Richard Moore : A Field Model of Mind

a speculative inquiry into the nature of consciousness

Richard K. Moore

Materialism and consciousness

At the very core of mainstream science is the assumption that the universe is entirely materialistic. Consciousness emerges as a function of the electrial activity of a brain, when a brain evolves to a sufficient level of complexity. There is no meaning or purpose to life, apart from the imaginings of humans and their religions – there is only the more or less random evolution of material configurations. Richard Dawkins is the most vocal and prolific expounder of this materialist perspective, a perspective that mainstream scientists subscribe to without ever thinking to question it.

There is another model of consciousness that says consciousness is not embodied in the brain. Rather our minds exist apart from our brains, and outside the domain of physics. The function of the brain, in this model, is to serve as a kind of interface module, enabling the mind to interact with the five senses and the body. This we can call the metaphysical model of consciousness.

Evidence for the metaphysical model comes in the form of ‘unexplainable’ experiences. An unconscious patient, registering no electrical brain activity at all during a critical operation, reports later that he observed the operation from the ceiling, and is able to describe specific things that happened during the operation. Or someone has a near-death experience, and reports certain kinds of experiences that have also been reported in other near-death cases.

Continue reading “Richard Moore : A Field Model of Mind”

Professor Brian Josephson – CymaScope – Royal Society of Medicine – John Reid

Professor Brian Josephson, Nobel Laureate, featured the CymaScope in his lecture at the Royal Society of Medicine

On July 14th 2018 Professor Brian Josephson presented a lecture at the Royal Society of Medicine. The conference, titled New Horizons in Water Science, hosted many esteemed speakers including a second Nobel Laureate, Professor Luc Montagnier, Professor Gerald Pollack, Professor Vladimir Voeikov, Professor Alexander Konovalov and Dr Robert Verkerk.

Brian Josephson was professor of physics at the Cavendish Laboratory from 1974 until his retirement in 2007. He is currently emeritus professor of physics at the University of Cambridge, a Fellow of Trinity College, Cambridge, and a Fellow of the Royal Society. In his first contact with John Stuart Reid, he said of the CymaScope instrument, “Having watched one of your lectures I think your (re) discovery is going to be of great importance to the future of physics”.

In his lecture at the Royal Society of Medicine, on the subject of the memory of water and ordering processes in general, Professor Josephson presented two CymaScope videos, one of which concerned the memory of water. He said, “The idea that water can have a memory can be readily dismissed on the basis of any of a number of easily understood invalid arguments” and then proceeded to explain to the audience why these arguments are invalid. To support his presentation he included a CymaScope video that appears to show water’s ability to remember a sonic input frequency injected into the CymaScope’s visualizing cuvette, after the frequency has been removed. He also presented a video showing the sound of a cancer cell made visible, part of a research project in collaboration between Professor Sungchul Ji of Rutgers University, Dr. Ryan Stables of Birmingham University and the CymaScope lab.

Professor Josephson said, “Water exhibits remarkable structural and dynamic properties, including the ‘biological signal’ revealed by the investigations of Beneviste and Montagnier and the complex acoustically-induced structures in water revealed by the CymaScope. Organised dynamical behaviour is more the province of biology than of physics and will require different tools of investigation than are standard in physics. The CymaScope may be one such tool. It is not just a new scientific instrument but new science as well and I suspect a new field of maths.”

John Stuart Reid said, “We are honoured that Professor Josephson discussed the CymaScope in his lecture at the New Horizons in Water Science conference. We believe that the CymaScope instrument has the potential to open new horizons in physics, biology, homeopathy, musciology, phonology and many other areas of scientific study. ”

Professor Josephson’s lecture can be viewed at this link and includes a clip from Dr Gary Buchanan’s Beethoven/Moonlight Sonata video.

