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The fundamental vector calculus definition of a force-free, field-aligned current in space
is expanded in cylindrical coordinates to directly obtain the Bessel partial differential
equation that specifies the magnetic field created by such a current. This result is often
called the Lundquist solution. A simple but detailed derivation is included here. The
physical properties of the resulting intricate magnetic field structure are described. The
cause of its characteristic counter-rotation and counter-flows are identified. The describ-
ing equations are put into state-variable form and a step-wise approximation is applied.
This solution reveals the primary effect of the force-free parameter, α, as being a scale
factor of radial distance. We show that: 1) both the axial and azimuthal magnetic and
current density components cyclically reverse their directions with radial distance from
the central axis of the current; 2) the magnetic field extends farther from the central
axis within a force-free field than it would if produced by a current in a long straight
conductor. The total magnetic field magnitude and current density are shown to vary
inversely as the square root of r. For large r, outside the plasma, the azimuthal magnetic
field is shown to vary as 1/r. These results are shown to be consistent with laboratory
and astronomical observations.

1 Introduction

After Kristian Birkeland [1] (1867-1917) suggested in 1908
that Earth’s auroras were powered by corpuscular rays ema-
nating from the Sun that become deflected into Earth’s po-
lar regions by the geomagnetic field, the existence of such
magnetic field-aligned currents was strongly disputed based
partially on the idea that currents could not cross the pre-
sumed “vacuum” of space [2, p. 181]. Birkeland’s main prob-
lem, however, was that having made detailed measurements
of Earth’s geomagnetic field on the ground, he then wanted to
extrapolate that knowledge into a description of the current-
density distribution that caused those magnetic effects. This
is not possible because a given magnetic field value can be
produced by more than one distribution of current-density.

A level of interest did, however, develop regarding the
Sun’s photosphere and plasma properties of the solar corona.
For example, a mathematical model of a force-free magnetic
field was proposed as early as 1950 by Lundquist [3, 4]. He
investigated whether magnetic fields could exist in an elec-
trically conducting liquid and his results included presenta-
tion of the now well-known Bessel solution for force-free
fields. Later in 1957, investigators such as Chandrasekhar
and Kendall [5] applied a similar analysis to the spherical ge-
ometry of the Sun.

NASA scientists and many other investigators worked on
Birkeland currents and flux rope observations since the mid-
to-late 1960’s [6–18], with substantial activity on this topic
after the late 1980’s [19–24]. A few researchers have sought
cylindrical coordinate solutions [25] but almost always in ref-
erence to intricate quasi-cylindrical solar surface or coronal
applications. Potemra [24] concluded that Birkeland currents
and Alfvén waves are fundamental to an understanding of

the Earth’s plasma environment. It is now generally assumed
that magnetic fields inside interplanetary magnetic clouds and
flux ropes in the solar photosphere are force-free [26]. In
2009, space probe Themis discovered a flux rope pumping a
650,000 A current down into the arctic auroral region [27].
This strong observational evidence supports the existence of
Birkeland Currents.

Consistent with this, the major goals of this paper are:
1. To present a simple, but complete derivation of Lund-

quist’s equations that describe the magnetic field struc-
ture of a field-aligned current.

2. To fully describe the physical (not only magnetic, but
also both the electrical and structural) consequences of
those equations; to develop a model.

3. To demonstrate the correspondence between the prop-
erties of that model and observational evidence gath-
ered from both plasma laboratories and astronomical
images.

First we show that the basis of any model of a Birkeland cur-
rent is what is called a force-free, field-aligned current.

2 Definition of a force-free field-aligned current

Consider a stream of moving charged particles (an electrical
current) in a plasma that is not subject to any external forces.
A useful mathematical idealization of such a physical cos-
mic current is a vector field of current density, j, that, when
viewed in a cylindrical coordinate system, creates an overall
average current vector, I, which, by definition determines the
direction of the z-axis. The magnitude of I is assumed to be
everywhere independent of the z coordinate. The coordinate
system defines a point, p, represented by (r, θ, z), as illustrated
in Figure 1.
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The basic structure of such a cosmic magnetic field is con-
trolled by the momentum equation of ideal magneto-hydro-
dynamics [25, 28–30],

(∇ × B) × B = µ0∇p (1)

where µ0 is the permeability of free-space.
The left hand side of this expression represents the com-

pressive magnetic (Lorentz) force and the right side is the ex-
pansive force (pressure gradient multiplied by the permeabil-
ity of the plasma). We distinguish between force-free fields
with ∇p = 0 and pressure balanced fields with ∇p , 0.
On the photosphere and within the lower chromosphere of
the Sun the energy of the plasma motion dominates the mag-
netic energy and therefore the field is swept passively along
with the plasma. This condition is characterized as a high-
β plasma [31], where the parameter β is defined as the ratio
between the plasma pressure p and the magnetic pressure,

β = 2µ0
p

B2 . (2)

Higher up in the corona, in interplanetary and in cosmic spa-
ce, a lower pressure (lower ion and electron densities), low-β
plasma often exists depending on local field pressure. Here
the plasma can take on a force-free character [6,32,33]. How-
ever, care must be exercised in assuming low-β properties.
For example, “the extensive magnetosheath flow downstream
of Earth’s bow shock is a high-beta plasma. Along a radial
cut of the plasma coming inward from the Sun near the day-
side sub-solar point, the solar wind and magnetosheath flow
is high-beta, the magnetopause and immediate (thin) plasma
boundary provides a high to low beta transition, and immedi-
ately within the low-latitude boundary layer (within the outer
magnetosphere) plasma is low-beta. Then with lower radial
distance the plasma again becomes high-beta.” [34]. We now
present here a model that requires a low-β plasma environ-
ment.

