
3D visualization in
Jupyter Notebooks

Martin Sandve Alnæs (martinal@simula.no),
Vidar T. Fauske, Min Ragan-Kelley

FEniCS’17, Luxembourg, 2017-06-13

Overview

Basic technologies
A quick overview

Some new visualization packages
Different goals, different API flavours

A suggestion for FEniCS
Supporting lots of visualization packages

A quick overview of core tech for
3D visualization in notebooks

Jupyter Notebook
ecosystem

● Notebook cell outputs can
contain arbitrary HTML and
Javascript

● Ipywidgets provides generic
GUI widgets for notebooks

3D web technologies

● At the core is WebGL, a
somewhat limited and
slightly high level OpenGL

● Three.js library handles
some tedious parts, adds
abstractions, scenegraph

Paraview web

● Visualizer, ArcticViewer

● vtk-js to replace Three.js

Other

● MayaVi

● VisPy

● ipyvolume

Quite a few visualization tools
have added web versions lately

Packages developed by or
contributed to by

OpenDreamKit

Compose scenegraph in Python, render with Three.js

● Exposes many of the Three.js classes as ipywidgets

● Objects include camera, lights, basic shapes such as spheres and
boxes, text, and also custom triangle meshes

● Great for semi-interactive 3D illustrations and animations

● Not really a scientific visualization library

● Not created by ODK but currently being updated on ODK time

Pythreejs is a wrapper for
Three.js based on ipywidgets

Scivijs is a lightweight Paraview
like visualization pipeline written
in Javascript

Could be suitable for FEniCS:

● Interactive inspection of functions inline in a
notebook (cutplanes, isosurfaces, and more)

● Jupyter widget under development

● Proof of concept FEniCS -> Scivijs exists

● No demo to show right now

K3D aims for a simple 3D plotting interface
Can be suitable for many basic
FEniCS plotting needs

● Scatter plots

● Glyphs (quiver)

● Surfaces in 3D

● Under development now at University of
Silesia, good time to request features!

● (Missing better figures because of time...)

Unray (unreleased)
provides volume rendering
of tetrahedral meshes

Pipeline overview

● Upload cells, coordinates, vertex values of
functions as numpy arrays

● Data uploaded to GPU textures via Three.js

● Surface of each tetrahedron rasterized as a
triangle strip using instanced rendering

Unray can be quite fast for
anything that can render in
WebGL shaders

Framework in place for

● Passing function data on each
tetrahedron to shader

● Computing depth of
tetrahedron

● Tested with decent performance
with 4 million tetrahedral cells

My suggestion: FEniCS should make it easier
to get data that users can feed into plotting
libraries, instead of hiding it in plot(...)

Some things are easy to use

● mesh.cells() and
mesh.coordinates()

● BoundaryMesh, could be simplified

● MeshFunction.array()

● function.compute_vertex_values()

Other nice-to-haves

● function.compute_dg_vertex_values()

● function.compute_cell_values()

● Functionality such as probes and slices from
fenicstools should be in dolfin

● A more consistent interface for all of the above

Another idea is to make a small set of
functions to package fenics objects into a
generic simple format for visualization

This could be just arrays

● points, vectors =
make_glyphs(func)

● points, scalars =
make_scatter(func)

● triangles, points, values =
make_surface(func)

● (above a very simplified version)

Or some vega-like format

● data = { “f”: f.compute_vertex_values(), ... }

● enc = { “colors”: { “field”: “f”, “range”: [0,1] }, ... }

● plot(“glyphs”, data=data, encoding=enc)

Let me know during the breaks, or at
martinal@simula.no!

We acknowledge financial support
from the OpenDreamKit Horizon
2020 European Research
Infrastructures project (#676541)

What do you
want from

visualization
tools in

notebooks?