 

 

The Detection of Rossby-like Waves on the Sun

From:

Abstract

Rossby waves are a type of global-scale wave that develops in planetary atmospheres, driven by the planet’s rotation1. They propagate westward owing to the Coriolis force, and their characterization enables more precise forecasting of weather on Earth2,3. Despite the massive reservoir of rotational energy available in the Sun’s interior and decades of observational investigation, their solar analogue defies unambiguous identification4,​5,​6. Here we analyse a combined set of images obtained by the Solar TErrestrial RElations Observatory (STEREO) and the Solar Dynamics Observatory (SDO) spacecraft between 2011 and 2013 in order to follow the evolution of small bright features, called brightpoints, which are tracers of rotationally driven large-scale convection7. We report the detection of persistent, global-scale bands of magnetized activity on the Sun that slowly meander westward in longitude and display Rossby-wave-like behaviour. These magnetized Rossby waves allow us to make direct connections between decadal-scale solar activity and that on much shorter timescales. Monitoring the properties of these waves, and the wavenumber of the disturbances that they generate, has the potential to yield a considerable improvement in forecast capability for solar activity and related space weather phenomena.

Coronal brightpoints (BPs) permit the tracking of the magnetic activity bands of the 22-year magnetic cycle of the Sun8. These activity bands in each solar hemisphere undergo significant quasi-annual instability, which results in episodes of intensified space weather6. The nature of the instability on the bands is unknown, but has been linked to the existence of magnetic Rossby waves in the solar interior5. We use our BP detection algorithm9 on a series of coronal images taken by the Extreme-Ultraviolet Imager (EUVI) instruments10 on the twin STEREO spacecraft, and by the Atmospheric Imaging Assembly (AIA) instrument11on the SDO spacecraft, in the 19.5- and 19.3-nm channels, respectively, from 1 June 2010 to 31 May 2013. During this time period, the orbits of these three spacecraft created an opportunity to explore global-scale solar phenomena. In concert, the trio of spacecraft provided the first complete observational coverage of the Sun’s corona, slowly drifting apart from the Sun–Earth line until STEREO-Behind lost communication with the Earth in mid-2014.

 

Continue reading “The Detection of Rossby-like Waves on the Sun”

Arthur Winfree – The Geometry of Biological Time

 

To understand the origins of fibrillation and potential treatments, Art initiated several different lines of enquiry. In careful numerical and experimental studies of two-dimensional excitable media, Art demonstrated that rotating spiral waves often meander in space—the exact geometry of the meander depending on the parameters of the differential equations or the experimental preparation (Winfree, 1990a).

Moreover, in some instances, spiral waves spontaneously break up, leading to many independently rotating spiral waves (Courtemanche and Winfree, 1991). In order to investigate the stability of the twisted and knotted scroll waves that he and Steve Strogatz predicted to exist and to determine initial conditions that might lead to these waves, Art and his students began an ambitious project of super-computer calculations of three-dimensional scroll wave dynamics (Nandapurkar and Winfree, 1987; Winfree, 1990b,1994; Henze and Winfree, 1991).

To determine the geometry of wave propagation in intact heart, Art collaborated with the late Frank Witkowski, a brilliant cardiologist who was building an optical mapping apparatus to study wave propagation in heart during fibrillatory rhythms by measuring the fluorescence of heart tissue stained with voltage-sensitive dyes. This work led to the observation of rotating spiral waves from the surface of a sheep heart during ventricular fibrillation (Witkowski, et al., 1998). Art’s ideas about cardiac arrhythmias and their relationship to rotating spiral and scroll waves are summarized in his book, When Time Breaks Down (Winfree, 1987).

This book helped to shape experimental and theoretical work by many investigators, including R. Ideker, J. Jalife, J. Keener and A. Karma. In 1987, Art moved from Purdue to the University of Arizona, where he continued his research on chemical reactions and cardiac muscle, somewhat incongruously, in the Department of Ecology and Evolutionary Biology.

Though good at it, Art was never truly comfortable with computer simulations. To him they were guides to his intuition, geometric vision, and experimental tinkering. How would it be possible to confirm experimentally the predicted existence of stable scroll rings and other more exotic, three-dimensional, rotating structures? Although it seemed likely that scroll rings could rotate deep in the heart, optical studies of wave propagation in heart tissue were only capable of imaging a thin surface layer, so it was impossible to observe scroll rings directly.

