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ABSTRACT
We explore visual representations of tilings corresponding to
Schl€afli symbols. In three dimensions, we call these tilings
‘honeycombs’. Schl€afli symbols encode, in a very efficient way,
regular tilings of spherical, euclidean and hyperbolic spaces in all
dimensions. In three dimensions, there are only a finite number of
spherical and euclidean honeycombs, but infinitely many
hyperbolic honeycombs. Moreover, there are only four hyperbolic
honeycombs with material vertices and material cells (the cells are
entirely inside of hyperbolic space), eleven with ideal vertices or
cells (the cells touch the boundary of hyperbolic space in some
way), and all others have either hyperideal vertices or hyperideal
cells (the cells go outside of the boundary of hyperbolic space in
some way). We develop strategies for visualizing honeycombs in all
of these categories, either via rendered images or 3D prints. High-
resolution images are available at hyperbolichoneycombs.org.
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Art attempts to portray in limited space, and song in time, what is otherwise unlimited –
Jacob Dix [8]

1. Introduction

Schl€afli symbols are an efficient system of notation for regular spherical, euclidean and
hyperbolic tilings. These symbols can also represent regular polytopes, which convert to
spherical tilings under radial projection. Schl€afli symbols are defined recursively, as fol-
lows. A symbol of the form {p} denotes the regular p-gon. A symbol of the form {p, q}
denotes a two-dimensional tiling of p-gons in which q such polygons meet at each vertex.
For example, {4, 3} denotes the tiling of squares, with three arranged around each vertex,
also known as the cube. A Schl€afli symbol of the form {p, q, r} denotes a three-dimensional
tiling of cells with Schl€afli symbol {p, q}, with r such cells meeting at each edge. For exam-
ple, {4, 3, 4} denotes the tiling of three-dimensional euclidean space by cubes. In three
dimensions, we also call these tilings honeycombs.

In this paper, we describe ways to visualize all {p, q, r} honeycombs, where each of p, q
and r is an integer greater than two, or1.

The honeycombs living in three-dimensional spherical space, corresponding under
radial projection to the six regular four-dimensional polytopes, have been visualized in
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many ways. The tiling of euclidean space by cubes, {4, 3, 4}, is the only regular euclidean
honeycomb. Some hyperbolic honeycombs have previously been visualized in the soft-
ware Curved Spaces [27], by Weeks, and in the video Not Knot [9], by Epstein et al.,
with visualization techniques of the latter described in depth in subsequent
papers [12,22]. In these, hyperbolic space is shown in the ‘in-space’ view, and the
emphasis is on visualizing hyperbolic manifolds rather than honeycombs. The in-space
view works well for honeycombs with smaller cells, corresponding to smaller values of
p, q and r. As we will see in Section 6, this breaks down once the cells become so big
that they cross the boundary of hyperbolic space. At this point, we switch to viewing
the pattern of intersections of cells with the boundary, allowing us to visualize all
remaining honeycombs. The technique of drawing an intersection with the boundary of
hyperbolic space has been used effectively by Vladimir Bulatov [2], producing intriguing
visualizations of hyperbolic symmetries. We should also mention that many beautiful
images drawn on the boundary of hyperbolic space have been generated – for example,
the limit sets of kleinian groups [13,16].

Two-dimensional hyperbolic geometry has been featured in works of art since
Escher’s Circle Limit series of prints. Three-dimensional hyperbolic space is less well
explored, but we feel that there is much potential. Our images include, as a side effect,
apparent two-dimensional hyperbolic tilings, as well as many other new features. We
will see that the sheer variety of possible images makes them accessible to creative explo-
ration. Interesting artistic challenges also arise in creating sculptures based on hyperbolic
honeycombs.

We warm up by looking at two-dimensional tilings corresponding to Schl€afli symbols
of the form {p, q}, and view these in spherical, euclidean and hyperbolic spaces (Section
2). We also note the relation between Schl€afli symbols and duality, and how to deter-
mine which geometry a tiling lives in from its symbol. We move on to three-dimen-
sional honeycombs, again noting the relation with duality and how to determine the
geometry of a honeycomb (Section 3). We then introduce tilings and honeycombs with
ideal vertices or ideal cells (Section 4). At this point, we can provide a visual map of the
different kinds of geometries and vertex/cell types of honeycombs (Section 5). We then
introduce tilings and honeycombs with hyperideal vertices or hyperideal cells (Section
6). With all classes of honeycombs described, we are ready to draw pictures (in various
forms) of the honeycombs on the boundary of the infinite ‘cube’ of three-dimensional
Schl€afli symbols, and on surfaces within the cube corresponding to honeycombs with
ideal vertices or ideal cells (Section 7). We display artworks based on our investigations,
both 3D printed sculpture and 2D renders (Section 8). Finally, we give some directions
for future work (Section 9).

This paper is intended to give a tour of the qualitative concepts and images of these
hyperbolic honeycombs, without giving too many of the precise geometric details of the
construction of the images and models. We give some of these details in Appendix A1.
We also discuss the question of the uniqueness of a honeycomb or tiling corresponding to
a Schl€afli symbol in Appendix 2.

For background information on hyperbolic space, see, e.g. Euclidean and Non-
Euclidean Geometries: Development and History by Greenberg [11]. For more technical
material, see Visual Complex Analysis by Needham [17], and the code we used to generate
the images in this paper [19].
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2. Two dimensions

2.1. Geometries

We start by looking at some examples of two-dimensional tilings given by Schl€afli sym-
bols (see Figure 1). For most cases, there is a uniquely defined regular tiling for every
Schl€afli symbol (see Appendices A1 and A2 for details beyond the discussion here).
Immediately, there is a question of how to draw pictures of these tilings. The {4, 4} tiling
is very familiar, and can be drawn on the page without any distortion, but the other two
tilings cannot. The {4, 3} tiling is otherwise known as the radial projection of the cube:
three squares meet around each vertex, tiling the sphere with six squares.

Figure 1(a) shows the stereographic projection [17, pp. 140–148] of the {4, 3} tiling of
the sphere to the plane. Note that stereographic projection is a one-to-one map from the
sphere to the plane with one point added at infinity. Here, five of the six faces of the cube
are mapped inside of the ‘clover leaf’ shape, and the sixth is mapped outside, covering the
entire rest of the plane and the point at infinity. In Figure 1(c), we draw the {4, 5} tiling
on the Poincar�e disk model ofH2 [17, pp. 315–319].

