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Using an analysis from a physical and phenomenological viewpoint employing the renowned and recognized continuity 
of Boscovich’s force curve, a new paradigm is formulated to explicate various physical phenomena in both the micro-
world and the macro-world. Within this paradigm, an algorithm is established which produced a functional 
representation of the atomic spectra of hydrogen and a temperature dependent blackbody energy distribution of 
radiation which compares very favorably with the experimental data. Further representations afford suggestions for the 
predictions of the specific heat of solids, photoelectric effect, etc. The Boscovichian points are assumed to move under 
the action of a force (acceleration) that varies inversely proportional to the cube of the radius from the point center, 
which leads to an orbit described by an equiangular (logarithmic) spiral. This spiral is subsequently used to simulate the 
concepts used in phyllotaxis (a constituent of plant morphology) and the gnomonic growth of mollusk shells (e.g. 
nautilus). The intercepts for the stable and unstable points on the Boscovich curve, which are the roots of the equation 
used, are calculated via the application of Fibonacci-type sequence of integers. In addition, utilizing the shape of 
Boscovich's "extended" curve of force (acceleration), the prospect of interpreting the mysterious attractive force 
beyond the visible Newtonian region of space (e.g. black holes, dark energy, etc.) is proposed. It is hoped that this 
phenomenological approach will serve as a beginning for description of both the micro-universe and the macro-
universe. 

 
Introduction 

In any discussion, verbal or written, of 
Boscovich’s (1922) magnum opus Philosophiae 
Naturalis Theoria reducta ad unicam Legem Virium 
in Natura Existentium. “Theory of Natural 
Philosophy reduced to a single law of the forces 
which exist in nature” (Boscovich, 1922), there 
usually always is a mention or reference made to his 
“curve of forces”. These citations frequently are 
applied to its qualitative features and, to my 
knowledge, never to its quantitative features. It is the 
purpose of this paper to address the quantitative 
features of the curve leading to an analysis for 
empirical applications. Ivanovic (1988) provides 
another recent overview of some of the features of 
Boscovich’s curve. Boscovich (1922), in Theoria 
notes 10–11, presents his curve of forces as a single, 
continuous curve shown in Fig. 1. 

 
Fig 1. From Theoria (Boscovich, 1922) 

 
Note 1 – Hereafter referred to as Theoria. This 

paper uses the Latin-English edition, prepared by J. 
M. Child (1922). Boscovich (1922) states that this 

graphical representation does not require knowledge 
of geometry to set it forth (note 11 ibid) but only to 
glance at it as a portrait. 
 
Description 

A detailed description is presented in Theoria 
with the following six conditions:   

117. The investigation of the equation, by 
which a curve of the form that will represent 
my law of forces can be expressed, requires a 
deeper knowledge of analysis itself. 
Wherefore I will here do no more than set out 
the necessary requirements that the curve must 
fulfill & those that the equation thereby 
discovered must satisfy. It is the subject of 
Art. 75 (2) of the dissertation De Lege Virium, 
where the following problem is proposed. 
Required to find the nature of the curve, 
whose abscissae represent distances & whose 
ordinates represent forces that are changed as 
the distances are changed in any manner, & 
pass from attractive forces to repulsive, & 
from repulsive to attractive, at any given 
number of limit-points: further the forces are 
repulsive at extremely small distances and 
increase in such a manner that they are 
capable of destroying any velocity, however 
great it may be. 
118. In addition to what is proposed in this 
Art. 75, I set forth in the article that follows it 
the following six conditions; these are the 
necessary and sufficient conditions for 
determining the curve that is required. 
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(i) The curve is regular, & simple, & not 
compounded of a number of arcs of different 
curves. 
(ii) It shall cut the axis C'AC of Fig. 1, only in 
certain given points, whose distances, AE', 
AE, AG', AG, and so on, are equal in pairs on 
each side of A. 
(iii) To each abscissa there shall correspond 
one ordinate & one only. 
(iv) To equal abscissae, taken one on each 
side of A, there shall correspond equal 
ordinates. 
(v) The straight line AB shall be an asymptote, 
and the asymptotic area BAED shall be 
infinite. 
(vi) The arcs lying between any two 
intersections may vary to any extent, may 
recede to any distances whatever from the 
axis C'AC, and approximate to any arcs of 
any curves to any degree of closeness, cutting 
them, or touching them, or osculating them, at 
any points and in any manner (Boscovich, 
1922). 
 

Interpretation 
Boscovich describes the arcs and areas and then 

offers an interpretation of the various sections of his 
curve. He states, in Theoria notes 167-168: 

167. With regard to the curve, there are three 
points that are especially to be considered; 
namely, the arcs of the curve, the area 
included between the axis and the curve swept 
out by the ordinate by its continuous motion, 
and those points in which the curve cuts the 
axis. 
168. As regards the arcs, some may be called 
repulsive and others attractive, according 
indeed as they lie on the same side of the axis 
as the asymptotic branch ED or on the 
opposite side, and terminate ordinates that 
represent repulsive or attractive forces. The 
first art ED must certainly be asymptotic on 
the repulsive side of the axis, and continued 
indefinitely. The last arc TV, if gravity extends 
to indefinite distances according to a law of 
forces in the inverse ratio of the squares of the 
distances, must also be asymptotic on the 
attractive side of the axis, and by its nature 
also continued indefinitely. All the remaining 
arcs are represented in Fig. 1 as finite 
(Boscovich, 1922). 

Boscovich continues to describe the curve’s 
analytical features in Theoria notes 179-180. 

179. So much for the arcs & the areas; now 
we must consider in rather more careful 
manner those points of the axis to which the 

curve approaches. These points are either such 
that the curve cuts the axis in them, for 
instance, the points E, G, I, &c. in Fig. 1; or 
such that the curve only touches the axis at the 
points.  Points of the first kind are those in 
which there is a transition from repulsions to 
attractions, or vice-versa; and these I call 
limit-points or boundaries, since indeed they 
are boundaries between the forces acting in 
opposite directions. Moreover these limit 
points are twofold in kind; in some, when the 
distance is increased, there is a transition from 
repulsion to attraction; in others, on the 
contrary, there is a transition from attraction to 
repulsion. The Points E, I, N, R are of the first 
kind, and G, L, P are of the second kind. Now, 
since at one intersection, the curve passes 
from the repulsive part to the attractive part, at 
the next following intersection it is bound to 
pass from the attractive to the repulsive part 
and vice-versa. It is clear then that the limit 
points will be alternately of the first and 
second kinds. 
180. Further, there is a distinction between 
limit points of the first and those of the second 
kind. The former kind have this property in 
common; namely that, if two points are 
situated at a distance from one another equal 
to the distance of any one of these limit-points 
from the origin, they will have no mutual 
force; and thus, if they are relatively at rest 
with regard to one another, they will continue 
to be relatively at rest. Also, if they are moved 
apart from this position of relative rest, then, 
for a limit-point of the first kind, they will 
resist further separation and will strive to 
recover the original distance, and will attain to 
it if left to themselves; but, in a limit-point of 
the second kind, however small the separation, 
they will of themselves seek to get away from 
one another and will immediately depart from 
the original distance still more. For, if the 
distance is diminished, they will have, in a 
limit point of the first kind, a repulsive force, 
which will impede further approach and will 
impel the points to mutual recession, and this 
they will acquire if left to them; thus they will 
endeavor to maintain the original distance 
apart. But in a limit point of the second kind 
they will have an attraction, on account of 
which they will approach one another still 
more; and thus they will seek to depart still 
further from the original distance, which was a 
greater one. Similarly, if the distance is 
increased, in limit-points of the first kind, due 
to the attractive force which is immediately 
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obtained at this greater distance; there will be 
a resistance to further recession and an 
endeavor to diminish the distance; and they 
will seek to recover the original distance if left 
to themselves by approaching one another. 
But, in limit-points of the second class a 
repulsion is produced, owing to which they try 
to get away from one another still further; and 
thus of themselves they will depart still more 
from the original distance, which was less. On 
this account indeed I have called those limit 
points of the first kind, which are tenacious of 
mutual position, limit-points of cohesion, and 
I have termed limit-points of the second kind 
limit-points of non-cohesion (Boscovich, 
1922). 
From Andronov, Vitt, & Khaikin (1966), these 

characteristics of Boscovich’s curve may be 
expressed in terms of motion in a uni-dimensional 
phase space. According to Andronov et al. (1966), 
f(x) as in analytic function over the entire x-axis as 
shown in their Fig. 161. 

If f(x) has the real roots x = x1 . x=x2 . 
x=x3…..x=xh, then there can be paths of 
various types: 
(a) states of equilibrium 
(b) intervals between two roots 
(c) intervals between one of the roots and 

infinity (half straight lines) 

Fig. 2 (Fig. 161 from (Andronov et al., 
1966)) 

 
On each path the motion takes place in a 
determined direction, since the sign of f(x) 
does not vary over a path. If f(x)>0, the 
representative point moves towards the right; 
if f(x)<0 the representative point moves 
towards the left. The points where f(x)=0 
correspond to states of equilibrium. Knowing 
the form of the curve z=f(x) and using these 
arguments we can divide the phase (straight) 
line into paths and indicate the direction of 
motion of the representative point along the 
paths. An example of such a construction is 
shown in Fig. 161. This gives a clear picture 
of the possible motions of a dynamic system 

described by one differential equation of the 
first order. Knowing the states of equilibrium 
and their stability will establish a qualitative 
picture of the possible motions (p. 214). 
Andronov et al. (1966) discusses another 

representation of the stability of the states of 
equilibrium depending on the sign of the derivatives 
at the points of intersection of the curve. 

…it is easy to investigate stability directly 
from the properties of the function f(x) near to 
the state of equilibrium x=x0. Since f(x)=0, 
three essentially different cases occur, and are 
illustrated in Figs. 163, 164 and 165. 
(1) F(x) changes its sign near x=x0 from 
positive to negative as x increases (Fig. 164). 
Hence f'(x0)<0 and x0 is stable. 
(2) F(x) changes its sign near x=x0 from 
negative to positive as x increases (Fig. 164). 
Hence f'(x0)>0 and there is unstable point 
x=x0. 
(3) F(x) does not change its sign in the 
vicinity of the state of equilibrium x=x0 as x 
increases (Fig. 165). This means that a 
representative point, situated sufficiently close 
to the position of equilibrium on one side of it, 
will approach it, and one situated on the other 
side will move away from it. It is clear that the 
state of equilibrium proves unstable in the 
sense of Liapunov, for there is instability on 
one side and stability on the other. In this case 
f '(x0)=0 (p. 218). 
 

 
Fig. 3 (Fig. 163-165 from (Andronov et al., 1966)) 

 
Case 1 (Fig. 163) corresponds to what Boscovich 

calls “limit points of cohesion” and is illustrated at 
point E of his curve. Similarly his “limit of non-
cohesion” or points of unstable equilibrium seen in 
Fig. 164 may be seen at point G on the curve. 
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 Markovic succinctly described…(as cited in 
Whyte, 1961) the characteristics of Boscovich’s 
curve by stating:  

The winding of the curve about the X-axis, in 
particular the behavior of arcs belonging to 
the repulsive and attractive forces 
respectively, have a bearing on the 
explanation of “fermentation”, evaporation, 
sudden deflagrations and explosions, and also 
of light emission. “Fermentation” arises when 
the shape and the distribution of the repulsive 
and the attractive arcs of the curve are such 
that the particle is forced to oscillate rapidly 
within definite limits. In fact, Boscovich 
introduces, as well as the points in which the 
curve intersects the axis, X, also limits of 
another kind in which the transition from the 
repulsive force to the attractive, or vice versa, 
does not occur by cancellation of the force but 
by transition through infinity. Thus new 
asymptotic branches are introduced into the 
curve of forces in addition to that near the 
origin. For Boscovich this does not destroy 
the continuity of the curve, because in his 
theory of curves two such 

 
Fig. 4 (Fig. 2 from Marcovic…as 

stated in Whyte, 1961) 
 

asymptotic arcs, one of which recedes into 
positive infinity, while the other returns from 
the negative infinity, or vice versa, are 
connected at a “point of infinity”. If the first 
of these vertical asymptotes falls, for instance, 
in a limit of non-cohesion E (Markovic’s Fig. 
2 in as stated in Whyte, 1961) in such a way 
that on the left of the asymptote the branch of 
the curve of forces tends towards negative 
infinity, and on the right towards positive 
infinity.       
The elements of matter contained in the 
interval between O and E will never be able to 
leave this interval however strong the mutual 

forces may be between them, and however 
great the effect of forces due to the point 
outside the interval. A detailed analysis shows 
that the particles will oscillate, even violently, 
and the fermentation which results from it – as 
intensive as it may be – will be able to persist 
for ever; the motions of single points will be 
accelerated or retarded, and the amplitude of 
oscillations will increase or decrease (p. 140-
141). 
This statement by Markovic clearly corresponds 

to Andronov’s Fig. 165. It should be noted that 
Markovic’s Fig. 2 displays all the features of 
Boscovich’s Fig. 26 (1922) in the Theoria. 

 
(Fig. 26 from Boscovich, 1922) 

 
Qualitative Analysis: Development 

In a paper by Prince (1989), it is stressed how 
important it is to establish physical laws from the 
phenomena, i.e. 

The observed phenomena must be examined 
according to some theory and described in 
terms of laws consistent with that theory. The 
laws derived from empirical data may be 
expressed by means of abstract concepts that 
permit them to be mathematically formulated 
and incorporated into the theory (p. 593). 

This is further elucidated by Martinovic (1987).   
The curve of forces and physical phenomena 
are in a dichotomous, dialectical relationship. 
The curve can be used for the interpretation of 
many physical phenomena, and can help to 
solve very difficult problems dealt with in 
higher geometry and analysis.  On the other 
hand, the curve of forces should be studied 
with regard to the phenomena: The nature of 
these curves, as well as the points [intersection 
with axes] which the curves cut, should be 
investigated with regard to phenomena. It is 
implied that phenomena should be studied as 
far as they are a manifestation of forces acting 
between particles of matter, which determines 
the properties of the flow of the curve of 
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forces. Boscovich’s selection of phenomena 
has a decisive influence on the final form of 
the curve. The selection is not arbitrary. It 
reflects Boscovich’s relationship towards 
Newton’s general principles of motion: 
gravitation, cohesion and fermentation (p. 73).  

 
Quantitative Analysis: The Process and 
Motivation 
 The motivation for investigating a possible 
quantitative expression for the Boscovich curve, with 
the hope that it would lead to substantiation of 
empirical data, was brought about by the publication 
of an article by Horadam & Shannon (1988). In this 
article, the authors produced an expression for 
determining Fibonacci numbers for non-integral 
values (Horadam & Shannon, 1988, p. 4). A 
parametric analysis, based on their equations given 
by: 

𝑥 = !!!!!!!! !"#!"
!

       (2.3) 

𝑦 =  − !!!! !"#!"
!

        (2.4) 
(Horadam & Shannon, 1988). 

 
For the Fibonacci case A = B = 1, and (2.3) becomes 

𝑥 = !!!!!! !"#!"
!

𝑤ℎ𝑒𝑟𝑒 𝛼 = !! !
!

   (2.5) 
(Hordam & Shannon, 1988). 
 
Table 1 presents the parametric representational 

values for Fibonacci numbers (Horadam and 
Shannon, 1988). Table 1 sets out the values of x in 
(2.5), and y in (2.4) where B = 1, for the Fibonacci 
case α = 1, b = 0, when we proceed to increase θ by 
multiples of 0.2. 

Table 1 
Fig. 1 shows the graph corresponding to the data 

in Table 1 called The Fibonacci Curve. 
 

The similarity to the Boscovich curve is obvious 
with the intersections corresponding to the Fibonacci 
numbers 1, 2, 3, 5, 8, 13, 21, etc. 

 

 

 
 

Fig. 5 (Fig. 1 from Hordam & Shannon, 1988). 
Fig. 1 shows the graph corresponding to the data 

in Table 1 called, The Fibonacci Curve. 
 

𝛼 = 𝑒!" !            (1) 
𝛼! = 𝑒! !" ! = 𝑒!"         (2) 
(Hordam & Shannon, 1988). 

                                                 
Where 𝑘 = ln𝛼 = 0.481211825 
 
Then Horadam and Shannon’s equations might be 
rewritten as: 
 

𝑥 = !(!")!! !!" !"#(!")
!

         (3) 

𝑦 = !(!!")!"# (!")
!

           (4) 
 
From Table 1, it can be seen that the non-integral 
values for the Fibonacci numbers can also be 
constructed from the preceding numbers: 
 
𝜃!.! + 𝜃!.! = 𝜃!.! 
𝜃!.! + 𝜃!.! = 𝜃!.! 
etc. 
   
 These non-integral Fibonacci numbers I choose to 
call quasi-Fibonacci numbers. This relationship will 
prove to be very useful in the development of a 
quantitative value for the Boscovich curve. If we take 
a range of these quasi-Fibonacci numbers using the 
modified Horadam & Shannon (1988) equation they 
should show an oscillating characteristic similar to 
the Fig. 1 (The Fibonacci Curve). Based on this 
conjecture a curve is produced using: 
𝐹 𝑥 = sin !

!
𝑒 !" − 𝑒 !!" cos 𝜋𝑥 5   (5) 

 
For x = 7 to 8 with the values of F(x) at 0.1 intervals, 
which is shown in Fig. 6 and values on Table 2. 
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Fig. 6 

 
Table 2 

 Continuing the investigation, it is imperative that 
the intersections of the abscissa where f(x)=0 be 
determined. For this, it is necessary to go to the Binet 
approximation for the Fibonacci Series. This is given 
by: 
𝑢! =

!
!
(!! !

!
)! − !

!
(!! !

!
)! (𝑛 = 0,1,2,3,… )  (6) 

 
 While this equation reproduces the Fibonacci 
number fairly accurately, especially for large values 
of n (n > 15), it does not yield values for non-integer 
values, due to the fact that the second term means 
finding the nth power of a negative number, when n is 
not an integer. However, it may be denoted that 
ignoring this term does yield approximate values for 
non-integers; exact values for n ≥ 15. An example is 
shown in Table 3 and demonstrated in Fig. 7. 
 

       
      Fig. 7                 Table 3 

 
 We are now in a position to determine the values 
of the x-intercepts using the Binet Formula for f(x) = 
0. Using the first term of the Binet formula yields: 
𝑦 = !" ( !!)

!
           (7) 

𝑤ℎ𝑒𝑟𝑒 𝑘 = ln
5 + 1
2

= 0.481211825 

 From Fig. 6 it can be noted that there are 
intersections at the 7th  & 8th (real) Fibonacci number 
and seven intersections for the quasi-Fibonacci 
numbers, where U7 = 13, U8 = 21 
 

Fig. 8 

Table 4 
 

Thus, using Eq. 7 and starting at U7 = 13, values 
of the other intersections are given in Fig. 8 and 
Table 4. A comparison of Table 4 and the roots of 
f(x) displayed in Fig. 8 is given in Table 5 and 
compared with the results using Newton’s Method. 
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Table 5 
 

u1       1 u11       89 u21    10946 u31        1346269 
u2       1 u12     144 u22     17711 u32        2178309 
u3       2 u13     233 u23     28657 u33        3524578 
u4       3 u14     377 u24     46368 u34        5702887 
u5       5 u15     610 u25     75025 u35        9227465 
u6       8 u16     987 u26   121393 u36     14930352 
u7     13 u17   1597 u27   196418 u37     24157817 
u8     21 u18   2584 u28   317811 u38     39088169 
u9     34 u19   4181 u29   514229 u39     63245986 
u10     55 u20   6765 u30   832040 u40  102334155 

Table 6 
 

For comparison purposes, a table for the first 40 
numbers of the Fibonacci series is given in Table 6. 
From Table 6 it can be shown that the number and 
intercepts is given by the difference of two Fibonacci 
numbers plus one. 

 
Example from Table 6: 
𝑢!" − 𝑢!" + 1 = 6765 − 4181 + 1 
     = 2585 intercepts     (8) 
𝑢!" − 𝑢!" + 1 = 102334155 − 62345986 + 1 
       = 39088170 intercepts    (9) 
 

From this, one can see that for higher Fibonacci 
numbers, the distance between the x-intercepts 
becomes very small. The next step in the 
development of a quantitative analysis of the 
Boscovich curve will entail the magnitude of the 
various cycles. We now investigate the significance 
of an inverse cube type force. In Theorem note 121 in 
Supplement III, notes 74, Boscovich (1922) cites 
Newton and Kepler and mentions a force curve 
having the form given by !