The electromagnetic force experienced by each charge
within such a plasma is given by,

F = q (E + v × B) . (3)

The first term, qE, is the electric force and the second term,
q (v × B), is called the magnetic force. The name Lorentz
force is used to describe expression (3). The plasma region
contains the cylindrical current stream. No initial assump-
tions are made about the distribution of the current density
across the cross-section.

A flow of charge creates its own magnetic field through
which the charge flows. The site at which each charged par-
ticle, q, in the stream is located is the point of origin of two
local vectors: j = qv (current density) and B (magnetic field).
The current density vector j at each point inherently creates a
curl(B) vector given by Maxwell [35]:

∇ × B = µ

(
j + ε

∂E
∂t

)
. (4)

Fig. 1: Total magnetic field vector B = B(r, θ, z), and its two compo-
nents Bz and Bθ at a particular location; Br = 0. Note that at any
point r, the pitch angle of the vector B measured upward from the
horizontal plane is defined as the arctan

[
Bz (r) /Bθ (r)

]
.

The derivative term in (4) which was added by Maxwell
is called the displacement current. It is often considered to be
zero valued, as we do here, when it can be assumed there are
no time-varying electric fields in the region. Integrating the
curl(B) vectors over a cross-section of the cylindrical stream
(Stoke’s theorem) yields,

∫

S
∇ × B · dS =

∫

S
µ j · dS =

∮

C
B · dl (5)

where S is any cross-section of the plasma, and µ and ε are
the permeability and permittivity respectively of the plasma
medium. The second term in (5) is equivalently µI where I is
the total current carried by the plasma. If the cross-section is
circular with radius r, then the last term in (5) is 2πrB where
B is in the azimuthal, θ, direction, not aligned with I and the
z-axis. Thus the B field produced by a cylindrical plasma at
its outer boundary, r = R, is

Bθ =
µI

2πR
. (6)

Expression (4) is the point form and (5) is the integral
(macroscopic) form of that Maxwell equation. Expression
(4) is valid at any point. The integral forms given in (5) and
(6) imply that B is a vector sum of the effects of all the j
vectors on the surface S that is enclosed by C. B is not directly
produced by any single j. In (4) it is clear that j, the current
density at a point, creates only a single curl(B) vector, not a
B vector. In general, there can be (and often is) a non-zero
valued B vector at points at which j =0.

Prior to the time a cosmic current system, free of exter-
nally applied forces or fields, reaches a steady-state config-
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uration, the j and B vectors are interacting – all the j’s are
creating curl(B) vectors that sum to form the local B vec-
tors. At any point in the plasma where j , 0 a force can exist
between that current density vector and its local magnetic B-
field vector. This force is a magnetic Lorentz force given by
the second term in (3). This vector cross product of a moving
charge’s velocity vector v and the local vector B implies that
the scalar value (magnitude) of the resulting Lorentz force on
each q is given by,

FL = qvB sinϕ (7)

where ϕ is the smallest angle between the vectors v and B,
with scalar values v and B. We call ϕ the Lorentz angle. If
this angle is zero or 180 degrees, the magnetic Lorentz v × B
force at that point is zero-valued.

The magnetic intensity (symbol H) is often used to de-
scribe the macroscopic forcing function that creates a mag-
netic field,

H =
B
µ

=
NI
l
. (8)

The dimensions of H are A/m. (The number of turns, N, is
dimensionless). H has also been called the magnetic field
strength, and the magnetizing force.

The scalar magnitude, B, in (8) arises from the integral
form (5). In that expression, B is shown to be the result of the
total current, I. It follows that H is not a point form variable.

It may be shown that the energy density, WB (Joules/m3),
stored in the magnetic field of such a current stream is given
by,

WB =
µ

2
H2. (9)

Using (8) in (9), the total energy stored, ψ (Joules), in the
magnetic field of a cosmic current is given by,

ψ =
1
2

(
µN2Ac

l

)
I2 (10)

where Ac is the cross-sectional area and the inductance of the
current stream is defined by the factor in parentheses. This
shows that the only way to reduce the entire stored energy to
zero is to completely cut off the current (set I = 0); in which
case the entire cosmic current structure would cease to exist.

However, we assume that in unconstrained plasma in cos-
mic space, the current stream is free to move and distribute
itself so as to minimize the internally stored potential energy
due to the stresses resulting from magnetic Lorentz forces ev-
erywhere throughout the plasma. In fact space plasmas are
uniquely situated to obey the minimum total potential energy
principle [36], which asserts that a system or body shall de-
form or displace to a position and/or morphology that min-
imizes its total potential (stored) energy (a formalization of
the idea that “water always flows downhill.”).

The energy described in (10) is irreducible because it is
caused by the fixed quantity, I. But the Lorentz energies can

be eliminated because they do not depend on the value of I,
only on the cross-products between local B and j vectors.

If and when the process of shedding the internal magnet-
ic-force energy reaches a steady-state equilibrium, this struc-
ture is called a force-free current and is defined by the relation
between the magnetic field vector, B, and the current density
vector, j, at every location at which a charge, q, exists in the
current stream:

q (v × B) = j × B = 0. (11)

It follows from (11) that the Lorentz forces are every-
where equal to zero in a force-free current because every j is
collinear with its corresponding B. This arrangement is there-
fore also called a field-aligned current (FAC).

It follows directly from (4) and (11) that, if there is no
time-varying electric field present, then (11) is equivalent to

(∇ × B) × B = 0 (12)

which is identical to (1) with ∇p = 0. This is the basic defin-
ing property of a force-free, field-aligned current.

