

Optimization and Experience sharing

Guideline

- Why do we need to do optimization?
- Our optimization steps
- Porting experience sharing
- Conclusion

Why do we need to do optimization?

Vive game porting to Mobile platform
 – PC is much powerful than Mobile

Mobile drawcalls about 50 Triangles about 20k

PC drawcalls about 250 Triangles about 140k

Our optimization steps

- Analysis
 - Draw calls, Vertices, GPU
- Get the optimization factors
 - Visualize
 - Model (include Material)
 - Particles
 - Light
 - Others
 - 1/0
 - Heavy calculation

∆ VIVE

Analysis

Review and Prioritize
 – For each VFX and Models

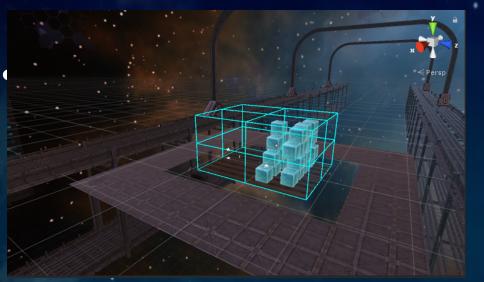
- Triangles
- GPU Usage
- Draw call
- Lighting

Use these data to analysis and adjust

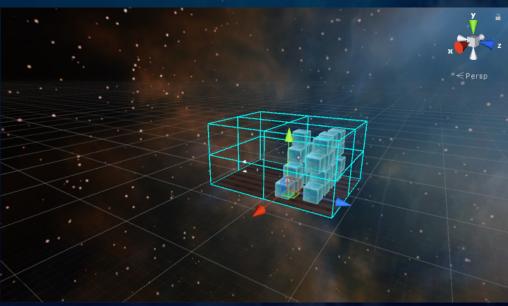
∆ VIVE

Draw calls

- Suggest drawcalls under 80 per frame
 - Based on our experience porting existing game
 - HTC U11
 - Better trade off result between quality and frame rate
 - Here is our environment from Profiler
 - Fracture: DrawsCalls:50 Triangles:20k


Optimization – Visual Factors

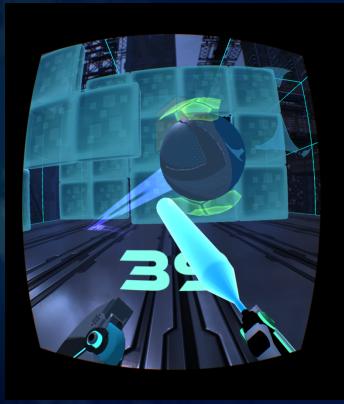
- Models
 - Mid-distance Scene, Controllers
 - Remove or simplify
 - Batching
- Particles
 - Review VFX weighting and prioritize importance
 - Decrease max particles or eliminate it
- Material
 - Use lightweight Shaders
- Light
 - Baked



Models

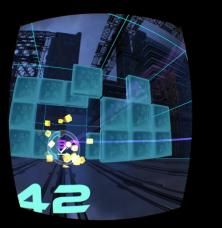
Description	Tris(%)
Arch bridge + Rail 1 + Rail 2	63.99%
Normal Brick Effect - 46 Bricks	17.01%
1st, 2nd, and 3rd row Bricks - 46 Bricks	4.25%
Ground + Extended Ground + Building under the ground	3.59%
Hexagonal Effect	2.84%

∆ VIVE


Models


- Models
 - Do not leave many game objects, merge game objects to improve performance
 - Dynamic batching
 - Group many similar vertices together
 - Things violate batching
 - » Objects are different scale
 - » Objects are different material instances
 - » Multiple lights
 - Combine mesh as much as possible
 - Material set by code
 - Remove unnecessary game objects

Particles, Materials




∆ VIVE

Particles

- Particles
 - Particle System decrease 6% performance per trigger
 - Reserved main VFX
 - Decrease max particles

Material

Material

Use Mobile shaders first, and avoid using "standard" shader

 Unity provide several simplified shaders for mobile platform under "Mobile" category