!!
+ !

!!
  

In particular he emphasizes the significance of the 
fact that the inverse cube force !

!!
− !

!!!! is very 
important at very small distances. This is the region 
of the oscillating characteristic of his force curve and 
this is the region that will be of importance in the 
description of various microscopic phenomena.  
 Boscovich is not alone in this inverse curve 
assessment. Heilbron (1982, p. 52-86) mentions 
several attempts to modify Newton’s Law of 
Gravitation. This includes names such as Lambert, 
Calendrini and Clairaut. Mention should also be 

made of an article by Lewis (1989, p. 652-653) who 
referred to the influence of Boscovich on Bertrand 
Russell who argued with Hannequin’s criticism of 
both Boscovich and Kant. Russell defends Boscovich 
wherein he investigates the stability of a system 
based on Boscovich. Following Boscovich, Russell 
(1897, App II.1) determines that stability of four 
equidistance points acting according to an attractive-
repulsive force may be given by: 
!
!!
− !

!!!!           (10) 
For m = 2 and n = 1, this becomes: 
𝜇
𝑟!
−
𝑣
𝑟!

 
 All of the aforementioned concentrated their 
efforts in the macroscopic region, however, like 
Boscovich, there are some in the modern era who 
examined the significance at an inverse cube law in 
the microscopic (small distance) region. 
 Foremost among these were Thomson (1902, p. 
160) where his interpretation of the structure of the 
atom assumed a radial repulsive force varying as the 
inverse cube of the distance from the center of the 
atom. Combined with a radial attractive force varying 
as an inverse square of the distance from the center. 
Quoting from Gill (1941): 

Thomson mentions Boscovich in his theory of 
electrons. In this connection, H. Strache’s 
book, Die Einheit der Materie, des Weltaters 
und der Naturkrafte, 1909, is also worth 
consulting. For similar reasons to those of 
Boscovich’s, Strache rectifies the law of 
gravitation for small distances. As an example 
of such a rectification he gives the following 
formula: 
𝑦 = 𝑘 !!!

!!
(1 − !

!
)       (11) 

For great distances, !
!
 is very small so that the 

formula passes into the Law of Gravitation. 
For x ≤ b is y positive; for x = b we have y = 
0, whereas y is negative for x ≤ b. Then the 
attraction goes over into repulsion. For x = b, 
both masses are in equilibrium. With respect 
to the radii of action of the atoms and 
corpuscles, there must be several points of 
equilibrium. On p. 6 there is a reproduction of 
Boscovich’s curve of forces with five neutral 
points (p. xiv). 

 Following Boscovich’s idea of the fact that at 
small distances the inverse cube term predominates, 
leads to the assumption that this is the region of the 
oscillating position of the curve. With this in mind, 
an analytic function is given by: 
 

𝐹 𝑥 =
!"(!!")!"# {!!! ! !" !! !!" !"# !" !}

!!
  (12) 

 

Fibonacci 
numbers 

Un Intersection 
From Eq. 7 

Intersection 
(Newton) 

Δx 
Difference 

13 U7.0 7.00246 7.0 0.00246 
14 U7a 7.15647 7.15459 0.00188 
15 U7b 7.29484 7.29875 0.00109 
16 U7c 7.43396 7.43362 0.00034 
17 U7d 7.55994 7.36021 -0.00027 
18 U7e 7.67872 7.67940 -0.00068 
19 U7f 7.79108 7.79199 -0.00091 
20 U7g 7.89267 7.89063 -0.00098 
21 U8 7.99906 8.0 0.00094 
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Eq. 12 may be referred to as an analytical 
description of Boscovich’s curve which represents its 
oscillating features. The following figures and tables 
depict the quantitative values for the calculated 
Boscovich curve. Note as x → 0, f(x) → ∞ in 
accordance with Boscovich’s curve shown in Fig. 1 
(Boscovich, 1922). At x = 0.01, f(x) = 1.4143 x 108, 
as seen in Table 7. 

 
Fig. 9 

 
Table 7 

 
F(x) for x = 0.2 to x = 1.0 is shown in Fig. 10 with its 
values given in Table 8. 
The oscillatory features of the curve starts at x = 1.0 
and is shown in Fig. 11 to 15 and Tables 9 to 12. It 
should be noted that the quantitative results are 
arbitrary where B = 104 was used. 

Fig. 10 

 
Table 8 

Fig. 11 

Table 9 
 

Fig. 12 
 

Table 10 
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Fig. 13 

 
Table 11 

 
As x increases, the curve exhibits the same 

oscillating characteristics as the Boscovich curve, the 
x intercept occurring at both the real and quasi-
Fibonacci numbers. In Fig. 14, we see the irregular 
features at the curve where the roots for f(x) = 0 
using Eq. 12 are displayed in Table 11, but Table 12 
shows that the intercepts still occur for the Fibonacci 
numbers U10 = 55 & U20 = 6765. Thus, 6765 – 55 + 1 
= 6711 intercepts which of course cannot be 
demonstrated in the figure. 
 

Fig. 14 

 
 
 
 
 

 

Table 12 
 

Fig. 15 

 
Table 13 

 
 In Table 12, the only real Fibonacci numbers 
occur at integral values, while between the integral 
values, the quasi-Fibonacci occur, e.g. between the 
tenth Fibonacci number, U10 = 55 and the eleventh 
Fibonacci number, U11 = 89. An example is given in 
Fig. 15 & Table 13, where the calculated curve is 
shown for U10 to U10.5 with values given in Table 13. 
 Fig. 15 shows a graphical representation of the 
named values indicated in Table 13 using Eq. 12. The 
sixteen x intercepts from y10 to y10.5 represents less 
than 0.25% of the total number of 6710 intercepts. 
 Boscovich in Supplement III entitled Analytical 
Solution of the Problem to Determine the Nature of 
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the Law of Forces, (note 25) sets out to find an 
algebraic formula that will determine the number of 
intersections of the curve at given points where for 
each intercept there will be one and only one 
ordinate. His formula is given by 
 
𝑃 = 𝑧! + 𝑎𝑧!!! + 𝑏𝑧!!! + 𝑐𝑧!!! +⋯  (13) 

 
Setting P = 0, all the roots of this equation will be 
real and positive. It should be noted that this pre-
empts Gauss, who in 1799, produced a rigorous proof 
now called The Fundamental Theorem of Algebra, 
which states that every complex polynomial of 
degree n ≥ 1 has a complex zero. If the coefficients in 
Boscovich’s expression are real or complex then 
there is at least one solution in the domain of 
complex numbers. This leads to the form 
 
𝑧 − 𝑧! 𝑧 − 𝑧! 𝑧 − 𝑧! … 𝑧 − 𝑧! = 0  (14) 

 
It is interesting to note that the letter z is now the 

accepted notation for complex numbers in 
engineering, etc. Rider (1988) has addressed 
Boscovich’s method of using imaginary numbers. 
Others have used Boscovich’s method of using a 
power series to represent empirical data. For 
example, Whyte (1961) states that a special case 
employed by Poynting uses an expression defined by: 
 
𝐹 = !(!!!)(!!!!)(!!!!)

!!
        (15) 

 
These series representations, which may be 

important for finding the intercepts of a function does 
nothing for determining the shape of the function. 
 One attempt to determine the points of 
intersection with the Boscovich curve was 
undertaken by Thomson (as stated in Kelvin, 1904, p. 
675). In describing the crystallography, elasticity of 
solids and the thermo-elastic properties of solids, 
liquids and gases, he produced these points on the 
Boscovich curve (inverted as was the British 
custom), shown in Fig. 17. 

 
Fig. 17 (Fig. 6 from (Kelvin, 1908)) 

Kelvin’s (1908) description of the curve and point of 
intersection states: 

The accompanying diagram, Fig. 6, copied 
from Fig. 1 of Boscovich’s great book, with 
slight modifications (including positive 
instead of negative ordinates to indicate 
attraction) to suit our present purpose, shows 
for this particular curve three of the solutions 
of the Eq. 8 (There are obviously several other 
solutions.) In two of the solutions, 
respectively, A0, A', and A0, A'', are 
consecutive atoms at distances at which the 
force between them is zero. These are the 
configurations of equilibrium, because A0B, 
the extreme distance at this there is mutual 
action, is less than twice A0A', and less than 
A0A''. In the other of the solutions shown, A0, 
A1, A2, A3, A4, A5, A6 are seven equidistant 
consecutive atom of an infinite row in 
equilibrium in which A5 is within range of the 
force of A0, and A6 is beyond it. The algebraic 
sum of the ordinates with their proper 
multipliers is zero and so the diagram 
represents a solution of Eq. 9 (p. 675). 

 The Boscovich curve shown earlier in his Fig. 1 is 
only a qualitative representation showing its 
oscillating features leading to its gravitational 
features. The range is from very small distances to 
extremely large distances. Any attempt to show its 
quantitative features is hampered by the extreme 
range of the curve. This is the reason that Figs. 9-15 
were presented in the previous sections.  
 
Determination of the x-intercepts 
 If one looks at Fig. 8 and compares it with Fig. 6 
generated by Eq. 12, which leads to the quantitative 
values for the Boscovich curve. It can be shown that 
the intercepts are the same based on Newton’s 
method, as shown in Table 5. This differs from the 
aforementioned power series representation, since 
Eq. 12 is a real value foundation of the variable, 
parameter x, which leads to a shape consistent with 
Boscovich’s curve. 
 
Further Development 
 We are now in position to examine in detail the 
results and consequences using this mathematically 
generated Boscovich curve. Attention can be drawn 
to Thomson’s (1907) use of Boscovich’s curve in his 
interpretation of the hydrogen line spectra. Thomson 
(1907), in his book, entitled Corpuscular Theory of 
Matter, speculated that in order to get rid of the 
assumed continuous spectrum due to a revolving 
electron, one would have to formulate a theory in 
which an electron could only revolve in “allowed” 
orbits. He hypothesized that by using Boscovich’s 
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curve he could produce a theory of “allowed” and 
“forbidden” orbits. 

The following interpretation is taken from Gill 
(1941), which is essentially the same as Theoria 
(notes 179 and 180) but repeated here differently for 
further clarification. 

The direction of motion of one particle 
towards another may be deduced from Fig. 1 
where A is one of the points and the other 
somewhere along the line AP. The Points E, 
G, I, L, N, P, etc., are the intersections of the 
curve with the line AP, as already shown in 
Fig. 1. As already explained, A, G, L, P are 
limits of non-cohesion, while E, I, N, etc., are 
limit points of cohesion. A point between A 
and E will be repelled towards E. A point 
between E and G will be attracted towards E. 
The point will, therefore, tend to remain at E, 
and if slightly displaced, to return to it. The 
above is true of the points I, N, etc. 
A point between E and G will tend to move 
away from G towards E. A point between G 
and I will also move from G towards I. Thus 
the points G, L, P, etc., are such that no point 
tends to remain there. The slightest 
disturbance makes them move away from 
these points with a velocity that at first 
increases rapidly, and never to return. 
If a point is repelled with the absolutely 
correct force from A it will just reach E and 
remain there, but in general the force will 
cause it to pass into the space EG, where it 
will be attracted back to E, where, after some 
oscillations, it will come to rest. If the force of 
repulsion is strong enough to cause the point 
to pass over several spaces, it will finally 
settle down at one or other of the limit points 
of cohesion, I, N, R, etc., but never at the limit 
points of non-cohesion, G, L, P, etc.  Finally, 
if the force is strong enough to repel the points 
beyond all the arcs (of Fig. 1) into the distant 
region RC, it will reach some point where it is 
subject to the Newtonian Law of Attraction. 
In this way a point near A will come to rest at 
one of the points E, I, N, etc., but never at G, 
L, P, etc. The same is true of points E', I', N', 
etc., on the other side of A. Evidently the 
same considerations apply to a point along a 
line in any direction from A (p. 19). 

Gill (1941) continues to quote Thomson’s (1907) 
interpretation of a revolving electron: 

Suppose we regard the charged ion as a 
Boscovichian atom exerting a central force on 
a corpuscle which changes from repulsion to 
attraction and from attraction to repulsion 
several times between the surface of the ion 

and a point from the surface comparable with 
molecular distance, such a force, for example, 
as is represented graphically in Gill’s (1941) 
Fig. 2 where the abscissae represent distances 
from the atom, and the ordinates of the forces 
exerted by the atom on a corpuscle at a 
distance represented by the abscissae, the 
forces being repulsions when the 
representative point is below the line, 
attractions when it is above it. (The figure 
here reproduced is simply the Boscovich 
curve inverted, in accordance with the English 
practice of representing attractions by positive 
ordinates). 
 

 
Fig. 18 (Fig. 2 from (Gill, 1941)) 

 
 Gill concludes that Boscovich, without the 
concept of “allowed” and “forbidden” orbits, showed 
that alternate limit points of cohesion and non-
cohesion are on the perimeter of an ellipse. From Fig. 
33 in the Theoria, Gill (1941) represents a system of 
con-focal ellipses. He states: 

As before, we need not discuss the proof or 
construction. The semiaxes DO, DO', D'' etc., 
correspond in length to limit points of 
cohesions and non-cohesion alternately, i.e., 
to L, N, P, etc., in Fig. 1. As before, a point on 
certain perimeters can make a continuous 
circuit of its ellipse: 
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Fig. 19 (Fig. 33 from Theoria) 

 
Gill continues to quote Boscovich (1922) from 
Theoria: 

Let us consider a number of ellipses having 
the same foci, of which the semiaxes are in 
order equal to the distances corresponding to 
the limit-points in Fig. 1, namely, one of 
cohesion for one, to that of non-cohesion next 
to it for the second, and so on alternately… 
and that each ellipse has four limit-points, one 
at each of the four vertices of the axes. The 
whole set of such perimeters will be 
somewhat of the nature of limit points as 
regards approach to or recession from the 
center. A point situated on any one of these 
perimeters will have a propensity for motion 
along that perimeter. If it be situated between 
two perimeters, it will always direct its force 
in such a way that it will tend towards a 
perimeter corresponding to a limit-point of 
cohesion in Fig. 1, and will recede from a 
perimeter corresponding to a limit point of 
non-cohesion. Hence, if a point is disturbed 
out of a position on a perimeter of the first 
kind, it will endeavor to return to it; but if 
disturbed from a position on a perimeter of the 
second kind, it will of its own accord try to get 
away from it still further, and will recede from 
it (note 245). 

 This can be interpreted as: since the perimeter of 
those limit points of non-cohesion manifest 
instability, then no points can move on these ellipses 
resulting in movement of points in alternate orbits.  
 This is a clear verification of Thomson’s 
“allowed” and “forbidden” orbits. It should be noted 
that Martinovic (1988, p. 206-210) explained this 
concept in his article, Boscovich’s Model of the Atom. 
Martinovic (1988) employed Boscovich’s (1748) 
ideas from his work, Dissertations de lumine pars 
secunda, that was written 10 years before the 
Theoria. In the de lumine, Boscovich (1748) 
investigated the null points of his curve and from 
three analogies, which culminated in a system of 

confocal ellipses each having alternate cohesive and 
non-cohesive characteristics. The fourth analog 
depicted the idea of confocal spheroidal shells where 
their surfaces represented limits of equilibrium and 
non-equilibrium states. This illustrates particles 
moving between their spherical shells when they 
could be attracted to that shell corresponding to a 
limit of cohesion and being repelled from that shell 
corresponding to a limit of non-cohesion. This allows 
a 3-dimensional analysis, which might be of great 
importance for future scientific investigations. 
Figs. 20 and 21 show Martinovic’s (1988) depiction 
of Boscovich’s theory of fourth analogy: 

 
Fig. 20 (Fig. 5 from (Martinovic, 1988)) 

 
Fig. 21 (Fig. 6 from (Martinovic, 1988)) 

 
 It can be seen in Martinovic (1988) that Fig. 5 is 
essentially identical to Fig. 33 shown by Gill (1941). 
Thus an alternating series of limits of cohesion and 
non-cohesion from Boscovich’s third analogy leads 
to the modern concept of limit cycles. At this point, 
these aforementioned concepts can be extended to 
what is commonly referred to as stable and unstable 
limit points. These terms might be interpreted as 
replacing Boscovich’s “cohesion and non-cohesion” 
limit points. His stable and unstable limit points lead 
to the concept of “limit cycles”, which is a modern 
means of visualizing and explaining oscillating 
systems. 
 It was Poincare (1881) who, in his work on 
differential equations, showed that under certain 
conditions, special solutions could be represented by 
closed curves, which are called limit cycles. These 
curves are in what is called a “phase plane”. This 
plane represents the totality of all possible states in a 
system. To each new state a new point results, thus 
for each point whose variations may be associated 
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with the motion of a certain point, is called the 
“representative” point in the phase plane. 
 It should be emphasized that this motion 
corresponding to the various curves in the phase 
plane (phase trajectories) have nothing in common 
with actual movement of points in a system. Not 
withstanding this difference, an analogy can be made 
to the limit points of Boscovich leading to his system 
of confocal ellipses. 

Fig. 22 (Fig. 3.1 from (Minorsky, 1962)) 
 

Following Minorsky (1962), a limit cycle being 
an isolated closed trajectory, then 

every trajectory beginning sufficiently near a 
limit cycle approaches it either for t " ∞ or 
for t " - ∞, that is, it either winds itself upon 
the limit cycle, or unwinds from it. If all 
nearby trajectories approach a limit cycle C as 
t " ∞, we say that C is stable (Fig. 3.1a); if 
they approach a limit cycle C as t "-∞ we say 
that C is unstable (Fig. 3.1b). If the 
trajectories on one side of C approach it while 
those on the other side depart from it, we 
sometimes say that C is semi-stable (Fig. 3.1c) 
although from a practical point of view C 
must be considered unstable (p. 71). 

 Carrying out this analogy, one might now think in 
terms of Boscovich’s limit points of cohesion and 
non-cohesion to be identified with stable and unstable 
limit points in limit cycles. With this in mind, lets 
consider a set of confocal limit cycles as depicted in 
Fig. 23 from Minorsky’s (1947, p. 70) Fig. 24.4. 
 Here we consider a single point surrounded by 
several limit cycles. 
 

 
Fig. 23 (Fig. 24.4 from (Minorsky, 1947)) 

 A point singularity Fu, which we shall assume to 
be an unstable focal point, is surrounded by several 
limit cycles, represented by closed curves shown as 
circles C0, C'0, C1, etc., in Fig 24.4 (Minorsky, 1947, 
p. 70); the circles in full lines represent the stable 
limit cycles and those in broken lines, the unstable 
ones. The fact that we assume that the limit cycles are 
circles is not essential since we are primarily 
interested in the topology of trajectories in the 
various domains which we are now going to specify. 
In order to include the half-stable limit cycles, the 
following terminology is convenient. A limit cycle is 
inwardly or outwardly stable according to the side on 
which stability exists; similarly, a limit cycle may be 
inwardly or outwardly unstable. A stable limit cycle 
in this terminology is one that is both inwardly and 
outwardly stable and an unstable limit cycle is both 
inwardly and outwardly unstable. 
 In a succession of concentric limit cycles 
considered from the center outward, one that is 
inwardly unstable follows an outwardly stable limit 
cycle and one that is inwardly stable follows a cycle 
that is outwardly unstable. Minorsky’s (1947) Fig 
24.4 exhibits an unstable singularity Fu surrounded 
by a stable limit cycle C0 and a few other cycles (C'0, 
C'1 unstable, C1 stable, etc.). It is apparent that, since 
the state of rest Fu is unstable, a spiral trajectory will 
originate at Fu and will approach C0, which represents 
the state of the ultimate stable stationary oscillation 
on the limit cycle. It is thus seen that the unstable 
limit cycles C'0, C'1 constitute a kind of divide or 
“barrier” for the initial conditions from which various 
stable limit cycles such as C1, C2… can be reached by 
trajectories. 
 Minorsky (1947) continues to investigate and 
explain the configuration of the limit cycles when 
there is a stable focal point. This is depicted in his 
Fig 24.5. 