Expression (4) implies that, if at any point in an other-
wise field-aligned current, j = 0, (12) is automatically ful-
filled even if B is non-zero. The value of the magnitude and
direction of B at any given point is generally not sufficient in-
formation to determine the magnitude, direction, or even the
existence of j at that point. This is the problem that confronted
Birkeland in his attempts to identify the currents responsible
for the magnetic field variations he measured. However, from
(4), knowledge of the direction and magnitude of the ∇ × B
vector at any given point does identically determine the value
of µj there.

Field-aligned, force-free currents represent the lowest sta-
te of stored magnetic energy attainable in a cosmic current
[31]. We seek an expression for the magnetic field, B (r, θ, z),
in such a current/field structure.

3 Quantitative model of a force-free field-aligned cur-
rent

Equation (12) can be expanded into differential equation form
using the cylindrical coordinate definition of curl and the 3-
dimensional vector product determinant. However, this leads
to an expression of little utility. Because (12) is satisfied if the
current density, j, has the same direction (except for sign) as B
(and with no requirements on its magnitude), it was suggested
(Lundquist [3, 4] and many others) that,

∇ × B = αB (13)

which from (4) is equivalently,

µ j = αB (14)

where α is any non-zero valued scalar, which is equivalent
to (12). This leads to a simple solution, but it is important
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to note that accepting (14) as a substitute for (12) assumes a
priori that, for any non-zero α, a non-zero valued B at any
point requires the existence of a current density j , 0 at that
same point. This is in general, an unwarranted presumption.
This is especially so in light of the well-known tendency of
plasmas to form filaments (creating regions where j = 0 but
B is not). There are many examples in the study of electro-
magnetism, such as: Given that, in otherwise empty space,
a current, Ix = +1 A exists in a straight, infinitely long con-
ductor lying along the x-axis, find the value of the resulting
magnetic field vector, B, at the point (x = y = 0, z = 1). The
goal of this exercise is to find a value of B at a point where j
is explicitly zero-valued. The answer is not zero.

However, most investigators start unhesitatingly with (13)
and therefore (14) as givens. (This rules out applying the so-
lution to a filamented plasma.) For example, Wiegelmann
[37] does this and derives a vector Helmholtz equation which
he states, can be solved by a separation ansatz, a Green’s
function method [8] or a Fourier method [18].

An ansatz is the establishment of the starting equation(s),
the theorem(s), or the value(s) describing a mathematical or
physical problem or solution. After an ansatz has been es-
tablished (constituting nothing more than an assumption), the
equations are solved for the general function of interest (con-
stituting a confirmation of the assumption). That the mathe-
matical solution accurately describes the physics is assumed.

In his 1950 paper Lundquist (after accepting the validity
of (13)), without further explanation or derivation states that
the solution of (14) with constant α is,

Hz = A J0 (αr)

Hθ = A J1 (αr) .
(15)

Lundquist thus presents α as being a radial distance scale
factor in the argument of his Bessel function solution. No
evaluation of the coefficient A is offered. He also presents an
image similar to Figure 6 below, but does not derive the cur-
rent density or the physical consequences of these functions
such as periodic reversals with increasing radius or counter-
rotation and counter-flows of the plasma within the current
structure.

Other investigators [45] start with (13) and then take its
curl to obtain,

∇ (∇ · B) − ∇2B = α (∇ × B)

∇2B = −α (∇ × B) .
(16)

They then also present the solution of (16) as being that given
in (15). This agrees with Lundquist.

One of the most extensive reviews of force-free currents
in a cylindrical geometry by Botha & Evangelidis [25] con-
tains several references to similar studies. However, none of
these investigators make the simplest assumptions: adopt a
piece-wise linear approach, assume α to be any scalar value,

and assume no variation of j or B in either the azimuthal or
axial directions. Such simplifications may not be justified on
the solar surface, but are in deep space. Therefore, we derive
here a simple solution that follows from this and carefully
note the effect of the parameter α on the resulting model.

Before beginning this derivation, we specify the dimen-
sions of several involved quantities. Using (8),

[
µ
]

=

[ B
H

]
=

Wb
m2

m
A

=
Wb
mA

. (17)

Using (4) the following units obtain,

[∇ × B] =
[
µj

]
=

Wb
mA

A
m2 =

Wb
m3 . (18)

Using (13),
Wb
m3 = [α]

Wb
m2 (19)

or
[α] = 1/meter. (20)

Our derivation is as follows: The left side of (13) is ex-
panded in cylindrical coordinates:

∇ × B =

(
1
r
∂Bz

∂θ
− ∂Bθ

∂z
,
∂Br

∂z
− ∂Bz

∂r
,

1
r
∂

∂r
(rBθ) − 1

r
∂Br

∂θ

) (21)

and the right side of (13) is expressed as,

αB = (αBr, αBθ, αBz) . (22)

In (21) and (22), all field components are functions of the
position vector, p. Given that there is no reason to assume
any variation of current density j in the θ or z directions in
cosmic space, (14) implies the same is true for B.

It follows from the absence of any externally applied for-
ces other than possibly a static axial electric field to maintain
I (first term in (3)) and any time-varying electric fields, that
all partial derivatives of B with respect to θ and z are zero and,
therefore, what remains of (13) after these simplifications in
(21) are the following three expressions: In the radial direc-
tion,

αBr = 0. (23)

There is no radial component of the B vector. This is consis-
tent with Maxwell’s ∇ · B = 0. In the azimuthal direction,

∂Bz

∂r
= −αBθ (24)

and in the axial direction,

1
r
∂

∂r
(rBθ ) = αBz. (25)

This results in two non-trivial coupled differential equa-
tions in the two dependent variables Bz and Bθ as shown in
(24) and (25). The independent variable in both is radial dis-
tance, r.
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4 Solution in closed form

Combining (24) and (25) yields a single second-order differ-
ential equation in a single dependent variable,

r2 ∂
2Bz (r)
∂r2 + r

∂Bz (r)
∂r

+ α2r2Bz (r) = 0. (26)

The dependent variable Bz(r) is the axial component of the
force-free steady-state magnetic field. The component field
Bz(r) is allowed to extend as far as the differential equation
(26) provides for. No boundary condition at any non-zero
value of r is introduced. There will be, in all real currents
in space, a natural limit, r = R, to the extent of the current
density j(r).