All three of these tilings live in isotropic spaces (and we draw projections of them to the
page). An isotropic space looks the same at every point, looking in any direction. More
precisely, there is a symmetry of the space that takes any pair of a point and a direction
based at that point to any other such pair. In general, we will interpret Schl€afli symbols as
describing tilings of (simply connected) isotropic spaces: in two dimensions, these are the
sphere, S2, the euclidean plane, E2, and the hyperbolic plane,H2.

2.2. Duality

As is well known, the regular polyhedra relate to each other by duality. For example, given
a cube (which we think of as the spherical {4, 3} tiling in Figure 1(a)), we can construct the
dual as follows. We plot a new vertex at the centre of each face of the cube. Whenever two
of these vertices are separated by an edge of the cube, we connect them by a new edge.
These new vertices and edges give the dual octahedron (thought of as the spherical {3, 4}
tiling in Figure 2(a) – note that one of the vertices is mapped to infinity under stereo-
graphic projection). If we start with an octahedron and perform the same operations, we
get back the cube. Similarly, the dodecahedron and icosahedron are duals of each other,

Figure 1. Two-dimensional tilings by squares: (a) {4, 3}, (b) {4, 4}, (c) {4, 5}.
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and the tetrahedron is self-dual. In terms of the Schl€afli symbols, we get the dual of a poly-
hedron by reversing its Schl€afli symbol. This relation extends from polyhedra (tilings of
the sphere) to tilings of the euclidean plane ({3, 6} is dual to {6, 3} and {4, 4} is self-dual)
and tilings of the hyperbolic plane.

For both spherical and hyperbolic spaces, in projecting to the euclidean plane of the
page, we make a choice. In particular, Figure 1(a,c) shows tile-centred pictures of the {4,
3} and {4, 5} tilings, while Figure 2(a,c) shows vertex-centred pictures of the {3, 4} and {5,
4} tilings, so called because a tile (respectively, vertex) of the tiling is at the centre of the
stereographic projection or Poincar�e disk model on the page.

2.3. Which two-dimensional Schla€fli symbols produce tilings of which geometries?

Suppose we try to tile the euclidean plane with polygons as given to us by a Schl€afli symbol
{p, q}. Then, q p-gons meet at a vertex, each of which has internal angle (1 ¡ 2/p)p, for a
total angle of q(1 ¡ 2/p)p. We will be able to tile the euclidean plane if this value is equal
to 2p, or equivalently if

ðp� 2Þðq� 2Þ ¼ 4: (1)

If the expression on the left-hand side is less than 4, then we instead get a polyhe-
dron [6, p. 5], which as before we view as a tiling of the sphere. If this value is greater than
4, then we can tile the hyperbolic plane [5, pp. 155–156] (see Figure 3).

3. Three dimensions

3.1. Geometries

Three-dimensional Schl€afli symbols also represent tilings of various isotropic spaces.
Here, we tile the three-sphere, S3, three-dimensional euclidean space, E3, and three-
dimensional hyperbolic space, H3. In three dimensions, we also call these tilings honey-
combs. Figure 4 shows spherical, euclidean and hyperbolic honeycombs made out of cubes.

Figure 4(a) shows (the edges of) the tiling of S3 by eight cubes. As a four-dimensional
polytope, this is the hypercube – three cubes meet around each edge, corresponding to
the last term of its Schl€afli symbol {4, 3, 3}. As with the two-dimensional tilings of S2, we

Figure 2. Dual two-dimensional tilings: (a) {3, 4}, (b) {4, 4}, (c) {5, 4}.
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can get from the four-dimensional polytope to the tiling (honeycomb) of S3 by radially
projecting the polytope onto S3. We draw the hypercube by first doing this radial projec-
tion, then stereographically projecting to three-dimensional euclidean space [23]. In three
dimensions, stereographic projection is a one-to-one map from S3 to euclidean space
with one point added at infinity. Here, seven of the eight cells of the hypercube are
mapped inside of the shape shown in the figure, and the eighth is mapped outside, cover-
ing the entire rest of euclidean space and the point at infinity. Figure 4(b) shows the
familiar tiling of E3 by cubes. Figure 4(c) shows the {4, 3, 5} tiling of the Poincar�e ball
model of H3. Or rather, this shows a small part of the tiling – there is a central cube, sur-
rounded by a number of layers of cubes. The full tiling fills up all of H3, so it would be
impossible to see into the interior of the structure if we showed all of it. Figure 5 shows
three layers of the {4, 3, 5} tiling: the central cube, the cubes adjacent to the central cube,
and the cubes adjacent to those.

Figure 4. Three-dimensional honeycombs with cubical cells: (a) {4, 3, 3}, (b) {4, 3, 4}, (c) {4, 3, 5}.

3 4 5 6 7
p

3

4

5

6

7

q

Figure 3. Geometries associated to the two-dimensional Schl€afli symbols: below the curve (p ¡ 2)(q ¡
2) D 4, the integer points correspond to tilings of the sphere, on the curve to tilings of the euclidean
plane, and above the curve to tilings of the hyperbolic plane.
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3.2. Duality

As in two dimensions, the three-dimensional Schl€afli symbols also have a notion of dual-
ity, and again we can get from a tiling to its dual by reversing the Schl€afli symbol (see
Figure 6). Geometrically, the process to get the dual of a honeycomb goes as follows: first,
we put a new vertex at the centre of each three-dimensional cell of the initial honeycomb.
Next, we join two new vertices by a new edge if the corresponding cells of the old honey-
comb share a face. We add a new face cutting through each edge of the old honeycomb,
and, finally, we add a new cell corresponding to each vertex of the old honeycomb. We
discuss our construction in detail in Appendix A2, and there see that a honeycomb and
its dual share the same fundamental simplex.

3.3. Which three-dimensional Schla€fli symbols produce honeycombs of which
geometries?

As in two dimensions, there is a formula that tells us whether the honeycomb correspond-
ing to the Schl€afli symbol {p, q, r} tiles S3;E3 or H3. Instead of adding up the internal
angles of polygons around a vertex, we add up the dihedral angles of polyhedra around an
edge. For a euclidean polyhedron given by the Schl€afli symbol {p, q}, the dihedral angle is

Figure 5. Three layers of cubes in the {4, 3, 5} honeycomb: (a) the central cube, (b) six more cubes, (c)
thirty more cubes.

