution function :

f (eq) = 4π
( m

2πkT

) 3
2

c2e
−mc2

2kT

• Macroscopic quantities
recovered by integration

• Boltzmann equation describes the return of f (r, c, t) to equilibrium
conditions f (eq)(r, c, t)

• the cornerstone of the Lattice Boltzmann Method

f (r + cdt, c + Fdt, t + dt)drdc− f (r, c, t)drdc = Ω(f )dcdt
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Lattice Boltzmann Method: Introduction

• LBM has origins in Lattice Gas Cellular Automata
• Hardy, Pomeau, de Pazzis [Hardy et al., 1973, ]

• proposed a square lattice arrangement
• though not rotationally invariant and produced

‘square vorticies’ !

• Frisch Hasslacher, Pomeau [Frisch et al., 1986, ]

• proposed a hexagonal lattice; ensured realisitic fluid
dynamics

• included a ‘random element’ and used look up
tables.

• basic conservation laws applied
• Particles can move only along one of the directions
• Particles move only to next node in one timestep.
• No particles at same site can move in same direction
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Lattice Boltzmann Method: Introduction

• Boltzmann equation can be written as:

∂t f + c · ∇r f + F · ∇c f = Ω

• We use the BGK collision operator
from [Bhatnagar et al., 1954, ] to
approximate Ω

Ω =
1

τ

(
f (eq) − f

)
• represents relaxation back to

equilibrium distribution in timescale τ .

• And use expansion of f (eq) to be 2nd order accurate.

f (eq) =

(
1

2πc2
s

)
e
−c2

2c2
s

[
1 +

c · u
c2

s

+
(c · u)2

2c4
s

− u2

c2
s

]
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Lattice Boltzmann Method: Introduction

• Spatial discretization on lattice is provided by Gaussian Quadrature

• DnQm models used for n spatial dimensions and m discrete velocities

• Here we use D2Q9 and D3Q19

• Force term implemented following [Guo et al., 2002, ]:

fi (x+ei , t+1) = fi (x , t)− 1

τ
(fi (x , t)−f (0)

i (x , t))+

(
1− 1

2τ
ωi (

ei − u

c2
s

+
ci · u
c4

s
ci

)
·fib

• fib eventually used for immersed boundary
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Validity of LBM for different flows
• Based on 13-moment theory of [Grad, 1949, ] the distribution function

may be expanded over velocity and space using orthonormal Hermite
polynomials [Shan et al., 2006, ].

f N (c, c, t) = ω(c) =
N∑

n=0

1

n
a(n), a(n) =

∫
fH(n)(c)dc

• Coefficients of the Hermite polynomial match the moments of the
macroscopic variables

[Latt, 2013, ]
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Difference Lattice models
D2Q9 D3Q19

D2Q17 D3Q39[Nie and Chen, 2009, ]
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Boundary Conditions

• 1st order bounce-back conditions are the most simple

• 2nd order Zou-He conditions have been implemented [Zou, 1997, ]

• some ‘issues’ at corners and along edges where problem is
‘underdefined’
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Lattice Boltzmann Method: Algorithm

1. initialise

2. compute forces

3. compute equilibrium function

4. stream & collide

5. imposed boundary condition

6. compute macroscopic quantities

7. −→ loop to 2

Stream (non-local)

Collide(local)
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Validation of 3D solver & boundary conditions

Poiseuille Flow

single precision double precision
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Validation of 3D solver & boundary conditions
Lid Driven Cavity 2D: [Ghia et al., 1982, ], 3D: [Jiang et al., 1994, ]
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Implementation on GPU
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Hardware Tested

Feature FK104 :K5000M GK110: K20c
cores (SMX x cores/SMC) 1344 (7 x 192) 2496 (13 x 192)

regs / thread 63 255
DRAM 4GB 4.7GB

SP/DP ratio 24:1 3:1
Peak performance (single precision) 1.6 TFLOPS 3.5 TFLOPS

DRAM Bandwidth 66 GB/s (measured) 143 GB/s (measured)
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Lattice Boltzmann Method: Algorithm

PUSH

1. initialise

2. compute forces

3. compute f (eq)

4. collide (local)

5. stream (non-local)
• i.e. requires synchronisation

6. impose bcs.

7. compute macroscopic quantities

-

PULL (see [Rinaldi et al., 2012, ])

1. initialise

5. stream
i.e. read values from host into
new location

6. impose bcs.

7. compute macroscopic quantities

2. compute forces

3. compute f (eq)

4. collide

-
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Lattice Boltzmann Method: GPU implementation

CPU implementation: push

f o r ( i n t dir = 0 ; dir < 9 ; ++dir ) {
Xnew=X+cx [ dir ] ; // Stream x `PUSH '
Ynew=Y+cy [ dir ] ; // Stream y
pop [ dir ] [ Xnew ] [ Ynew ] = pop_old [ dir ] [ X ] [ Y ] ∗ (1 − omega )

+ pop_eq [ dir ] ∗ omega + force_latt [ dir ] ; // C o l l i d e
}

GPU implementation: pull

i n t size=Nx∗Ny ;
f o r ( dir = 0 ; dir < 9 ; ++dir ) {
Xnew=X−d_cx [ dir ] ; // Stream x `PULL '
Ynew=Y−d_cy [ dir ] ;
pop_local [ dir ] = pop_old [ dir∗size+Ynew∗Nx+Xnew ] ;
}
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Memory Arrangement

• Code is parallelized such that one thread will perform the complete
LBM algorithm at one spatial location f (x)i in the fluid domain.