 
Fig. 24 (Fig. 24.5 from (Minorsky, 1947)) 

 
If there exists a stable limit cycle C0, it follows 

that there must necessarily be an unstable limit cycle 
C'0 between Fs and C0. Therefore the system cannot 
become self-excited and reach the stable limit cycle 
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either from rest or from any initial conditions 
represented by a point A inside C'0. In fact, in the 
latter case, Fig. 24.5, the trajectory starting from A 
will approach the state of rest at Fs. The stable limit 
cycle C0 can be approached, however, if a trajectory 
originates either at B or at D, which represent points 
of the annular region between the divides C'0 and C'1, 
that is, the system must be given initial conditions 
represented by any point in this annular region. 
 Based on this analysis, it can be interpreted that if 
the singular point is found to be unstable, the 
innermost cycle is stable with alternate cycles being 
unstable. Similarly, if the singularity is stable, the 
innermost cycle is unstable followed by alternate 
stable cycles. 
 The preceding descriptions by Minorsky (1947) 
concerning limit cycles having stable or unstable foci 
may be compared with Boscovich’s analysis where 
the perimeter of several ellipses are equivalent to 
limit points. He states, 

Now there is yet another analogy with these 
limit points. Let us consider a number of 
ellipses having the same foci, of which the 
semiaxes are in order equal to the distances 
corresponding to the limit-points in Fig. 1, 
namely to one of cohesion for one, to that of 
non-cohesion next to it for the second, and so 
on alternately; also suppose that the 
eccentricity is still smaller than any width of 
the arcs of the limit-points of Fig. 1 so that 
each of the elliptic parameters has only four 
limit-points, one at each of the four vertices of 
the axis. The whole set of such perimeters will 
be somewhat of the nature of limit points as 
regards approach to, or recession from the 
centre. A point situated in any one of the 
perimeters will have a propensity for motion 
along that perimeter. If it is situated between 
two perimeters, it will always direct its force 
in such a way that it will tend towards a 
perimeter corresponding to a limit-point of 
cohesion in Fig. 1, and will recede from a 
perimeter corresponding to a limit-point of 
non-cohesion. Hence, if a point is disturbed 
out of a position on a perimeter of the first 
kind, it will endeavor to return to it; but if 
disturbed from a position on a perimeter of the 
second kind, it will of its own accord try to get 
away from it still further, and will recede from 
it (Theoria note 234). 

Boscovich follows this with a very concise 
demonstration in Theoria (note 235) where he 
employs the series of confocal ellipses in Fig. 33. 
 If one looks at Poincare’s theory on differential 
equations the effect of changing parameters on 

solutions, it can be shown that a concentric pattern of 
limit cycles may undergo various qualitative changes. 
Given a function: 
 
∅ 𝑝 = −𝐾 𝑝 − 𝑝! 𝑝 − 𝑝! … (𝑝 − 𝑝!)  (16) 
 
Which corresponds to the roots 𝑝!𝑝!…; if these roots 
are distinct (𝑝! ≤ 𝑝! ≤ 𝑝! ≤ ⋯) one has a graph of  
∅(𝑝) shown in his Fig. 7.10 (Minorsky, 1962). Then, 
if the roots are real positive then it may be shown that 
when: 

Fig. 25 (Fig. 7.10 from (Minorsky, 1962)) 
 

The alternate stabilities of limit cycles result 
directly from the signs of the slopes, ∅!(𝑝!) at 
points A, B, C, … (Fig 7.10) and thus roots 
𝑝!, 𝑝! are unstable and 𝑝!, 𝑝! are stable. For 
the configuration shown, the state of rest 
𝑝 ≈ 0 must be stable in order to have a regular 
configuration with alternate stable and 
unstable cycles, with the singular point at the 
center considered as a cycle reduced to one 
point (Minorsky, 1962). 
It is obvious that the treatment of limit points and 

limit cycles provides an ideal analogy with both 
Gill’s (1941) treatment of Thomson’s (1907) 
interpretation of Boscovich (1922) and also 
Martinovic (1987). 

The pictorial representations as shown by Gill 
(1941) on Thomson (1907) and Martinovic (1987) 
differ in that Thomson assumes circular orbits, while 
Martinovic’s interpretation, which is geometrical, 
exhibits concentric ellipses. Nonetheless both can be 
shown to yield a power series representation. 
 It will later be shown that the spiraling can be 
described via equiangular spirals. Fig. 26 shows the 
states of equilibrium, both stable and unstable on the 
Boscovich Curve. 
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Fig. 26 States of Equilibrium (Fig. 1 from Theoria) 

 
Development  
 Returning to Thomson’s (1907) description of 
what he refers to as the “Boscovichian atom,” we 
should note that the “favored orbits” are the solid 
curves, while the “forbidden orbits” are represented 
by the broken curves. Thomson assumes that these 
curves are circles. If one considers that these curves 
might be analogous to the boundaries of the limit 
cycles of Poincare (1881) mentioned earlier, then 
there is no reason not to assume that these curves 
might be represented by other means. We can think 
of Martinovic’s (1987) geometrical interpretation that 
they might be ellipses. 
 At this point, another interpretation can be 
brought to our attention since the analytical function 
derived as a quantitative representation of the 
Boscovichian curve has an inverse cube dependence, 
then the curve generated by a point moving under 
such a central force is a logarithmic spiral (Smith & 
Longley, 1910, p. 106-108) oftentimes referred to as 
an equiangular spiral after Descartes. 
 We are now in a position to discuss the series of 
curves in terms of the Fibonacci and quasi-Fibonacci 
numbers. Looking at the generated Boscovichian 
curve given by Eq. 12 for Fibonacci numbers U7 to 
U8 illustrated in Fig. 14 and assuming stable and 
unstable limit cycles, the Fibonacci and quasi-
Fibonacci numbers make possible a qualitative 
descriptive portrait of the stable and unstable 
boundaries of the limit cycles. The stable limit cycles 
are shown as solid curves and correspond to U7 = 13, 
U7b = 15, U7d = 17, U7f = 19, and U8 = 21. The 
unstable boundaries are U7a = 14, U7c = 16, U7e = 18, 
and U7g = 20.   

 
Fig. 27 

 
 The identities and intercept points were shown in 
Table 5. The role of Fibonacci numbers used in 
science spans several disciplines. Jean (1944) 
discusses the phyllotactic patterns outside botany. 
Since these numbers were used in the development of 
the analytical form of the Boscovician curve, it is 
now of interest to see how these Fibonacci sequences 
can be applied to other areas with emphasis on the 
microscopic region of matter. We can start with the 
analysis of the Balmer series of the hydrogen line 
spectra to develop an algorithm that also will explain 
the accompanying series. 
 The hydrogen spectra consist of consecutive lines 
called a series. Analyzing this series, spectroscopists 
determined the frequencies of these lines. Such a 
discrete spectrum of frequencies was assumed to be 
due to periodic motions similar to planetary motions. 
Many attempts were made to find a model based on 
the classical laws of mechanics and electrodynamics. 
 These proved to be incapable at predicting the 
structure of the spectra, thus all efforts were applied 
to empirical relationships. Later developments led to 
replacing classical mechanics with quantum 
mechanics. However, this leads to very complicated 
computations with the result that even though 
quantum mechanics explains the basic features of 
spectral structure, it still leaves a lot to be desired. It 
is now proposed to make another approach using 
algorithms obtained from phyllotaxis.  
 A brief description of phyllotaxis is necessary to 
explain its algorithmic role, which hopefully will be 
the beginning of a unique role in explaining these 
spectra. Phyllotaxis is a branch of plant 
morphogenesis, which studies the symmetrical and 
asymmetrical patterns of leaves around a stem, the 
scales on a pineapple or pinecone, etc. These 
phyllotactic patterns are called primordial which vary 
in number, size, position, etc. One of the leading 
authorities in phyllotaxis is Jean (1994), whose book, 
Phyllataxis – A Systematic Study in Plant 
Morphogenesis, is to many the most extensive source 
on phyllotaxis. 
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Thornley (1975, p. 510) shows that the patterns 
exhibited by the primordia may be expressed in terms 
of a logarithmic spiral which in turn produces the 
logarithmic spiral when a constant angle ϕ with the 
radius vector r. His derivation is presented below, 
along with his Fig. 1 

 

 
Fig. 1. Relationship between polar coordinates (r,Θ) and Cartesian 
co-ordinates (x,y). PQ is an element of a curve, and ϕ is the angle 

between PQ and the radius vector OP. See Eqns (1) and (2). 
𝑥 = 𝑟𝑐𝑜𝑠∅,   𝑎𝑛𝑑   𝑦 = 𝑟𝑠𝑖𝑛∅ (1) 

Let P (Fig. 1) be a point on a curve with co-ordinates (r,Θ), and Q 
be another point on the same curve a short distance away from P 

with co-ordinates (r+δr,Θ+δΘ), where δr and dΘ are small 
increments in r and Θ. If ϕ is the angle between the portion of the 

curve PQ and the radius vector OP, then 
𝑡𝑎𝑛∅ = 𝑟 !"

!"
     (2) 

Assuming that PQ is so small that δΘ/δr may be replaced by 
dΘ/dr. The logarithmic spiral is described by the equation 

𝑟 = 𝑎𝑒!"#$∅     (3) 
Fig. 28 (Fig. 1 from (Thornley, 1975)) 

 
From his Eq. 2, Thornley (1975) gives Eq. 4: 
 
𝑑𝑟
𝑑𝜃

= 𝑟𝑐𝑜𝑡∅ 
 

 
Fig. 2. Logarithmic spiral: Eqn (3) with α=2π/2 and cotϕ=1/2π. 
Comparing Eqns (4) and (2) shows that the logarithmic spiral 

always makes a constant angle ϕ with the radius vector. A 
logarithmic spiral is drawn out in Fig. 2. 

Fig. 29 (Fig. 2 from (Thornley, 1975)) 

 Using different symbols for Thornley’s (1975) 
equations, Thomas & Cannell (1980, p. 1) discusses 
what they call “The Generative Spiral in Phyllotaxis 
Theory.” Basically, this is the constant angle between 
any tangent to the logarithmic generative spiral and 
the radius, which is called the generative angle ϕ. A 
representation of a logarithmic spiral displaying two 
successive primordia is shown in Fig. 30. 
 

 
Fig. 30 (Fig 1 from (Thomas & Cannell, 1980)) 

 
From their Fig. 1, Thomas & Cannell produced a 

logarithmic generative spiral drawn through nine 
primordia using their Eqs. 1 and 2. (Note Δ is θ in 
Thornley (1975)). 
Thomas & Cannell (1980) state: 

Assuming the generative spiral to be a 
logarithmic or equi-angular spiral, any radius 
may be defined with reference to the angle, Δ, 
it makes with the normal Cartesian 
coordinates (x,y), for instance, in Fig. 1:  
𝑟𝑎𝑑𝑖𝑢𝑠 = exp 𝑐𝑜𝑡∅ ∆ ,      (1) 
where ϕ is the constant angle (hence 
equiangular spiral) between the tangent to any 
point on the spiral and a radius (Fig. 1; also 
Thornley (1975)). This angle, ϕ, we shall call 
the generative angle. The ratio of any two 
radii is given by: 
!"#$%&!
!"#$%&!

= exp 𝑐𝑜𝑡∅ ∆! − ∆! = !!
!!

   (2) 
(p. 238). 

Fig. 31 (Fig. 2 from (Thomas & Cannell, 1980)) 
Logarithmic Generative Spiral Drawn Through 

Primordia 
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Following Thornley (1975) and Thomas & 
Cannell (1980), a parametric representation produced 
a logarithmic spiral, which is consistent with an 
inverse cube. Fig. 32 shows the spiral using 
Boscovich term expressions. 

Fig. 32 
 
!"(!!")!"# (!!! ! !" !! !!" !"# !" !)

!!
     (17) 

 
!"(!!")!"# (!!! ! !" !! !!" !"# !" !)

!!
    (18) 

 
𝐵 = 10! 
 
 For purposes of comparison, Fig. 33 represents a 
logarithmic spiral using the Binet approximation 
form based on the fact that the x-intercepts occur at 
the integer Fibonacci numbers as well as the quasi-
Fibonacci numbers. 

 
Fig. 33 

 

𝑥 =
!" !!" !"#(!!.!"#$%!

! !
! )

!!
      (19) 

 

𝑦 =
!" !!" !"#(!!.!"#$%!

! !
! )

!!
      (20) 

𝐵 = 10! 

 It is readily seen that there is hardly any 
difference between Figs. 32 and 33. It should be 
noted that the same set of spirals could have been 
obtained using the integer-non-integer Fibonacci 
number representation from Horadam & Shannon 
(1988) and converted by the writer. Note that there 
are nine intersections in both figures when there are 
two integers Fibonacci numbers (13 and 21) and 
seven quasi-Fibonacci numbers as mentioned earlier 
in Fig. 27 and Table 5. 
 
Applications 
Atomic Spectra and Empirical Data 
 From the foregoing, it is now time to apply the 
foregoing analysis in the form of an algorithm for 
predicting atomic line spectra. In keeping with 
tradition, the hydrogen atom is to be used in the 
prognosis with emphasis on the empirical Balmer 
series. Following this, the other prevalent hydrogen 
line spectra of Lyman, Paschen, and Brackett are 
presented.  
 It has been observed that heated solid bodies emit 
a continuous spectrum when they glow; however, for 
gases and vapors, one observes what is commonly 
called discrete line spectra. It is assumed that these 
lines are for atoms only, although continuous spectra 
can occur for both atoms and molecules as well. The 
history of spectra both for line and continuous is very 
extensive and is beyond the purpose of this work. 
 The discrete spectra exhibit a regular sequence of 
lines, which are referred to as a series. 
It was Balmer (1885) who first produced an empirical 
relationship for the hydrogen spectra, which became 
the model for all subsequent investigations. Balmer’s 
interpretation was in what is called the wavelength 
and is given by the Greek letter; λ. Balmer’s formula 
was given as a series of fractions defined by: 
 
𝜆 = 𝑏 !!

!!!!!
          (21) 

 
Where b is the fundamental number and λ is the 
wavelength of any hydrogen line in Angstrom units 
(10-8 cm) and b = 3645.6. If n = 2 and m = 3, 4, 5, 
etc., the formula gives the series of lines in the visible 
hydrogen spectrum. 
Balmer (1885), in his landmark paper, stated that the 
wavelength might be represented as 
 
!
!
𝑏, !

!
𝑏 = !"

!"
𝑏, !"

!"
𝑏, !

!
𝑏 = !"

!"
𝑏      (22) 

 
It is interesting to note that the integer Fibonacci 
number 5, 3, 21, and 8 appear. This intriguing 
association leads one to infer that there might be 
some correlation between the Balmer series and 
Fibonacci numbers. With this in mind it was decided 
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to see what the ratio of the Balmer series and the 
Fibonacci sequence looked like. Based on this, it was 
decided to first see what a plot of the Balmer series as 
a function of its wavelength looked like. This is not 
unusual in science since a pictorial representation can 
form as a guide in an analysis.  
 Fig. 34 shows the shape of the series as a function 
of its wavelength λ. The associated table is also 
shown for n = 3 to 16. To my knowledge, this may be 
the first time that a pictorial representation has been 
shown for the Balmer series. 
 

 
  Table 14            Fig. 34 
 

 This brings us to the point where it might prove 
feasible to compare the Balmer series to the 
Fibonacci sequence. We first investigate the ratio of 
the Balmer series to the Fibonacci numbers to see 
what the form of the graph presents. Fig. 35 shows 
the ratio of the Balmer series to the Horadam & 
Shannon (1988) and Prince (1989) Fibonacci 
sequence. The table is also shown:  

 
Table 15      Fig. 35 

 
The ratio of the Balmer series and the Binet 

approximations is shown in Fig. 36 along with an 
accompanying table: 

 
Table 16     Fig. 36 

 
 Except for magnitudes, one sees that both curves 
Figs. 35 and 36 have very similar shapes. This 

implies that there might be a linear or non-linear 
function that would bring these curves and quantities 
into agreement. Before doing this, it would behoove 
us to return to the statements made by Boscovich 
(1922) in studying the limit points of cohesion and 
non-cohesion using his Fig. 33 of con-focal ellipses. 

From his Fig. 1 (the Boscovich curve), he 
establishes a relationship with the associated limit 
points of cohesion and non-cohesion as one goes 
around the perimeter of the ellipse. Boscovich asserts 
that, “…it must be practically an ellipse, yet will 
neither be an ellipse accurately…” (1922, note 236). 

This essentially leaves room for determining the 
actual forms of the confocal perimeters and their 
influence as a point lies between these perimeters. 
From the inverse cube form of the force, then as 
mentioned earlier, the resulting curve will be an 
equiangular (logarithmic) spiral. We will now 
investigate how this configuration can be applied to 
the description of atomic spectra using the hydrogen 
atom and the Balmer series.  

In present day analysis of spectra, it is more 
convenient to use the Balmer series equation in terms 
of the number of wavelengths per centimeter instead 
of frequency. This designation is called “wavelength 
number” and is defined as 
 
𝑣 = !

!!
𝑐𝑚!!          (23) 

 
Accordingly, this interpretation allows the Balmer 
equation to be rewritten as 
 
!
!
= 𝑣 = 𝑅 !

!!
− !

!!         (24) 
n = 2; m = 3, 4, 5, …; and R = 109721.3 (this work) 
 
Where by setting n = 2 in Balmer and R is called the 
Rydberg constant. 
 

𝑏 =
4𝑥10!

𝑅
 

 
The denominator in Balmer’s formula yields the 

difference between two integers, and going to the v 
representation results in the difference of two terms, 
which can be interpreted as the difference of two 
orders. 

Following Thomson’s (1907) designation of 
Boscovich’s curve, where he discusses “favored 
orbits” and “forbidden orbits,” or in Boscovichan 
terms, “cohesion” and “non-cohesion,” which can be 
carried over to “stable” and “unstable” limit cycles, 
we see that the difference between these quantities 
are essentially the difference of two terms which for 
our purpose will be denoted as the difference of two 
distances. This allows us to investigate the 
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relationship between these differences and the 
Balmer formula. Returning to Fig. 27 reproduced 
below; we see that the favorable (allowed) orbits 
appear for at alternate Fibonacci or Quasi-Fibonacci 
numbers as well as unfavorable (forbidden) orbits. 

 
Fig. 27 

 
In either case, the difference is between 𝑥! − 𝑥!!! e.g.: 𝑥!" − 𝑥!", 𝑥!" − 𝑥!", etc. 
 
The difference of these intersections may be 
described by: 
 
𝑓(!) =

!" ( !!)
!

− !" ( ! !!! )
!

       (25) 
Where k = 0.481211825 
 
The graph of this expression is shown below: 
                

 
Fig. 37 

 
If one ignores the magnitudes, this curve is 

similar to the Balmer curve, which implies some type 
of correlation may result. With this in mind, it was 
decided to find the ratio of Balmer and the 
aforementioned expression. This resulted in the 
following graph: 

                                 

 
Fig. 38 

 
While this curve looks linear, upon numerical 

evaluation, it is not; therefore, it was necessary to 
perform a nonlinear regression analysis to produce a 
particular functional form. The nonlinear regression 
analysis was performed using the assumption that the 
premonitory equation depends nonlinearly on one or 
more unknown parameters, ever mindful that it 
should follow a particular functional form. In this 
case, the concept of the relation between a 
logarithmic spiral and its significance in phyllotaxis 
proved to be very advantageous. The resulting 
equation is given below. 
 
!" !! !!" ! !!! !! !"#$% ! !

!"#$( !
!!!)

     (26) 

 
The designated parameters are: 
a = 808.0643 
b = -0.33385 
c = 2.405 
d = 0.001347 
e = 45° 
k = 0.481211825 
 

A physical meaning to these parameters will be 
studied with the hope that they will be useful in other 
investigations. As mentioned earlier, the Balmer 
series was purely empirical and only applicable to the 
hydrogen atom. The hydrogen spectra series was 
subsequently calculated using Eq. 26, with the 
graphical and tabular results shown in Fig. 39 and 
Table 17 respectively. 



An Analytical Form of the Boscovich Curve with Applications 

 
             Table 17       Fig. 39 
 
A comparison of the calculation and the Balmer 
series also showed excellent agreement as shown 
below in Fig. 40. The results were almost identical.  

 
Fig. 40 

 
Using the relationship between the wavelength 
number and wavelength 
 
𝑣! =

!"!

!!
            (27) 

 
Provided Table 17 and Fig. 41 for the Balmer 
wavelength numbers as a function of n. 
 

 
  Table 18       Fig. 41 
 

Table 19 shows the actual data for the calculated 
wavelength based on Eq. 26 and the wavelength 
according to the Balmer formula. It can be seen that 
for n values up to 16, the percentage differences are 
less than one percent. For higher n values, the 
percentage difference is somewhat greater than one 
percent (approximately 1.3%). At any rate, it is felt 
that this approach is within experimental accuracy. 

