https://youtu.be/ziarrVCK0G4
https://youtu.be/oTNI8hpWUrw
https://youtu.be/ziarrVCK0G4
https://youtu.be/oTNI8hpWUrw
using System.Collections; using System.Collections.Generic; using UnityEngine; using ProceduralToolkit; using UnityEngine.UI; using System; using ArgosTweenSpacePuppy; using VRTK; using System.IO; using UnityEngine.EventSystems; using System.Linq; public class Sphere_Expander : MonoBehaviour { public bool bSeparate_Faces = false; public bool bDrawTetrahedron = false; public int totalVerts = 0; public int filteredVerts = 0; public int vSort_Count_0; public int vSort_Count_1; public int vSort_Count_2; private ArgosMeshDraft aMD_TetraTerrean; private ArgosMeshDraft aMD_TT_Sleeve; private ArgosMeshDraft[] aMD_tt_Faces = new ArgosMeshDraft[4]; private GameObject[] tt_Faces = new GameObject[4]; private ArgosMeshDraft aMD_Spheres; private ArgosMeshDraft cylinder_MD; private ArgosMeshDraft scythe_MD; private GameObject scythe_GO; public Color col_edge_Cylinder; public Color col_Sphere; private GameObject[] spheres = new GameObject[4]; private Vector3[] sphere_pos = new Vector3[4]; public GameObject meshPF; public GameObject tetra_Vert_GOPF; private GameObject[] tetra_Verts_GO = new GameObject[4]; private GameObject[] tetra_Edges = new GameObject[6]; private GameObject TetraTerrien_GO; private GameObject TT_Sleeve_GO; public float[] lengths = new float[256]; public float[] hyperbola_of_R = new float[256]; public int all_Shape_Depth = 4; Vector3[] vC = new Vector3[4]; public class Vector_Sort { public Vector3 vert; public float dist = 0; public int vIDX = 0; } internal class PlaneHelper { /// <summary> /// Returns a value indicating what side (positive/negative) of a plane a point is /// </summary> /// <param name="point">The point to check with</param> /// <param name="plane">The plane to check against</param> /// <returns>Greater than zero if on the positive side, less than zero if on the negative size, 0 otherwise</returns> public static float ClassifyPoint(ref Vector3 point, ref Plane plane) { return point.x * plane.Normal.x + point.y * plane.Normal.y + point.z * plane.Normal.z + plane.D; } /// <summary> /// Returns the perpendicular distance from a point to a plane /// </summary> /// <param name="point">The point to check</param> /// <param name="plane">The place to check</param> /// <returns>The perpendicular distance from the point to the plane</returns> public static float PerpendicularDistance(ref Vector3 point, ref Plane plane) { // dist = (ax + by + cz + d) / sqrt(a*a + b*b + c*c) return Mathf.Abs((plane.Normal.x * point.x + plane.Normal.y * point.y + plane.Normal.z * point.z) / Mathf.Sqrt(plane.Normal.x * plane.Normal.x + plane.Normal.y * plane.Normal.y + plane.Normal.z * plane.Normal.z)); } } public struct Plane { #region Public Fields public float D; public Vector3 Normal; #endregion Public Fields #region Constructors public Plane(Vector4 value) : this(new Vector3(value.x, value.y, value.z), value.w) { } public Plane(Vector3 normal, float d) { Normal = normal; D = d; } public Plane(Vector3 a, Vector3 b, Vector3 c) { Vector3 ab = b - a; Vector3 ac = c - a; Vector3 cross = Vector3.Cross(ab, ac); Normal = Vector3.Normalize(cross); D = -(Vector3.Dot(Normal, a)); } public Plane(float a, float b, float c, float d) : this(new Vector3(a, b, c), d) { } #endregion Constructors public override string ToString() { return string.Format("{{Normal:{0} D:{1}}}", Normal, D); } } public enum TT_TYPE { SPHERICAL, HYPERBOLIC, OTHER, NONE, } public TT_TYPE ttType = TT_TYPE.SPHERICAL; public bool bSpheresON = true; public bool bTetraTerrean_On = false; [Range(0, 50f)] public float tetra_Radius; private float tetra_Radius_Last = 0; [Range(0, 100f)] public float scale_TT= 100f; [Range(0, 500f)] public float sphere_Radius; private float sphere_Radius_Last = 0; [Range(0, 0.5f)] public float cylinder_Radius; private Vector3[] tetra_Verts = new Vector3[4]; private Vector3[] face_Centers = new Vector3[4]; [Space(12)] [Header("Hyperbolic Settings")] [Space(12)] [Range(0, 1f)] public float base_Distance; [Range(0, 1f)] public float tangent_Base; [Range(0, 1f)] public float tangent_H; [Range(0, 1f)] public float smidge; public GameObject H_Editor_Label; public GameObject C_Editor_Label; public GameObject B_Editor_Label; public GameObject I_Editor_Label; public GameObject T1_Editor_Label; public GameObject T2_Editor_Label; private int frameCount = 1; private Vector3 vCHn, vIHn, vT1n, vT2n; private Vector3 vIH; StreamWriter sWrite; public bool bPrint_Trace = false; private Vector3[] beeS = new Vector3[4]; StreamWriter sLineVectors; private ArgosMeshDraft aMD_Nurbs_Mesh; GameObject pQuad_CARBON_LINE_go; private ArgosMeshDraft aMD_PQUAD_TMP; public enum RESOLUTION { RES_LOW, RES_MED, RES_HIGH, } public RESOLUTION rESOLUTION = RESOLUTION.RES_LOW; private RESOLUTION resolution_Last = RESOLUTION.RES_LOW; private