• Each thread stores values of f (x)i and an integer tag denoting
boundary type. Density ρ and velocity ui are only stored if output.

• All is stored in a struct within registers to minimise high latency
access to DRAM once initially loaded

• within DRAM it is common practise to ‘flatten’ multiple dimension
arrays into a single dimension to reduce additional dereferencing.f [ dir∗Nx∗Ny+Y∗Nx+X ]
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Instruction Level Parallelism
More ILP at expense of occupancy improves performance [Volkov, 2010, ]

• Operating on all indices of f in one thread helps to hide latency
• Use structs of arrays access to f . Coalesced access therefore only

depends on the x component of the discrete velocity direction (c)
• Cache hit rate is low as we don’t have repeat accesses (< 7% in L2)
• .. so instead maximise register use (which lowers occupancy)

No x-component of c in SMC

x-component of c = −1 in SMC
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Maximising use of registers

• maximum of 65536 registers and can host up to 2048 threads

registers

thread
× threads

block
× blocks

SMX
≤ 65536

• in 3D we need 19 loads for f (x) and 19 stores
• we also need 1 integer (boundaries) and 4 macroscopic quantities
• so total of 43 registers needed per thread

• for high registers/thread, large block sizes are impractical.
• e.g block size of 1024 means only a single block would run
• [Obrecht et al., 2013, ] recommend maximum block size of 256
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Shared mem shuffle operation on Keplers
Shared Mem Shuffle
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Shared mem shuffle operation on Keplers

• ILP is more efficient than Shared memory or shuffle

• large block sizes are impractical for LBM
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Overall Performance

• Peak 814MLUPS and 402MLUPS for K20c and K5000M respectively

• vs theoretical max of 892MLUPS and 412MLUPS based on measured bandwidth

• Compared well to other implementations (albeit on other h/w)

• [Rinaldi et al., 2012, ] and [Astorino et al., 2011, ] use Shared Mem.
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Immersed Boundary method
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Immersed Boundaries (1977-)

Fluid equations solved on an Eulerian mesh. The geometrical complexity
is embedded using an Lagrangian mesh via a system of singular forces.

• Original Motivation of Charles Peskin [Peskin, 1977, ]

• Preserve efficient high order (Cartesian) solver

• Define arbitrary mesh shape

• An alternative to body fitted mesh
• Not a replacement, but a valuable tool
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Original vs current approach

• [Peskin, 1977, ]

• Applied to a complete heart fluid system

• Peskin idea: model the boundary as a

system of inextensible spring & dampers

• The elastic forces that restore the true and

actual boundary position are supplied to the rhs

of the momentum equations in terms of body

forces.

• [Pinelli et al., 2010, ] (no springs) has been

introduced and applied (CIEMAT): no k stiffness

introduced

• Modified approach has some advantages:

� Moving boundary

� Deformable boundary

• Sharing a drawback:

� pressure correction error
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Immersed Boundary: basics (I)

Along S u = u(d)

∂u

∂t
= rhs + f , f =

u(d) − un

∆t
− rhs ∀~x ∈ S

algorithm:

1. given f update position of Lagrangian markers (boundary shape)

2. advance momentum equation without boundary induced body forces (u∗ on S)

3. compute f as a function of the difference u(d) − u∗

4. repeat momentum advancement with f

5. compute for pressure correction, project velocity field

6. goto 1.
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Immersed Boundary: basics (II)

In discrete form in 2D

Interpolation

U∗(xl ) =
∑
i,j

u∗(xi,j )δh(xi,j − Xl )∆x2

Spread (convolution)

f (xi,j ) =
∑
l∈Ωl

F (Xl )δh(xi,j − Xl )ε∆l

• Epsilon is the key to the accuracy

• it can be considered to represent the physical width of the surface.