Hoping to find sound experimental evidence for the subtle and spectacular patterns playing out in his computer simulations, Art designed and built a system to measure with high resolution the concentration patterns of BZR intermediates in space and time. It was essentially a high-tech version of his stacked filter papers. By shining a light through the BZR and scanning the absorption of light at different angles, he used tomographic reconstruction techniques to determine the geometry of the three-dimensional rotating structure.

In Winfree et al. (1996), he described the many technical hurdles that had to be overcome and presented unequivocal evidence that the detailed anatomy of rotating scroll waves could in fact be observed in real systems. In what we believe is Art’s last paper on this problem, published post-humously, he addressed some of these matters computationally (Sutcliffe and Winfree, 2003). Unfortunately, following the demonstration of optical tomographic imaging of the BZR, the projected use of this method to study a host of other problems (such as the initial conditions needed to seed various three-dimensional structures, and the dynamics and stability of knotted and twisted scroll rings in real systems) was never completed. Those problems, many of which are sketched out in a recent review (Winfree, 2001), remain a part of Art’s legacy to future generations.

Golden Ratio in Life and Science

So called empty space is most likely structured. Buckminster Fuller already considered the possibility that the geometric structure of space was given by his Isotropic Vector Matrix (IVM): a network of interconnected tetrahedra and octahedra with a Vector Equilibrium in its center. This is what I have called the inner structure of Metatron’s Cube, a structure that scales inwards and outwards, and whose cartesian coordinates can be derived exclusively from integer and rational numbers, in fact from powers of 2 and 3 as in Aristoxenus musical scale. For Fuller, the IVM was a conceptual framework describing the symmetry of space, with which energy events could interact through its jitterbug property, producing a radiating wave of activity [3, p.192]. So the hypothesis is that, depending on the frequency of the sound source, a different geometric energy propagation pattern takes place in empty (structured) space. This geometric pattern may not captured by microphones, but it may interact with the subtle bodies of human beings, and it may be the source of the inherent qualities of sound that we are able to perceive but not yet to quantify.

The Heart is not a Pump

AnthroMed

To any doctor trained in today’s medical schools, the idea that the heart may not be a pump would, at first sight, appear to be about as logi­cal as suggesting that the sun rises in the West or that water flows uphill. So strongly is the pump concept in­grained in the col­lective psyche that even trying to think otherwise is more than most people can man­age. Yet Rudolf Steiner, a man not given to unscien­tific or slipshod thinking, was quite clear on the matter and reiterated time and again that the heart is not a pump. “The blood drives the heart, not the heart the blood.”

Ralph Marinelli* and his co-workers published a paper refuting the generally-accepted pressure-propulsion premise. For a start, they draw atten­tion to the sheer volume of work which the heart would have to do if it were solely responsible for pumping inert blood through the vessels of the circula­tory system. Blood is five times as vis­cous as water. According to the propul­sion premise the heart would have to pump 8000 liters of blood a day in a body at rest and considerably more during ac­tivity, through millions of capillaries the diameters of which are sometimes smaller than the red blood cells them­selves – a huge task for a relatively small, muscular organ weighing only 300 grams.

Once the questions start being asked, the anomalies in currently accepted dogma become apparent. For instance, if blood were pumped under pressure out of the left ventricle into the aorta dur­ing systole, the pressure pulse would cause the aortic arch to try and straighten out, as happens in any Bourdon tube pressure gauge. In practice the exact oppo­site happens; the curve increases, indi­cating that the aorta is undergoing a nega­tive, rather than a positive, pressure.

Another paradoxical finding con­cerns the mechanics of fluid flow under pulsatile pressure. When a pressure pulse is applied to a viscous fluid in a closed vessel, the liquid initially resists move­ment through its own inertia. The pres­sure, therefore, peaks before the fluid velocity peaks. In the aorta, exactly the opposite happens where a peak flow markedly precedes peak pressure, a fact which was observed in 1860 by Chaveau and Lortet. So just what is going on in­side the circulation?