Wavelength for the Hydrogen Atom 
n Eq. 26 Balmer 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

6563.15 
4785.39 
4353.91 
4136.17 
4003.11 
3913.49 
3849.37 
3801.56 
3764.85 
3736.03 
3713.04 
3694.46 
3679.33 
3666.93 

6562.08 
4860.8 
4340 
4101.3 
3969.65 
3888.64 
3834.98 
3797.5 
3770.24 
3749.76 
3733.98 
3721.55 
3711.58 
3703.47 

Table 19 
 

A comparison of the experimental and calculated 
values are given by Baly (1927), as shown in his 
Table I (b=3646.13) 

Hydrogen Spectrum 
Designation Observed Calculated Difference 

a 
β 
ν 
σ 
ε 
ζ 
η 
θ 
ι 
κ 
λ 
µ 
ν 
ξ 
ο 
π 
ρ 
σ 
τ 
υ 
φ 
χ 
ψ 
ω 

Series No. 27 
Series No. 28 
Series No. 29 
Series No. 30 
Series No. 31 
Series No. ∞ 

 
6563.07 
4861.57 
4340.53 
4102.00 
3970.33 
3889.15 
3835.51 
3798.00 
3770.73 
3750.27 
3734.53 
3721.98 
3712.13 
3704.01 
3697.28 
3691.70 
3686.96 
3682.94 
3679.52 
3676.51 
3673.87 
3671.53 
3669.55 
3667.83 
3666.25 
3664.74 
3663.55 
3662.36 
3661.31 

Theoretical 
limit 

6563.03 
4861.52 
4340.63 
4101.90 
3970.22 
3889.20 
3835.53 
3798.04 
3770.77 
3750.30 
3734.51 
3722.08 
3712.11 
3704.00 
3797.29 
3691.70 
3686.97 
3682.95 
3679.49 
3676.50 
3673.90 
3671.48 
3669.60 
3667.82 
3666.24 
3664.82 
3663.54 
3662.40 
3661.35 
3646.13 

+ 0.04 
+ 0.05 
- 0.10 
+ 0.10 
+ 0.11 
- 0.05 
+ 0.02 
- 0.04 
- 0.04 
- 0.03 
+ 0.02 
- 0.10 
+ 0.02 
+ 0.01 
- 0.01 
+ 0.00 
- 0.01 
- 0.01 
+ 0.03 
+ 0.01 
- 0.03 
+ 0.05 
- 0.05 
+ 0.01 
+ 0.01 
- 0.08 
+ 0.01 
- 0.04 
- 0.04 

---- 

Table 20 (Table I from (Baly, 1927)) 
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Another tabulation for the Balmer series was 
presented by Fowler (1922, p. 89) and is shown 
below with his tabulation using this formula, which is 
displayed in Table 21. 

 
𝑣 = 109678.28[ !

!!!.!!!!!"#" ! −
!

(!!!.!!!!!"#!!)
]    (28) 

 
H. BALMER SERIES 
Limit = A = 27419.674 

m λ, I.A. ν A – ν 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
∞ 

--- 
--- 

6562.793 
4861.327 
4340.466 
4101.738 
3970.075 
3889.052 
3835.387 
3797.900 

70.633 
50.154 
34.371 
21.941 
11.973 
03.855 

3697.154 
91.557 
86.834 
82.810 
79.355 
76.365 
73.761 
71.478 
69.466 
67.684 
66.097 
64.679 
63.405 
62.258 
61.221 
60.280 
59.423 
58.641 
57.926 
57.269 
56.666 
45.981 

--- 
--- 

15233.216 
20564.793 
23032.543 
24373.055 
25181.343 
25705.957 
26065.61 

322.90 
513.24 
658.01 
770.68 
860.09 
932.21 
991.24 

27040.16 
81.16 

27115.85 
45.47 
70.96 
93.07 

27212.35 
29.26 
44.19 
57.42 
69.23 
79.78 
89.26 
97.81 

27305.54 
12.55 
18.94 
24.79 
30.14 
35.05 
39.55 

27419.674 

109677.82 
27419.512 
12186.458 
6854.881 
4387.131 
3046.619 
2238.331 
1713.717 
1354.06 
1096.77 
906.43 
761.64 
648.99 
559.58 
487.46 
428.43 
379.51 
338.51 
303.82 
274.20 
248.71 
226.60 
207.32 
190.41 
175.48 
162.25 
150.44 
139.89 
130.41 
121.86 
114.13 
107.12 
100.73 
94.88 
89.53 
84.62 
80.12 

0 
Table 21 (Fowler, 1922) 

 
We can now turn our attention to other spectra 

associated with atomic hydrogen. The main ones are 
given for n = 1, 3, 4, and 5 referred to as the Lyman, 
Paschen, Brackett, and Pfund series. To investigate 
these sets of series, it was decided to use the 

wavelength and wavenumber calculations employing 
the Rydberg-Ritz combination principle. 
As mentioned earlier, the wave number ν is the 
difference of two terms where n is a constant and m is 
a variable term given by 𝑣 = 𝑅 !

!!
− !

!! . 
Rydberg (1896) and Ritz (1908) formulated what 

is now called “Principle of Combination”, showed 
that by adding or subtracting and using a certain 
combination allows the calculation of new lines 
based on the knowledge of previous discovered or 
calculated wave numbers. It should be mentioned that 
the combination principle was obtained by purely 
empirical techniques and to date has never been 
analyzed by classical means.  

The following exemplary description is based on 
an interpretation from Shpol’skii (1969), and it is 
applied to determining the second line in the Paschin 
series. From Eq. 24, let 𝑇! =

!
!!
,   𝑇! = !

!! where m 
> n. Then, letting 𝑣 = 𝑇! − 𝑇!. Knowing the wave 
numbers of the first and third lines in the Balmer 
series (n = 3 and n = 5, respectively) yields 
𝑣! = 𝑇! − 𝑇! 𝑎𝑛𝑑 𝑣! = 𝑇! − 𝑇!. Then, the difference 
of 𝑣! − 𝑣!is the wavenumber of the second line in the 
Paschen series. e.g., 𝑣! − 𝑣! = 𝑇! − 𝑇! 

From the calculated values in Table 17 on the 
Balmer series 𝑣! = 15236.5,   𝑣! = 22967.8. Thus, 
𝑣! − 𝑣! = 7731.3 using 𝜆 = !"!

!
 yields 𝜆 =

12934.3. 
Comparing this with the observed value of λ  = 

12817.6 (Shpol’skii (1969) Table 12) is less than 1%. 
Using this combination principle, the wavenumber of 
all of the series were calculated and the associated 
wavelengths were determined. It should be pointed 
out that the comparisons of this work with the 
calculated Balmer series using b = 3645.6 produced a 
small percentage error of approximately 1.0 to 1.5%. 

On going to the higher values of m (m > 30) there 
is a slight increase of λ using Eq. 26. This could be 
due to the fact that the experimental value of the 
Rydberg constant has been shown to decrease as the 
order number m increases. Both Fowler (1922, p. 29) 
and Baly (1927, p. 39) have addressed this situation 
and reported that there would be a slight departure 
from Balmer’s (1885) formula. In fact, Baly states 
the Balmer series is not quite exact (1927, p. 40). 

When one looks at the range of m values 
associated with the observed Balmer series (see Table 
20), the highest value of m is m = 31. For the range of 
m values between m = 31 and the series limit at 
infinity, no observed values of the wavelengths exist, 
however at the theoretical limit Baly (1927) 
calculates λ = 3646.13. 

Now, this really is an extrapolation and does not 
guarantee that the wavelengths series continue to 
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decrease; in fact the lines in the series tend to slightly 
increase using Eq. 26. Whether this is true or not will 
depend upon more experimental data for the higher 
values of m.   

The following figures show the wavenumbers and 
wavelengths for the Lyman, Paschen, Brackett, and 
Pfund series. Only the numerical values associated 
with the Lyman series are shown. The numerical 
values for the others have been calculated also and 
show appreciable comparisons with the available 
experimental data. 

 
Wavelength for the Lyman Series 

 
Fig. 42 

 
n 𝜆(10!!𝑐𝑚) 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1025.35 
969.106 
950.04 

939.251 
932.214 
927.269 
923.624 
920.845 
918.675 
916.949 
915.550 
914.425 
913.495 
912.728 

Table 22 
          
 
 
 
 
 
 
 
 

 

Wavenumber for the Lyman Series 

Fig. 43 

n 𝑣 =
10!

𝑥
 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

97527.5 
103188 
105259 
106468 
107271 
107844 
108269 
108596 
108852 
109857 
109223 
109358 
109478 
109562 

Table 23 
 

The Paschen Series 
 

 
Fig. 44 

Wavelength for Paschen Series 
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Fig. 45 

Wavenumber for Paschen Series 
 

The Brackett Series 
 

 
Fig. 46 

Wavelength for Brackett Series 
 

 
Fig. 47 

Wavenumber for Brackett Series 
 
 

 
 

The Pfund Series 
 

 
Fig. 48 

Wavelength for Pfund Series 
 

 
Fig. 49 

Wavenumber for Pfund Series 
  
 A comment should be made about the differences 
in numerical values for the Rydberg constant. 
Rydberg used a value R = 109675.00, but as pointed 
out by Baly (1927, p. 39), the value tends to decrease 
as the order number m increases.  These differences 
may be attributed to the measured “optical center of 
gravity.” These will not conform strictly to the 
Balmer formula. 

The ensuing years have seen more than 500 
scientific papers on the Hydrogen spectrum many of 
which used various numerical values for the Rydberg 
constant. An international standard of R = 
109,737.31568 has been established based on The 
Task Group and Fundamental Constants of the 
Committee on Data for Science and Technology, 
(CODATA). (Mohr & Taylor, 2000; Mohr & Taylor, 
2005; Mohr, Taylor & Newell, 2008). The latest 
compilation on the Hydrogen series may be found in 
the Atomic Data and Nuclear Data Tables. 
(Kramides, 2010). 
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Previous studies of discrete and continuous 
spectra have led to inconsistencies with classical 
interpretations. The arithmetical relationship of the 
wavelengths or wavenumbers of the various spectral 
lines using consecutive integral numbers have been 
reanalyzed in this work, so to speak in terms of 
Fibonacci numbers. Up to this point, the analysis has 
concentrated only on the hydrogen atom spectrum. 
The method was derived using an empirical analysis 
which also can be applied to hydrogen-like atoms, 
such as ionized helium. 

The hydrogen spectral series was successfully 
demonstrated in the Rutherford-Bohr model. This led 
to a rather comprehensive interpretation of the 
hydrogen spectrum which subsequently led to the 
development of quantum electrodynamics. When one 
goes to multi-electron atoms and molecular spectrum, 
the situation becomes much more complex and 
requires very extensive mathmatical calculations 
using very sophisticated quantum-mechanical 
interpretation. 

As has been shown, using the mathematical 
interpretation of the famous Boscovich curve, a new 
paradigm was established which led to a new method 
for depicting the hydrogen spectrum. This paradigm 
led to an algorithm based on Fibonacci numbers and 
does not need the use of the Rydberg constant. It 
does, however, use what the author describes as a 
“senescence function” as shown in the denominator 
of Eq. 26 given by: 𝑘𝑐𝑜𝑠( !

!!!
). 

The development and reasons for this function 
will be addressed in the following analysis used in 
the so called “Black Body Radiation” interpretation 
for continuous spectra. The parameters b and c 
remain to be identified with a particular physical 
interpretation which, like the b = 3647.1, which was 
used by Rydberg to establish his constant. 
𝑅 = !!!"!

!
= 109721.3 is used in this work. 

The Rydberg constant was subsequently given a 
scientific explanation by Bohr (1913), who, using the 
frequency instead of wavenumbers, produced a value 
for the Rydberg constant which was in close 
agreement with the observed value.  

A rather extensive description of Bohr’s ideas 
may be found in Heilbron & Kuhn (1969). 
Refinement in experimental methods have improved 
the value for the Rydberg constant. It is hoped that a 
physical interpretation of the “senescence function” 
will follow the same course. A hint may be found in 
the use of an analysis by Church (1904), where the 
use of “energy fields” are assumed. Church describes 
a method for analyzing phyllotaxis phenomena where 
the concept of periodicity is assumed. He states, 

There must, in fact, be some still more hidden 
meaning in the construction from which the 

periodicity as expressed in a time-diagram, 
and in actual ontogeny, follows as naturally as 
does the geometrical construction by 
logarithmic spirals from the addition of 
similar members (p. 227). 

Church (1904) continues, 
Thus, in the postulated construction of circular 
growth-centres plotted along orthogonally 
intersecting log. spirals, the numbers of which 
are taken from observation of the plant, it 
follows that these initial centres must also 
have been laid down at the intersection of 
orthogonally intersecting log. spirals of the 
same ratio. The main question at issue, 
therefore, is to determine why these points 
should be found at the intersection of certain 
orthogonal trajectory paths, and what may 
such paths and intersections possible mean 
from a physical standpoint – that is to say, to 
what extent may the diagrams be also taken as 
the expression of a field of distribution of 
growth-energy, comparable, for example, to 
manifestations of distribution of the physical 
energy of the electro-magnetic field?  
To what extent one may be justified in thus 
passing from a kinematic to a kinetic 
standpoint is, of course, very questionable; 
and similarly little can be said beyond mere 
speculation until more is known as to what is 
actually meant by the expression growth-
energy, or the energy of life, and how far it is 
comparable, for example, with “electrical” 
energy. One point may, however, be 
conceded: that in the case of living matter, the 
actual mechanical energy accompanying life 
obeys physical laws just as surely as its 
material substance obeys chemical laws. 
The data afforded by the plant are these:--- 
I. A growing, expanding system, containing, 
therefore, moving particles; in which 
II. Growth-energy is being introduced from a 
central “growing- point”; and 
III. A construction which, as expressed in the 
transverse component of the formation of 
lateral members, has been put forward as 
implying primarily the geometrical properties 
of orthogonal trajectories (p. 228-229). 
In regard to the intersection of orthogonally 

intersecting logarithmic spirals, Church maintains 
that these curves should, therefore, have some 
meaning attached to them. If, as the log. spiral theory 
suggests, these curves imply lines of equal 
distribution of growth-energy, it may be possible to 
give an explanation in physical terms (1904). 

Church (1904) follows with, 
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Two points may here be conceded: there must 
be, as already stated, some mechanical law 
implying a fundamental property of force and 
matter underlying these phenomena of 
rhythm; and it will again be hardly possible to 
discuss such speculations without trespassing 
on the terminology of some branch of physical 
science, the fundamental laws of which are 
equally obscure (p. 232) 
Church (1904) felt that if a geometrical theory can 

be established for phyllotaxis, certain inferences may 
be drawn from it such that physicists might be able to 
use it as an analog to explain mathematical laws of 
scientific phenomena. He mentions, 

If the introduction of a mathematical 
conception of growth and growth-centres can 
lead to any better method of dealing with the 
facts, there will be no harm in trying to apply 
it so long as “growth-movement” and 
“growth-energy” are recognized as being in 
someway comparable, though not necessarily 
identical, with more strictly physical 
phenomena. While, again, the application of 
the strictly mathematical conception of a 
uniform distribution of growth-energy around 
an initial growth-centre must remain 
necessarily in the condition of a working 
hypothesis, …. There can be no doubt that 
such an hypothesis must continue to form the 
basis of all considerations of the geometrical 
representation of the growth-phenomena 
presented by the plant-body;… (Church, 1904, 
p. 232-233). 
Church’s concept of a field distribution of growth 

energy in phyllotaxis, may be construed as being 
analogous to kinetic energy rather than potential 
energy. Thus, since this involves motion, it is hoped 
that using Boscovich’s concept of “point centers” it 
might be analogously carried over to the explanation 
of  the “senescence function” and subsequently to a 
mathematical justification. 

The treatment used in this work for calculating 
the Hydrogen spectra is strictly semi-empirical. As 
mentioned earlier, the clarification of the various 
perimeters and their interpretation remains to be 
achieved. It is hoped that a scientific inquiry based on 
Church’s description of field theory in phyllotaxis 
will carry over to an analogous treatment of spectra, 
not only for single electron atoms like Hydrogen or 
ionized Helium, but also molecular spectra. With this 
in mind, the following section will also deal with the 
microscopic region namely the “thermal radiation” 
often called “blackbody radiation”. 

The employment of Boscovich’s ideas will be 
coupled with the methods used in the foregoing line 
spectrum study. In the course of developing an 

algorithm for explaining what is commonly called 
blackbody radiation, several concepts were 
investigated. The primary one was that Boscovich 
(1922) made a distinction between different kinds of 
particles resulting from the number of points in them, 
the corresponding volume, density and shape. The 
shape is dependent upon the forces between the 
points. He outlines this in the Theoria: 

419. The first thing that presents itself is the 
huge difference, of many kinds, which there 
can be amongst different groups of points 
such as form the different kinds of particles of 
which bodies are formed. The first difference 
that calls our attention can be derived from the 
number of points that form the particle; this 
number can be quite different within the same 
volume. Then, the volume itself may be 
different, as also may the density; for, of 
course, two particles need not have equal 
masses, equal volumes or equal densities. 
Then, even if the mass and the volume were 
given, that is to say even the mean density of 
the particle is given, there may be a huge 
difference in shape, that is to say, in the 
surface enclosing all the points and 
conforming to them. For, the points in one 
particle may be disposed in a sphere, in 
another in a pyramid, or a square or a 
triangular prism. Take any such figure, and 
suppose the points are disposed in any 
particular manner whatever; then there will be 
as many distances as there are pairs of points, 
and their number will be finite in every case. 
The curve of forces can have any number of 
limit points of cohesion, and these can occur 
anywhere along it. Therefore it must be the 
case that limit points can be found to 
correspond with those distances, and on 
account of these, the particle will have that 
particular form and can be extremely 
tenacious in keeping that form. Indeed, 
through a single distance, with a restraint of 
infinite resistance arising from a pair of 
parallel asymptotes close to one another, 
having the area on one side attractive and on 
the other side repulsive, there can be obtained 
in any mass of any form whatever a solidity 
that is also infinite, or a force that would 
prevent any change of disposition of the 
particles equal to or greater than any given 
change. 
Hence, the density can be varied to any extent, 
but apart from the fact that to each distance 
there corresponds a limit point in the primary 
curve, or that there are pairs of asymptotes, or 
any other asymptotes of the sort except the 



An Analytical Form of the Boscovich Curve with Applications 

first, there are really an innumerable number 
of kinds of figures, in which with a given 
number of points there can be equilibrium, 
and a limit point of cohesion due to the 
canceling of equal and opposite forces, as can 
be seen from the solution of the problem 
indicated in Art. 412. The following 
distinction is especially worth remark. 
420. Even if the figure is given, there can still 
be obtained a great difference between 
different particles on account of the different 
disposition of the points that form it. Thus, in 
the same sphere, the points may be quite 
unequally distributed, in such a way that, even 
at equal distances, there may be very many in 
one part and very few in another; or in 
different places on the same concentric 
surface there may be very many groups of 
points condensed together, whilst in others 
there are very few of them; these very places 
may be at quite different distances in different 
places even within the same particle, and in 
different particles at the same distance from 
the center they may be distributed in ways that 
are altogether different. Further, even if 
particles have the same figure, say spherical, 
and in each of them, round about, and at the 
same distance from, the center the points are 
distributed uniformly; yet even then there may 
be a huge difference in the density 
corresponding to different distances from the 
center. For, in the one, they may all be 
grouped near the center, in another toward the 
middle surface, and in a third close to the 
outer surface. In these, the differences, both as 
regards to the positions of equal density and 
also as regards the ratio of the different 
densities, can be varied indefinitely (notes 419 
and 420). 
It should be noted that Boscovich in notes 419 

and 420 mentions two characteristics associated with 
his point distribution, namely the “surface area” and 
“volume”. He alludes to the homogeneity of the 
disposition of points and their relation to the 
alternation and transformation of bodies in Theoria 

519. But, to return to my theory of 
homogeneous elements, the several forms of 
bodies will consist of a combination of 
homogeneous points, which comes from their 
distances and positions, and, in addition, to 
combination alone, the velocity and direction 
of the motion of each of the points; also for 
individual masses of bodies there is to be 
added the number of points that form them. 
Given the number and disposition of the 
points in a given mass, the basis of all its 

properties, which are inherent in the mass, is 
given; and also that of all the relations that the 
same mass must have with other masses; that 
is to say, those determined by their numbers, 
combinations and motions; moreover, the 
basis of all changes that can happen to it is 
also given. Now, since there are special 
combinations, representing certain special 
constant properties, which we have 
determined and explained, namely those 
corresponding to cohesion, and various 
degrees of solidity, those for fluidity, for 
elasticity, for softness, for the acquisition of 
certain shapes, for the existence of certain 
oscillations, which combinations, both of 
themselves and through forces connected with 
them, produce different tastes and different 
smells, and exhibit the different constant 
properties of colors; and also there are other 
combinations, which induce motions and 
changes that are not permanent, like all sorts 
of fermentations; there can be derived from 
the primary combinations of constant 
properties the specific forms of bodies and 
their differences, and from the latter also can 
be obtained alterations and transformations in 
these forms. 
520. Now, amongst these constant properties 
there may be some that are chosen more 
constant than others; such as do not depend 
upon admixture with other particles, and also 
such as, if they should be lost, would be easily 
and quickly acquired. These properties could 
be considered to be essential to the species; 
and if such properties suffered a permanent 
change, we should have a transformation; 
whereas, if they persisted, there would only be 
an alteration. Thus also, a body would be said 
to be altered, but not specifically changed, if 
the quantity of fiery matter, which it contains 
in its pores, is increased; or if there is an 
increase in its motion, or even in some 
oscillation of its parts; similarly, it would be 
said to be merely altered by a fresh accession 
of heat (notes 519 and 520). 
The reason for mentioning the foregoing quotes 

from Boscovich’s (1922) Theoria is due to the fact 
that these quotations serve to begin the analysis of 
blackbody radiation from a classical viewpoint. 
When one researches the literature on this topic, we 
find many publications. The most extensive of these 
is by Kangro (1976). Kangro (1976) traces the history 
of attempts to establish a theoretical basis for this 
phenomena starting from the mid 19th century to the 
beginning of the 20th century with Max Planck’s 
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investigation on radiation, which subsequently led to 
the concept of quantum mechanics. 