Figure 6. Three-dimensional honeycombs dual to the honeycombs in Figure 4. Each image shows eight
cells from the honeycomb, and one cubical cell from the corresponding dual honeycomb: (a) {3, 3, 4},
(b) {4, 3, 4}, (c) {5, 3, 4}.
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2arcsinðcos pq =sin p
pÞ; for a total angle of 2rarcsinðcos pq =sin p

pÞ [5, p. 157]. We will be able
to tile E3 if this value is equal to 2p, or equivalently if

cos
p

q
¼ sin

p

p
sin

p

r
: (2)

If the left-hand side is less than the right-hand side, then we instead get a four-
dimensional polytope, which as before we view as a tiling of S3. If the left-hand side is
greater than the right-hand side, then we can tile H3 [5, p. 157]. Note that the dual of a
honeycomb will tile the same space because swapping p with r does not change the
equation.

Other than the complexity of drawing the figures, and the complexity of the formula,
the story in three dimensions is so far very similar to the story in two dimensions. How-
ever, some new features arise in three dimensions, as we will see in the next sections.

4. Idealization

4.1. Ideal vertices

If we continue the sequence of tilings shown in Figure 1, all Schl€afli symbols {4, q}, q � 5,
are tilings of H2 (see Figure 7). For each such tiling, the internal angle of each square
must be 2p/q. Therefore, as q increases, the square gets spikier, and the vertices move far-
ther and farther away from the centre of the square. In the limit, the Schl€afli symbol {4,
1} corresponds to a tiling with infinitely many squares around each vertex, each of which
has internal angle zero, and the vertices are infinitely far away, on the boundary ofH2 (see
Figure 7(d)).

A vertex that is on the boundary of hyperbolic space is called an ideal vertex. We call a
vertex that is inside hyperbolic space a material vertex. In three dimensions, we do not
need to go to Schl€afli symbols with infinite terms to find ideal vertices. In fact, the next
Schl€afli symbol in the sequence shown in Figure 4, {4, 3, 6}, corresponds to a honeycomb
of H3 by cubes with ideal vertices (see Figure 8). At first, it is a little unclear why {4, 3, 6}
should have ideal vertices while {4, 3, 5} does not. This is easiest to see with the dual hon-
eycomb, which we investigate in the next section. Later, in Section 6.1, we will see what
happens when r!1, which provides further intuition.

Figure 7. Tilings given by Schl€afli symbols {4, q}: (a) {4, 6}, (b) {4, 10}, (c) {4, 20}, (d) {4,1}.
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4.2. Ideal tiles

If a tiling has ideal vertices, then its dual will have ideal tiles (i.e. ideal faces for two-
dimensional tilings, and ideal cells for three-dimensional honeycombs). We can see this
in the two-dimensional case by looking at the dual sequence of tilings to the sequence
shown in Figure 7 (see Figure 9).

We cannot draw a vertex-centred picture of a tiling with ideal vertices, since the verti-
ces cannot be put at the centre of the Poincar�e disk. Similarly, it is impossible to draw a
tile-centred picture of a tiling with ideal tiles. Figure 10 shows one ideal cell from the {6,
3, 4} honeycomb. The cell has infinitely many hexagonal faces, as you would expect since
its Schl€afli symbol is {6, 3}. Geometrically, the vertices of the cell sit on a horosphere [17,
p. 326] of H3. The Poincar�e ball model represents H3 as a euclidean ball in E3. A horo-
sphere is represented in the model as a euclidean sphere which is contained in and
touches the boundary of the Poincar�e ball. As viewed in the negatively curved metric in
H3, however, a horosphere is isometric to a copy of the euclidean plane E2. This makes
sense, since {6, 3} is a tiling of the euclidean plane.

In general, an ideal cell is a three-dimensional cell whose vertices lie on a horosphere.
We call a cell whose vertices lie on a sphere that is strictly inside ofH3 a material cell.

From this perspective, we can see why {4, 3, 6} has ideal vertices: the dual honeycomb
has cells with Schl€afli symbol {6, 3}. Since this is a tiling of the euclidean plane rather than
a sphere, the cell vertices must live on a horosphere. The original honeycomb {4, 3, 6} has
a vertex at the centre of this dual cell, and the centre of a horosphere is on the boundary
of H3.

Figure 8. Three layers of cubes in the {4, 3, 6} honeycomb: (a) the central cube, (b) six more cubes, (c)
thirty more cubes.

Figure 9. Tilings given by Schl€afli symbols {p, 4}: (a) {6, 4}, (b) {10, 4}, (c) {20, 4}, (d) {1, 4}.
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Note that only the vertices of an ideal cell live on the horosphere, not the edges or faces.
In hyperbolic space, the euclidean geometry of the horosphere curves away from the
hyperbolic geodesics of the edges and faces.

5. The three-dimensional Schl€afli symbol map

We can now describe the map of the kinds of geometry, vertices and cells we see for three-
dimensional Schl€afli symbols (see Figure 11). Three surfaces are shown. In the bottom left
is the surface associated to Equation (2). Below the surface the honeycomb is spherical,
on the surface the honeycomb is euclidean, and above the surface the honeycomb is
hyperbolic. The other two surfaces are associated to Equation (1), the first using p and q
from the three-dimensional Schl€afli symbol {p, q, r}, and the second using r and q. Honey-
combs on the first surface have ideal cells, while those closer to the origin have material
cells. Honeycombs on the second surface have ideal vertices, while those closer to the ori-
gin have material vertices. The three honeycombs lying on both of these surfaces have
ideal cells and ideal vertices (Section 6.3).

In the next section, we explore what happens when we move to the far side of these two
surfaces.

6. Hyperidealization

6.1. Hyperideal vertices

Let us look at what happens when we make the {4, 1} squares of Figure 7 even bigger.
Figure 12 shows four squares in both the Poincar�e and Klein models [17, pp. 322–323],
one with material vertices, one with ideal vertices, and two with hyperideal vertices, that
is, vertices living beyond the boundary of H2. (Hyperideal points can be defined in terms

Figure 10. A single cell from the honeycomb given by the Schl€afli symbol {6, 3, 4}.
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of their dual relationship to planes within hyperbolic space [26, p. 71].) The largest hyper-
ideal square here has no material points and only four ideal points on the boundary of
H2. We will shortly see similar degenerate edges in some of our three-dimensional
honeycombs.