Having now fully specified the differential equation (26),
it is recognized as being identical to Bessel’s equation of or-
der zero, with scalar parameter α (the units of which are (see
(20)) the reciprocal of the units of r). We thus have a closed-
form solution for the dependent variable in that differential
equation that results from expanding equation (13). Its solu-
tion is,

y = AJ0 (αx) + CY0 (αx) . (27)

J0(x) is the Bessel function of the first kind and zeroth order,
and Y0(x) is the Bessel function of the second kind (or some-
times called the Weber or Neumann function) of zeroth order.

The function J0(αx) has the value unity at the boundary
x = 0, and the function Y0(αx) has a singularity at this same
boundary. Because reality dictates that the magnetic field re-
main finite-valued, the value of arbitrary coefficient C must
be set equal to zero. Thus, the solution to (26) is given by,

Bz (r) = Bz (0) J0 (αr) . (28)

This Bessel function of the first kind and of order zero is
used to produce Bessel functions of the first kind and orders
1, 2, 3, . . . by simple differentiation. The recursion relation
for the first-order Bessel function is,

J1 (x) = −dJ0 (x)
dx

. (29)

Thus, from (24) and (29), we obtain,

Bθ (r) = Bz (0) J1 (αr) . (30)

Consequently, from (28) and (30), the scale of the size, r, of
the magnetic field in the radial direction is determined by the
parameter α. Allowing α = α(r) would distort the radial axis
used to plot Bz(r) and Bθ(r).

These Bessel functions approach damped trigonometric
functions for large r, but the amplitude decrease is unusually
gradual – varying inversely as the square root of αr, which is
a more gradual decay than the typical exponential, or 1/αr,
or 1/(αr)2 damping.

This decay behavior is seen from the asymptotic forms
shown here in (31) below,

J0 (x) =

√
2
πx

[
cos

(
x − π

4

)
+ O

(
1
x

)]

J1 (x) =

√
2
πx

[
cos

(
x − 3π

4

)
+ O

(
1
x

)]
.

(31)

Therefore, Br(r), Bz(r) and Bθ(r) shown in (23), (28), and (30)
together provide a complete description of the magnetic field
that surrounds and pervades the final force-free, minimum-
energy, steady-state, cylindrical current. In this state, all Lo-
rentz forces have been reduced to zero. The physical impli-
cations of these expressions are fully described in Section 8,
below.

5 Euler method of solution

Another approach to solving (26), one that does not require
that it be recognized as a Bessel equation, is to use an it-
erative numerical method. One such method is based on a
state-variable representation of the differential equation – in
this case the pair (24) and (25). In order to describe those
differential equations in state-variable form, the product rule
for derivatives is first applied to (25) as follows:

∂ (rBθ)
∂r

= rαBz (32)

r
∂Bθ
∂r

+ Bθ = rαBz. (33)

Two state-variables may be defined as follows:

x1 = Bz (34)

x2 = Bθ (35)

so that rewriting (24) and (25) in state-variable form yields,

dx1

dr
= −αx2 (36)

dx2

dr
= αx1 −

(
1
r

)
x2. (37)

An Euler/Runge-Kutta algorithm for obtaining an approx-
imate step-wise solution to (36) and (37) was implemented.
The results, presented in Figure 2, show, as expected, the fa-
miliar shapes of Bessel functions J0 and J1 as Bz(r) the axial
component, and Bθ(r) the azimuthal component. Also shown
is the total magnetic field strength |B| (the square root of the
sum of the squares of the two component scalar fields, Bz

and Bθ). This total field strength magnitude is strongest at
a minimum radial value r and decreases monotonically with
increasing r.

Specifically, in Figure 2, total magnetic field magnitude
is shown to decrease with increasing radial distance from the
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Fig. 2: Axial Magnetic Field component Bz, the Azimuthal Magnetic Field component Bθ, the magnitude of the Total Magnetic Field; and,
for reference, a plot of 1/

√
r – all vs. radial distance quantized to integer multiples of the step-size h = 0.1. The value of α arbitrarily

selected in (36) and (37) to achieve adequate resolution of the Bessel functions with this step-size is 0.075. The horizontal axis in this
plot is the radius r-axis. Note in Table I that in every case (row) the inherently dimensionless Bessel function argument, x = αr, thus
demonstrating the scale factor utility of α. (e.g., 2.4048 = 0.075 × 32.)

central axis of the current as (αr)−1/2. This function is shown,
for reference, as the fourth series plotted in Figure 2. This
behavior was fully described in Section 4 (see (31)). There-
fore, the magnetic fields within field-aligned cosmic currents
clearly extend outward in space much farther and less dimin-
ished in strength than the magnetic field that would be gener-
ated by a simple straight-wire electric current (see (6)).

The parameter α appears as a scale factor operating on the
radius variable, r. In the result shown in Figure 2, the value
for that distance-scaling parameter was arbitrarily chosen to
be α = 0.075. The horizontal axis of Figure 2 is in units of
actual radial distance, r. For example, the first zero of J0(x) is
located at x = 2.4048. In Figure 2 it is shown to occur at r =

x/0.075 = 32. This demonstrates the relationship between
the non-dimensional argument of the Bessel functions, x, and
the scaled variable, r: x = αr. Nothing is inferred or implied
about the current density vector field j at this stage.