A brief review might begin with the common 
definition of “blackbody radiation”. When a body is 
heated it radiates a specific spectrum. At the turn of 
the century, it was assumed that heat caused the 
molecules and atoms of a solid to vibrate, inducing 
charge oscillations, which from Maxwell’s Theory of 
Electromagnetic Radiation, produced light. The 
puzzle that confronted the early experimenters at the 
turn of the century was that the radiations could not 
be predicted using classical physics. This was a 
motivating factor in Planck’s successful theoretical 
analysis, which subsequently led to what is now 
termed “Quantum Theory”. 

One is then tempted to ask, “Just how does 
Boscovic and his ideas outlined in the Theoria apply 
to explaining blackbody radiation?” Perhaps a way to 
begin is to quote Kangro (1976), 

How, then, is the radiation which succeeds 
absorption to be explained? Experience 
shows, as Lommel points out, that there are 
two types of spectra, and therefore that there 
are two causes. On heating a solid body “the 
vis viva of its intermolecular vibrations (i.e., 
vibrations of whole molecules) is increased”, 
and opposes the “cohesive forces” of the solid 
state. The result is a continuous spectrum. 
Sharp lines of “molecular vibrations”, caused 
by “intramolecular forces (chemical 
“affinity”) can only be detected (as Lommel 
concludes) when the “cohesion” has 
disappeared, i.e. when the body has become 
gaseous. Both kinds of vibrations are 
propagated as waves through the aether, 
which fills all space and also flows freely 
around the molecules of bodies” (Lommel 
1871, p. 41, as cited in Kangro, 1976). It is 
assumed by him “that the elastic force, which 
sustains the vibrations of an aether atom, is 
proportional to the distance of the atom from 
its equilibrium position” (elongation) 
(Lommel 1871, p. 41-42, as cited in Kangro, 
1976). (p. 28). 
Lommel…(as cited in Kangro, 1976, p. 29) felt 

that “vis viva” increases continuously with time and 
derived an equation comprised of vibrations at the 
“aether” and proper vibrations of the atom. 
Michelson looked at the problem a few years later 
(Kangro, 1976) and was stimulated to treat the matter 
hypothetically in which he stated: 

Absolute continuity of the spectra emitted by 
solid bodies can only be explained by the 
complete irregularity of the vibrations of their 
atoms. Hence the distribution of radiation 
energy with respect to individual vibrations 

must be undertaken by means of probability 
calculations (p. 30). 

 Michelson subsequently derived an equation that 
produced an energy distribution curve (Kangro 1976, 
p. 33-34). As pointed out in Kangro (1976), it was 
Planck who, thirteen years later, also arrived at a 
statistical deduction of the radiation law. This will be 
discussed in the ensuing pages. 
 At this point, it should serve well to discuss the 
status of the existing radiation theories near the end 
of the 19th century. Kangro (1976) does an excellent 
job in reviewing the various attempts to explain the 
spectral distributions, mostly geared to classical 
treatments. 
 Another excellent source may be found in 
Whittaker (1989, Chapter XII). The following will be 
to outline how far the complications surrounding the 
attempts to solve the blackbody radiation and how all 
classical attempts failed.  
 When bodies are heated, they emit radiant energy. 
The quality, as will be shown later, along with the 
quantity of this emission, depends exclusively on the 
temperature. It should also be mentioned that the 
radiation only occurs in solids and in some cases, 
liquids.  

Following a description of how the energy 
distribution 𝑒! varies with 𝜆𝑇 (λ = wavelength and T 
= temperature) as given by Richtmyer & Kennard 
(1947, p. 158-159) the relationship 
 
!!
!!
= 𝑓 𝜆𝑇           (29) 

 
is shown in Fig. 50 below. 

 
     λT 

Fig. 50 Experimental Verification of the 
Blackbody Displacement Law 

From Eq. (29) 
             
𝑒! = 𝑇!𝑓 𝜆𝑇 = 𝜆𝑇 ! !(!")

!!
     (30) 

we can write 
𝑒! =

!
!!
𝐹(𝜆𝑇)         (31) 

where 
𝐹 𝜆𝑇 = 𝜆𝑇 !𝑓(𝜆𝑇)       (32) 
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 We may define the monochromatic emissive 
power, 𝑒! at any given wavelength λ by saying that 
the radiant energy emitted in the spectral range λ to λ 
+ dλ, per unit area per unit time, is given by 𝑒!𝑑𝜆. 
The total emissive power, E, is given by: 
 
𝐸 = ∞

0 𝑒!𝑑𝜆          (33) 
 
 According to Whittaker (1989), 

At the end of the nineteenth century, the 
theory of radiation was in a most 
unsatisfactory state. For the energy per cm3 of 
pure-temperature of blackbody radiation, in 
the range of wavelengths from λ to λ + dλ, two 
different formulae had been proposed. Firstly, 
that of Wien, (1896, p. 667) 
𝐸 = 𝐶𝜆!!𝑒!!"#$𝑑𝜆. Where λ is wavelength, T 
is absolute temperature, and b and C are 
constants. This formula is asymptotically 
correct in the region of short waves (more 
precisely, when λT is small); but is 
irreconcilable with the observational results 
for long waves. Secondly, that of Rayleigh 
(1900, p. 539-540) 𝐸 = 8𝜋𝑘𝑇𝜆!!𝑑𝜆. Where k 
is Boltzmann’s constant; which, as shown by 
the experiments is asymptotically correct for 
the long waves but is inapplicable at the other 
end of the spectrum. What was wanted was a 
formula, which for the extreme limits λ→0 
and λ→∞ would tend asymptotically to 
Wien’s (1896) and Rayleigh’s (1900) 
formulae respectively, and which would agree 
with the experimental values over the whole 
range of wavelengths (p. 78). 

 There are other attempts to produce a formula 
(see Whittaker 1989, p. 28) empirically which was of 
the form 𝐸 = 𝐶𝑇!!!𝜆!!𝑒!!" !" ! . Which for µ = 5, ν 
= 1, gives Wien’s law, and for µ = 4, ν = 1, b = 0, 
gives Rayleigh’s. The correct law was first given by 
Planck in a communication, which was read on 19 
October 19th, 1900 before the German Physical 
Society (Planck, 1900a, p. 202-204). 
 All subsequent investigations for determining the 
spectral distribution in radiation employs Planck’s 
(1900) formula, thus it behooves one to elaborate on 
some of its intricate details. The notation of the 
following equations use the form from Siegel & 
Howell (1992), henceforth designated as S/H since 
many of the figures to be shown will be using their 
representation. Planck’s spectral distribution is given 
in Eq. 34. 
𝑒!" 𝜆𝑇 = 𝜋𝑖!" 𝜆,𝑇 = !!!!

!!(!!!/!"!!)
       (34) 

(From Eq. 2.11 in S/H (1992)) 
 

The constants to be employed are shown in Table 24. 
 

Symbol Definition Value 
 
 
𝐶! 

 
 
 
 
𝐶! 

 
 
 
 
𝐶! 

Constant in 
Planck’s 
spectral energy 
(or intensity) 
distribution 
 
Constant in 
Planck’s 
spectral energy 
(or intensity) 
distribution 
 
Constant in 
Wien’s 
displacement 
law 

 

0.59552197𝑥10!𝑊 ∙
𝜇𝑚!

𝑚!. 𝑠𝑟 

0.59551297𝑥10!!"𝑊 ∙
𝑚!

𝑠𝑟  
 
 
14,387.69 𝜇𝑚 ∙ 𝑘 
0.01438769 𝑚 ∙ 𝐾 

 
 
 
2897.756 𝜇𝑚 ∙ 𝐾 
0.002897756 𝑚 ∙ 𝐾 

Table 24  
Radiation Constants 

 
 The mks system will be used in the ensuing 
calculations, where: 
𝐶! is defined as 2𝜋ℎ𝑐!0 
𝐶! = ℎ𝑐!/𝑘 
where h is Planck’s constant 
ℎ = 6.6260755𝑥10!!"𝐽 ∙ 𝑠 
k is the Boltzmann constant 
𝑘 = 1.30658𝑥10!!"𝐽/𝐾 
 
 Depending on the type of investigation Eq. 34 
may also be represented in terms of frequency as 
shown as Eq. 35 
 
𝑒!" 𝜆 𝑑𝜆 =

!!!!!"

!! !
!!
!"!!

= !!!!!!!!"

!!! !
!!!
!!!!!

= −𝑒!" 𝑣 𝑑𝑣      (35) 

(From Eq. 2.12 in S/H (1992)) 
 
The quantity 𝑒!"(𝑣) is the emissive power in vacuum 
per unit frequency interval about ν. The intensity is 

𝑖!!" 𝑣 = 𝑒!"(𝑣)/𝜋 
so that 
𝑖!!" 𝑣 = !!!!!

!!!(!
! !!
!!!!!)

= !"!!

!!!(!
! !
!"!!)

        (36) 

(From Eq. 2.13 in S/H (1992)) 
 
Most modern day analyses use the wavenumber, 
which eliminates the need for using the speed of 
light, 𝑐!. The wavenumber η = 1/λ is the number of 
waves per unit length. Then and 𝑑𝜆 = − (1/𝜂^2) 𝑑𝜂 
and 
𝑒!" 𝜆 𝑑𝜆 = − !!!!!!!"

!
!!!
! !!

= −𝑒!" 𝜂 𝑑𝜂       (37) 

(From Eq. 2.14 in S/H (1992)) 
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The quantity 𝑒!"(𝜂) is the emissive power per unit 
wavenumber interval about η. The intensity is 
 
𝑖!!" 𝜂 =

!!"(!)

!
= !!!!!

!
!!!
! !!

         (38) 

(From Eq. 2.15 in S/H (1992)) 
 
 As shown in the figure from Richtmyer and 
Kennard, Planck’s equation can be put into a form 
that eliminates the need for a separate curve for each 
Temperature, T. Dividing by the fifth power of T 
yields 
!!"(!,!)

!!
= !!!!"(!,!)

!!
= !!!!

!" !(!
! !
!"!!)

       (39) 

(From Eq. 2.16 in S/H (1992)) 
 
Eq. 39 can also be placed in a more universal form in 
terms of the variable 𝜂/𝑇 = (1/𝜆𝑇), 
 
!!!"(!,!)

!!
=

!!!
!
!
!

!
!
!(!!)!!

            (40) 

(From Eq. 2.17 in S/H (1992)) 
 
 The foregoing has been a brief review of the 
various forms used in analyzing blackbody radiation. 
It now remains to carry out an analysis wherein 
Boscovich’s (1922) ideas will be enlisted to produce 
empirical results that compare with the acceptable 
results using Planck as the standard. 
 When we observe a heated piece of metal, it will 
begin to glow dull red, then orange, brilliant yellow 
and finally white. This constitutes what is referred to 
as a continuous emission spectrum, which is 
governed by Kirchhoff’s law of radiation (Kirchhoff, 
1882, p. 572-573), which states that the ratio of 
emissivity absorptivity is the same for all bodies at 
the same temperature. If we state Kirchhoff’s law in 
terms of absorptivity, A, and emissivity, E, then from 
Richtmyer & Kennard (1947) 

Absorptivity – In general, radiation falling 
upon a surface is partly absorbed, partly 
reflected, and, unless the body is very thick or 
very opaque, partly transmitted. We shall 
define the absorptivity of a surface, symbol A, 
as the fraction of the radiant energy, incident 
on the surface, which is absorbed. 
Absorptivity is (1) a pure numeric, (2) for any 
actual body, less than unity, and (3) varies 
greatly with wavelength of the incident 
radiation and, to a lesser extent, with the 
temperature of the absorber.  
A surface whose absorptivity is unity for all 
wavelengths is called an “ideal” black surface. 
No such surface actually occurs in nature, but 
some bodies, such as black velvet or 

lampblack, reflect only a very small fraction 
of the incident radiation. It will be seen 
presently that in the theory of radiation a 
special interest attaches to the ideal black 
surface or body.  
A very simple relation exists between the 
absorptivity of a surface and its total emissive 
power, E. Suppose that two surfaces have total 
emissive powers E1 and E2 and absorptivities 
A1 and A2, respectively. By considering the 
thermal equilibrium of such surfaces when 
present in an isothermal enclosure, as 
described in the next section, it can be shown 
that necessarily  

𝐸!
𝐸!
=
𝐴!
𝐴!

 

If, in particular, we make A1=1 that the first 
surface is black, E1 has obviously the 
maximum value that is possible at a given 
temperature; for A1 in the last equation cannot 
exceed unity. Thus, no surface can emit more 
strongly than a blackbody. If E0 is the total 
emissive power of a blackbody and E the total 
emissive power of any other body whose 
absorptivity is A, we find from the last 
equation that 𝐸 = 𝐴𝐸! 
These conclusions are known as “Kirchhoff’s 
Law” and have all been confirmed by 
experiment. The same relations have been 
shown to hold for each wavelength separately 
(p. 142-143). 

 In essence, if the absorbance is high, the 
emittance is also high. At this point one might ask 
how do Boscovich’s (1922) ideas play a role in 
analyzing this thermal spectrum. It is well known that 
Kirchhoff assumed that the radiation spectrum is 
independent at the internal of surface structure of a 
body and depends only on the temperature.  
 On searching the literature, one finds that most 
applications of Kirchhoff’s law refers to his cavity 
interpretation where a body that absorbs all incident 
radiation, i.e. A = 1 is called “Black” since such a 
body shows high absorptivity. 
 This concept of blackbody radiation described by 
Kirchhoff is the result of his experiment in which he 
used a cavity whose walls had been heated to a 
uniform temperature. The resulting radiation field 
inside the cavity consisted of reflected energy as well 
as the original emission from the walls. A small 
wafer having a perfect black surface introduced into 
the cavity is allowed to come to thermal equilibrium 
with the walls. Thus, it is assumed that using a small 
hole in the enclosure, any radiation escaping would 
be indicative to that emitted from a “blackbody”.  
 In effect, this might be called a “simulation”. This 
concept is addressed by d’Abro (1932), 
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Kirchhoff’s law establishes several important 
points. It shows that, for a given temperature 
of the enclosure, the composition of the 
imprisoned equilibrium radiation is exactly 
the same regardless of the nature of the matter 
present. The only restriction imposed is the 
one previously stated; namely, the matter must 
be susceptible of admitting at least some 
radiation of each conceivable frequency. It 
can also be shown that the shape and size of 
the enclosure does not affect the results. To 
submit to experimental measurement, the 
intensities of the various monochromatic 
radiations, we perforate one of the walls with 
a pin. Some of the radiation streams out and 
may be analyzed by suitable instruments. We 
assume that the loss of radiation through the 
pinhole is too small to affect the conditions 
within the enclosure, and hence that the 
sample analyzed gives the correct composition 
of the equilibrium radiation. 
As we have mentioned earlier, the equilibrium 
radiation for any given temperature of the 
enclosure is exactly the same as the blackbody 
radiation that would be emitted by a perfect 
black body at the same temperature. The 
reason for the equivalence is easily 
understood. Any radiation, which falls on the 
opening in the wall, passes into the enclosure, 
is reflected from wall to wall and does not 
emerge again. To all intents and purposes the 
radiation is totally absorbed, just as it would 
be to fall on a perfect blackbody. The 
advantages of substituting the heated 
enclosure for a blackbody are numerous. In 
the first place, we have said that no perfectly 
black body can be found, whereas the heated 
enclosure simulates this ideal existent. In the 
second place, the enclosure is more easily 
maintained at a stated temperature than is a 
piece of soot. Finally, since the radiation in 
the enclosure is a manifestation of an 
equilibrium condition rather than of an 
individual process, we may to a larger extent 
ignore the mechanism by which the radiation 
is emitted from the matter and yet submit the 
problem of its composition to theoretical 
treatment (p. 449-450). 
 

Experimental Results 
 Before we consider the derivation of the correct 
law of equilibrium radiation by means of theoretical 
arguments, let us examine the general results 
established by experiment. An enclosure was heated 
to one temperature or another, and the radiation 
streaming from the aperture was analyzed. 

Experimenters found that the intensity, iv, of the 
radiation of frequency, v, was not affected by the 
shape of the enclosure or by the material of which the 
enclosure was made; the intensity was found to 
depend solely on the frequency, v, and on the 
temperature, T, of the enclosure. This dependency is 
expressed mathematically by the equation 
(1) 𝑖! = 𝐹 𝑣,𝑇 , 
Where F(ν,T) is some unknown function of the 
frequency and of the temperature. To obtain the 
empirical law of equilibrium radiation we should 
have to determine the exact form of this function 
from direct measurements of intensity, frequency, 
and temperature. However, for reasons, which will 
now be explained, the law of radiation was not 
discovered in this way. Human measurements being 
necessarily imperfect, the measurements performed 
by different experimenters (or by the same 
experimenter at different times) do not usually agree: 
slight discrepancies may be expected. As a result, 
slightly different forms are suggested for the same 
empirical law; and we cannot be certain that any one 
of the laws suggested is rigorously correct. As a 
result, the different experimenters suggested different 
more or less complicated radiation laws and were 
unable to agree on a correct form of the function 
F(ν,T) in (1). 
Chronologically, Eq. (1) should read 𝑖! = 𝐹 𝜆!𝑇 . It 
was Planck who was the first to use the form given 
by Eq. (1). Garber pointed this out by stating, 
“Planck was the first theorist to develop his 
expressions in functions of the frequency, ν, rather 
than the wavelength. However, in his derivation of 
Wien’s law, he worked in Wien’s terms and used the 
wavelength” (1976, p. 97). 
 Brush (1999) also speaks of a simulation, stating: 

It is recognized that it is necessary to do 
experiments with perfect “blackbodies” 
simulated by a cavity (Hohlraum) maintained 
at a definite temperature, from which radiation 
was allowed to emerge through a small hole. 
The derivation from “blackness” increases 
with the size of the hole relative to the size of 
the cavity (p. 521). 

 Ackermann (1989) addressed substantiation for 
the idea of simulation. 

An experimentalist may wish to measure a 
certain phenomenon, so that progress involves 
turning the first phenomenon into the second 
so it can be measured. It may be that one piece 
of apparatus designed to produce the 
phenomenon being measured can only be 
placed where one would like to place the only 
apparatus that can apparently measure the 
phenomenon. In a dizzying variety of such 
variations, experimentalists must permute and 
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adjust what is available in order to simulate 
what is desired (p. 188). 