Continuing our {4, 3, r} sequence in three dimensions, the {4, 3, 7} honeycomb has
cubical cells with hyperideal vertices. As in two dimensions, the vertices no longer exist,

3
4

5

6

7

p

3

4

5

6

7

q

3

4

5

6

7

r

B

C

A

Figure 11. Geometries and cell/vertex types associated to the three-dimensional Schl€afli symbols. Surface
A is given by cos pq ¼ sin p

p sin
p
r , surface B by (p¡ 2)(q¡ 2)D 4, and surface C by (r¡ 2)(q¡ 2)D 4.

Figure 12. Hyperidealization. Hyperideal vertices of the squares can be seen in the Klein model: (a)
material, ideal, and hyperideal squares in the Poincar�e ball model; (b) the same squares in the Klein
model.
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even on the boundary of H3. Instead, the cell has eight legs that end in triangular patches
of the boundary of H3 (see Figure 13). In general, following Equation (1), a honeycomb
{p, q, r} has hyperideal vertices when (r ¡ 2)(q ¡ 2) > 4.

When our honeycomb has hyperideal vertices, the geometry inside H3 becomes less
interesting in a sense, because the edges never meet each other. It becomes harder to
understand what is going on by looking only at the edges going through the space, as we
did in Figure 4. Instead, we can look at the pattern we get on the boundary of H3 from
the hyperideal cells. Figure 14(a) shows one cube of the {4, 3, 7} honeycomb. It intersects
the boundary in eight triangles at the ends of its legs, which are drawn on the surface of
the sphere in red. Also drawn are the triangular intersections with the boundary of all
other cubes in the honeycomb. Figure 14(b) shows this boundary pattern, stereographi-
cally projected from the sphere to the plane, with the projection point at the centre of a

Figure 13. Three layers of cubes in the {4, 3, 7} honeycomb. In these images, the corners of the cubes
are cut off by the boundary ofH3, and you can see into the interiors of the cubes through the resulting
holes. (a) The central cube, (b) six more cubes, (c) thirty more cubes.

Figure 14. The boundary pattern for the {4, 3, 7} honeycomb. The eight legs of one cell are highlighted
red. (a) One cube with the induced pattern on the boundary of H3; (b) stereographic projection of the
boundary pattern.
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leg. Equivalently, we can think of this as being the boundary pattern of the {4, 3, 7} honey-
comb as drawn in the upper half space model of H3. The triangular ends of the central
cube are again shaded red, with progressively darker shades of blue for triangular ends of
cubes farther away from the central cube. Roughly one hemisphere is visible, and so only
four of the eight legs are visible in this image. For more details on the colouring scheme
used here, see Appendix A5.

Edges with ideal or hyperideal vertices usually intersect the boundary at two ideal
points. However, as r ! 1, less and less of each edge intersects H3. Figure 15 shows a
progression of {4, 3, r} honeycombs as r becomes large. We can see from this picture
where the endpoints of the edges are. For example, two nearby white triangles have an
edge between their closest vertices (compare with Figure 14). In the limiting {p, q, 1}
honeycomb, each edge has only one ideal point, the rest of the edge having become hyper-
ideal. In this sense, the edges of a {p, q, 1} honeycomb are like the edges of the largest
square of Figure 12.

In the two-dimensional case, when q is infinite, the vertices become ideal. In the three-
dimensional case, when r is infinite, the edges rather than the vertices have a single
remaining ideal point. In the four-dimensional case, the faces have a single remaining
ideal point when the last term in the Schl€afli symbol becomes infinite. In general, each
facet of codimension two in the polytope has only a single ideal point when the last term
of the Schl€afli symbol becomes infinite.

As the last term of the Schl€afli symbol is increased, vertices become ideal, then hyperi-
deal, and sooner in higher dimensions. This causes honeycombs with ideal vertices to
become rarer as we move up dimensions. In fact, they do not exist in dimensions six and
above [5].

6.2. Hyperideal cells

As with ideal vertices, we can tell if a tiling will have hyperideal vertices by looking at the
dual tiling and asking what kind of geometry the cells have. In the case of the {4, 3, 7} hon-
eycomb, the dual honeycomb has cells with Schl€afli symbol {7, 3}, which is a tiling of H2

with three heptagons around each vertex. We can see many copies of the dual {3, 7} tiling
in Figure 14(b), one for each hyperideal vertex: the hyperideal cells of the {7, 3, 4}

Figure 15. {4, 3, r} honeycombs as r ! 1. Compare with the {4, 3, 7} honeycomb in Figure 14(b). In
the limit, the edges become hyperideal except for a single ideal point, located where the apparent {3,
1} tilings kiss: (a) {4, 3, 10}, (b) {4, 3, 15}, (c) {4, 3, 30}, (d) {4, 3,1}.
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honeycomb are centred on the hyperideal vertices of the {4, 3, 7} honeycomb, with a face
corresponding to each edge of the {4, 3, 7} honeycomb.

Hyperideal cells have a new feature: each such cell meets the boundary ofH3 in a circu-
lar region we call the head of the cell, as shown in Figure 16. In general, a honeycomb {p,
q, r} has hyperideal cells when (p ¡ 2)(q ¡ 2) > 4.

6.3. Ideal vertices and ideal cells

A honeycomb that has both ideal vertices and ideal cells cannot be represented in either a
vertex-centred or a cell-centred picture. Instead, the most symmetrical pictures we can
draw in the Poincar�e ball model are edge-centred and face-centred. See for example
Figure 17, showing a cell from the {3, 6, 3} honeycomb and a cell from the dual honey-
comb, another copy of {3, 6, 3}. The blue cell is edge-centred, with an edge of the cell
going vertically through the centre of the ball. The white cell is face-centred, with a trian-
gular face of the cell on the horizontal plane through the centre of the ball. One ideal ver-
tex of each cell is incident with the ideal centre of its dual cell.

6.4. Hyperideal vertices and hyperideal cells

Similarly, honeycombs with hyperideal vertices and hyperideal cells cannot be repre-
sented in either vertex-centred or cell-centred pictures. For example, Figure 18
shows a cell from the {3, 7, 3} honeycomb and a cell from the dual honeycomb,
another copy of {3, 7, 3}. As in Figure 17, the blue cell is edge-centred, with an
edge of the cell going vertically through the centre of the ball. The white cell is
face-centred, with a hyperideal triangular face of the cell on the horizontal plane
through the centre of the ball. One hyperideal vertex of each cell is incident with
the hyperideal centre of the dual cell, visible as a leg of the cell protruding through
the dual cell’s head.