The step-wise Euler method described here can also be
used in the event the state-equations are nonlinear due to cho-
osing an arbitrary α = α (r).

6 General validity of solution

A question remains regarding the generality of the solutions
(23), (28), and (30), for Br(r), Bθ(r), and Bz(r) respectively.
Directly or indirectly all three of these quantities result from
solving the Bessel equation (26), which, itself, is derived from
the substitute equation (13), not from the fundamental, defi-
nition of a force-free current (12). This substitute, (13), was
posited as being a valid alternative to (12), the defining prop-
erty. Expressions (12) and (13) impose similar but not iden-

tical requirements on the magnetic field B(r, θ, z) and the cur-
rent density field j(r, θ, z). Therefore, it has not yet been dem-
onstrated that the vector field solutions of (13) listed in (23),
(28) and (30) are also valid solutions of the fundamental def-
inition, (12).

In order to demonstrate this, we insert those solutions
back into (12) by writing the central three-dimensional cross
product contained in that expression in determinant form:

(∇ × B) × B =

∣∣∣∣∣∣∣∣

r̂ θ̂ ẑ
(∇ × Br) (∇ × Bθ) (∇ × Bz)

Br Bθ Bz

∣∣∣∣∣∣∣∣
. (38)

Using the cylindrical curl expansion of (21),

∣∣∣bi j

∣∣∣ = (∇ × B) × B =

∣∣∣∣∣∣∣∣∣

r̂ θ̂ ẑ
0 − ∂Bz

∂r
1
r
∂
∂r (rBθ)

Br Bθ Bz

∣∣∣∣∣∣∣∣∣
. (39)
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We use (23), (28) and (30). Then in (39) the element b22
becomes,

b22 = − ∂
∂r

[
Bz (0) J0 (αr)

]

= αBz (0) J1 (αr) .
(40)

The element b23 becomes,

b23 =
1
r

(
r
∂Bθ
∂r

+ Bθ

)
=
∂Bθ
∂r

+
1
r

Bθ

= αBz (0)
[
∂J1 (αr)
∂r

+
1
αr

J1 (αr)
]
.

(41)

Since
∂J1

∂x
= J0 − 1

x
J1, (42)

(41) becomes,

b23 = αBz (0)
[
J0 (αr) − 1

αr
J1 (αr) +

1
αr

J1 (αr)
]

= αBz (0) J0 (αr) .
(43)

Using the above expressions together with (23), (28), and
(30), in (39) and omitting functions’ arguments for clarity,

(∇ × B) × B =

∣∣∣∣∣∣∣∣

r̂ θ̂ ẑ
0 αB0J1 αB0J0
0 B0J1 B0J0

∣∣∣∣∣∣∣∣
= 0. (44)

(QED)

Thus, the components of B(r, θ, z) given in (23), (28), and
(30) are shown to be valid solutions of the original defining
equation (12). That fact remains valid whether or not the al-
ternative (13) had ever been suggested.

Regarding the practical evaluation of αwhen approximate
observations of both B and ∇×B are available, we have [31,
p.107],

α =
(∇ × B) · B

B2 . (45)

Inserting the appropriate components from (23), (28), and
(30) into (45) yields the identity,

α = α. (46)

This indicates that the results presented here as (23), (28) and
(30) are consistent with the formulation for α given in (45).

7 Current density of a field aligned current

Having accepted the postulated alternative definition (13) and
(14) to determine the force-free magnetic-field solutions (28)
and (30) (repeated below as (47) and (48)), it is then logi-
cally consistent to simply insert these into (14) to obtain the
companion current-density relations (49) and (50):

Bz (r) = Bz (0) J0 (αr) (47)

Bθ (r) = Bz (0) J1 (αr) (48)

jz (r) =
αBz (0)
µ

J0 (αr) (49)

jθ (r) =
αBz (0)
µ

J1 (αr) . (50)

A dimensional analysis of (49) and/or (50) using (18) and (20)
shows the units of the constant term αBz(0)/µ to be A/m2 as
they must be.

In (49) and (50), it is clear that as the radial size of the
model is increased (by decreasing the value of α), the magni-
tude of both current density components decrease proportion-
ally.

Wiegelmann [37] defines α as being α(x, y) = µ0 j0/B0
(see (49) and (50)). This definition also has units of 1/m (re-
ciprocal of distance) (see (17)-(20)). Peratt [31, p.107] states
that α is adjusted until reasonable agreement is obtained with
observations (see (45) and (46)).

8 Consequences of the oscillatory nature of the Bessel
(Lundquist) solution

Expressions (47)–(50) fully describe the structure of the mo-
del of a minimum (Lorentz force) energy, cylindrical, force-
free, field-aligned current (FAC) under the assumption of eq-
uation (14). Thus:

1. There are no points within the plasma where B = 0. A
non-zero valued magnetic field exists at every point. In
the first paragraph after (3) it was stated, nor are any
assumptions made about the distribution of the current
density across the cross-section. (49) and (50) now ex-
press that spatial distribution of j(p).