 The idea of simulating the radiation from a solid 
body was very successful in the predictions of Planck 
whose mathematical development led to the modern 
concept of Quantum Mechanics. Since such 
experiments as those used by Kirchhoff, did not exist 
in Boscovich’s time, one is tempted to ask, how can 
his ideas be used to describe this type of radiation. 
 We can be assured that Boscovich and those of 
his time did observe a solid when heated to become 
incandescent and display the various colors 
mentioned earlier.  An important point to be made 
here is that the words “solid” and “luminous” are 
used. When one looks at Kirchhoff’s experiments, we 
see that what is observed is a “surface” phenomenon, 
which says nothing about the interior of the body that 
is radiating. This takes us back to the earlier 
statements of Kangro (1976, p. 28), in which he 
refers to Lommel’s observation in which he discusses 
the “vis viva” of solid body intermolecular 
vibrations.  
 Now, since thermal radiation is emitted normally 
only by solids and in a few cases liquids, it would 
behoove us to investigate how the interior of the body 
contributes to what one observes on the surface. 
Perhaps an appropriate place to begin is to discuss 
what the situation was that led up to the mathematical 
treatment of the radiation distribution laws. Kangro 
(1976) mentions Tyndall’s work where Tyndall 
considers heat to be made of motion. A brief view of 
Kangro (1976) states that 

Tyndall talked of “calorific intensity”, 
“calorific power”, “effect”, or simply of 
“radiation” or “heat”. In 1865, he used the 
term “energy” for the “potential” and 
“dynamical” energy when dealing with 
motion. Only when considering the 
conversion of mechanical energy into “some 
other form”, he said, “that energy, we shall 
afterward learn, is heat” (p. 8). 

 Kangro (1976) continues his remarks on Tyndall 
with, “There appears to be a definite rate of vibration 
for all solid bodies having the same temperature, at 
which the vis viva of their atoms is a maximum” (p. 
9). Following Tyndall, Kangro (1976) selected the 
works of Lommel along with the work of Michelson. 
Lommel’s idea of heating a solid body where its “vis 
viva” is increased has been mentioned earlier in this 
work.  
 We then go to some of the ideas generated by 
Michelson (1888). Michelson, in his mathematical 
treatment hypothesizes as follows; “Absolute 
continuity of the spectra emitted by solid bodies can 
only be explained by the complete irregularity of the 
vibrations of their atoms” (1888, p. 426). Hence the 

distribution of radiation energy with respect to 
individual vibrations must be undertaken by means of 
probability calculations. He disregards the grouping 
of atoms as molecules in a solid body. Each atom 
vibrates about an equilibrium position, which is 
controlled by the surrounding atoms. In this region he 
supposes “that each atom moves freely in the interior 
of a spherical elastic shell of infinitely small radius 
p” Michelson (1888, p. 426). 
 The two most significant features of Lommel 
(1881) and Michelson (1888) is that they both used 
solids and their resulting equations used the 
wavelength, λ, which having the dimension of length 
will prove to be important later. While Planck used 
the frequency, ν, in his interpretation, he nevertheless 
developed his ideas from Wien in conjunction with 
Michelson. Kangro (1976) spells this out by stating 
that Planck’s quantum theory was due to the work of 
Michelson. He concludes that, 

The work of Wien, as shown above, is 
revealed only as a late development of 
Michelson’s original ideas, cannot be doubted. 
The work of Planck in its turn appears as a 
direct continuation and extension of the work 
of Wien and Michelson. When we consider 
the researches of Planck, we cannot but 
conclude that the theory of light quanta is a 
child of the statistical method of molecular 
optics, a method, the general idea of which 
was first explicitly applied by Michelson in 
this field. Planck’s merit consequently 
consists in the further elaboration and 
realization of this idea. 
In fact, Planck quotes the work of Wilhelm 
Wien in connection with the development of 
his radiation theory, and the latter quotes 
Michelson’s memoir. Indeed, Michelson, in 
deriving his law of energy distribution invokes 
in addition an article by Lommel. These facts 
provide a critical problem in the history of 
science. No matter how we trace backwards 
from the work of Planck or of Wien and 
consider the pertinent investigations on which 
subsequent advance were made, Michelson’s 
ideas also are to be connected with the 
development, the results of which Michelson 
himself encountered (p. 35). 

 At this point it is deemed feasible to now 
return to Boscovich and determine how his 
ideas may be employed in another classical 
approach to explain blackbody radiation. 
 Before attempting this, another viewpoint 
regarding the theoretical aspects of Kirchhoff’s 
(1901) research in the interpretation of blackbody 
radiation has appeared and is discussed in several 
published papers. As mentioned or implied earlier, 
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when the absorption A=1, Kirchhoff (1901) assumed 
that the radiation emitted by a body did not depend 
on its internal structure, but only on temperature. 
Recent investigations have shown that this is not 
really true. 
According to Robitaille (2006), 

Through the formulation of his law of thermal 
emission, Kirchhoff conferred upon 
blackbody radiation the quality of 
universality. Consequently, modern physics 
holds that such radiation is independent of the 
nature and shape of emitting object. Recently, 
Kirchhoff’s experimental work and theoretical 
conclusions have been reconsidered. In this 
work, Einstein’s derivation of the Planckian 
relation is reexamined. It is demonstrated that 
claims of universality in blackbody radiation 
are invalid (p. 22). 

 This work and subsequent publications by 
Robitaille (2008a) arose from a publication by 
Schirrmacher (2001), in which he discussed the 
question regarding the legitimacy of Kirchhoff’s 
experiment and it’s resulting justification for 
Planck’s radiation formula. Since Planck’s analysis 
and subsequent equation for blackbody radiation is 
linked to the assumed universality of Kirchhoff’s 
formulation and if Kirchhoff’s proof of universality is 
invalid, then this carries over to Planck’s analysis. 
 Schirrmacher (2001) declares, 

That Kirchhoff’s law was a necessary 
prerequisite for Max Planck’s finding of the 
proper radiation formulas widely accepted, 
although not much attention was paid to the 
relation of their respective histories in 
particular of justification. Simply speaking, it 
is the relation between the proof of the 
existence of a solution and the specification of 
the correct formula (p. 2). 

Robitaille (2003 & 2008a) sums it up by stating, 
Since the days of Kirchhoff, blackbody 
radiation has been considered to be a universal 
process, independent of the nature and shape 
of the emitter. Nonetheless, in promoting this 
concept, Kirchhoff did require, at the 
minimum, thermal equilibrium with an 
enclosure. Recently, the author stated that 
blackbody radiation is not universal and has 
called for a return to Stewart’s law. In this 
work, a historical analysis of thermal radiation 
is presented. It is demonstrated that soot, or 
lampblack, was the standard for blackbody 
experiments throughout the 1800’s. 
Furthermore, graphite and carbon black 
continue to play a central role in the 
construction of blackbody cavities. 

Finally, Planck’s treatment of Kirchhoff’s law 
is examined in detail and the shortcomings of 
his derivation are outlined. It is shown, once 
again, that universality does not exist. Only 
Stewart’s law of thermal emission, not 
Kirchhoff’s, is fully valid (p. 36). 

 Robitaille (2008a) follows this up with a 
statement that Planck’s equation is not being disputed 
in any way. The accuracy of this equation along with 
its merit has been established beyond question. 
Stewart’s (1858) law states that when an object is 
analyzed in thermal equilibrium, its absorption is 
equal to its emission. This leads to the idea that the 
emissive power of an object depends on its 
temperature, its nature, and on the frequency of the 
observation. According to Stewart (1861), radiation 
is not a surface phenomenon, but takes place 
throughout the interior of the radiating body leading 
to the fact that the radiative and absorptive powers of 
that body must be equal.  
 Stewart (1863) states, 

I first endeavored to show, not only as a 
simple deduction from the theory of 
exchanges, but also as a result of experiments, 
that in a field of uniform temperature the 
absorption of a plate or particle is equal to its 
radiation. Now, since a thick plate absorbs 
more heat than a thin one, it will also radiate 
more, so that here we are once led to 
acknowledge a radiation proceeding from the 
interior of bodies as well as one of their 
surfaces. 
Assuming it therefore as proved that the 
radiation of a particle or plate is independent 
of its distance from the surface, the proof of 
the law which asserts “that absorption is equal 
to radiation, and that for every description of 
heat,” may for convenience sake be carried 
into the interior of the body, by which means 
we are able to rid ourselves of surface 
reflexion. Let us therefore suppose that in the 
interior, a stream of radiant heat is constantly 
flowing past a particle A in the direction of the 
next particle B. Now, since radiation is 
independent of distance from the surface, the 
radiation of A is equal to that of B; and since 
absorption is equal to radiation, the absorption 
of A is therefore equal to that of B. Again, as 
the stream of radiant heat passes A, part of it 
will be absorbed by A; but since the radiation 
of A is equal to its absorption, this stream will 
be as much recruited by the one as it is 
diminished by the other, so that when it has 
passed A it will be found unaltered by its 
passage with regard to quantity. 
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Of this heat it has already been shown that B 
absorbs as much as A; and in order that this 
may be the case, the quality as well as the 
quantity of the heat which impinges upon B 
must be the same as those of the heat which 
impinged upon A. For, suppose that the heat, 
by passing A, had changed its quality, though 
not its quantity, and that it had been 
transformed into a description of heat scarcely 
absorbed at all by the substance in question; 
then the absorption of B would manifestly be 
less than that of A, and this we have already 
shown cannot be the case. We conclude 
therefore that the stream of heat, in passing A, 
has neither altered its quantity nor its quality, 
and hence we argue that radiation is equal to 
absorption, and that for every description of 
heat. 
This is the whole proof; and I am quite at a 
loss to know in what respect it is deficient, 
especially since Kirchhoff has not definitely 
stated his objections (p. 354-356).  

 This quote from Stewart, while rather lengthy, is 
deemed necessary since it serves as a prelude to how 
such an idea may have significance in a Boscovichian 
approach to “blackbody” or more inclusive “thermal 
radiation”. Stewart’s law in plain terms may be 
expressed as what occurs in the inside (interior) of a 
body is what is observed on the outside (surface) of 
that body. Of course it is assumed that this is a solid 
body. 
 Returning to Lommel’s comment on the increase 
at vis viva (energy) upon heating of a solid body (as 
cited in Kangro, 1976, p. 28), and Michelson’s 
(1888) experimental results for the spectra of a solid 
seems like an appropriate place to start using 
Boscovich’s ideas coupled with Stewart’s claim of 
radiation from both the interior and exterior of a 
body. 
 First, one should consider what happens to the 
physical characteristics of a body when heated. The 
most general effect upon being heated is a change in 
the bulk of a solid. In most cases there is an increase 
in the size, with both an area and volume expansion. 
The surface to volume ratio is not linear and each has 
its own thermal expansion coefficient. 
 We now proceed to Boscovich (1922) who, in the 
Theoria, mentions the relationship between the 
surface, which gives the shape of a body, and the 
volume subsequently depending upon the shape. 

376. For there are an infinite number of 
continuous curved surfaces, in which 
nevertheless all the points of any mass lie; 
nay, further, there are an infinite number of 
curved lines passing through all the points. 
Therefore, we can only mentally conceive a 

certain surface which shall include all the 
points or exclude a few of them which are 
more remote by gathering the rest together; 
this can be done by a kind of moral 
assessment, but not by an accurate 
geometrical construction. This surface gives 
the shape of the body; and with that idea, all 
that relates to the different kinds of shapes is 
in agreement in my Theory with the usual 
theory of the continual extension of matter. 
377. Volume depends upon shape; and 
volume is nothing else but the whole of the 
space, extended in length, breadth, and depth, 
which is included by the external surface. 
Further, unless we picture that surface which I 
mentioned as determining the shape, there can 
be no definite idea of volume. Nay indeed, if 
we think of the tortuous surface in which all 
the points lie, we shall never have a volume 
possessed of a third dimension; whilst if we 
think of a curved line passing through all the 
points, no volume will be obtained that has 
even two dimensions. But in that the usual 
idea is also wanting, as regards indefinite 
assessment, owing to those empty interstices 
that are present in all bodies, and the 
roughness, as we have said, which arises from 
the indeterminateness of figure. Here again, if 
an outside surface is conceived as bounding 
the figure, all those things that are usually 
enunciated about volume in relation to figure 
agree in my theory with those of all others; for 
instance, that the same volume as regards 
magnitude can be bound by surfaces that are 
quite different, both in shape and size, and that 
the least surface of all having the same 
volume is that of a sphere. Also, that in 
similar figures, the volumes are in the 
triplicate ratio of homologous sides, the 
surfaces in the duplicate ration; and upon 
these depend a truly great number of 
phenomena, and especially those, which are 
connected with the resistance of both fluids 
and of solids. 
378. The mass of a body is the total quantity 
of matter pertaining to that body; and in my 
Theory, this is precisely the same thing as the 
number of points that go to form the body. 
Here now we have certain indefiniteness, or at 
least the greatest difficulty, in forming a 
definite idea of mass; and that, not only in my 
theory, but in the usual theory as well, on 
account of the addition of words points that 
go to form the body; this excludes 
heterogeneous substances (notes 376-378). 
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 Here Boscovich (1922) has outlined his curved 
lines of limit points and the areas they contain may 
be extended to the curved surfaces and the contents 
of the solids, which can be imagined to be his points. 
These points, subsequently when heat (vis viva) is 
applied may oscillate about their respective limit 
points. 
 We now go to another interpretation of Planck’s 
formula for blackbody radiation. Stachel (1998) 
discuss Einstein’s dilemma regarding Planck’s laws. 
 Einstein (as cited in Stachel, 1998) mentions two 
possible objections to his proposed theory of a 
quantum gas. As applied to blackbody radiation, 
Planck’s formula for the density of blackbody 
radiation, is given below as Eq. 41 
𝑒 𝑣,𝑇 =  !!!!!

!![!"# (!!/!")!!]
          (41) 

 
may be split into two factors, each of which is related 
to one of the two objections: 

(1) The first objection is related to the already-
mentioned matter-radiation analogy, which 
Einstein notes is not universally accepted. (He 
may well have had Bohr in mind, which 
refused to countenance the light quantum 
hypothesis. It is related to the factor 8𝜋𝑣!/𝑐!, 
which Bose showed can be interpreted as the 
number of cells in the phase space of a gas of 
light quanta, treated as particles.  

(2) The second objection is to the method of 
counting equiprobably cases for a quantum 
gas, massless or massive (1998, p. 232-233). 

“The statistical method applied by Bose and myself is 
by no means indubitable, but on the contrary only 
appears to be justified a posteriori by its success in 
the case of radiation” (Einstein 1925, p. 18 as cited in 
Stachel, 1998, p. 232-233). 
 It is related to the factor ℎ𝑣/[exp !!

!"
− 1], 

which Bose interprets as the average energy per cell 
when a light quantum gas is in thermal equilibrium. 
Its value depends on the method of counting 
equiprobable distributions of light quanta among the 
cells. From this count, one computes the probability, 
W, and hence (using Boltzmann’s principle) the 
entropy, S, of the state of a gas, which is then 
maximized to determine the thermal equilibrium 
state.  
 By examining the role of these two issues in 
Einstein’s work between 1901-1909, we may hope to 
understand why he did not develop the idea of a 
quantum gas; his ready acceptance and quick 
application of the idea of massive particles after Bose 
developed it for light quanta; and why he felt much 
still remained obscure about the reasons for the idea’s 
success. 

 “8𝜋𝑣!/𝑐!𝑉𝑑𝑣 can be interpreted as the number 
of elementary cells of the six-dimensional phase 
space for the [light] quanta” (Bose, 1924, p. 384 as 
cited in Stachel, 1998, p. 232-233). Here, V is the 
volume of the cavity. 
Letting 𝑝 𝑣 = !!!!!"

!!
 

Converting frequency into wavelengths (since 
𝑣 = 𝑐/𝜆), the number becomes 8𝜋/𝜆! per unit 
volume. 
Then, 𝑝 𝜆 = 8𝜋 !"

!!
!!

!!!/!"!!
        (42) 

(From Richtmyer & Kennard, 1947, p. 178). 
 
 This is the value of 𝜓𝜆𝑑𝜆, the energy density 
belonging to the range 𝑑𝜆. Let us substitute in it 
𝑣 = !

!
, c being the speed of light in vacuum. Thus, we 

obtain, as Planck’s new radiation law, in terms of 𝜆. 
 
𝜓! =

!!"!
!!

!
!!!/!"#!!

          (43) 
 
 Returning to the Siegel & Howell representation 
of this equation, it may be rewritten as, 
 
𝑒!" 𝜆𝑇 = 𝜋𝑖!!" 𝜆,𝑇 = !!!!

!!(!
! !
!"!!)

      (34) 

(From Eq. 2.11 in S/H (1992)) 
 
Dividing by the fifth power of the temperature, T, 
yields Eq. 44 given below: 
 
!!" !,!

!!
= !!!!"

!!
= !!!!

!" ! !
!!
!"!!

= !!!!
!" !

!
!"

!

!
!!
!"!!

=

!!!!
!" ! 𝐹 𝜆𝑇              (44) 

This equation gives the quantity 𝑒!"(𝜆,𝑇)/𝑇! in 
terms of the single variable, 𝜆𝑇 
Plotting 𝐹(𝜆𝑇) produced the following graph, Fig. 
51. 

 
Fig. 51 

Horizontal axis: 𝝀𝑻 (𝝀 in microns) 
Vertical axis: 𝑭(𝝀𝑻) 
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 The function 𝐹(𝜆𝑇) as seen in Fig. 51 is now 
given another interpretation, slightly different from 
that where Einstein mentions Bose’s ideas. Returning 
to the remarks concerning the change in bulk when a 
solid is heated, there is both a surface and volume 
expansion whose change in area and volume may be 
calculated knowing the coefficient of linear 
expansion. 
 This coefficient of expansion need not be 
considered per se here, but one can think that the size 
of the body “grows”. In other words, one can 
consider 𝐹(𝜆𝑇) as a “growth curve”. The concept of 
such a curve had its beginning in a paper by 
Gompertz (1825). Winsor (1932) states that in 
addition to actuaries, various investigators have used 
the Gompertz curve as a growth curve in such areas 
as biology, botany and even economics (p. 1). 
Following Winsor (1932), the curve is generally 
written in the form, 
 
𝑦 = 𝑘𝑒!!!!!"                  (45) 
 
In which k and b are essentially positive quantities. 
From Eq. 45, it is clear that as x becomes negatively 
infinite, y will approach zero, and as becomes 
positively infinite y will approach k. Differentiating 
Eq. 45, we have 
 
!"
!"
= 𝑘𝑏𝑒!!!"𝑒!!!!!" = 𝑏𝑦𝑒!!!"       (46) 

 
A graphical description of the Gompertz curve is 
shown in Fig. 52 along with another growth curve 
called Logistic. We will only be concerned with the 
Gompertz curve. 

 
Fig. 52 (Fig. 1 from Winsor, 1932) 

 
Fig. 1 shows the form of the curve for the case k = 1, 
a = 0, b = 1. There are also shown the logistic and the 
first derivative of the Gompertz curve. 
Equations: 
Gompertz: 𝑦 = 𝑒!!!! 
Logistic: 𝑦 = !

!!!!!
 

The mathematical properties of the Gompertz 
Logistic curves are given below, 

 
 The following group of graphs represents the 
various properties of the Gompertz curve and is given 
below. The curves are from a work given by 
Medawar (1945b). 

 
Text-Fig. I. (a) The curve of the growth; (b) of growth-rate; (c) of 
acceleration; (d) the curve of specific growth; (e) of specific 
growth-rate; (f) of specific acceleration. The curves have been 
plotted from an equation for the Gompertz function, but the scales 
of the ordinates have been so adjusted as to make the height of 
each graph uniform. 

(Fig. I from Medawar, 1945b, p.162). 
 
At this point it is deemed critical to introduce 

another feature of the Gompertz curve, which 
involves senescence. This term will be seen to have 
very important implications later.  It was Thornley 
(1976) who in his book, Mathematical Models of 
Plant Physiology, produced the Gompertz curve 
shown in Fig. 53 below. 
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Fig. 53 (From Thornley, 1976, p. 203). 