int nRESOLUTION = 7; private List<Vector3> lst_mesh_v = new List<Vector3>(); public float[] spline_lengths = new float[256]; [Range(0, 10f)] public float short_Tan_mag = 1; [Range(0, 10f)] public float long_Tan_mag = 1; void Start() { sLineVectors = new StreamWriter("sLineVectors.txt"); aMD_TetraTerrean = new ArgosMeshDraft(); aMD_Spheres = new ArgosMeshDraft(); aMD_Spheres.Add(MeshDraft.Sphere(1,16,16)); cylinder_MD = new ArgosMeshDraft(); aMD_TT_Sleeve = new ArgosMeshDraft(); scythe_MD = new ArgosMeshDraft(); scythe_GO = Instantiate(meshPF, transform); scythe_GO.name = "SCYTHE_OUTLINE"; aMD_Nurbs_Mesh = new ArgosMeshDraft(); pQuad_CARBON_LINE_go = Instantiate(meshPF, transform); pQuad_CARBON_LINE_go.name = "pQuad_CARBON_LINE_go"; pQuad_CARBON_LINE_go.GetComponent<MeshRenderer>().enabled = false;//so we can see the TT sWrite = new StreamWriter("Hyperbolic_Params.txt"); for (int i = 0; i<4; i++) { spheres[i] = Instantiate(meshPF, transform); spheres[i].name = "sphere_" + i.ToString(); SetColor_Element(col_Sphere, spheres[i]); spheres[i].GetComponent<MeshFilter>().mesh = aMD_Spheres.ToMeshInternal(); tetra_Verts_GO[i] = Instantiate(tetra_Vert_GOPF, transform); tetra_Verts_GO[i].name = "TetVERT_" + i.ToString(); tt_Faces[i] = Instantiate(meshPF, transform); tt_Faces[i].name = "TT_Face_" + i.ToString(); aMD_tt_Faces[i] = new ArgosMeshDraft(); } for(int i = 0; i<6; i++) { tetra_Edges[i] = Instantiate(meshPF, transform); tetra_Edges[i].name = "edge_" + i.ToString(); SetColor_Element(col_edge_Cylinder, tetra_Edges[i]); tetra_Edges[i].GetComponent<MeshFilter>().mesh = cylinder_MD.ToMeshInternal(); } Set_Tetra_Verts(tetra_Radius); TetraTerrien_GO = Instantiate(meshPF, transform); TetraTerrien_GO.name = "TetraTerrien_GO"; aMD_TetraTerrean.Clear(); //Create_TETRA_TERREAN(all_Shape_Depth); //TetraTerrien_GO.GetComponent<MeshFilter>().mesh = aMD_TetraTerrean.ToMeshInternal(); TT_Sleeve_GO = Instantiate(meshPF, transform); TT_Sleeve_GO.name = "TT_Sleeve_GO"; aMD_TT_Sleeve.Clear(); aMD_PQUAD_TMP = new ArgosMeshDraft(); } /// <image url="$(SolutionDir)\EMB\Quad_Nurb.png" scale="0.15" /> public void PQuad_SetUp_VertsAndTans() { Vector3 v0; Vector3 v1; Vector3 v2; Vector3 v3; Vector3 t01; Vector3 t10; Vector3 t13; Vector3 t31; Vector3 t23; Vector3 t32; Vector3 t20; Vector3 t02; v0 = tetra_Verts[2]; v1 = v0; v1.y = -v1.y; v2 = tetra_Verts[3]; v3 = v2; v3.y = -v3.y; //short_Tan_mag; //long_Tan_mag; Vector3[] vTansNorm = new Vector3[4]; vTansNorm[0] = -v0.normalized; vTansNorm[1] = -v1.normalized; vTansNorm[2] = -v2.normalized; vTansNorm[3] = -v3.normalized; t01 = v0 + vTansNorm[0] * short_Tan_mag; t02 = v0 + vTansNorm[0] * long_Tan_mag; t10 = v1 + vTansNorm[1] * short_Tan_mag; t13 = v1 + vTansNorm[1] * long_Tan_mag; t23 = v2 + vTansNorm[2] * short_Tan_mag; t20 = v2 + vTansNorm[2] * long_Tan_mag; t32 = v3 + vTansNorm[3] * short_Tan_mag; t31 = v3 + vTansNorm[3] * long_Tan_mag; P_Quad_Generate(v0, v1, v2, v3, t01, t10, t13, t31, t23, t32, t20, t02); } public void P_Quad_Generate(Vector3 v0, Vector3 v1, Vector3 v2, Vector3 v3, Vector3 t01, Vector3 t10, Vector3 t13, Vector3 t31, Vector3 t23, Vector3 t32, Vector3 t20, Vector3 t02) { Set_Resolution(); lst_mesh_v.Clear(); aMD_Nurbs_Mesh.Clear(); float u = 0; float v = 0; float du = 1 / (float)nRESOLUTION; float dv = 1 / (float)nRESOLUTION; Vector3 t0, t1; Vector3 p0, p1; Vector3 p; for (int i = 0; i < nRESOLUTION + 1; i++) { t0 = GetPointOnBezierCurve(t02, t01, t10, t13, get_Adjusted(u, ref spline_lengths)); p0 = GetPointOnBezierCurve(v0, t01, t10, v1, get_Adjusted(u, ref spline_lengths)); t1 = GetPointOnBezierCurve(t20, t23, t32, t31, get_Adjusted(u, ref spline_lengths)); p1 = GetPointOnBezierCurve(v2, t23, t32, v3, get_Adjusted(u, ref spline_lengths)); Compute_Dist(ref spline_lengths, v0, t02, t20, v2); v = 0f; for (int j = 0; j < nRESOLUTION + 1; j++) { p = GetPointOnBezierCurve(p0, t0, t1, p1, get_Adjusted(v, ref spline_lengths)); lst_mesh_v.Add(p); v += dv; } u += du; } int stride = nRESOLUTION + 1; int k = 0; for (int i = 0; i < nRESOLUTION; i++) { for (int j = 0; j < nRESOLUTION; j++) { aMD_Nurbs_Mesh.Add(MeshDraft.Quad(lst_mesh_v[k], lst_mesh_v[k + 1], lst_mesh_v[k + stride + 1], lst_mesh_v[k + stride])); k++; } k++; } Quaternion q; float angle = 120; ArgosMeshDraft amdTmp = new ArgosMeshDraft(); amdTmp.Copy_MeshDraft(aMD_Nurbs_Mesh); amdTmp.Rotate(Quaternion.AngleAxis(angle, Vector3.up)); aMD_Nurbs_Mesh.Add(amdTmp); amdTmp.Rotate(Quaternion.AngleAxis(angle, Vector3.up)); aMD_Nurbs_Mesh.Add(amdTmp); aMD_PQUAD_TMP.Clear(); subdivide_PQUAD_TRIANGLE(tetra_Verts[2], tetra_Verts[3], tetra_Verts[1], all_Shape_Depth, spheres[2].transform.localPosition, 3, true); aMD_Nurbs_Mesh.Add(aMD_PQUAD_TMP); aMD_PQUAD_TMP.Rotate(Quaternion.AngleAxis(180, Vector3.forward)); aMD_Nurbs_Mesh.Add(aMD_PQUAD_TMP); pQuad_CARBON_LINE_go.GetComponent<MeshFilter>().mesh = aMD_Nurbs_Mesh.ToMeshInternal(); pQuad_CARBON_LINE_go.GetComponent<MeshFilter>().mesh.RecalculateNormals(60); } void subdivide_PQUAD_TRIANGLE(Vector3 v1, Vector3 v2, Vector3 v3, int depth, Vector3 sector_Foc, int nID, bool bFlipNorm) { Vector3 v12, v23, v31; Vector3 v12_n, v23_n, v31_n; if (depth == 0) { if (bFlipNorm) { addTriangle_UV_Tag_PQUAD(v1, v3, v2, (float)nID); } else { //if (nID == 1) //{ // vTest[i] = v1; // vTest2[i] = v2; // i++; //} addTriangle_UV_Tag_PQUAD(v3, v2, v1, (float)nID); } return; } v12 = (v1 + v2) / 2.0f; v23 = (v2 + v3) / 2.0f; v31 = (v3 + v1) / 2.0f; v12_n = Sphere_Surf(v12, sector_Foc); //sector_Foc v23_n = Sphere_Surf(v23, sector_Foc); v31_n = Sphere_Surf(v31, sector_Foc); //v12_n = v12; //sector_Foc //v23_n = v23; //v31_n = v31; /* recursively subdivide new triangles */ subdivide_PQUAD_TRIANGLE(v1, v12_n, v31_n, depth - 1, sector_Foc, 1, bFlipNorm); subdivide_PQUAD_TRIANGLE(v12_n, v2, v23_n, depth - 1, sector_Foc, 2, bFlipNorm); subdivide_PQUAD_TRIANGLE(v31_n, v23_n, v3, depth - 1, sector_Foc, 3, bFlipNorm); subdivide_PQUAD_TRIANGLE(v23_n, v31_n, v12_n, depth - 1, sector_Foc, 4, bFlipNorm); } private void Create_Top_Bottom(int depth) { //sleeve(tetra_Verts[1], tetra_Verts[2], tetra_Verts[3], spheres[2].transform.localPosition); subdivide_CarbonLine(tetra_Verts[1], tetra_Verts[3], tetra_Verts[2], depth, spheres[2].transform.localPosition, 3, false); List<Vector_Sort>[] vsortList = new List<Vector_Sort>[3]; vsortList[0] = new List<Vector_Sort>(); vsortList[1] = new List<Vector_Sort>(); vsortList[2] = new List<Vector_Sort>(); int[] id = new int[] { 0, 1, 2, 0, 2, 3, 0, 3, 1 }; Vector3 vert; for (int j = 0; j < 3; j++) { Plane p = new Plane(tetra_Verts[id[3 * j]], tetra_Verts[id[3 * j + 1]], tetra_Verts[id[3 * j + 2]]); p.D = p.D * 0.999f; Vector_Sort vs; filteredVerts = 0; for (int i = 0; i < aMD_TT_Sleeve.vertices.Count; i++) { vert = aMD_TT_Sleeve.vertices[i]; float res = PlaneHelper.ClassifyPoint(ref vert, ref p); if (res > 0) { filteredVerts++; vs = new Vector_Sort(); vs.vert = vert; vs.vIDX = i; vsortList[j].Add(vs); } } RemoveDuplicates(vsortList[j]); for (int i = 0; i < vsortList[j].Count; i++) { vsortList[j][i].dist = (tetra_Verts[j + 1] - vsortList[j][i].vert).magnitude; } var ordered = from element in vsortList[j] orderby element.dist select element; vsortList[j] = ordered.ToList<Vector_Sort>(); } for (int i = 0; i < aMD_TT_Sleeve.vertices.Count; i++) { aMD_TT_Sleeve.vertices[i] = Sphere_Surf(aMD_TT_Sleeve.vertices[i], spheres[2].transform.localPosition); } Plane p2 = new Plane(Vector3.up, 0); int vertCount = aMD_TT_Sleeve.vertices.Count; ArgosMeshDraft amdTemp = new ArgosMeshDraft(); amdTemp.Add(aMD_TT_Sleeve); aMD_TT_Sleeve.FlipTriangles(); aMD_TT_Sleeve.Add(amdTemp); aMD_TT_Sleeve.FlipNormals(); float d; for (int i = 0; i < vertCount; i++)//FLIP { vert = aMD_TT_Sleeve.vertices[i]; d = PlaneHelper.ClassifyPoint(ref vert, ref p2); aMD_TT_Sleeve.vertices[i] = vert - 2f * d * Vector3.up; } List<Vector3> vInnerLower = new List<Vector3>(); List<Vector3> vInnerUpper = new List<Vector3>(); List<Vector3> vPrint = new List<Vector3>(); for (int j = 0; j < 3; j++) { for (int i = 0; i < vsortList[j].Count; i++) { vert = aMD_TT_Sleeve.vertices[vsortList[j][i].vIDX]; //vCurr.y = 0; d = PlaneHelper.ClassifyPoint(ref vert, ref p2); if (j == 0) { vPrint.Add(vert - 2f * d * Vector3.up); } vInnerLower.Add(vert); vInnerUpper.Add(vert - 2f * d * Vector3.up); } } aMD_TT_Sleeve.Add(MeshDraft.Band(vInnerUpper, vInnerLower)); aMD_TT_Sleeve.Add(MeshDraft.Band(vInnerLower, vInnerUpper)); Generate_Line_List(vPrint); vSort_Count_0 = vsortList[0].Count; vSort_Count_1 = vsortList[1].Count; vSort_Count_2 = vsortList[2].Count; } private float get_Adjusted(float t, ref float[] lengths) { int i = 0; while (i < 256 && lengths[i] < t) { i++; } return (float)i / 256; } private void Compute_Dist(ref float[] lengths, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3) { float t = 0.0f; float dt = 1f / 256; Vector3 vB = GetPointOnBezierCurve(p0, p1, p2, p3, t); Vector3 vB_Last = vB; float running_Len = 0; for (int i = 0; i < 256; i++) { vB = GetPointOnBezierCurve(p0, p1, p2, p3, t); running_Len += (vB - vB_Last).magnitude; lengths[i] = running_Len; vB_Last = vB; t += dt; } for (int i = 0; i < 256; i++) { lengths[i] /= running_Len; } } private void Set_Resolution() { if (rESOLUTION != resolution_Last) { if (rESOLUTION == RESOLUTION.RES_LOW) { nRESOLUTION = 7; } else if (rESOLUTION == RESOLUTION.RES_MED) { nRESOLUTION = 18; } else if (rESOLUTION == RESOLUTION.RES_HIGH) { nRESOLUTION = 36; } } resolution_Last = rESOLUTION; } //void OnDrawGizmos() //{ // Gizmos.DrawIcon(H_Editor_Label.transform.position, "H.png", true); // Gizmos.DrawIcon(C_Editor_Label.transform.position, "C.png", true); // Gizmos.DrawIcon(I_Editor_Label.transform.position, "I.png", true); // Gizmos.DrawIcon(B_Editor_Label.transform.position, "B.png", true); // Gizmos.DrawIcon(T1_Editor_Label.transform.position, "T1.png", true); // Gizmos.DrawIcon(T2_Editor_Label.transform.position, "T2.png", true); // Gizmos.color = Color.green; // Gizmos.DrawLine(B_Editor_Label.transform.position, T1_Editor_Label.transform.position); // Gizmos.DrawLine(H_Editor_Label.transform.position, T2_Editor_Label.transform.position); //} private void OnApplicationQuit() { sWrite.Close(); } /// <image url="$(SolutionDir)\EMB\hyperbole2.png" scale="0.35"></image> private void build_Reference_Hyperbolic_Spline(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 vI) { //p4 = H float t = 0.0f; float dt = 1f / 256; Vector3 vB = GetPointOnBezierCurve(p0, p1, p2, p3, t); Vector3 vB_Last = vB; float running_Len = 0; float vI_Len = vI.magnitude; Vector3 vIn = vI.normalized; for (int i = 0; i < 256; i++) { vB = GetPointOnBezierCurve(p0, p1, p2, p3, t); running_Len += (vB - vB_Last).magnitude; lengths[i] = running_Len; hyperbola_of_R[i] = Vector3.Dot(vB, vIn); vB_Last = vB; t += dt; } for (int i = 0; i < 256; i++) { lengths[i] /= running_Len; } } public void Print_Trace(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 vI) { for (int i = 0; i < 256; i++) { sWrite.WriteLine(i.ToString() + "\t " + " -\t " + hyperbola_of_R[i].ToString("F2")); } sWrite.WriteLine("p0 Base " + "\t " + " -\t " + p0.ToString("F2")); sWrite.WriteLine("p1 Tangent_0 " + "\t " + " -\t " + p1.ToString("F2")); sWrite.WriteLine("p2 Tangent_1 " + "\t " + " -\t " + p2.ToString("F2")); sWrite.WriteLine("p3 H " + "\t " + " -\t " + p3.ToString("F2")); sWrite.WriteLine("vI " + "\t " + " -\t " + vI.ToString("F2")); } private void SetColor_Element(Color col, GameObject go) { float alpha = col.a; float alpha_out = alpha / 3f; Color cola = col; cola.a = alpha_out; go.GetComponent<MeshRenderer>().material.SetColor("_EmissionColor", cola); go.GetComponent<MeshRenderer>().material.SetColor("_Color", col); } public void Set_Tetra_Verts(float radius) { float tetrahedralAngle = Mathf.PI * -19.471220333f / 180; float segmentAngle = Mathf.PI * 2 / 3; float currentAngle = 0f; Vector3 v = new Vector3(0, radius, 0); tetra_Verts[0] = v; for (var i = 1; i < 4; i++) { tetra_Verts[i] = PTUtils.PointOnSphere(radius, currentAngle, tetrahedralAngle); currentAngle += segmentAngle; } face_Centers[0] = (tetra_Verts[0] + tetra_Verts[1] + tetra_Verts[2]) / 3f; face_Centers[1] = (tetra_Verts[0] + tetra_Verts[2] + tetra_Verts[3]) / 3f; face_Centers[2] = (tetra_Verts[1] + tetra_Verts[2] + tetra_Verts[3]) / 3f; face_Centers[3] = (tetra_Verts[0] + tetra_Verts[1] + tetra_Verts[3]) / 3f; float edge_length = (tetra_Verts[0] - tetra_Verts[1]).magnitude; edge_length = radius * 2f * Mathf.Sqrt(2f) / Mathf.Sqrt(3); cylinder_MD.Add(MeshDraft.Cylinder_Z(cylinder_Radius, 5, edge_length)); //tetra_Edges[0].transform.localPosition = tetra_Verts[0]; //tetra_Edges[0].transform.localRotation = Quaternion.LookRotation(tetra_Verts[1] - tetra_Verts[0]); //tetra_Edges[0].GetComponent<MeshFilter>().mesh = cylinder_MD.ToMeshInternal(); //tetra_Edges[1].transform.localPosition = tetra_Verts[1]; //tetra_Edges[1].transform.localRotation = Quaternion.LookRotation(tetra_Verts[2] - tetra_Verts[1]); //tetra_Edges[1].GetComponent<MeshFilter>().mesh = cylinder_MD.ToMeshInternal(); //tetra_Edges[2].transform.localPosition = tetra_Verts[2]; //tetra_Edges[2].transform.localRotation = Quaternion.LookRotation(tetra_Verts[3] - tetra_Verts[2]); //tetra_Edges[2].GetComponent<MeshFilter>().mesh = cylinder_MD.ToMeshInternal(); //tetra_Edges[3].transform.localPosition = tetra_Verts[3]; //tetra_Edges[3].transform.localRotation = Quaternion.LookRotation(tetra_Verts[0] - tetra_Verts[3]); //tetra_Edges[3].GetComponent<MeshFilter>().mesh = cylinder_MD.ToMeshInternal(); //tetra_Edges[4].transform.localPosition = tetra_Verts[1]; //tetra_Edges[4].transform.localRotation = Quaternion.LookRotation(tetra_Verts[3] - tetra_Verts[1]); //tetra_Edges[4].GetComponent<MeshFilter>().mesh = cylinder_MD.ToMeshInternal(); //tetra_Edges[5].transform.localPosition = tetra_Verts[2]; //tetra_Edges[5].transform.localRotation = Quaternion.LookRotation(tetra_Verts[0] - tetra_Verts[2]); //tetra_Edges[5].GetComponent<MeshFilter>().mesh = cylinder_MD.ToMeshInternal(); } private void Create_Scythe(int depth) { subdivide_CarbonLine(tetra_Verts[1], tetra_Verts[3], tetra_Verts[2], depth, spheres[2].transform.localPosition, 3, false); } void Update() { PQuad_SetUp_VertsAndTans(); cylinder_MD.Clear(); scythe_MD.Clear(); Set_Tetra_Verts(tetra_Radius); if (sphere_Radius_Last != sphere_Radius) { float face_dist; float tetra_Height; Vector3 face_Norm; float a, b; aMD_Spheres.Clear(); aMD_Spheres.Add(MeshDraft.Sphere(sphere_Radius, 36, 32)); for (int i = 0; i < 4; i++) { face_dist = face_Centers[i].magnitude; tetra_Height = 1.33333f * tetra_Radius; a = 2 * Mathf.Sqrt(2) / 3; b = Mathf.Sqrt(sphere_Radius * sphere_Radius - tetra_Radius * tetra_Radius * 8f / 9f); face_Norm = face_Centers[i].normalized; spheres[i].transform.localPosition = face_Norm * (tetra_Radius / 3 + b); spheres[i].transform.localRotation = Quaternion.LookRotation(sphere_pos[i]); spheres[i].GetComponent<MeshFilter>().mesh = aMD_Spheres.ToMeshInternal(); tetra_Verts_GO[i].transform.localPosition = tetra_Verts[i]; } } sphere_Radius_Last = sphere_Radius; tetra_Radius_Last = tetra_Radius; if (bSpheresON) { ShowSpheres(true); } else { ShowSpheres(false); } aMD_TetraTerrean.Clear(); for (int i = 0; i < 4; i++) { aMD_tt_Faces[i].Clear(); } Create_TETRA_TERREAN(all_Shape_Depth); if (bSeparate_Faces) { for (int i = 0; i < 4; i++) { tt_Faces[i].GetComponent<MeshFilter>().mesh = aMD_tt_Faces[i].ToMeshInternal(); } } else { aMD_TetraTerrean.FlipTriangles(); aMD_TetraTerrean.FlipNormals(); TetraTerrien_GO.GetComponent<MeshFilter>().mesh = aMD_TetraTerrean.ToMeshInternal(); TetraTerrien_GO.GetComponent<MeshFilter>().mesh.RecalculateNormals(60); } //Create_Scythe(all_Shape_Depth); //aMD_TT_Sleeve.Clear(); //Create_TETRA_TERREAN_Sleeve(all_Shape_Depth); //TT_Sleeve_GO.GetComponent<MeshFilter>().mesh = aMD_TT_Sleeve.ToMeshInternal(); //TT_Sleeve_GO.GetComponent<MeshFilter>().mesh.RecalculateNormals(60); sphere_Radius_Last = sphere_Radius; tetra_Radius_Last = tetra_Radius; } private void ShowSpheres(bool bOn) { for(int i = 0; i<4; i++) { spheres[i].GetComponent<MeshRenderer>().enabled = bOn; } } public void Calc_Tetra_Verts(float radius) { float tetrahedralAngle = Mathf.PI * -19.471220333f / 180; float segmentAngle = Mathf.PI * 2 / 3; float currentAngle = 0f; Vector3 v = new Vector3(0, radius, 0); sphere_pos[0] = v; for (var i = 1; i < 4; i++) { sphere_pos[i] = PTUtils.PointOnSphere(radius, currentAngle, tetrahedralAngle); currentAngle += segmentAngle; } } private Vector3 Sphere_Surf(Vector3 vP0, Vector3 sector_Focus) { Vector3 l = vP0.normalized; Vector3 OminC = -sector_Focus; float rsqr = sphere_Radius * sphere_Radius; float dotLOminC = Vector3.Dot(l, OminC); float Omag = OminC.magnitude; float d = -dotLOminC - Mathf.Sqrt(dotLOminC * dotLOminC - Omag * Omag + sphere_Radius * sphere_Radius); return l * d; } private Vector3 Hyperbolic(Vector3 vP0, Vector3 face_Center) { Vector3 vFCn = face_Center.normalized; Vector3 dotV = Vector3.Dot(vP0, vFCn)* vFCn; Vector3 radV = vP0 - dotV; Vector3 vP0n = vP0.normalized; float radial_mag = radV.magnitude; float perc = (radial_mag / vIH.magnitude)*255; float gVal = 0f; //if (perc < 256) //{ gVal = hyperbola_of_R[(int)perc]; //} return (gVal*vFCn + radV); } void Extrude_1(Vector3 v1, Vector3 v2, Vector3 v3, int nID, Vector3 sector_Foc) { Vector3 nSect = tetra_Verts[0].normalized; float spar = (1f / 9f) * sphere_Radius; float d1, d2, d3; d1 = Vector3.Dot(v1, nSect); d2 = Vector3.Dot(v2, nSect); d3 = Vector3.Dot(v3, nSect); Vector3 ob1 = (spar - d1) * nSect; Vector3 ob2 = (spar - d2) * nSect; Vector3 ob3 = (spar - d3) * nSect; if (nID == 0) { addTriangle(v1 + 2 * ob1, v2 + 2 * ob2, v3 + 2 * ob3); } else { ob1 = PosCheck(nSect, d1, (d1 / spar), v1 - d1 * nSect); ob2 = PosCheck(nSect, d2, (d2 / spar), v2 - d2 * nSect); ob3 = PosCheck(nSect, d3, (d3 / spar), v3 - d3 * nSect); addTriangle(v1 + ob1, v2 + ob2, v3 + ob3); } } private Vector3 PosCheck(Vector3 v1, float d, float multiplier, Vector3 vHorz) { return Vector3.zero; } public static void RemoveDuplicates(List<Vector_Sort> list) { if (list == null) { return; } int i = 1; while (i < list.Count) { int j = 0; bool remove = false; while (j < i && !remove) { if (list[i].vert.Equals(list[j].vert)) { remove = true; } j++; } if (remove) { list.RemoveAt(i); } else { i++; } } } private void Create_TETRA_TERREAN_Sleeve(int depth) { //sleeve(tetra_Verts[1], tetra_Verts[2], tetra_Verts[3], spheres[2].transform.localPosition); subdivide_CarbonLine(tetra_Verts[1], tetra_Verts[3], tetra_Verts[2], depth, spheres[2].transform.localPosition, 3, false); List<Vector_Sort>[] vsortList = new List<Vector_Sort>[3]; vsortList[0] = new List<Vector_Sort>(); vsortList[1] = new List<Vector_Sort>(); vsortList[2] = new List<Vector_Sort>(); int[] id = new int [] { 0, 1, 2, 0, 2, 3, 0, 3, 1 }; Vector3 vert; for (int j = 0; j < 3; j++) { Plane p = new Plane(tetra_Verts[id[3*j]], tetra_Verts[id[3*j+1]], tetra_Verts[id[3*j+2]]); p.D = p.D * 0.999f; Vector_Sort vs; filteredVerts = 0; for (int i = 0; i < aMD_TT_Sleeve.vertices.Count; i++) { vert = aMD_TT_Sleeve.vertices[i]; float res = PlaneHelper.ClassifyPoint(ref vert, ref p); if (res > 0) { filteredVerts++; vs = new Vector_Sort(); vs.vert = vert; vs.vIDX = i; vsortList[j].Add(vs); } } RemoveDuplicates(vsortList[j]); for (int i = 0; i < vsortList[j].Count; i++) { vsortList[j][i].dist = (tetra_Verts[j+1] - vsortList[j][i].vert).magnitude; } var ordered = from element in vsortList[j] orderby