Have significant performance advantage

- Using only one light source whenever possible
 - Additional light may introduce extra lighting pass
 - Generates more drawcalls to impact performance

 Usually baked is better than real-time from performance standpoint, but need to make trade-off in between visual and performance effect

Optimization – Other Factors

- 1/0
- Heavy Calculation
- Texture format
- Object Instantiation

<mark>ک</mark> VIVE

I/O

- Saving and loading files
 - Audio
 - Unity have 3 types for loading
 - Decompress on load
 - Compressed in memory
 - Streaming
 - Local data
 - Avoid using open/close frequently

Heavy Calculation

- Use Unity Profiler to find the killer
 - Find CPU impulse
 - Function cost
 - Total usage
 - CPU Time
 - Calls
 - Find unused scripts/functions
- Garbage Collection
 - Avoid using a lot of temp variable

Texture format

- Use compressed textures to decrease the size of your textures
 - Recommend to use ASTC or ETC2
 - Quality
 - ASTC > ETC2
 - Compression rate
 - ETC2 > ATSC
 - Benefits
 - Fast loading time
 - Reducing build size

Object Instantiation

Common objects be instantiated frequently on scenes

- How
 - don't destroy objects after used
- Benefit
 - Save Instantiate cost
 - Increased FPS 15% (our game: Fracture)
- Objects Status in pool
 - Deactivates
 Can be used
 - Activates
 - Using by someone

Object Instantiation – Fracture Case

- Common Objects in Object Pool
 - Ball Summoner Indicator
 - Brick Shatter VFX
 - Rebound Collision VFX
 - Score Text
 - Ball

Object Instantiation – Fracture Case

	Original	Used Object Pool
FPS	47~51	60up

Porting experience sharing

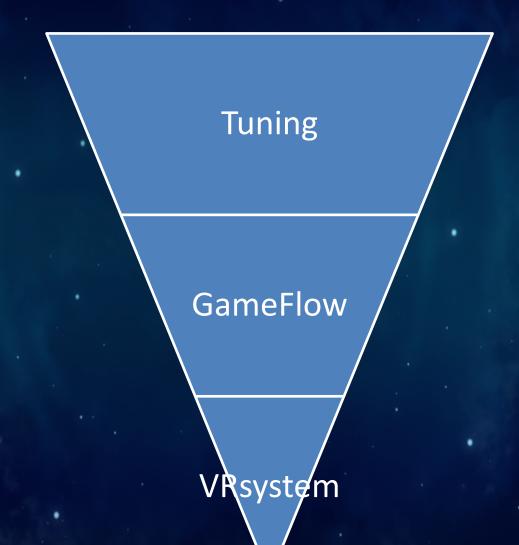
Vive to Mobile -- Fracture

- Steps
 - Replace SDK
 - Functions mapping
 - Write interface to integrate each platform (VRSystem)
 - Modify Game flow
 - Revise online data access to local
 - Game design
 - Performance Tuning
 - Environment, Particles, Material, etc.

∆ VIVE

Playable

Game Flow


Tuning

VRsystem

۵ VIVE

script mapping

SteamVR	WaveVR
StreamVR_Camera.cs	WaveVR_Render.cs
StreamVR_Controller.cs	WaveVR_Controller.cs
StreamVR_TrackedObject.cs	WaveVR_PoseTracker.cs
StreamVR_ControllerManager.cs	WaveVR_ControllerManager.cs
StreamVR_RenderModel.cs	WaveVR_RenderModel.cs
StreamVR_Utils.cs	WaveVR_Utils.cs

Function and API mapping

SteamVR class and enums	WaveVR class and enums
StreamVR_Controller.Device	WaveVR_Controller.Device
StreamVR_Controller.Device.GetPress	WaveVR_Controller.Device.GetPress
SteamVR_Controller.ButtonMash.Touch pad	wvr.WVR_InputId.WVR_InputId_Alias1_ Touchpad
SteamVR_TrackedObject	WaveVR_PoseTracker
SteamVR_ControllerManager	WaveVR_ControllerManager

Conclusion

- Profiling early and often
- Combine or reduce meshes as much as you can
- Optimize function and remove unused scripts
- Reduce lights computation