 
The equation shown on the graph along with the 

associated parameters can be seen to agree in form 
with that of Winsor. The interesting feature of these 
parameters is the term S = 0.578, where S is the 
senescence term. Senescence is defined as the 
progressive loss of an ability to grow. It can be found 
that this term may also be applied to biology and 
even chemistry. Thornley’s treatment is not without 
its peer. It was Richards (1969) who used the Winsor 
form prescribed as 
𝑊 = 𝐴𝑒!!"!!" 
Now equation Richards and Thornley: 

Richards Thornley 
A 𝑊!𝑒!/𝑠 
b 𝜇/𝑠 
𝜇 𝑠 

For Thornley, assume: 
𝑊! = 1 
𝜇 = 0.4 
𝑠 = 0.0578 
 
Then, for Richards, using Thornley’s values, 
produced the following curve: 

 

 
Fig. 54 

Time, t, arbitrary units 

 
t W 
0 
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90 

100 

1 
20.862 

114.694 
298.399 
510.228 
689.388 
816.185 
897.275 
946.245 
974.88 

991.323 
Table 25 

 
The curve shown in Fig. 54 is an exact duplicate 

of Thornley’s curve with the tabulated values given 
in Table 25. We now may return to the assimilated 
curve for growth depicted in Fig. 51, shown as 
𝐹 𝜆𝑇 𝑣𝑠𝜆𝑇. The numerical values are shown in 
Table 26. 

𝜆𝑇 𝐹 𝜆𝑇  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

.000001 

.000376 

.002778 

.007046 

.011927 

.016668 
.02098 

.024802 

.028159 

.031102 
Table 26 

 
Based on Thornley’s (1976) concept of a senescence 
function S, senescence “function” was created to 
produce the same curve values for 𝐹 𝜆𝑇 . 
It is given by: 
 

!!
!!!"# !!

!!!!

              (47) 

 
Using the senescence “function” in a nonlinear 
regressive analysis produced the following formula, 
which produces a curve exactly as 𝐹 𝜆𝑇  and is 
referred to as 𝐹! 𝜆𝑇 . 
 

𝐹! 𝜆𝑇 = !!!
!!(

!!
! )

!

!!
!!!"#

!!
!!!!

!

           (48) 
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Where: 
𝑥 = 𝜆𝑇 
𝑘! = 0.8490 
𝑘! = 0.1164 
𝑘! = 2.097 
𝑘! = 6.898 
𝑘! = 0.189 
𝑘! = 0.0037 

 
λT 

Fig. 55 (calculated using Eq. 48) 
 

The values for 𝐹! 𝜆𝑇 𝑣𝑠𝜆𝑇 are shown in Table 
27. Note that their values are almost exactly as those 
shown in Table 26 for 𝐹 𝜆𝑇 . 

 
𝜆𝑇 𝐹! 𝜆𝑇  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

.000001 

.000375 

.002759 

.007016 

.011914 

.016693 
.02105 

.024912 
.0283 

.031267 
Table 27 

 
Following Medawar’s (1945b) representation of 

his growth curve rate and acceleration in terms of 
𝐹 𝜆𝑇 , 𝐹′ 𝜆𝑇  (derivative) and 𝐹′′ 𝜆𝑇  (second 
derivative), similar descriptions are shown in Fig. 56. 

 

 
𝝀𝑻  

Fig. 56 
 

It should be noted that 𝐹!!(𝜆𝑇) = 0.00 at 
𝜆𝑇 = 4.66 and 𝐹′(𝜆𝑇) = 0.25𝐹(𝜆𝑇) at 𝜆𝑇 = 4.66 it 
should be. The reasons for this will be explained 
later. 

At this point we return to the aforementioned 
situation concerning the asymmetrical growth in the 
surface area and volume of a solid when it is heated. 
The senescence function 𝐹 𝜆𝑇  will determine its 
growth. Now we must decide the relationship of 
growths in the surface area and volume. 

Referring to the discussion concerning the 
spectral series, Fig. 2 from Gill (1941) showed the 
“allowed” and “forbidden” orbits, which 
corresponded to the alternate points of cohesion and 
non-cohesion, produced logarithmic (equilateral) 
spirals. Now it can be shown that with adjustment at 
certain parameters, the spiral approaches an ellipse 
(Andronov et al, 1966). Recalling that the number of 
intercepts, which correspond to the alternate points of 
cohesion and non-cohesion, was based on the 
Fibonacci numbers. From Table 6, the difference of 
the Fibonacci numbers for 𝑈!" − 𝑈!" = 39,088,170 
intercepts. Going to 𝑈!"" − 𝑈!! produce 
approximately 3.3𝑥10!" intercepts, which yields a 
width of approximately 3.3𝑥10!!" arbitrary units. 
Such a small interval might be considered to be a 
solid. 

From Fig. 21 (Fig. 6 from (Martinovic, 1988)), 
the whole surface of a system of confocal spheroids 
was shown along with limits of cohesion and non-
cohesion. This allows one to now consider this as a 
solid and thereby determine its surface area and 
volume. As an aside, mention should be made 
concerning the volume and area in the growth of 
logarithmic coiled seashells. Raup and Graus (1972) 
discussed Mosely and his attempts to derive 
expressions for the volume and surface areas that 
were applicable to both planispiral and conispiral 
shells. These ideas were adopted and advanced by 
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Illert (1982) in which he emphasized the repetitive 
macroscopic to microscopic shell growth. He states, 

The biological requirement that shelly 
structures must exist in a three-dimensional 
space is shown to be a sufficiently powerful 
mathematical constraint to ensure the 
existence of geometrical artifacts, which can, 
perhaps, be likened to the conservation laws, 
pseudoforces, and fields of classical physics 
(p. 21). 
With these ideas in mind, it is now time to 

investigate whether or not such ideas can be carried 
over analogously to the so-called “blackbody” 
radiation. First, we address the idea of a surface area 
in a microscopic sense, of a heated solid. Since we 
are dealing with ellipsoids, then as a first 
approximation (the surface area of an ellipsoid cannot 
be calculated in closed form) using an ellipsoid 
created by revolution about the x-axis as shown in 
Fig. 57 along with the associated parameters. Eq. 49 
gives the area, 𝑆!. 

 
Fig. 57 

 
Ellipsoidal surface 𝑆! = 2𝜋𝑏! + !!"#

!
 arc sin e, 

where e = eccentricity = 𝑎 !!!!!

!
       (49) 

 
Ellipse: !

!

!!
+ !!

!
= 1, 𝑒! = −𝜙!, 𝑎 = ±𝜙, 𝑏 = 1,  

𝜙 = !! !
!
,𝜙 = !! !

!
  e = eccentricity 

Given: 
𝜙 = −0.618 
𝑒 = −𝜙 = 0.786131378 
sin!! 𝑒 = 0.904556 (𝑒 in radians) 
𝑎 = 𝜙, 𝑏 = 1 
Yielding: 𝑠! = 17.98079743 
We find: !!

!"#
= 37.38057413 

Comparing this with 2𝜋𝐶! = 3.7417606, which 
differs from !!

!"#
 by a factor of 10. Putting in the units 

for 𝐶! from Table 24 yields 

2𝜋𝐶! = 3.7417606𝑥10! !"!
!

!!.!!
, which differs from 

!!
!"#

 by less than 0.01%. 
Continuing the analogy of a solid and 

hypothetical shell forms, it has been shown by Illert 
(1983) that it is not easy. The equations by Moseley 
were modified and general expressions were derived, 
however due to the fact that in the shell formation the 
outside grows at a faster rate than the inside. Thus, 
while the use of an equilateral spiral is deemed 
necessary in all the calculations, Illert (1983) asserts 
that, 

…A basic distinction must be made between 
the biological factors, which control shell 
form, and the resultant geometrical 
characteristics of that shell form. Given the 
relative details of calcium carbonate, the fact 
that the resultant shell shape closely 
approaches certain vigorous geometrical 
models is not an indication that shell growth is 
governed by the mathematical equations 
involved; one must strongly emphasize it is 
merely an inevitable result of the mode of 
growth of the animal concerned.  
To expediently facilitate synthesis of a general 
theory of spiral shell form, we shall not 
exclude the possibility that the details of 
microscopic processes becomes whatever 
necessity dictates in order for macroscopic 
principles of form and organization to obtain 
their appropriate expression. 
What is needed is a mathematical 
demonstration that seashell geometries appear 
in our physical world merely as variation 
manifestations of a large-scale organizing 
principle of nature (p. 25). 
The foregoing treatment of shell volume and 

surface structure was used primarily to show that 
there have been efforts to construct models to 
systematically describe growth. 

Thus, while the functions developed using the 
growth form 𝐹(𝜆𝑇) and the surface area of an 
ellipsoid, differed from the conventional Planckian 
form, it was conjectured that the aforementioned 
entities might be used to predict the emissive 
characteristics of a “blackbody”. 
The following equation, Eq. 50, was employed to 
compute the spectral distribution of emissive power. 
 

!!"(!,!)
!!

= !!!!
!!

!!
!

!!!

!!
!! !"#

!!
!!!!

!

      (50) 

 
Where: 
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𝑥 = 𝜆𝑇 
B = 3.73805741 x 1018 
k1 = 849.0 
k2 = 0.1164 
k3 = 7097.0 
k4 = 6898.0 
k5 = 0.189 
k6 = 3.7 
These values were used to compare with Planck’s 
calculations shown in Siegel & Howell (1992, p. 26). 
The Planck calculations used (Siegel and Howell, 
1992 p. 25) 
 
!!"(!,!)

!!
= !!!"(!,!)

!!
= !!!!

!" !(!
!!
!"!!)

     (51) 

(From Eq. 2.16 in S/H (1992)) 
 
2𝜋𝐶! = 3.74177489𝑥10!" 
𝐶! = 14,387.69 
!!" !,!

!!
, !
(!!∙!!∙!")

 (in units of 10-13) 
 

λT Planck This work 
500 

1000 
1500 
2000 
2500 
3000 
3500 
4000 
4500 
5000 
5500 
6000 
6500 
7000 
8000 
9000 

10000 
11000 
12000 
13000 
14000 
15000 
16000 
17000 
18000 
19000 
20000 

 

.000038 
2.11146 
33.6502 
87.9036 
121.719 
128.305 
118.75 

102.973 
86.4142 
71.3974 
58.6328 
48.1167 
39.5805 
32.6927 
22.6552 
16.0575 
11.6367 
8.60925 
6.49081 
4.97787 
3.87675 
3.06137 
2.44797 
1.97982 
1.61781 
1.33448 
1.11027 

.000038 
2.12025 
33.6828 
87.5359 
120.871 
127.346 
117.964 
102.443 
86.1112 
71.2593 
58.6013 
48.148 

39.6449 
32.7716 
22.7346 
16.1237 
11.6879 
8.64776 
6.5194 

4.99902 
3.89242 
3.07302 
2.45668 
1.98637 
1.62276 
1.33824 
1.11315 

Table 28 
 

In general, the percentage differences in Table 28 
ranges from 0.0 to less than 1%.  A comparison of 

Eq. 50 and Planck is shown in Fig. 58 below: (Open 
circles represent this work) 

 

 
Fig. 58 (Fig. 5 from (S/H, 1992)) 

Spectral distribution of blackbody hemispherical 
emissive power as a function of λT. 

Calculated using Eq. 50 
 

Using Wein’s displacement laws: 
 
Planck = !!"(!,!)

!!
 max = 128.67 x 10-13 

This work = 127.71 x 10-13 

% Difference = 0.75% 
 

A calculation was also made of the wave number 
divided by the temperature given in the universal 
form for Planck’s equation by variable 𝜂/𝑇 (=1/𝜆𝑇) 
 
!!!" !,!

!!
=

!!!(
!
!)

!
!
! !
! !!

            (52) 

 
Where C1 from Table 24 was used. Eq. 53, shown 
below gives, the equation used to duplicate this 
quality. 
 
!!!"(!,!)

!!
= !!!!!!

(!!!)

!

!!!
!"# ( !!

!
!!!!

)

           (53) 

 
Where: 
G = 2.248837 x 109 
m1 = 7293.8 
m2 = 7079.0 
m3 = 6898.0 
m4 = 3.7 
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A comparison of Eq. 53 with Planck is shown in 
Table 29 

𝜂
𝑇

 !!!" !,!

!!
  Eq. 53 

!!!" !,!

!!
 Planck 

.00001 .076896 .07697 

.00002 .285655 .285769 

.00003 .596115 .59578 

.00004 .98132 .979738 

.00005 1.4173 1.41364 

.00006 1.88301 1.87664 

.00007 2.36024 2.3509 

.00008 2.83362 2.82139 

.00009 3.2904 3.27575 

.0001 3.72038 3.70407 

.0002 5.67063 5.68163 

.0003 4.32044 4.35091 

.0004 2.40465 2.42152 

.0005 1.11454 1.11922 

.0006 .45811 .458524 

.0007 .173003 .172701 

.0008 .061362 .061151 

.0009 .020741 .020654 

.001 .006749 .006721 

Table 29 
 

𝑖!!"(𝑛,𝑇)
𝑇!

=
2𝐶!(

𝜂
𝑇)

𝑒
!
! !
! − 1

 

 
A comparison of the calculated values of  

Intensity 
!!!" !,!

!!
, ! ∙ !"
(!!∙!! ∙!")

. For this work and that of 
Planck is displayed graphically on Fig. 54 

 
Fig. 54 Spectral distribution of blackbody 

intensity as a function of 𝜼/𝑻 
 

¡  Calculated using Eq. 53 
− Calculated using Planck’s Eq. 52 

 
Returning to Eq. 53 and Planck’s Eq. 52, it should 

be pointed out that Eq. 53 resulted from analyzing the 
spectra resulting not only from the exterior surface, 
but also from the interior volume of a solid, while 
Planck’s Eq. 52 was determined from Kirchhoff’s 
surface interpretation of “blackbody” radiation. 
 Using the two relationships to determine the 
energy curves commonly referred to as “spectral 
distribution of emissive power”, we have Planck and 
this work Eq. 54 below: 
𝑒!" 𝜆,𝑇 = 𝜋𝑖!!" 𝜆,𝑇 = !!!!

!!(!
!!
!"!!)

      (34) Planck 

(From Eq. 2.11 in S/H (1992)) 
 

𝑒!" 𝜆,𝑇 =
𝐺𝑇𝑛!𝑒

!!
!!
!"

𝑥!𝑒

!!
!!!"# ( !!

!"!!!
)!"

 

This work: 
G = 3.26900 x 105 
T = degrees Kelvin/1000 
n1 = 0.8490 
n2 = 0.1164 
n3 = 7.097 
n4 = 6.898 
n5 = 0.189 
n6 = 0.0037 
𝑥 = 𝜆 
 

Note that the parameters for this growth function 
differ in magnitude from the original growth 
function. This is due to the fact that the spectral 
distribution is directly proportional to the 
temperature, T. In effect this may be stated as using 
Eq. 54 
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𝑒!" 𝜆,𝑇 = !
!!
𝐹(𝜆𝑇)           (54) 

 
Eq. 54 agrees with Rayleigh (1900) and Jean’s 

(1994) formula for long wavelengths, while also 
agreeing with Planck’s formula for shorter 
wavelengths, which are consistent with Wien’s 
formula. A comparison for the calculated values of 
the energy curves and experimental data is shown in 
Fig. 60. The calculated values using Eq. 54 are 
shown in dark circles. 

 
Fig. 60 (Fig. 27 from Kangro, 1976) 

Energy curves (Lummer & Pringsheim, 1899, p. 
217 (as cited in Kangro, 1976). The hatched 

depressions originate from absorption by water 
vapor and carbon dioxide in the air. 

Calculated using Eq. 54 
 

A comparison of the experimental data of 
Coblentz (1916) observations and calculated values 
using Eq. 54 is shown in Fig. 61 below: 

 

 
Fig. 61 Spectral distribution of radiation from a 

blackbody at 1596°K 
Coblentz’s (1916) observations 

Calculated from Eq. 54 

 
To continue further into the classical approach to 

“blackbody” radiation, it is very important to mention 
the work of Rubens & Kurlbaum (1901), whose 
experiments in the long-wave isochromatics served 
as the beginning of the quantum theory. It was this 
work that was instrumental in Planck’s Guess (Pais, 
1982). Planck subsequently developed a scientific 
theory, which was the precursor of Einstein’s further 
development concerning his heuristic approach to his 
light quantum hypothesis (Pais, 1982). 

The following figures from Rubens and 
Kurlbaum’s (1901) work is taken from Kangro 
(1976), “These curves represent the residual ray 
isochromatics for fluorspar (24µ with consideration 
of 31.6µ), rock-salt (51.2µ) and quartz (8.5µ) which 
Rubens and Kurlbaum published on 10 February 
1901” (p. 204 & 206). 

The graphs represent Intensity vs. Degrees 
Centigrade (°C). Indicated in these curves are 
calculations using formulae from Wien, Lord 
Raleigh, Planck and Thiesen where Thiesen: 
 

𝐸 = 𝐶 ∙
1
𝜆!
∙ 𝜆𝑇  ∙ 𝑒

!
!" 

 

 
λ = 24.0µ and 31.6µ 

Fig. 62 Isochromatics (for p. 203) (Fig. 2 from 
(Rubens & Kurlbaum, 1901, p. 659-660)) 
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λ = 51.2µ 

Fig. 63 Isochromatics (for p. 203) (Fig. 3 from 
(Rubens & Kurlbaum, 1901, p. 659-660)) 

 

 
λ = 8.85µ 

Fig. 64 Isochromatics (for p. 203) (Fig. 4 from 
(Rubens & Kurlbaum, 1901, p. 661)) 

 
A comparison of the Rubens and Kurlbaum 

(1901) experimental results and calculated spectral 
distributions using Eq. 54 are shown in Figs. 62-64. 

 
λ = 24.0µ and 31.6µ 

Fig. 62 Calculated Isochromatics 
 

 
T in °C 
λ = 51.2µ 

Fig. 63 Calculated Isochromatics 
 

 
T in °C 
λ = 8.85µ 

Fig. 64 Calculated Isochromatics 
 

The results of the Rubens and Kurlbaum (1899) 
curves are presented in tabular form in Tables 30-32. 
Table 30 is given below 

Temp 
in C-
Grade

n, t 

Absolu
te 

Tempe
rature, 

T 

E  
beob 

E  
nach 
Wein 

E  
nach 

Thiese
n 

E  
nach 

Raylei
gh 

E  
nach 

Lumm
er n. 

Jahke 

E  
nach 

Planck
e 

Galco
ni 

This 
work 

-273 0 --- -42.4 -20.7 -10.7 -17.8 -15.4 ----- ----- 
-188 85 -15.5 -41.0 -20.2 -10.5 -17.5 -15 -14.4 -14.9 
-80 193 -9.4 -26.8 -14.0 -7.4 -11.5 -9.3 -10.0 -9.73 
+20 293 0 0 0 0 0 0 0 0 

+250 524 +30.
3 

+50.6 +25.3 +25.3 +30.0 +28.8 +30.2 +28.48 

+500 773 +64. +88.9 +58.3 +58.3 +64.5 +62.5 +64.7 +62.0 



Augustus Prince 

3 
+750 1023 +98.

3 
+114.

5 
+94.4 +94.4 +98 +96.7 +98.6 +97.0 

+100
0 

1273 +132 +132 +132 +132 +132 +132 +132 +132.0 

+125
0 

1523 +167 +145 +174.5 +174.5 +167 +167.5 +164.
9 

+167.3 

+150
0 

1773 +201
.5 

+155 +209 +209 +201 +202 +147.
5 

+202.7 

+ ∞ ∞ ----- +226 + ∞ + ∞ + ∞ + ∞ + ∞ + ∞ 

λ = 24.0µ and 31.6µ 
Table 30 (Tabelle I from (Rubens & Kurlbaum, 

1902) 
 
Temp 
in C-
Grade

n, t 

Absolu
te 

Temp, 
T 

E  
beob 

E  
nach 
Wein 

E  
nach 

Thiese
n 

E  
nach 

Raylei
gh 

E  
nach 

Lumme
r n. 