Figure 16. The boundary pattern for the {7, 3, 4} honeycomb. The single head of one cell is highlighted
red. Compare with Figure 14: (a) one {7, 3} cell with the induced pattern on the boundary ofH3; (b) ste-
reographic projection of the boundary pattern.
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7. The Schl€afli cube

We can now draw pictures of every Schl€afli honeycomb. Each Schl€afli honeycomb
corresponds to an integral point of the infinite cube {(p, q, r)j3 � p, q, r � 1}. In
Tables 1–8, we draw the honeycombs on the six faces of this cube, and on the two
surfaces in Figure 11 corresponding to the honeycombs with ideal vertices or ideal
cells. High-resolution images of a selection of honeycombs throughout the cube are
available at hyperbolichoneycombs.org. Appendix A2 describes the construction in

Figure 17. A cell from the {3, 6, 3} honeycomb, overlaid with a dual cell.

Figure 18. A cell from the {3, 7, 3} honeycomb, overlaid with a dual cell.
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more detail, and provides some general observations about the pattern on the bound-
ary for arbitrary p, q, and r.

For honeycombs with neither hyperideal vertices nor hyperideal cells, we draw
(using POV-Ray [21]) the in-space view – a view of the edges of the honeycomb as
seen from within the space, assuming that light rays travel along geodesics. These
are the 15 hyperbolic honeycombs listed by Schlegel and Coxeter [5], the one euclid-
ean honeycomb {4, 3, 4}, and the six spherical honeycombs corresponding to the reg-
ular four-dimensional polychora. For all other honeycombs, we draw the boundary
picture, as described in Section 6.

A number of interesting patterns appear as the terms of the Schl€afli symbol
approach infinity. As p ! 1, cell heads become tangent to each other. As q ! 1,
cell heads become tangent to hyperideal vertices. As r ! 1, hyperideal vertices
become tangent to each other. Only for {1, 1, 1} do all of these tangencies exist
simultaneously.

Table 1 The {3, q, r} honeycombs.

18 R. NELSON AND H. SEGERMAN



Once we started drawing pictures of hyperideal honeycombs, we began to see them in a
number of places, especially honeycombs with hyperideal cells and material vertices.
Many of these correspondences relate to kleinian groups, fractals, and apollonian gaskets.
Indra’s Pearls, by David Mumford, Caroline Series, and David Wright, shows an image of
a kleinian group which is visually the same as our boundary image of the {3, 3,1} honey-
comb [16, p. 200]. The cover ofMultifractals and 1/f Noise: Wild Self-Affinity in Physics by
Benoit B. Mandelbrot shows a fractal known as the ‘The Pharaoh’s Breastplate’ [14]. This
is also a boundary image of the {1, 3, 4} honeycomb. Beautiful images of Schmidt
arrangements in the paper Visualising the arithmetic of imaginary quadratic fields by
Katherine E. Stange are intimately connected to ideal honeycombs such as the {4, 4,
4} [25, p. 8]. Visualizations of ‘limit root sets’ may end up looking like our boundary
images, for example, the {7, 3, 3} [4]. Random groups are related to Coxeter groups of
honeycombs of the form {p, 3, 3} [3].

Table 2 The {p, 3, r} honeycombs.
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8. Artwork

8.1. 3D printed sculptures

A hyperbolic honeycomb represented using only edges as in Figure 5(c) is difficult to
interpret from a two-dimensional picture, but a 3D printed sculpture is much more useful
(see Figures 19–22). Also see Appendix sections A3 and A4 for technical details on
designing these sculptures.

8.2. Two-dimensional images

As we saw in Section 7, boundary patterns of hyperbolic honeycombs provide a huge col-
lection of strikingly varied imagery. There are many other ways to show these honey-
combs, giving yet more images.

One way we can alter the images is by applying hyperbolic isometries. Figure 23 shows
part of the {4, 6, 4} honeycomb, drawn on the boundary of the upper half-space model of

Table 3 The {p, q, 3} honeycombs.
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H3, as in Section 7. Here, however, we apply an isometry so that the head of the white cell
takes up the whole of the lower half-plane. Figure 24(a) shows a variation that results in a
pattern with translational symmetry. Figure 24(b) shows the {4, 3, 7} honeycomb arranged
so that the image is self-similar after a uniform scaling of

e2 arccoshð
ffiffi

2
p

cosp7Þ � 4:25917:

If we look down on the upper half-space model, with the boundary of H3 being the
page, then for this honeycomb, we are looking down an infinite tower of cubes. The
isometry that moves one cube in the tower to the next corresponds to scaling the bound-
ary pattern, and so the boundary pattern is self-similar. The scaling factor may be calcu-
lated from the distance between faces in this tower of cubes, which is twice the inradius
of the honeycomb. The inradius can be calculated using a formula due to Coxeter [5, p.
158].

Table 4 The {1, q, r} honeycombs.
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Figure 25 is based on the {3, 7, 3} honeycomb. The floor of the ‘catacombs’ is the
boundary of the {3, 7, 3} honeycomb as shown in Tables 1 and 3. The image as a whole
shows a view of the upper half-space model of H3, with only five cells of the honeycomb
drawn: the ceiling of the catacombs is one cell; the other four are the family of red ‘creatures’.

9. Future directions

In this paper, we considered only regular honeycombs. We have rendered a number
of in-space views of archimedean honeycombs for Wikipedia, but have yet to explore
hyperideal Archimedean honeycombs. By archimedean, we mean honeycombs not
transitive on all flags: for example, honeycombs with archimedean cells or honey-
combs with more than one cell type. By relaxing the regularity constraint, there are
many further possibilities for 3D prints, as well as new upper half-space boundary
images.

Table 5 The {p,1, r} honeycombs.
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Schl€afli symbols can be generalized further, to four-dimensional tilings and higher.
Four-dimensional tilings are difficult to visualize. For example, are limited in what we can
draw in Figure 4(a) to visualize a single hypercube – really we are only seeing the edges of
the hypercube. The four-dimensional tiling {4, 3, 3, 4}, consisting of infinitely many
hypercubes, seems to be out of reach of our techniques. Paradoxically, we may have better
luck visualizing four-dimensional tilings with hyperideal vertices or cells, because just as
in three dimensions, we can see what is happening on the boundary of H4, which is S3.
Using stereographic projection again, we can visualize S3.

Table 6 The {p, q,1} honeycombs.
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Table 7 Honeycombs with ideal vertices.
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Table 8 Honeycombs with ideal cells.
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Figure 19. The dual {4, 3, 5} and {5, 3, 4} honeycombs.

