
Optimization	and	Experience	
sharing



Guideline

• Why	do	we	need	to	do	optimization?
• Our	optimization	steps
• Porting	experience	sharing
• Conclusion



Why	do	we	need	to	do	optimization?

• Vive	game	porting	to	Mobile	platform
– PC	is	much	powerful	than	Mobile

Mobile
drawcalls about	50
Triangles		about	20k

PC
drawcalls about	250
Triangles		about	140k



Our	optimization	steps

• Analysis
– Draw	calls, Vertices,	GPU	

• Get	the	optimization	factors
– Visualize
• Model	(include	Material)
• Particles
• Light

– Others
• I/O
• Heavy	calculation



Analysis

• Review	and	Prioritize
– For	each	VFX	and	Models
• Triangles
• GPU	Usage
• Draw	call

– Lighting
• Use	these	data	to	analysis	and	adjust	



Draw	calls

• Suggest	drawcalls under	80	per	frame
– Based	on	our	experience	porting	existing	game
• HTC	U11
• Better	trade	off	result	between	quality	and	frame	rate
• Here	is	our	environment	from	Profiler

Fracture:
DrawsCalls:50
Triangles:20k



• Models
– Mid-distance	Scene,	Controllers

• Remove	or	simplify
– Batching

• Particles
– Review	VFX	weighting	and	prioritize	importance
– Decrease	max	particles	or	eliminate	it

• Material
– Use	lightweight	Shaders

• Light
– Baked

Optimization	– Visual	Factors



Models

• background	building
Description Tris(%)
Arch	bridge	+	Rail	1	+	Rail	2 63.99%

Normal	Brick	Effect	- 46	Bricks 17.01%

1st,		2nd,	and	3rd	row	Bricks
- 46	Bricks 4.25%

Ground	+	Extended	Ground
+	Building	under	the	ground 3.59%

Hexagonal	Effect	 2.84%



Models

• Models
– Do	not	leave	many	game	objects,	
merge	game	objects	to	improve	performance
• Dynamic	batching	

– Group	many	similar	vertices	together	
– Things	violate	batching

» Objects	are	different	scale
» Objects	are	different	material	instances
» Multiple	lights

• Combine	mesh	as	much	as	possible
– Material	set	by	code

• Remove	unnecessary	game	objects



Particles,	Materials



Particles

• Particles
• Particle	System	decrease	6%	performance	per	trigger

– Reserved	main	VFX
– Decrease	max	particles



Material

• Material
– Use	Mobile	shaders first,	and	avoid	using	
“standard”	shader
• Unity	provide	several	simplified	shaders for	mobile	
platform	under	“Mobile”	category
– Have	significant	performance	advantage



Light

• Using	only	one	light	source	whenever	possible
– Additional	light	may	introduce	extra	lighting	pass	
• Generates	more	drawcalls to	impact	performance

• Usually	baked	is	better	than	real-time	from	
performance	standpoint,	but	need	to	make	
trade-off	in	between	visual	and	performance	
effect



Optimization	– Other	Factors

• I/O
• Heavy	Calculation
• Texture	format
• Object	Instantiation



I/O

• Saving	and	loading	files
– Audio	
• Unity	have	3	types	for	loading

– Decompress	on	load
– Compressed	in	memory
– Streaming

– Local	data
• Avoid	using	open/close	frequently



Heavy	Calculation

• Use	Unity	Profiler	to	find	the	killer
– Find	CPU	impulse
• Function	cost

– Total	usage
– CPU	Time
– Calls

– Find	unused	scripts/functions
• Garbage	Collection
– Avoid	using	a	lot	of	temp	variable



Texture	format

• Use	compressed	textures	to	decrease	the	size	
of	your	textures	
– Recommend	to	use	ASTC	or	ETC2
• Quality

– ASTC	>	ETC2
• Compression	rate

– ETC2	>	ATSC

– Benefits
• Fast	loading	time
• Reducing	build	size



Object	Instantiation

• Common	objects	be	instantiated	frequently	on	
scenes
– How

• don’t	destroy	objects	after	used
– Benefit

• Save	Instantiate	cost	
• Increased	FPS	15%	(our	game:	Fracture)

– Objects	Status	in	pool
• Deactivates

Can	be	used	
• Activates

Using	by	someone



Object	Instantiation	– Fracture	Case

• Common	Objects	in	Object	Pool
– Ball	Summoner Indicator
– Brick	Shatter	VFX
– Rebound	Collision	VFX
– Score	Text
– Ball



Object	Instantiation – Fracture	Case

Original Used	Object	Pool

FPS 47~51 60up



Porting	experience	sharing



Vive	to	Mobile	-- Fracture

• Steps
– Replace	SDK
• Functions	mapping

– Write	interface	to	integrate	each	platform	(VRSystem)

–Modify	Game	flow
• Revise	online	data	access	to	local
• Game	design

– Performance	Tuning
• Environment,	Particles,	Material,	etc.



Playable	

Tuning

Game	Flow

VRsystem



Complete

Tuning

GameFlow

VRsystem



script	mapping

SteamVR WaveVR

StreamVR_Camera.cs WaveVR_Render.cs

StreamVR_Controller.cs WaveVR_Controller.cs

StreamVR_TrackedObject.cs WaveVR_PoseTracker.cs

StreamVR_ControllerManager.cs WaveVR_ControllerManager.cs

StreamVR_RenderModel.cs WaveVR_RenderModel.cs

StreamVR_Utils.cs WaveVR_Utils.cs



Function	and	API	mapping

SteamVR class and	enums WaveVR class	and	enums

StreamVR_Controller.Device WaveVR_Controller.Device

StreamVR_Controller.Device.GetPress WaveVR_Controller.Device.GetPress

SteamVR_Controller.ButtonMash.Touch
pad

wvr.WVR_InputId.WVR_InputId_Alias1_
Touchpad

SteamVR_TrackedObject WaveVR_PoseTracker

SteamVR_ControllerManager WaveVR_ControllerManager



Conclusion

• Profiling early and often
• Combine or reduce meshes as much as you can
• Optimize function and remove unused scripts
• Reduce lights computation