• and it’s computation guarantees that interpolation(spread(F))=F
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Coupling IB with LB

• Bounceback does not offer high
accuracy

• assumes ‘stair-step’ surface
• and is problematic for

moving/flexible boundaries

• Inherent suitability of LB to IB
• Lattice already uniform Cartesian
• Poisson-free ! −→ No pressure

correction drawback
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Lattice Boltzmann Method: Algorithm

1. initialise

2. set forces to zero

3. find velocity field in absence of object (call LBM)

4. compute support not required if not moving

5. find epsilon Costly, & also not required if not moving

6. interpolate fluid velocity onto Lagrangian marker

7. compute required force for object

8. spread force onto lattice

9. (solve other equations: collision, tension, bending, inextensibility)

10. find velocity field with object (call LBM again)

11. compute macroscopic quantities

(see [Favier et al., 2013, ] for full details)
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Rigid Particles: validation 1

Validation on finite-differences DNS [Uhlmann, 2005, ]

Falling particle under gravity ρp/ρf = 8, Re = 165

Starting at rest, no slip walls, gravity along x

settling velocity x-position
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Rigid Particles: validation 2

Kissing/Tumbing particles [Uhlmann, 2005, ]

Impulsively moved flat plate [Koumoutsakos and Shiels, 1996, ]
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Immersed boundary + GPU

• Transactions for each point of the object are coalesced

• each point only needs information about itself

• Transactions moving data between fluid and boundary
are random with much higher cache use.

• Transfer from host to IBM kernel can be started

simultaneously to hide latency

• exploit capability to overlap memory transfers

with executions

• spreading operation is a problem (atomic add)
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Small vs. large objects

• Objects are treated according to size; number of Lagrangian markers (nlag)

• For small objects (nlag < 1024) we assign one block per object

• generally the case for 2D

• For large objects (nlag > 1024), we need to launch a kernel for each object

• e.g. for a sphere radius r = 20 we need nlag 4000
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Flexible beating filament I

Apply inextensibility condition to the filament



∂X

∂t
= Interpol(u) Kinematic condition

Fh = −Interpol(f) Immersed boundary

ρ
∂2X

∂t2
=

∂

∂s
(T

∂X

∂s
)−

∂2

∂s2
(KB

∂2X

∂s2
) + ρg − Fh Solid momentum

∇ · u = 0 Incompressible condition

∂X

∂s
·
∂X

∂s
= 1 Inextensibility condition

following method of [Huang et al., 2007, ]

• f is the force required by the fluid to verify the b.c

• Fh is the hydrodynamic force resulting from having applied the b.c.
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Flexible beating filament II

• Application to Lattice-Boltzmann solver

• Staggered discretization of the Lagrangian space (X and T )

Xn+1 − 2Xn + Xn−1

∆t2
= [Ds (T n+1Ds Xn+1)] + (Fb) + Fr

g

g
− Fn

Ds Xn+1 · Ds Xn+1 = 1;

• Tension computed via iterative Newton-Raphson loop (by computing the exact Jacobian)

• For the initial guess, it’s possible to derive a very good estimate for the tension, by
incorporating the inextensibility condition in the momentum equations:

∂2T n+1

∂s2
− (

∂2Xn

∂s2
·
∂2Xn

∂s2
)T n+1 = −

∂Xn

∂s
·

dFn
h

ds
− ρ

∂Ẋn

∂s
·
∂Ẋn

∂s
+
∂Xn

∂s
·
∂3

∂s3
(KB

∂2Xn

∂s2
)

=⇒ AT n+1 = rhsn where A is a tridiagonal matrix
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flexible filaments: validation 1

Without fluid (falling under its own weight)

With fluid (for different rigidities we observe correct ‘kick’ of free end)

(see [Favier et al., 2013, ] for full details)
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flexible filaments: validation 2

Filament interactions: 2 filaments

correct phase dependence on separation of filaments
(see [Favier et al., 2013, ] for full details)



LBM LBM+GPU LBM+IBM(+GPU) realtime LBM

flexible filaments: investigation
Cylinder coated with filaments: drag reduction [Revell et al., 2013, ]

[Favier et al., 2009, ]

EU funded project on this topic just started: PELSKIN
(temp web address : http://195.83.116.187/pelskin_web/)

http://195.83.116.187/pelskin_web/)
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Realtime LBM
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Realtime output
several OpenGL visualization techniques are implemented

• Contour colour map (for velocity magnitude) is stored on the device

• Image Based Flow Visualization (IBFV) simulates advection of
particles through an unsteady vector field (macroscopic u field)

• instead of particle seeding which can be hit or miss

• noise textures are used to represent dense set of particles, which are advected

forwards using texture mapping

• previous frame M is textured onto a distorted mesh and blended
with random noise texture N according to blending factor α

• velocities used to displace mesh vertices using forwards integration
• noise texture does not affect flow

• mesh resolution may be coarser than lattice

Mi (x) = (1− α)Mi−1 (x + ui (x, ti ) δt) + αNi (x)

• Dye injection uses a similar method
• can be more intuitive



LBM LBM+GPU LBM+IBM(+GPU) realtime LBM

uses for Realtime?
• Initially started out as a gimic, used for teaching and open days

• Attracting increased attention in some areas
• training for medical surgical proceedure

• for complex industrial applications where ‘intuition’ is missing
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Conclusions

• LBM solver implemented on Kepler hardware with some optimizations

• 814 MLUPS peak on K20c

• IB-LB solver validated for rigid and flexible geometry

• various flow physics investigations underway
• context of EU project PELSKIN
• BBSRC project on ‘protein manufacturability’

• Realtime version of the solver available

• with various visualization options
• exploring potential applications
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