Figure 20. Two views of the self-dual {3, 5, 3} honeycomb.
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Figure 21. The dual {3, 3, 6} and {6, 3, 3} honeycombs.

Figure 22. Two views of the self-dual {4, 4, 4} honeycomb. Only half of the Poincar�e ball is rendered in
this print.
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Figure 23. Part of the boundary of the {4, 6, 4} honeycomb.

Figure 24. Further variations, applying isometries to the boundary image. (a) The {7, 3,1} honeycomb,
with a point at which two legs of a hyperideal cell meet sent to infinity. Compare with the correspond-
ing image in Table 6. (b) The {4, 3, 7} honeycomb, oriented so that the image is self-similar.
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Figure 25. Hyperbolic catacombs.

Figure 26. The central cell (green), fundamental simplex (blue) and the fundamental wedge (red) for
the {4, 3, 7} honeycomb, drawn in the Klein model. The labels mark the four vertices of the simplex,
which live at the cell centre (0), face (1), edge (2), and vertex (3).
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Appendices

Appendix 1. Implementation details

Code for generating the images and models in this paper is available online [19].

A1 Honeycomb construction

As mentioned in the introduction, our honeycombs and two-dimensional tilings are regu-
lar tilings of space, meaning that the entire tiling is determined by some fundamental
domain, under the action of some symmetry group. We construct our honeycombs in the
conformal models: stereographic projection for spherical space, ordinary euclidean space,
and the upper half-space model for hyperbolic space. In these models, geodesic surfaces
are spheres (or planes, i.e. spheres of infinite radius), and we can take the fundamental
domain of a tiling to be a simplex (i.e. a triangle in two dimensions or a tetrahedron in
three dimensions) bounded by such geodesic surfaces. Moreover, the symmetry group is
generated by reflections in these geodesic surfaces. In our constructions, we calculate
the surfaces for the fundamental simplex of the honeycomb according to the dihedral
angles of the simplex (see Appendix A2). The fundamental simplex then determines
the honeycomb: we build the honeycomb by recursive reflections (sphere inversions [17,
pp. 124-126]) in the surfaces of the simplex.

In terms of implementation, we use the faces of the simplex differently depending on
the context. For the 3D prints and POV-Ray renderings, we start with some honeycomb
element, say an edge or a face, and reflect it outwards to build up the honeycomb, using
some size threshold to stop the recursion. We used a hash map to avoid constructing
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multiple identical copies of each element. Gunn [12] instead used the theory of automatic
groups to address this problem.

For the upper half-space boundary images, we work in reverse. For every pixel in the
image, we move inwards, reflecting its position in the simplex faces until it is within the
fundamental simplex. We then colour the pixel based on where it ends up in the simplex
(see Appendix A6), and the distance of the cell the pixel is in from the cell containing the
fundamental simplex, where distance is measured in the cell adjacency graph of the hon-
eycomb (also see Appendix A5 for details on the colour choices).

As an example to illustrate the algorithm we use to calculate this distance, consider the
cell shown in Figure 26. The cell vertices are hyperideal (point 3 is outside of H3), and the
cell centre is at the origin. In general, the vertices and centres of the cells may be material,
ideal, or hyperideal, but the algorithm is the same in all cases. We number the simplex
faces according to the numbering of the opposite vertex. The three faces incident with the
cell centre (faces 1, 2 and 3) define a radial slice of the honeycomb, which we call the fun-
damental wedge.

Our algorithm proceeds as follows, starting with the location of a pixel of our image.
1. Set d D 0.
2. Apply reflections in faces 1, 2, and 3 until we are in the fundamental wedge.
3. If we are inside the central cell we are done, return d. If not, reflect across face 0,

increment d, and go to step (2).
Note that there is no upper bound on the number of reflections needed to move the

location of a pixel to the central cell, although in practice it rarely takes many steps. Our
implementation stops the calculation if we have not reached the central cell in 4000 reflec-
tions. We found that antialiasing made a huge difference in the quality of small features,
so, in fact, for each pixel, we sample 16 nearby points (in a 4£ 4 grid) and average the col-
our of all of the points which converged.

Figure A1. The {6, 5, 4} honeycomb. The intersection of simplex faces 1, 2, and 3 with the boundary
plane are drawn red. The intersection of face 0 is drawn orange. (a) The boundary pattern. The meta-
{6, 5}-tiling, also generated by the red mirrors, is overlaid in black. (b) Fundamental simplex of the {6,
5, 4} honeycomb in the upper half-space model.
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We claim that the above algorithm calculates the distance (measured in the cell adjacency
graph of the honeycomb) between the cell each pixel is in, and the central cell. This follows
from standard results in Coxeter groups (see [10, chapter 12]). We sketch a proof here.

We work on the level of simplices. We have the fundamental simplex sf, and the sim-
plex s containing the current pixel, and we want to know the distance from one to the
other. Each triangular face of a simplex in the honeycomb is part of a geodesic plane. Con-
sider the collection P of all of these planes. Let Pi � P be the planes that come from
faces conjugate to face i of the fundamental simplex. The simplices s and sf are separated
from each other by some number of geodesic planes in P. The number of planes of P0

that separate s and sf is the distance in the cell adjacency graph, and also the output given
by the above algorithm. In fact, the number of planes of Pi that separate s and sf is the
number of reflections in face i needed to get from s to sf. To see this, suppose face i of sf
separates s from sf. If we were to reflect sf across face i to get s0

f, then the number of
planes of Pi that separate s from s0

f goes down by one, and no other number of separat-
ing planes has changed. Of course, we are not reflecting sf across face i – instead, we are
reflecting s across that face to get s0. But if we then reflect both sf and s0 across face i, we
get s0

f and s, and we are in the previously described situation, so the counts of the number
of planes separating the two simplices change as before.

This shows that the above algorithm counts the number of planes ofP0 that separate s
from sf. Also note that reflecting sf to s0

f is a single step in the simplex (as opposed to cell)
adjacency graph, so the distance from s0

f to s (which is equal to the distance from sf to s0)
is at most one less than the distance from sf to s. In fact, a single reflection either
increases or decreases the distance by one – it cannot leave the distance the same. An
induction argument then shows that the number of planes separating s from sf is the
same as the distance in the simplex adjacency graph. The same result also follows only
paying attention to reflections in the planes of P0, corresponding to distance in the cell
adjacency graph.