2. At every point in the plasma, j and B are collinear.

3. At every point in the plasma µj = αB (assumption, as
discussed in Section 3).

4. The model expressions (47)–(50) remain valid only ov-
er the range 0 < r < R. Farther out from the z-axis than
r = R, j = 0. From that point outward, the cylindrical
plasma appears more and more like a single straight,
isolated current-carrying wire. So beyond radius R,
the magnetic field strength will decay approaching 1/r.
This is shown directly using (14): for r > R, j = 0,
α = 0. Then using (32) and (33) yields:

Bθ (r) =
kz

r
. (51)

This is consistent with (6).
Visualizing this field configuration with the aid of Figures

2, 3, and 5, reveals that, within the plasma, at increasing radial
values, the magnetic field, together with its collinear current
density, wrap the axis of the current stream with a continu-
ously increasing helical pitch angle.
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Fig. 3: Cross-section of a force-free current. In this view the
reader is looking in the +z-direction, in the direction of main cur-
rent flow. The radius values shown are plotted as values of r = x/α
(α = 0.075), which were used in the Euler iterative solution of (36)
and (37). At the radius values shown, the axial B-field is zero-valued
so the total field is only azimuthal (either clockwise or counter-
clockwise circles).

From (23), there is no outward radiation of the magnetic
field (nor its collinear j) from inside the plasma where α , 0.
There is no non-zero Br or jr component anywhere. Thus no
matter escapes from the plasma. This preserves the structural
integrity of the FAC over large axial distances.

Both solutions (closed-form and Euler) demonstrate re-
peated reversals in the directions of both the axial and the
azimuthal magnetic field components with increasing radial
distance. This implies the existence of a discrete set of vir-
tual concentric cylindrical surfaces (see Figure 3). These sur-
faces are centered on the z-axis of the field-aligned current.
At these discrete radial values, the axial field component, Bz

is zero-valued and the azimuthal magnetic component, Bθ,
is at alternatingly clockwise and counter-clockwise maxima.
As a function of r the axial and azimuthal field strengths are
observed to be in quadrature. For example in Figure 2, in a
region such as that between radial distances 74 and 116, the
axial field, Bz, is unidirectional (in the positive z-direction, at-
taining maximum strength at r = 94); whereas the azimuthal
field reverses direction at r = 94, changing from the nega-
tive direction of θ to the positive direction. This results in a
total magnetic field vector that wraps the current stream, its
pitch angle rotating (with increasing r) in a clockwise direc-
tion when viewed looking inward in a radial direction, toward
the central axis of the current (see Figure 5).

Thus, the axis of a cosmic, field-aligned current is wrap-
ped with a compound helical magnetic field whose angle with
respect to the +z-axis increases continuously with increasing
radial distance, r. This gives rise to a structure suggestive of
some ancient Roman fasces.

Fig. 4: Three-dimensional plot of the magnitude of the axial mag-
netic field component Bz(r) and the current density jz (r). This
demonstrates the relative strength of both those central (on-axis)
fields. The magnitude scale of the horizontal axes used in this Fig-
ure are both x, the dimensionless arguments of the Bessel J0(x) and
J1(x) functions.

In Figure 5, one cycle (0◦–360◦) of the pitch angle is
shown. The cycle is sketched at eleven incrementally in-
creasing sample values of radius. The shaded arrows show
the total magnetic field direction at each value of radius, r,
and the white arrows show the field direction at an increment
just below each of those values of radius. At every point in a
stable force-free, field-aligned current, the current density j is
collinear with B.

The Lundquist-Alfvén image shown in Figure 6, which
is often used to describe the Birkeland current steady-state
minimum-energy magnetic field, is in agreement with these
results (47–50), but it only describes the morphology for sm-
all values of r. As r increases beyond what is shown in Figure
6, an uninterrupted rotation of the pitch angle of the mag-
netic/current helices continues (see Figure 5). The field rota-
tion does not abruptly stop at 90◦ (where the total magnetic
field is orthogonal to the direction of z) as might be inferred
from Figure 6. The helical wrapping of the j and B fields con-
tinues with increasing radius values. This adds strength to the
overall FAC structure. The tangent of the helical angle at any
point, r, is the ratio (see Figure 1),

Bz (r)
Bθ (r)

=
J0 (αr)
J1 (αr)

=
J0 (x)
J1 (x)

. (52)

Therefore if the value of the scale factor, α = x/r is, say,
doubled, then that same pitch angle will occur at a value of r
at half the original radius (x value unchanged). Thus the scale
of the entire model will be halved (see Figure 6).

9 Effects of increased axial current

In a geomagnetic storm, a surge in the flux of charged parti-
cles (current increase) often temporarily alters Earth’s mag-
netic field.
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Fig. 5: The pitch angle of the helical total magnetic field, B vector,
that encircles a field-aligned current changes continuously with in-
creasing radial distance from the central axis of the current. There
are no abrupt quantum jumps or breaks in this angle’s change or
in the field’s magnitude. One cycle (0◦–360◦) of the pitch angle
is shown. The cycle is sketched at eleven incrementally increasing
sample values of radius. The shaded arrows show the total magnetic
field direction at each value of radius, r, and the white arrows show
the field direction at an increment just below each of those values of
radius.

The entirety of this paper up to this point has been focused
on the consequences of the reduction or possible elimination
of the Lorentz v×B forces as defined in the second term of
(3). But, the first term in that expression produces an indepen-
dent, conduction component of the current density that may
be added, via superposition, to the current density, jz, that has
been derived above. This additional term is written as,

jcond = qE

∑

k

nk µ
(k)
ions + ne µe

 (53)

where nk is the ion density, with k = ionization number of
the various ions, ne is the electron density and µ(k)

ions and µe

are the respective mobilities of those ions and electrons in
the plasma. Expression (53) is the point form of Ohm’s Law.
Another way that jz might become increased is by narrowing
the cross-sectional area of a Birkeland current as it squeezes
down into a polar cusp in a geomagnetic field.

It is not known if any actual, observed cosmic currents
are in the complete minimum (Lorentz force) energy, field-
aligned state. Several apparently show evidence of near-for-
ce-free behavior [31]. In the steady-state minimum energy
FAC configuration, all Lorentz forces have been eliminated
and charge simply follows the magnetic field structure. For
example, in Figure 3, any positively charged matter located at
r = 158, has counter-clockwise motion.

