The Very Curious Little Soliton

 

In 1834, a man sits beside a canal. It is summer. He watches boats moving up and down the waterway. Suddenly, one boat stops abruptly and shoves a curious wave of water forward. The man stands and observes this singular wave, which passes leaving only flat water behind it. John Scott Russel stands. The wave is still moving. Disappearing from sight. He leaps on his horse. He pursues it, overtakes it, and observes it over perhaps two miles of waterway. It holds its shape, and only gradually diminishes in height. Very strange. Very curious.

Russel, an engineer, mathematician, and accomplished ship builder, was the first person to spot such a wave, follow it, and then write about it. He described called the wave a ‘wave of translation.’ Modern physics calls such singular traveling waves solitons.

What’s the big deal?

Throw a stone in a pond, and ripples spread. They spread out in concentric rings, and the rings split into more rings, and these split further. The rings begin to overlap as the taller rings overtake the shorter, and they gradually all become imperceptible as the energy of the stone spreads and is redistributed across the entire surface of the pond. Not so for the soliton. A soliton, as Russel famously chased, can travel over long distances without losing its form or its energy.

Oh, and solitons occur in not only water but light (electromagnetism) as well as in phonons (thermodynamics) and potentially in gravity waves.

You might be a soliton if:

  1. You are a traveling wave in some medium
  2. You hold your shape as you travel – you don’t spread out or fall apart into other waves.
  3. You are a neat well defined little envelope of energy – you are not here, you arrive and pass, and then you are gone!
  4. If you ever cross paths with another soliton, you can pass through each other unchanged.

Continue reading “The Very Curious Little Soliton”

Thunderbolts – Turning Sound Into Light

by Jimmy Mikecz

What if sound didn’t only flow through matter but could produce unexpected phenomena like light? Research in sound has revealed the capacity of sound to influence matter in a way that produces light. The phenomenon of sonoluminescence (SL) is one example of this relationship.

The Equipment.

“If you want to find the secrets of the universe, think in terms of energy, frequency, and vibration.”
― Nikola Tesla

Sonoluminescence occurs when high-frequency sound vibrates tiny gas bubbles to reach star-like temperatures and emit flashes of light. The mechanism of sonoluminescence is not fully understood but its occurrence is well documented. As SL researchers probe deeper into the phenomenon, they have found that current fluid dynamic equations cannot explain why it happens. SL is a natural phenomenon as well, and marine biologists observe some species of shrimp using it as an attack against other creatures. It is the bridge between sound and light and can offer a deeper understanding of nature’s laws.

Sonoluminescence

In a study at UCLA called Sonoluminescence: How Bubbles Turn Sound into Lightscientists S.J. Putterman and K.R. Weninger explore the mathematics and phenomenology of sonoluminescence. It is known that this phenomenon is caused by the rapid expansion and contraction of a bubble. This is known because the broad-band UV light emitted appears at a frequency, though not continuously. Think of a strobe light as an analogy where flashes of light last only pico-seconds (trillionths of a second.) According to Prof. Putterman, the phenomenon of sonoluminescence can heat bubbles up to tens of thousands of degrees. The surface of these bubbles burns at about 20,000 K (~35,000 °F) and look like “little stars.”

Continue reading “Thunderbolts – Turning Sound Into Light”

The IllustrisTNG Project – Large Scale Cosmological Simulation

TNG

Somehow these guys are still thinking “Big Bang” and “Dark Matter”.

From their website:

The IllustrisTNG project is a suite of state-of-the-art cosmological galaxy formation simulations. Each simulation in IllustrisTNG evolves a large swath of a mock Universe from soon after the Big-Bang until the present day while taking into account a wide range of physical processes that drive galaxy formation. The simulations can be used to study a broad range of topics surrounding how the Universe — and the galaxies within it — evolved over time.

Scientific Goals

The goals of constructing such a large and ambitious simulation suite are to shed light on the physical processes that drive galaxy formation, to understand when, why, and how galaxies are evolving into the structures that are observed in the night sky, and to make predictions for current and future observational programs to broaden and deepen our understanding of galaxy formation. These goals are achieved not in a single step, but rather through a series of extended analyses of the simulations, each targeting specific science questions. Some of the first questions that have been specifically addressed using the TNG suite are characterizing the stellar masses, colors, and sizes of galaxies, understanding the physical origin of the heavy element (metallcity) distribution in galaxies and galaxy clusters, drawing connections between the presence of dynamically important magnetic fields and the observed radio emission from galaxies, and the clustering signal of galaxies and matter on large scales. Subsequent studies are expected to canvass an even broader range of topics.

Continue reading “The IllustrisTNG Project – Large Scale Cosmological Simulation”

Dynamic Symmetry – Phylotaxis – Oleh Bodnar

The term dynamic symmetry was for the first time applied by the American architecture researcher J. Hambidge to a certain principle of proportioning in architecture . Later this term independently appeared in physics where it was introduced to describe physical processes that are characterized by invariants. Finally, in the given research the term dynamic symmetry is applied to regularity of natural form-shaping that in terms of origin also appears not to be connected with Hambidge’s idea, and, moreover, appearance of this term in physics. However, all the three variants are deeply interconnected in terms of their meaning which we are going to show.

At first, we point out strategic similarity of Hambidge’s and our researches. This is a well-known historical direction which in the field of architecture and art is motivated by the search for harmony regularities and, thus, is aimed at studying the objects of nature. Usually architects take interest in the structural regularities of natural form-shaping and, particularly, in the golden section and Fibonacci numbers which are regularities standing out by their intriguing role in architectural form-shaping. It is not accidentally that architects who do researches so frequently pay attention to botanical phenomenon phyllotaxis which is characterized by these regularities.

DYNAMIC SYMMETRY IN NATURE AND ARCHITECTURE

Continue reading “Dynamic Symmetry – Phylotaxis – Oleh Bodnar”

Thunderbolts – Who Still Denies Electric Currents in Space?