A2 Simplex construction

Calculating the geometry of the fundamental simplex relies on an observation about
hyperideal honeycombs, namely that the upper half-space pattern of a {p, q, r} honeycomb
visually looks like a set of solid disks (cell heads) and {q, r} disks (hyperideal vertices)
arranged in a meta-{p, q}-tiling pattern (see Figure A1(a)). In the meta-tiling, the solid
disks live at meta-tile centres and the {q, r} disks live at meta-tile vertices. The meta-tiling
may be spherical (as in the first three columns of Table 1), euclidean (as in Table 8), or
hyperbolic (as in the right two columns of Table 1).

Three of the simplex mirrors (faces 1, 2, and 3, drawn in red) reflect the simplex to
another simplex within a cell of the honeycomb, and the remaining mirror (face 0, drawn in
orange) reflects the simplex to a simplex of a different cell. On the plane at infinity, the three
red mirrors are exactly those of the meta-tiling. The orange mirror is centred on a meta-tile,
and its radius can be calculated using trigonometry so that r cells surround each edge.

Figure A1(b) shows the fundamental simplex of the {6, 5, 4} honeycomb in the upper
half-space model. This simplex has two material vertices and two hyperideal vertices. The
six edges of the simplex are drawn in black, with constant hyperbolic thickness. The sim-
plex edges connected to a hyperideal vertex do not meet within the space, and hence this
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simplex itself has two legs, one at the left of the image (inside the cell leg in the centre of
the boundary pattern), and one at the right (inside the cell head centred at the boundary
plane’s point-at-infinity). There is only one edge that connects to both hyperideal vertices,
which is the vertical edge at the left. The other end of this edge is not visible, since it meets
the boundary at the boundary plane’s point-at-infinity. There is also only one edge con-
nected to both material vertices, in the central part of the image. The remaining four edges
have one material and one hyperideal endpoint. The four simplex faces are rendered in
semitransparent grey. Two are portions of planes and two are portions of spheres. All are
geodesic and orthogonal to the boundary.

Infinite terms in the Schl€afli symbols provide challenges in the same way that they do
for two-dimensional tilings. For example, since an1-gon does not have a material centre,
we cannot draw a tile-centred {1, 3} tiling. It is more natural to construct this tiling as the
dual to a {3, 1} tiling. For three-dimensional honeycombs, we handle various combina-
tions of infinite p, q, or r similarly, and our orientation choices were made to keep the
visual progressions in our tables as consistent as possible.

Figure A2. The {1,1,1} honeycomb.
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A3 Edges as Dupin cyclides

Edges, the one dimensional elements of a honeycomb, are geodesics in the induced geom-
etry. To realize honeycomb edges in our physical models, we must give them some thick-
ness. A constant offset from the line of an edge forms a Clifford surface. From within
hyperbolic space, thickened edges appear cylindrical, but they take on a banana-like shape
when projected to the Poincar�e ball model (see Figures 19, 20, 21(b) and 22) or upper
half-space model (see Figure A1(b)). These shapes are known as Dupin cyclides [24].
Dupin cyclides are inversions of cylinders, tori, or cones.

A cyclide is the envelope of a smooth one-parameter family of spheres. We construct
meshes to represent our cyclides by calculating the centres and radii of regularly spaced
spheres in the cyclide, and placing mesh vertices on the tangent circles where each sphere
touches the cyclide – the curve on the sphere furthest from the cyclide’s core geodesic.

Consider a sphere with hyperbolic centre pH in the Poincar�e ball model, and hyperbolic
radius rH. Because of the distortions of the Poincar�e ball model, the euclidean centre pE of
this sphere is not generally the same as pH. The exception is at the origin, where the
hyperbolic and euclidean centres coincide, and the euclidean radius is r0 ¼ tanhðrH=2Þ.
For all other spheres, take d ¼ pH, then a straightforward calculation shows the sphere
has euclidean centre

pE ¼ pHðr20 � 1Þ
d2r20 � 1

(3)

Figure A3. A closeup of the central apparent Poincar�e disk of the {6, 5, 4} honeycomb from Figure A1.
We have exaggerated the banana thickness and have also rendered the boundary of the offset plane
used to shade the bananas black.
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and euclidean radius

rE ¼ r0ðd2 � 1Þ
d2r20 � 1

: (4)

Note that pE is closer to the origin than pH. The variable r0 gives us a parameter to con-
trol the thickness of edges in our 3D printed model, balancing strength against cost and
visibility into the interior of the structure.

A4 3D printing issues

In the Poincar�e ball model, features become very small as we approach the boundary of
the ball. The 3D printers we used can print wire-like features with a minimum diameter
of around 1 mm, a restriction we quickly run into. We manage this issue in two ways.

For models with material vertices, such as the {6, 3, 3} honeycomb shown in Figure 21
(b), we print only the edges whose thickness remains above this threshold. This first stage
of culling leaves ‘dangling’ edges, which are connected to the rest of the model only at one
end. A second culling removes the dangling edges, a process which can reveal yet more
dangling edges. We repeat until every edge is connected at both ends.

For models with ideal vertices, such as the {4, 4, 4} honeycomb shown in Figure 22, all
edges approach a thickness of zero near the boundary of the ball. For these, we artificially
adjust the edge thickness. In Figure 22, the edges have accurate thicknesses until they
shrink to 1 mm, but remain a constant 1-mm thickness beyond that. For the {3, 3, 6} hon-
eycomb in Figure 21(a), we used edges of constant thickness in R3.

In order to reduce costs, we also hollow out the interior of the cyclides, while keeping
their wall thickness within a separate threshold required by the printers.

A particular challenge for these models is mesh unioning. We initially generated mod-
els in which each edge was a separate mesh. For some of the simpler honeycombs, in
which a small number of edges meet at a vertex, we were able (with some tinkering) to
use tools such as netfabb [20] and MeshLab [15] to merge the meshes into a single mesh
suitable for printing. For models such as the {4, 4, 4} honeycomb, so many meshes meet
at each vertex that those software packages fail. We wrote a function using the
AbFab3D [1] library that converts our meshes into voxels, performs unioning in voxel-
space, then converts back to a mesh from the voxel representation. Computer memory
was the limiting factor for the resolution we could achieve using this method.

A5 Colouring schemes

As described in Appendix A1, we colour the cells mentioned in Section 7 according to dis-
tance from a central cell in the cell adjacency graph of the honeycomb. The immediate
neighbours of the central cell all have the same colour, as do all of the cells at distance
two, and so on. We cycle through a set of colours, and repeat if necessary.