The image shown in Figure 8 was obtained in a plasma
laboratory. Neither this nor the image of Saturn’s north pole
in Figure 7 represent force-free currents because they both are
images of collisions of such currents with material objects.

Fig. 6: Two different sized scale models of a FAC. These are both
Lundquist-Alfvén-type images showing the helical structure of the
collinear j and B vectors for small values of radius, r. (Left: Using
α = αo. Right: Using α = 2αo.) This demonstrates why some
investigators say that alpha controls the “tightness of twist”. It only
appears to do that as a secondary effect because it’s primary effect is
as a scale factor on the overall dimensional size (r, z) of the model’s
structure.

Figure 8 suggests what may occur if such an overall cur-
rent density increase were to occur. The force-free structure
would begin to undergo changes (if not be totally destroyed).
Exactly what would happen is pure conjecture but if we start
with Figure 3 and consider what might occur if and when a
low intensity stream of positive charge begins to infuse the
entire cross-section in a +z direction (away from the reader),
these additional positive charges would likely be deflected by
Lorentz forces as follows (see Figure 3). At radii 33, 116, and
199 – deflection inward and clockwise. At radii 74, and 158
– deflection outward and counter-clockwise.

The two paths (inward and clockwise at r = 116 and the
one at r = 74 moving outward and counter-clockwise) might
appear to be a single path spiraling inward from r = 116
toward r = 74. Such pathways are suggested in Figure 8.
Clearly in that state, the system is no longer at minimum en-
ergy – Lorentz forces are at work within the no-longer force-
free plasma.

Another effect of an increase in the magnitude of the axial
component of the current density, jz, would be to add a small
incremental vector in the +z-axis direction to each existing jz-
vector. For example, consider sub-figures 2-5 in Figure 5. A
small +jz vector added to each of the shaded j-vectors shown
there would tend to twist them slightly counter-clockwise,
away from being aligned with their corresponding B-vector
that remains fixed. The resulting Lorentz force (j × B) would
be directed inward (away from the viewer). However, if a
similar small +jz vector were to be added to each of the shad-
ed j-vectors shown in sub-figures 7-10 in Figure 5, this would
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Fig. 7: Saturn’s north pole, infrared Cassini image. Saturn is a
gaseous planet composed mainly of hydrogen and helium. This im-
age was obtained during the dark winter. The pole is encircled by a
hexagonal feature in its atmosphere, which is thought to be caused
by a planetary (atmospheric) wave. Image obtained using the in-
frared mapping spectrometer on board the Cassini Orbiter space-
craft. Courtesy of: NASA/JPL-Caltech/University of Arizona. The
Cassini-Huygens mission is a cooperative project of NASA, the Eu-
ropean Space Agency and the Italian Space Agency. Image Credit:
NASA/JPL/GSFC/Oxford University/Science Photo Library [40].

twist them slightly clockwise and the Lorentz force would, at
those points, be directed outward (toward the viewer). Ions,
then, will be pushed inward over radial ranges wherever az-
imuthal magnetic field, Bθ, is directed clockwise in Figure
3. Ions will be expelled outward wherever Bθ is directed
counter-clockwise in Figure 3. Matter (ions and neutral dust)
will thus tend to congregate at intermediate radius values such
as r = 0, 94, and 178. These are radii defined by the odd zeros
of J1 = J1(x) = J1(αr), (x = 0, 7, 13, . . . ) (see Figure 4 and
column 3 of Table I for values). Electrons moving in the −z-
direction will tend to be scavenged into the same r-regions.
These are hollow cylindrical surfaces where +jz dominates.

10 Comparison of results with observations

Images in Figures 7, 9, and 10 are obtained from actual astro-
nomical observations. The image shown in Figure 7 is consis-
tent with the hypothesis that Saturn is receiving a flow of elec-
tric charge via a Birkeland current directed into its north pole
much as Earth is known to be experiencing. It is well known
that currents in plasma drag un-ionized (as well as ionized)
matter along in their path [42]. Figure 3 and the discussion at
the end of Section 9, above, imply that clockwise and counter-
clockwise counter-rotating current paths such as those at r =

33 and 74 ought to exhibit such counter-rotation. But, for
years it has been unknown whether the spiraling/circular pa-
ths appearing in Figures 7, 8 and 9 are really counter-rotating.

Fig. 8: Cross-section of a dense plasma focus Birkeland Current car-
rying I = 174, 000 amperes. This image was captured by a witness
plate placed in the discharge in a plasma lab. The spiral structure of
the cross-section is visible. The 56-dot circular overlay shows the
locations of the apparent spiral shaped paths of matter. Courtesy of
A.L. Peratt, from Characteristics of a High-Current, Z-Pinch Aurora
As Recorded in Antiquity, Part II Directionality and Source by Per-
att, Directionality and Source. IEEE Transactions on Plasma Sci.,
August 2007 [41].

It would require a video to reveal that relative motion.
It so happens that NASA has produced exactly such a

video clearly showing counter-rotating (plasma) clouds with-
in what appears to be the hexagonal shape at Saturn’s north
pole (see: [43] NASA video - Saturn’s Hurricane). In this
video, the term hurricane is used repeatedly by the narrator
who expresses concern about the fact that the “storm” is fixed
to the planet’s north pole and that no water ocean exists be-
low it to cause it to exist. He does not mention that actual
hurricane winds do not counter-rotate as these do.

In that video, in shear regions between counter-rotating
shells, what appear to be diocotron instabilities are visible
(see Figure 9). Without NASA’s video, the counter-rotational
motions of these areas in the Saturnian surface would not be
observed and therefore their existence would go undiscov-
ered. This recent motion picture is crucial evidence of part
of what is being presented here. Many other edited versions
of the original NASA video exist that do not show counter-
rotation taking place. The uncut original does.