Jahke 

E  
nach 

Planck
e 

Galcon
i 

This 
work 

-278 0 ----- -121.5 -44 -20 -27 - 3.8 ----- ----- 
-188 85 -20.6 -107.5 -40 -19 -24.5 -21.9 -26.5 -22.6 
-80 193 -11.8 -48.0 -21.5 -11.5 -13.5 -12.0 - 4.1 -12.3 
+20 293 0 0 0 0 0 0 0 0 

+250 523 +31.0 +63.5 +40.5 +28.5 +31 +30.4 +32.1 +30.2 
+500 773 +64.5 +96 +77 +62.5 +65.5 +63.8 +65.6 +63.9 
+750 1023 +98.1 +118 +106 +97 +99 +97.2 +99.1 +97.9 

+1000 1273 +132 +132 +132 +132 +132 +132 +132.0 +132.0 

+1250 1523 +164.
5 +141 +154 +167 +165.5 +166 +164.6 +166.1 

+1500 1773 +196.
8 +147.5 +175 +202 +198 +200 +197.2 +200.3 

+ ∞ ∞ ----- +194 + ∞ + ∞ + ∞ + ∞ + ∞ + ∞ 

λ = 51.2µ 
Table 31 (Tabelle II from (Rubens & Kurlbaum, 

1902) 
 

Temp 
in C-
Grade

n, t 

Absolu
te 

Temp, 
T 

E  
beob 

E  
nach 
Wein 

E  
nach 

Thiese
n 

E  
nach 

Raylei
gh 

E  
nach 

Lumm
er n. 

Jahke 

E  
nach 

Planck
e 

Galcon
i 

This 
work 

-273 0 ---- -1.96 -1.40 -1.00 -1.53 -1.41 ---- ---- 
-173 100 -1.6 -1.96 -1.40 -1.00 -1.53 -1.41 -1.2 -1.33 
-73 200 -1.5 -1.82 -1.30 -0.92 -1.42 -1.31 -1.1 -1.23 
+27 300 ---- +0.10 +0.12 +0.10 +0.18 +0.1 ---- +0.18 

+100 373 +3.4 +4.07 +3.06 +2.21 +3.5 +3.0 +3.0 ----- 
+227 500 +13.5 +16.5 +12.61 +9.60 +13.5 +12.4 +12.3 +12.44 
+527 800 +53.5 +60.5 +53.4 +44.8 +53.2 +50.3 +57.2 +50.57 
+827 1100 +102 +107.0 +102.3 +96.7 +102 +99.8 +101.2 +100.6 

+1000 1273 +132 +132 +132 +132 +132 +132 +132.0 +132.0 
+1127 1400 +154 +147.7 +154.6 +160 +154 +154.6 +154.9 +155.8 
+1427 1700 +212.5 +182.3 +206.5 +229 +210 +213.5 +209.4 +213.7 

Reststrahlen von Quarz. λ = 8.85µ 
Table 32 (Tabelle III from (Rubens & Kurlbaum, 

1902) 
 

The preceding tables of Rubens & Kurlbaum 
(1902) also show the results from Lummer & Jahnke 
(1900) using their formula given by: 

𝐸 = 𝐶. 𝜆!!𝑇!!! . 𝑒!
!
!!! 

 
Another set of calculations in the table is from 

Galgani (1982) using his formula for the energy 
density given by: 

𝑔 𝑣,𝑇 =
8𝜋
𝑐!
𝑣!
ℎ𝑣 + 𝑘𝑇
𝑒!

 
where 

𝑥 =
ℎ𝑣
𝑘𝑇

 
as a classical analog to Planck’s law 

𝑓 𝑣,𝑇 =
8𝜋
𝑐!
𝑣!

ℎ𝑣
𝑒! − 1

 
 

As can be seen in the forgoing tables, the 
calculations of this work, in which a classical 
approach based on Boscovich’s ideas, compared 
rather favorably with the experimental data of 
Rubens & Kurlbaum (1902). Before we leave the 
discussion of “blackbody” radiation, mention should 

be made about Kangro (1976) in which he comments 
on 
Lummer & Pringsheim’s Non-validity of Wien-
Planck spectral equation. 

Not only the trend of the c2 values, in respect 
of which the authors originally noticed 
deviation from the radiation law, but also even 
the curvature produced by the isochromatics 
gave evidence of the new statement. It is seen 
that “the quantity 𝑐[= 𝑐!] in the Wien-Planck 
equation should not be treated as a natural 
constant” (Lummer and Pringsheim, 1900, p. 
172 as cited in Kangro, 1976). The correctness 
of this statement, which is forged on Planck’s 
emphasis on natural constants, cannot be 
gainsaid! 
The numerical values for the derivations in the 
“constant” c2 are depicted in Kangro (1901, p. 
166-168) and Rubens & Kurlbaum (1901, p. 
650) who, in order to reproduce their 
observations, were forced to assign variable 
values for this “constant” in their equations. 
The aforementioned comment by Kangro 
concerning c2 as not being a “natural 
constant” leads one to consider whether or not 
it is worthwhile to carry out an analysis using 
the growth form generated by using the 
senescence function which was used in both 
the discrete spectra of thermal radiation. There 
is a possibility that such use might play a role 
in resolving this paradox. Such an 
investigation remains to be seen and might be 
undertaken in the near future. 
We now come to another set of microscopic 
phenomena that presently requires quantum 
theoretical treatment. These are namely, 
Einstein’s theory of the photoelectric effect 
and the specific heats of solids (p. 194-196) 
It is well known that these theoretic treatments 

along with Planck’s concepts of “blackbody” 
radiation were the three most important ideas in the 
first decade of the twentieth century. In Fig. 65, we 
see the experimental data along with the calculations 
by Einstein (1906b, 180-190) and Debye (1912). 
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Fig. 65 (Fig. 133 from Richtmyer & Kennard, 

1947, p. 437) 
Comparison of Specific Heat Formulas with 

Experiment 
 

It should be noted that these curves have the same 
asymmetrical shape as the Gompertz curve. Now, 
since both Einstein (1906b) and Debye (1912) used 
the analysis from Planck and his radiation formula in 
their theoretical analysis, it is possible that a similar 
type investigation using the growth form technique 
might be applicable in predicting specific heat. 

Looking at the experimental data and calculated 
curve for the photoelectric effect, it is somewhat 
amazing how much of it resembles the first derivative 
of the Gompertz growth curve shown in Fig. 1b from 
Medawar (1945a). 

 

 
Fig. 66 (Fig. 27 from Allen, 1925, p. 67) 

 
It is also astonishing how its shape is almost 

identical to the spectral radiation distribution of 
Coblentz (1913). The similarities depicted by the 
specific heat and photoelectric effect stipulates that 
an analysis using the results of this work create an 
incentive to engage in a future study. Thus far, the 
emphasis on the use of Boscovich’s curve has been to 
analyze and calculate microscopic phenomena. It is 

now time to investigate phenomena in the 
macroscopic region. 

While it is tempting to explore the physical states 
of matter, it would be very cumbersome at this time 
to consider the other states of matter, such as liquids 
and gases.  The molecular structure of solids such as 
metals, ionic crystals, etc., would take us too far 
afield at this point. The possibility is that such an 
investigation will be left for the future. 

It should be mentioned that Stoiljkovic (2011) 
touched upon this concept, where he discussed the 
chemical and physical interactions of molecules, 
charged colloidal particles, clay particles, 
macromolecules, and nano-particles. To some extent, 
the foregoing can be considered as macroscopic, 
however, in keeping with the empirical interpretation 
of the Boscovich curve, another extended curve of 
Boscovich is now analyzed to predict gravitational 
forces within the solar system and beyond to the 
cosmos. 

In Fig. 14 of the Theoria, Boscovich (1922), 
shown in Fig. 67 below, discusses his curve thusly, 

 
Fig. 67 

 
171. If, in Fig. 14, there are any number of 
segments AA΄, A΄, A΄A΄΄, of which each that 
follows is great with regard to the one that 
precedes it; & if through each point there 
passes an asymptote, such as AB, A΄B΄, A˝B˝, 
perpendicular to the axis; then between any 
two of these asymptotes there may be curves 
of the form given in Fig. 1. These are 
represented in Fig. 14 by DEFI &c., D΄E΄F΄I΄ 
&c.; and in these the first arm E would be 
asymptotic and repulsive, and the last SV 
attractive. In each the interval EN, where the 
arc of the curve is winding, is exceedingly 
small compared with the interval near S, 
where the arc for a very long time continues 
closely approximating to the form of the 
hyperbola having its ordinates in the inverse 
ratio of the squares of the distances; and then, 
either goes off straightway into an asymptotic 
and attractive arm, or once more winds about 
the axis until it becomes an asymptotic 
attractive arc of this kind, the area 
corresponding to either asymptotic arc being 
infinite. In such a case, if a number of points 
are assembled between any pair of 
asymptotes, or between any number of pairs 
you please, and correctly arranged, there can, 
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so to speak, arise from them any number of 
universes, each of them being similar to the 
other, or dissimilar, according as the arcs 
EF…. N, E΄F΄…. N΄ are similar to one 
another, or dissimilar; and this too in such a 
way that no one of them has any 
communication with any other, since indeed 
no point can possibly move out of the space 
included between these two arcs, one 
repulsive and the other attractive; and such 
that all the universes of smaller dimensions 
taken together would act merely as a single 
point compared with the next greater universe, 
which would consist of little point-masses, so 
to speak, of the same kind compared with 
itself, that is to say, every dimension of each 
of them, compared with that universe and with 
respect to the distances to which each can 
attain within it, would be practically nothing. 
From this it would also follow that any one of 
these universes would not be appreciably 
influenced in any way by the motions and 
forces of that greater universe; but in any 
given time, however great, the whole inferior 
universe would experience forces, from any 
point of matter placed without itself, that 
approach as near as possible to equal and 
parallel forces; these therefore would have no 
influence on its relative internal state (note 
171). 
From Boscovich’s Fig. 14 curve, we can observe 

Newton’s inverse squares representation flowing into 
portions of the regions SV and S΄V΄. It is this region 
of interest that will be discussed. Graves (1971) made 
an interesting comment concerning Boscovich and 
the possibility of a unified field interpretation, where 
he speaks of Boscovich’s field of force.  

It is this “substantialization of force”, which is 
one essential requirement for the notion of a 
field. In field theory, a particle interacts 
directly (i.e. by spatio-temporal contiguity) 
with the field at the point where it is located, 
and only indirectly with any possible sources 
of that field. For Boscovich seems, in fact, to 
be creating a trichotomy of space, matter 
(identified with the point inertial masses), and 
force. While it is true that mass and force 
appear to be proportional, they are different 
sorts of entities, and Boscovich would 
certainly want to keep inertial and 
gravitational masses as separate concepts only 
accidentally related. Inertial mass is localized 
at the center of force, but gravitational mass 
really extends throughout space. But most 
important of all, insofar as Boscovich may be 
said to have a field of theory, it is a unified 

field theory. There is no multiplicity of forces 
surrounding the central mass and exerting 
independent influences on any test particles 
elsewhere in space, but only one. Although 
the total force-function may include many 
terms, they are all functions of r, which may 
be simply added together, i.e., 𝐹 = 𝑓! 𝑟 𝑟! . 
This force, F, will then affect all bodies in the 
same way, depending (presumably only) on 
their respective inertial masses. Boscovich’s 
vision is certainly admirable. Its main 
weakness is that he never gave analytic 
(algebraic) expression for the total force; the 
most he achieved was a graphical 
representation of it. A reasonable expression 
might be a sum of increasing negative powers 
of r, so that 𝑓! 𝑟 = 𝛼!𝑟!!, where the first 
term would be I = 2, 𝛼! = −𝐺𝑚 (the 
gravitational term). The terms would alternate 
in sign, with the last term being opposite to 
that of the gravitational. (We will see that 
general relativity introduces correction terms 
of just this sort into the law for the 
gravitational field of a single mass-particle.) 
But there is no indication of what the 
magnitude of these other terms might be, what 
physical interpretation could be given to each 
of them, or whether the α’s would require 
introducing any new parameters which might 
have to refer to other essential properties of 
matter (p. 123). 

In a footnote, Graves (1971) continues, 
Boscovich might, in fact, have been able to 
resolve Olbers’ paradox that the night sky 
would be infinitely bright in an infinite 
universe with uniform average density of 
matter under Newton’s law; he could simply 
have introduced an additional term 
(proportional to 1/r, say) effective at great 
distances (p. 113). 
It is this footnote that draws one’s interest. 

Throughout the scientific literature regarding the 
quantum science of galactic structure, many theorists 
have commented on the Now Newtonian aspects of 
the universe on the large scale. Following the hint of 
the 1/r term, a search of the literature finds several 
investigations. One of the many findings is how 
many cosmologists modify Newton’s gravitational 
law using a Yukawa functional form for the potential 
given by: 𝑉!"#$%$ 𝑟 = −𝑔! !

!!"#

!
 

where g is a magnitude scaling constant, m is the 
mass of the affected particle, r is the radial distance 
to the particle, and k is another scaling constant. The 
potential is monotone increasing, implying that the 
force is always attractive. 
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There have been many efforts to modify 
Newton’s law. Seeliger (1895) felt that Newton’s 
inverse square law was not exact and stated that it 
was only an empirical formula. In his modification he 
made the assumption that an attenuation factor be 
used to express the gravitational force F between 
bodies m and m΄ be given as: 

𝐹 = −𝐺𝑚𝑚!!
!!"

!!            (56)               
Seeliger’s effort was followed by another 

modification of Newton’s law given by Neumann 
(1896) who felt that the problem could be resolved by 
using a potential of the form 
𝜙 𝑟 = !!!!"

!
             (57) 

which led to a generalized force, F, given by 
𝐹 = −𝐺𝑚!𝑚!

!!!"
!!

𝑒!!"         (58) 
These ideas of Seeliger and Neumann, with a 

slight adjustment of modification of Newton’s 
inverse square dependence, have recently been 
address by others. Fischbach et al., (1991) is one of 
these, whose modification of The Newtonian effects 
is described using a modified expression for the 
potential energy V(r) is given by: 
𝑉 𝑟 = − !!!!!!

!
1 + 𝛼𝑒!

!
! = 𝑉! 𝑟 = 𝑉′(𝑟) (59) 

Here 𝐺! is the Newtonian constant of gravity, 
and the parameters λ and α, respectively, give the 
range of the new force and its strength relative to 
gravity. Also, 𝑉′(𝑟) describes the correction to the 
effective gravitational potential arising from the 
particular non-Newtonian interaction we are 
considering (which in this case is a Yukawa). 
This in turn leads to a force 𝐹(𝑟) given by: 
𝐹 𝑟 = ∇𝑉 𝑟 = !!!!!!!!

!!
[1 + 𝛼 1 + !

!
𝑒!

!
!   (60) 

Fischbach et al., (1991) continue their 
modification by assuming a model which contains 
two canceling Yukawa potentials which result in an 
approximate exponential. It is suggested that the 
reader consult Fischbach et al.’s assumption, since it 
contains too much detail to be presented here.  

The fact to be considered is that in all of the 
efforts regarding the modification of Newton’s law 
with a Yukawa potential, substantiates Grave’s 
(1971) comment regarding Boscovich’s 1/r 
dependence for a field of force, in this case 
gravitation with this in mind, a modified Yukawa 
force based on the Boscovich curve in the S, V and S΄ 
V΄ regions was developed in an ad hoc manner is 
given by: 

𝐹 𝑥 = !!(!")

!
             (61) 

The curve using Eq. 61 is shown in Fig. 68 

Fig. 68 
n = 0.0041215 

p = 0.0549 
 

One will note that the exponent is positive instead 
of the negative exponent that exemplifies the 
conventional Yukawa force. The reason for this is 
that in Boscovich’s Fig. 14, the curve drops sharply 
negative in the S΄ V΄ and S V region. 

As an aside, Bertin & Lin in their book, Spiral 
Structure in Galaxies, A Density Wave Theory (1995) 
produced a curve based on a positive exponent in 
what appears to be a Yukawa type force which is 
depicted in Fig. 69 below: 

 

 
Fig. 69 

 
They mention that there are two turning points 

(i.e. two zeros of the function g). One is at 𝑟!", simple 
turning point, and the other at 𝑟!", a double turning 
point. The relation between the Newton inverse 
square law and the 1/r dependence seems obvious 
and compares to Fig. 68 of this work. This might 
indicate that Boscovich was ahead of his time again, 
since an extremely large negative force might imply 
that this might be due to large masses at extreme 
distances beyond our observation. Such a situation 
might explain the so-called “dark matter” that is 
spoken about in today’s cosmology. 

Oort (1932) initiated the concept of dark matter 
and studied stellar motions in the galactic region. 
Zwicky (1933) closely followed in his study of 
clusters and galaxies. 
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Then in the 1960 to 1970 interval, Rubin & Ford Jr. 
(1970) established a method using more sensitive 
instruments to analyze velocity curves of distant 
galaxies with much more precision. 

Based on the findings of Oort (1932), Zwicky 
(1933), and Rubin & Ford Jr. (1970), it can be said 
that here might be some substantiation of the 
Boscovich curve. With this information it might be 
said that this concludes the empirical description of 
Boscovich’s famous curve. Its various regions for the 
microscopic and possibly solid state range is denoted 
as Region A. The Newtonian range as Region B and 
the “dark matter” distance range as Region C. 

 
 A + B + C|      A         |            B           |          C 

Fig. 70 (From Fig. 14 in Boscovich’s (1922) 
Theoria) 

 

A: 𝐹 𝑥 =
!!(!!")!"!!!! !(!")!! !!" !"# (!") !

!!
     (62) 

k = 0.481211825 
B: 𝐹 2 = − !"

!!
             (63) 

g = 6.668 

C: 𝐹 3 = !! !"

!
             (64) 

n = 0.0041215 
P = 0.0549 
 

The numerical values for the constants shown in 
Fig. 70 have been chosen so as to make the 
Boscovich curve continuous throughout. One must 
remember that the curve is a qualitative one and 
cannot be shown in scale due to the fact that in 
Region A we measure distances in 10-13 or less, while 
in Regions B and C we measure distances in light 
years, e.g., in Region C we speak of 46-47 million 
light years. It goes without saying that much needs to 
be done especially in defining the various constants 
used in the curve description. Referring to Seeliger, 
Kragh (2007) states, 

The modified force law was essentially ad hoc 
and also arbitrary, since many other 
modifications might resolve the gravitation 
paradox in a similar way. The idea of 
modifying Newton’s inverse-square law was 
not, by itself, very original, as many 
modifications were proposed in the nineteenth 
century. The exponential correction factor can 
be found in 1825 in LaPlace’s Mecanique 
celeste, which can hardly have avoided 
Seeliger’s attention. However, what was 

original in Seeliger’s approach was that he 
used it in a cosmological context and not, as in 
most other proposals, to solve problems of 
planetary astronomy (such as Mercury’s 
anomalous revolution around the Sun) (p. 
109). 

Kragh (2007) also mentions Boscovich and his 
cosmological ideas: 

Apart from those already mentioned, several 
other Enlightenment natural philosophers took 
up cosmological questions. One of them was 
the Croatian-Italian astronomer and physicist 
Roger Boscovich, a Jesuit scholar, who in 
1758 published his main work Theoria 
philosophiae naturalis. Although best known 
for its contribution to dynamic atomism and 
matter theory, the book also included 
considerations of a cosmological nature. For 
example, Boscovich imagined that, apart from 
our space, there might exist other spaces with 
which we are not causally connected. His 
conception of the universe was relativistic, 
such as illustrated by a passage from the end 
of Theoria, which may bring to mind much 
later cosmological ideas (p. 82). 

He continues to quote Boscovich’s (1922) ideas 
about space and time: 

If the whole Universe within our sight were 
moved by a parallel motion in any direction, 
and at the same time rotated through any 
angle, we could never be aware of the motion 
or of the rotation…Moreover, it might be the 
case that the whole Universe within our sight 
should daily contract or expand, while the 
scale of forces contracted or expanded in the 
same ratio; if such a thing did happen, there 
would be no change of ideas in our mind, and 
so we should have no feeling that such a 
change was taking place. (p. 82). 
Boscovich imagined all matter to consist of point-

atoms bound together by Newtonian-like attractive 
and repulsive forces. If no forces were present, a 
body might pass freely through another without any 
collision (after all, points have no extension in 
space). The possibility led him to a daring 
cosmological speculation: “There might be a large 
number of material universes existing in the same 
space, separated one from the other in such a way 
that one was perfectly independent of the other, and 
the one could never acquire any indication of the 
existence of the other” (1922, note 518). 

Boscovich did not elaborate. Here we have, in 
1758, a new version of the many universe scenario: 
not different universes distributed in space and time, 
but co-existing here and now. It was surely a scenario 
that harmonized in spirit with ideas that some 



cosmologists would propose more than two hundred 
years later. Perhaps we should end this paper here 
with the hope that some of the ideas herein presented 
will come to fruition in the future.  
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