element.dist select element; vsortList[j] = ordered.ToList<Vector_Sort>(); } for(int i = 0; i < aMD_TT_Sleeve.vertices.Count; i++) { aMD_TT_Sleeve.vertices[i] = Sphere_Surf(aMD_TT_Sleeve.vertices[i], spheres[2].transform.localPosition); } Plane p2 = new Plane(Vector3.up, 0); int vertCount = aMD_TT_Sleeve.vertices.Count; ArgosMeshDraft amdTemp = new ArgosMeshDraft(); amdTemp.Add(aMD_TT_Sleeve); aMD_TT_Sleeve.FlipTriangles(); aMD_TT_Sleeve.Add(amdTemp); aMD_TT_Sleeve.FlipNormals(); float d; for(int i = 0; i < vertCount; i++)//FLIP { vert = aMD_TT_Sleeve.vertices[i]; d = PlaneHelper.ClassifyPoint(ref vert, ref p2); aMD_TT_Sleeve.vertices[i] = vert - 2f * d * Vector3.up; } List<Vector3> vInnerLower = new List<Vector3>(); List<Vector3> vInnerUpper = new List<Vector3>(); List<Vector3> vPrint = new List<Vector3>(); for (int j = 0; j < 3; j++) { for (int i = 0; i < vsortList[j].Count; i++) { vert = aMD_TT_Sleeve.vertices[vsortList[j][i].vIDX]; //vCurr.y = 0; d = PlaneHelper.ClassifyPoint(ref vert, ref p2); if(j==0) { vPrint.Add(vert - 2f * d * Vector3.up); } vInnerLower.Add(vert); vInnerUpper.Add(vert - 2f * d * Vector3.up); } } aMD_TT_Sleeve.Add(MeshDraft.Band(vInnerUpper, vInnerLower)); aMD_TT_Sleeve.Add(MeshDraft.Band(vInnerLower, vInnerUpper)); Generate_Line_List(vPrint); vSort_Count_0 = vsortList[0].Count; vSort_Count_1 = vsortList[1].Count; vSort_Count_2 = vsortList[2].Count; } bool bwritten = false; void Generate_Line_List(List<Vector3> vPrint) { if (!bwritten) { vPrint.Insert(0, tetra_Verts[1]); vPrint.Add(tetra_Verts[2]); //vPrint[0] = tetra_Verts[1]; //vPrint[vPrint.Count - 1] = tetra_Verts[2]; for (int i = 0; i < vPrint.Count-1; i++) { sLineVectors.Write("new Vector3(" + vPrint[i].x.ToString("F3") + "f, " + vPrint[i].y.ToString("F3") + "f, " + vPrint[i].z.ToString("F3") + "f), " + "new Vector3(" + vPrint[i+1].x.ToString("F3") + "f, " + vPrint[i+1].y.ToString("F3") + "f, " + vPrint[i+1].z.ToString("F3") + "f), "); } Quaternion q; float angle = 120f; Vector3 axis = Vector3.up; q = Quaternion.AngleAxis(angle, axis); Vector3 vRota; Vector3 vRota2; for (int i = 0; i< vPrint.Count-1; i++) { vRota = q * vPrint[i]; vRota2 = q * vPrint[i+1]; sLineVectors.Write("new Vector3(" + vRota.x.ToString("F3") + "f, " + vRota.y.ToString("F3") + "f, " + vRota.z.ToString("F3") + "f), " + "new Vector3(" + vRota2.x.ToString("F3") + "f, " + vRota2.y.ToString("F3") + "f, " + vRota2.z.ToString("F3") + "f), "); } angle = 240; q = Quaternion.AngleAxis(angle, axis); for (int i = 0; i < vPrint.Count - 1; i++) { vRota = q * vPrint[i]; vRota2 = q * vPrint[i + 1]; sLineVectors.Write("new Vector3(" + vRota.x.ToString("F3") + "f, " + vRota.y.ToString("F3") + "f, " + vRota.z.ToString("F3") + "f), " + "new Vector3(" + vRota2.x.ToString("F3") + "f, " + vRota2.y.ToString("F3") + "f, " + vRota2.z.ToString("F3") + "f), "); } /////////////////////////UPPERS////////////////////// List<Vector3> vlUppers = new List<Vector3>(); axis = tetra_Verts[1].normalized; angle = 120; q = Quaternion.AngleAxis(angle, axis); for (int i = 0; i < vPrint.Count - 1; i++) { vRota = q * vPrint[i]; vRota2 = q * vPrint[i + 1]; vlUppers.Add(vRota); vlUppers.Add(vRota2); sLineVectors.Write("new Vector3(" + vRota.x.ToString("F3") + "f, " + vRota.y.ToString("F3") + "f, " + vRota.z.ToString("F3") + "f), " + "new Vector3(" + vRota2.x.ToString("F3") + "f, " + vRota2.y.ToString("F3") + "f, " + vRota2.z.ToString("F3") + "f), "); } axis = Vector3.up; angle = 120; q = Quaternion.AngleAxis(angle, axis); for (int i = 0; i < vlUppers.Count - 1; i++) { vRota = q * vlUppers[i]; vRota2 = q * vlUppers[i + 1]; sLineVectors.Write("new Vector3(" + vRota.x.ToString("F3") + "f, " + vRota.y.ToString("F3") + "f, " + vRota.z.ToString("F3") + "f), " + "new Vector3(" + vRota2.x.ToString("F3") + "f, " + vRota2.y.ToString("F3") + "f, " + vRota2.z.ToString("F3") + "f), "); } angle = 240; q = Quaternion.AngleAxis(angle, axis); for (int i = 0; i < vlUppers.Count - 1; i++) { vRota = q * vlUppers[i]; vRota2 = q * vlUppers[i + 1]; sLineVectors.Write("new Vector3(" + vRota.x.ToString("F3") + "f, " + vRota.y.ToString("F3") + "f, " + vRota.z.ToString("F3") + "f), " + "new Vector3(" + vRota2.x.ToString("F3") + "f, " + vRota2.y.ToString("F3") + "f, " + vRota2.z.ToString("F3") + "f), "); } } sLineVectors.Close(); bwritten = true; } void sleeve(Vector3 v1, Vector3 v2, Vector3 v3, Vector3 sector_Foc) { Vector3 vCurr; //v1.y = v2.y = v3.y = 0; List<Vector3> vInnerLower = new List<Vector3>(); List<Vector3> vInnerUpper = new List<Vector3>(); Vector3 vUp = Vector3.up; Vector3[] vAlpha = new[] { v1, v2, v3 }; Vector3[] vOmega = new[] { v2, v3, v1 }; float t = 0; float dt = 1 / 60f; float d; float el; for (int j = 0; j < 3; j++) { t = 0; for (int i = 0; i < 60; i++) { vCurr = Sphere_Surf(Vector3.Lerp(vAlpha[j], vOmega[j], t), sector_Foc); //vCurr.y = 0; d = vCurr.y; el = Mathf.Sqrt(tetra_Radius * tetra_Radius - d * d); //vInnerLower.Add(vCurr + el*vUp); //vInnerUpper.Add(vCurr - el*vUp); vInnerLower.Add(vCurr); vInnerUpper.Add(vCurr - 2f * d * vUp); t += dt; } } aMD_TT_Sleeve.Add(MeshDraft.Band(vInnerUpper, vInnerLower)); aMD_TT_Sleeve.Add(MeshDraft.Band(vInnerLower, vInnerUpper)); } Vector3[] vTest = new Vector3[1024]; Vector3[] vTest2 = new Vector3[1024]; int i = 0; void subdivide_CarbonLine(Vector3 v1, Vector3 v2, Vector3 v3, int depth, Vector3 sector_Foc, int nID, bool bFlipNorm) { Vector3 v12, v23, v31; Vector3 v12_n, v23_n, v31_n; if (depth == 0) { if (bFlipNorm) { addTriangle_UV_Tag_CarbonLine(v1, v3, v2, (float)nID); } else { //if (nID == 1) //{ // vTest[i] = v1; // vTest2[i] = v2; // i++; //} addTriangle_UV_Tag_CarbonLine(v1, v2, v3, (float)nID); } return; } v12 = (v1 + v2) / 2.0f; v23 = (v2 + v3) / 2.0f; v31 = (v3 + v1) / 2.0f; //v12_n = Sphere_Surf(v12, sector_Foc); //sector_Foc //v23_n = Sphere_Surf(v23, sector_Foc); //v31_n = Sphere_Surf(v31, sector_Foc); v12_n = v12; //sector_Foc v23_n = v23; v31_n = v31; /* recursively subdivide new triangles */ subdivide_CarbonLine(v1, v12_n, v31_n, depth - 1, sector_Foc, 1, bFlipNorm); subdivide_CarbonLine(v12_n, v2, v23_n, depth - 1, sector_Foc, 2, bFlipNorm); subdivide_CarbonLine(v31_n, v23_n, v3, depth - 1, sector_Foc, 3, bFlipNorm); subdivide_CarbonLine(v23_n, v31_n, v12_n, depth - 1, sector_Foc, 4, bFlipNorm); } private void Create_TETRA_TERREAN(int depth) { float scl = scale_TT / 100f; if (ttType == TT_TYPE.SPHERICAL) { subdivide(tetra_Verts[0], tetra_Verts[1], tetra_Verts[2], depth, spheres[0].transform.localPosition, 0, true); subdivide(tetra_Verts[0], tetra_Verts[2], tetra_Verts[3], depth, spheres[1].transform.localPosition, 1, true); subdivide(tetra_Verts[0], tetra_Verts[3], tetra_Verts[1], depth, spheres[3].transform.localPosition, 2, true); subdivide(tetra_Verts[1], tetra_Verts[3], tetra_Verts[2], depth, spheres[2].transform.localPosition, 3, true); //subdivide(tetra_Verts[0], tetra_Verts[1], tetra_Verts[2], depth, spheres[0].transform.localPosition, 0, false);//Inside //subdivide(tetra_Verts[0], tetra_Verts[2], tetra_Verts[3], depth, spheres[1].transform.localPosition, 1, false); //subdivide(tetra_Verts[0], tetra_Verts[3], tetra_Verts[1], depth, spheres[3].transform.localPosition, 2, false); } else if(ttType == TT_TYPE.HYPERBOLIC) { Vector3[] fc = new Vector3[4]; fc[0] = (tetra_Verts[0] + tetra_Verts[1] + tetra_Verts[2]) / 3f; fc[1] = (tetra_Verts[0] + tetra_Verts[2] + tetra_Verts[3]) / 3f; fc[2] = (tetra_Verts[1] + tetra_Verts[3] + tetra_Verts[2]) / 3f; fc[3] = (tetra_Verts[0] + tetra_Verts[3] + tetra_Verts[1]) / 3f; beeS[0] = base_Distance * tetra_Radius * fc[0].normalized; beeS[1] = base_Distance * tetra_Radius * fc[1].normalized; beeS[2] = base_Distance * tetra_Radius * fc[2].normalized; beeS[3] = base_Distance * tetra_Radius * fc[3].normalized; subdivide(tetra_Verts[0], tetra_Verts[1], tetra_Verts[2], depth, fc[0], 0, false); subdivide(tetra_Verts[0], tetra_Verts[2], tetra_Verts[3], depth, fc[1], 1, false); subdivide(tetra_Verts[1], tetra_Verts[3], tetra_Verts[2], depth, fc[2], 2, false); subdivide(tetra_Verts[0], tetra_Verts[3], tetra_Verts[1], depth, fc[3], 3, false); Scale_Radially(); } } private void Scale_Radially() { float ratio = 0; Vector3 v; float fidx; float len; for (int i = 0; i<aMD_TetraTerrean.vertices.Count; i++) { fidx = aMD_TetraTerrean.uv[i].x; ratio = aMD_TetraTerrean.vertices[i].magnitude / tetra_Radius; aMD_TetraTerrean.vertices[i] *= ((smidge * ratio) + (1 - smidge)); } } void subdivide(Vector3 v1, Vector3 v2, Vector3 v3, int depth, Vector3 sector_Foc, int nID, bool bFlipNorm) { Vector3 v12, v23, v31; Vector3 v12_n, v23_n, v31_n; if (depth == 0) { if (ttType == TT_TYPE.SPHERICAL || ttType == TT_TYPE.HYPERBOLIC) { if (bFlipNorm) { addTriangle_UV_Tag(v1, v3, v2, (float)nID); } else { addTriangle_UV_Tag(v1, v2, v3, (float)nID); } } else if (ttType == TT_TYPE.OTHER) { Extrude_1(v1, v2, v3, nID, sector_Foc); } return; } v12 = (v1 + v2) / 2.0f; v23 = (v2 + v3) / 2.0f; v31 = (v3 + v1) / 2.0f; //intrude midpoints if (ttType == TT_TYPE.SPHERICAL) { v12_n = Sphere_Surf(v12, sector_Foc); //sector_Foc v23_n = Sphere_Surf(v23, sector_Foc); v31_n = Sphere_Surf(v31, sector_Foc); } else if(ttType == TT_TYPE.HYPERBOLIC) { v12_n = Hyperbolic(v12, sector_Foc); //sector_Foc v23_n = Hyperbolic(v23, sector_Foc); v31_n = Hyperbolic(v31, sector_Foc); } else if (ttType == TT_TYPE.OTHER) { v12_n = Extrude_1(v12, sector_Foc); //sector_Foc v23_n = Extrude_1(v23, sector_Foc); v31_n = Extrude_1(v31, sector_Foc); } else { v12_n = Vector3.zero; v23_n = Vector3.zero; v31_n = Vector3.zero; } /* recursively subdivide new triangles */ subdivide(v1, v12_n, v31_n, depth - 1, sector_Foc, nID, bFlipNorm); subdivide(v12_n, v2, v23_n, depth - 1, sector_Foc, nID, bFlipNorm); subdivide(v31_n, v23_n, v3, depth - 