11 Conclusions

It has been well-known for decades that the Lundquist solu-
tion (15) constitutes a simple model of a cylindrical force-
free, field-aligned current. This model:

1. Dictates that the two vector fields j(r, θ, z) and B(r, θ, z)
be everywhere collinear;
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Fig. 9: Series of diocotron (shear) instabilities, especially obvious in
the upper left of this image. This was taken from the NASA video
[43] which clearly shows counter-rotation. From NASA Cassini
mission video of Saturn’s North Pole. Courtesy of: NASA/JPL-
Caltech/University of Arizona. The Cassini-Huygens mission is a
cooperative project of NASA, the European Space Agency and the
Italian Space Agency. The imaging operations center is based at
the Space Science Institute in Boulder, Colo. The Visual and In-
frared Mapping Spectrometer team is based at the University of Ari-
zona [43].

2. States that the overall solutions that specify the spatial
dependence of those fields’ magnitudes and directions
are Bessel functions;

3. Assumes α is constant inside the plasma.

In this present paper we present a simple, but detailed
derivation of this model of a force-free current and demon-
strate, through straightforward mathematical analysis and str-
ict adherence to the principles delineated in Maxwell’s equa-
tions [35], a number of significant characterizations [44] of
these field equations that are in strong agreement with reli-
able imagery obtained from both actual observations of phe-
nomena in space and measurements in experiments in plasma
laboratories. The most significant of those results are:

1. The complete mathematical model of a cylindrical, for-
ce-free FAC, including expressions for its current-den-
sity field is presented by (47)–(50), not just (15).

2. Magnetic fields produced by force-free currents stretch
out radially from the central axis of the current stream
much farther, and with greater effect, than previously
thought. For radial distances, r, within the plasma (r <
R) the amplitudes of those helical fields decay slowly
in inverse proportion to the square root of r.

3. The fact that expression (23) requires that no compo-
nent of the magnetic field, B, can extend outward in
the radial direction (and the fact that B and j are every-
where collinear) demonstrates that no dissipative cur-
rents or fields leave the cylindrical structure along its
length. Birkeland’s critics thought that the final, re-

laxed distribution would be an infinite dispersion, not a
strong, tight cylinder (which it is).

4. The structural stability of the spiraling fasces-like wra-
pping of the magnetic field explains the observed enig-
matic stability of Birkeland currents over long inter-
planetary, inter-stellar, and inter-galactic distances. For
example, the cosmic current “jet” emanating from gala-
xy M87 remains collimated over a distance exceeding
5000 light years [46]. The stability of the flux-rope
connecting the Sun and Earth is now better understood
(see Section 8).

5. The angle of pitch of the helix varies smoothly and con-
tinuously with increasing radial distance, r, from the
central axis of the current out as far as the plasma’s
current-carrying charge density extends. This causes
cyclical reversals of direction (counter-flows) in both
the axial and azimuthal magnetic field and its collinear
current density. The magnitude of both the B and j-
fields may be greater than zero for r values far beyond
the first zero of J0(αr) (which occurs at r = 2.4048/α).
Figure 6 is shown to be correct but incomplete, and thus
potentially misleading.

6. Coupled with the new NASA video of Saturn’s north
polar region, this presentation strongly supports the hy-
pothesis that a Birkeland current is feeding electric cur-
rent into that region.

7. Parameter α controls the size of the resulting model in
both the r and z dimensions (together – not separately).
The value of α is arbitrary and is selected to enable the
model to fit the size of the actual space-plasma being
modeled.

8. The major difference between a field-aligned current
(FAC) and a Birkeland current is that in a FAC the total
current, I, is a minimum. When the current density at
any point, j, increases for any reason above its minimal
value, non-zero Lorentz forces begin to occur and the
matter scavenging described in Section 9 takes place.

9. The mathematical procedure offered here is circumscr-
ibed to an extent not typical of other papers by caveats
regarding the consequences of the universal unques-
tioning acceptance of the generality of the expression
µj = αB (14). This is not applicable in filamented
plasma.

The conclusions drawn from the analysis of the mathe-
matical model derived in this paper have been tested against
original motivating observations and measurements. Consis-
tently strong agreement is found. Many otherwise enigmatic
images stand witness to the potential benefits of considering
possible electrical causation of other cosmic plasma phenom-
ena.

The M2-9 Hourglass planetary nebula in Figure 10 is a
prime case in point. We suggest that the narrowing of the
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Fig. 10: The Hourglass (or Butterfly) planetary nebula, M2-9. In
this image the separate hollow, cylindrical tubes of matter are clearly
visible. The cross-sectional area of the structure diminishes near the
center of the pinch. Since the total current is the same at every cross-
section, this means regions near the central pinch have increased
current density (A/m2) and corresponding greater visual brightness.
Courtesy of the Hubble Legacy Archive, NASA, ESA Processing
Judy Schmidt. The Hubble Legacy Archive (HLA) is designed to
optimize science from the Hubble Space Telescope by providing on-
line, enhanced Hubble products and advanced browsing capabilities.
The HLA is a joint project of the Space Telescope Science Institute
(STScI), the Space Telescope European Coordinating Facility (ST-
ECF), and the Canadian Astronomy Data Centre (CADC) [45].

plasma FAC channel due to the z-pinch creates an increased
current density which causes a transition of the plasma from
the dark mode into the visible glow and arc modes. The ob-
served dual, concentric cylinders of excited plasma are con-
sistent with the counter-rotation, matter scavenging, and re-
versing flows described in this paper.
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