To generate the set of colours, we employ a simple colouring scheme based on travers-
ing the edges of the RGB colour cube. With the red, green, and blue colour components
of colour normalized between zero and one, the components of the colour are all zero,
corresponding to black, at one vertex of this cube. At the antipode, the components are all
one, corresponding to white. Starting from the white vertex, we move to cyan, then blue,
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then black, then red, yellow, and back to white. The full colour path traverses a skew hexa-
gon along the edges of the RGB colour cube.

The first three edges of this hexagon are cool colours and the final three edges are warm
colours, producing something of a rainbow effect across the entire range. We chose the
rate of movement along the hexagon so that the images most visibly expose the cool range.
This rate is different for each Schl€afli symbol, in order to best show the features of each
image. The rate is chosen so that most of the pixels in the image have colours in the first
half of the hexagon path. We calculated the cell-adjacency depth for each pixel, and then
a mean depth for the entire picture. We experimented with a number of different func-
tions of this mean to control the rate of movement, and settled on a rate proportional to
the square root of the mean, which we felt gave the best visual result.

There is a choice of six different skew hexagons for a colouring path starting and end-
ing at the white vertex. Some of the other hexagons produced striking results, and we also
experimented by starting at various points along the hexagon. Figure A2 shows an art-
work taking advantage of both of these changes. It starts near the black vertex and moves
along the hexagon described above in the opposite direction.

A6 Drawing curves on the upper half-space boundary

In Figures 14 and 15, many images in Section 7, and Figures 23 through A2, there is a sub-
tlety in how we draw the cross section of our honeycombs on the boundary of upper half-
space. The faces of the cells, even if given a constant thickness within the interior of H3,
have a cross section on the boundary along a line with zero thickness. In fact, any two dis-
tinct points on the boundary are infinitely far apart from each other.

However, for aesthetic reasons, it is preferable to draw lines with thickness. Figure 23
has many disks, each of which appears to contain a {6, 4} tiling of the Poincar�e disk model
of the hyperbolic plane. Each of these disks is associated to a hyperideal vertex of the hon-
eycomb, where infinitely many cells meet, so we refer to these disks as vertex disks. These
disks are not two-dimensional tilings in the usual sense. The apparent edges are intersec-
tions of faces with the boundary, and the apparent tiles are intersections of cells with the
boundary. A line of apparent edges travels through an infinite number of the vertex disks,
expanding towards the centre and shrinking towards the boundary of each vertex disk.

We chose to render the vertex disks as geometrically accurate two-dimensional tilings,
with geodesic edges rendered as constant thickness ‘bananas’ within the hyperbolic metric
in each apparent Poincar�e disk model of the hyperbolic plane. The method of achieving
this effect involves using a geodesic plane closely related to, but different from the plane
containing face 0 of the simplex (see Figure 26). The new offset plane coincides with the
original plane on the boundary circle of a vertex disk, but diverges in the disk interior.
Any points that lie within the simplex but outside of the offset plane are coloured black
(or in Figure A2, white). In all of our boundary pictures, the radius of each banana is
0.025, measured in the hyperbolic metric of each apparent Poincar�e disk. Figure A3 shows
the boundaries of both the original simplex planes, and of the offset plane used to achieve
this effect. For full details, see the implementation of the function that calculates the offset
plane [18].
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Appendix 2. Uniqueness of honeycombs for a given Schl€afli symbol

In Appendix A1, we described how we generate our honeycombs from a Schl€afli symbol.
The question arises whether or not there are other regular honeycombs described by the
same Schl€afli symbol.

We produce our honeycombs, starting from a fundamental simplex, as shown in Fig-
ures 26 and A1(b). In fact, since we are discussing regular honeycombs, the entire honey-
comb is determined by this fundamental simplex, under a symmetry group. Therefore,
uniqueness of the honeycomb follows from uniqueness of the fundamental simplex.

In Regular Polytopes, Coxeter calls such a fundamental simplex (for a regular honey-
comb) an orthoscheme. The name here references the fact that three of the dihedral angles
of the simplex are right angles. Coxeter shows [6, p. 139] (in the spherical case, explicitly),
that the other three dihedral angles of the orthoscheme for the Schl€afli symbol {p, q, r} are
p/p, p/q, and p/r, and hence this uniquely determines the simplex. For the hyperbolic
case, by following the construction in Figure A1, as long as none of the dihedral angles
are zero, the four sphere (or plane) faces of the fundamental simplex are similarly deter-
mined by the dihedral angles, and, so again, we have uniqueness.

When one of the dihedral angles is zero, corresponding to an infinite term in the
Schl€alfli symbol, we lose uniqueness. For example, see Figure B1(a), which ‘continues’ the
sequence shown in Figure 15. In Figure 15(d), the edges of the cube meetH3 only in a sin-
gle ideal point, while in Figure B1(a) they no longer intersectH3 at all, even on the bound-
ary of H3. This is still a regular honeycomb, and it is still a somewhat reasonable
representation of the Schl€afli symbol {4, 3, 1}, having the same symmetry group as the
honeycomb shown in Figure 15(d). One could question, however, whether it makes sense
to say that infinitely many cells fit around an edge, when the edge in question does not
exist in the space, even in a limiting sense.

When drawing honeycombs for Schl€afli symbols with infinite terms (other than in this
Appendix), we have required that the simplex edges intersect the boundary of H3 in at
least one point. With this extra condition, the faces of the fundamental simplex are
uniquely determined, and we again have a unique honeycomb.

Figure B1. Alternate representations of the dual {4, 3,1} and {1, 3, 4} honeycombs.
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The dual {1, 3, 4} honeycomb, shown in Figure B1(b), has the same fundamental sim-
plex as {4, 3, 1}. Even though it has hyperideal cells rather than hyperideal vertices, the
same condition gives uniqueness. We require the same edge of the fundamental simplex
to have at least one ideal point. When q is infinite, we can also get a unique honeycomb
with this restriction, although a different point of the edge ends up ideal. Figure B2 shows
alternative honeycombs with q D1 and the uniqueness restriction lifted.

Though we have omitted discussion here, the situation is similar in the two-dimen-
sional case, as depicted in Figure B3. Here the fundamental triangle angles determine
uniqueness when p or q is finite. When p is infinite, we retain uniqueness by requiring
that the vertices remain ideal. Dually, when q is infinite, we retain uniqueness by requiring
that the faces remain ideal.

Figure B3. Alternate representations of the dual {4,1} and {1, 4} tilings.

Figure B2. Alternate representations of the dual {4,1, 3} and {3,1, 4} honeycombs.
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