Misleading sketch of the heart by Leonardo do Vinci (1). The left ventricle wall is shown uniform in thickness as it would he in a pressure chamber. Actually the left ventricle wall thickness varies by about 1800% as Marinelli and his group measured in bovine hearts (2). The apex wall is so soft and weak that it can be pierced with the index finger. The peculiar variability in the ventricular wall thickness is not in keeping with the heart as pressure generator. However, Leonardo’s Notebooks has been used in most biology, physiology, and medical texts during the last few hundred  years as well as in most modern anatomy texts in the last decades (3). Thus, false sketches have served to bear witness to a false premise.

As Marinelli et al point out, the pres­sure-propulsion model of blood circula­tion rests on four major premises: (1) blood is naturally inert and must, there­fore, be forced to circulate; (2) there is a random mix of formed particles in the blood; (3) blood cells are under pressure at all times; (4) blood is amorphous and is forced to fill its vessels and take on their form.

Continue reading “The Heart is not a Pump”

Thunderbolts – Turning Sound Into Light

by Jimmy Mikecz

What if sound didn’t only flow through matter but could produce unexpected phenomena like light? Research in sound has revealed the capacity of sound to influence matter in a way that produces light. The phenomenon of sonoluminescence (SL) is one example of this relationship.

The Equipment.

“If you want to find the secrets of the universe, think in terms of energy, frequency, and vibration.”
― Nikola Tesla

Sonoluminescence occurs when high-frequency sound vibrates tiny gas bubbles to reach star-like temperatures and emit flashes of light. The mechanism of sonoluminescence is not fully understood but its occurrence is well documented. As SL researchers probe deeper into the phenomenon, they have found that current fluid dynamic equations cannot explain why it happens. SL is a natural phenomenon as well, and marine biologists observe some species of shrimp using it as an attack against other creatures. It is the bridge between sound and light and can offer a deeper understanding of nature’s laws.

Sonoluminescence

In a study at UCLA called Sonoluminescence: How Bubbles Turn Sound into Lightscientists S.J. Putterman and K.R. Weninger explore the mathematics and phenomenology of sonoluminescence. It is known that this phenomenon is caused by the rapid expansion and contraction of a bubble. This is known because the broad-band UV light emitted appears at a frequency, though not continuously. Think of a strobe light as an analogy where flashes of light last only pico-seconds (trillionths of a second.) According to Prof. Putterman, the phenomenon of sonoluminescence can heat bubbles up to tens of thousands of degrees. The surface of these bubbles burns at about 20,000 K (~35,000 °F) and look like “little stars.”

Continue reading “Thunderbolts – Turning Sound Into Light”

The IllustrisTNG Project – Large Scale Cosmological Simulation

TNG

Somehow these guys are still thinking “Big Bang” and “Dark Matter”.

From their website:

The IllustrisTNG project is a suite of state-of-the-art cosmological galaxy formation simulations. Each simulation in IllustrisTNG evolves a large swath of a mock Universe from soon after the Big-Bang until the present day while taking into account a wide range of physical processes that drive galaxy formation. The simulations can be used to study a broad range of topics surrounding how the Universe — and the galaxies within it — evolved over time.

Scientific Goals

The goals of constructing such a large and ambitious simulation suite are to shed light on the physical processes that drive galaxy formation, to understand when, why, and how galaxies are evolving into the structures that are observed in the night sky, and to make predictions for current and future observational programs to broaden and deepen our understanding of galaxy formation. These goals are achieved not in a single step, but rather through a series of extended analyses of the simulations, each targeting specific science questions. Some of the first questions that have been specifically addressed using the TNG suite are characterizing the stellar masses, colors, and sizes of galaxies, understanding the physical origin of the heavy element (metallcity) distribution in galaxies and galaxy clusters, drawing connections between the presence of dynamically important magnetic fields and the observed radio emission from galaxies, and the clustering signal of galaxies and matter on large scales. Subsequent studies are expected to canvass an even broader range of topics.

Continue reading “The IllustrisTNG Project – Large Scale Cosmological Simulation”

Becoming Borealis 2018
Left Menu Icon
Becoming Borealis
Right Menu Icon