1, sector_Foc, nID, bFlipNorm); subdivide(v23_n, v31_n, v12_n, depth - 1, sector_Foc, nID, bFlipNorm); } private Vector3 Extrude_1(Vector3 vP0, Vector3 sector_Focus) { Vector3 l = vP0.normalized; Vector3 OminC = -sector_Focus; float rsqr = sphere_Radius * sphere_Radius; float dotLOminC = Vector3.Dot(l, OminC); float Omag = OminC.magnitude; float d = -dotLOminC - Mathf.Sqrt(dotLOminC * dotLOminC - Omag * Omag + sphere_Radius * sphere_Radius); return (l * d); } void addTriangle(Vector3 v0, Vector3 v1, Vector3 v2) { aMD_TetraTerrean.Add(MeshDraft.Triangle(v0, v1, v2)); } void addTriangle_UV_Tag(Vector3 v0, Vector3 v1, Vector3 v2, float uvTag) { if (bSeparate_Faces) { aMD_tt_Faces[(int)uvTag].Add(MeshDraft.Triangl_UV_Tag(v0, v1, v2, uvTag)); } else { aMD_TetraTerrean.Add(MeshDraft.Triangl_UV_Tag(v0, v1, v2, uvTag)); } } void addTriangle_UV_Tag_CarbonLine(Vector3 v0, Vector3 v1, Vector3 v2, float uvTag) { aMD_TT_Sleeve.Add(MeshDraft.Triangl_UV_Tag(v0, v1, v2, uvTag)); } void addTriangle_Skythe(Vector3 v0, Vector3 v1, Vector3 v2, float uvTag) { scythe_MD.Add(MeshDraft.Triangl_UV_Tag(v0, v1, v2, uvTag)); } void addTriangle_UV_Tag_PQUAD(Vector3 v0, Vector3 v1, Vector3 v2, float uvTag) { aMD_PQUAD_TMP.Add(MeshDraft.Triangl_UV_Tag(v0, v1, v2, uvTag)); } public Vector3 GetPointOnBezierCurve(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) { float u = 1f - t; float t2 = t * t; float u2 = u * u; float u3 = u2 * u; float t3 = t2 * t; Vector3 result = (u3) * p0 + (3f * u2 * t) * p1 + (3f * u * t2) * p2 + (t3) * p3; return result; } /// <image url="$(SolutionDir)\EMB\hyperbole.png" scale="0.45"></image> /// } /// <image url="$(SolutionDir)\EMB\CD.png" scale="0.16803" /> //int countDown = 10; //void Update() // Original //{ // H_Editor_Label.transform.position = tetra_Verts_GO[0].transform.position; // C_Editor_Label.transform.position = transform.position; // Vector3 v = (tetra_Verts_GO[0].transform.localPosition + tetra_Verts_GO[1].transform.localPosition + tetra_Verts_GO[2].transform.localPosition) /3; // I_Editor_Label.transform.position = v + transform.position; // B_Editor_Label.transform.position = transform.position + base_Distance*tetra_Radius*v.normalized; // vCHn = (H_Editor_Label.transform.localPosition - C_Editor_Label.transform.localPosition).normalized; // vIH = (H_Editor_Label.transform.localPosition - I_Editor_Label.transform.localPosition); // vIHn = vIH.normalized; // vT1n = Vector3.Dot(vCHn, vIHn) * vIHn; // vT2n = vCHn; // T1_Editor_Label.transform.localPosition = (vT1n * tangent_Base * tetra_Radius + B_Editor_Label.transform.localPosition); // T2_Editor_Label.transform.localPosition = (H_Editor_Label.transform.localPosition - vT2n * tangent_H * tetra_Radius); // if(frameCount-- == 0 || bPrint_Trace) // { // frameCount = 10; // build_Reference_Hyperbolic_Spline(B_Editor_Label.transform.localPosition, T1_Editor_Label.transform.localPosition, // T2_Editor_Label.transform.localPosition, H_Editor_Label.transform.localPosition, // I_Editor_Label.transform.localPosition); // if(--countDown == 0 || bPrint_Trace) // { // Print_Trace(B_Editor_Label.transform.localPosition, T1_Editor_Label.transform.localPosition, // T2_Editor_Label.transform.localPosition, H_Editor_Label.transform.localPosition, // I_Editor_Label.transform.localPosition); // } // } // bPrint_Trace = false; // aMD_Spheres.Clear(); // aMD_Spheres.Add(MeshDraft.Sphere(sphere_Radius, 36, 32)); // cylinder_MD.Clear(); // Set_Tetra_Verts(tetra_Radius); // float face_dist; // float tetra_Height; // Vector3 face_Norm; // float a, b; // if (sphere_Radius_Last != sphere_Radius) // { // for (int i = 0; i < 4; i++) // { // face_dist = face_Centers[i].magnitude; // tetra_Height = 1.33333f * tetra_Radius; // a = 2 * Mathf.Sqrt(2) / 3; // b = Mathf.Sqrt(sphere_Radius * sphere_Radius - tetra_Radius * tetra_Radius * 8f / 9f); // face_Norm = face_Centers[i].normalized; // spheres[i].transform.localPosition = face_Norm * (tetra_Radius / 3 + b); // spheres[i].transform.localRotation = Quaternion.LookRotation(sphere_pos[i]); // spheres[i].GetComponent<MeshFilter>().mesh = aMD_Spheres.ToMeshInternal(); // tetra_Verts_GO[i].transform.localPosition = tetra_Verts[i]; // } // } // sphere_Radius_Last = sphere_Radius; // tetra_Radius_Last = tetra_Radius; // //if ((sphere_Radius_Last != sphere_Radius || tetra_Radius_Last != tetra_Radius) && bTetraTerrean_On) // //{ // aMD_TetraTerrean.Clear(); // for (int i = 0; i < 4; i++) // { // aMD_tt_Faces[i].Clear(); // } // Create_TETRA_TERREAN(all_Shape_Depth); // if (bSeparate_Faces) // { // for (int i = 0; i < 4; i++) // { // tt_Faces[i].GetComponent<MeshFilter>().mesh = aMD_tt_Faces[i].ToMeshInternal(); // } // } // else // { // TetraTerrien_GO.GetComponent<MeshFilter>().mesh = aMD_TetraTerrean.ToMeshInternal(); // TetraTerrien_GO.GetComponent<MeshFilter>().mesh.RecalculateNormals(60); // } // aMD_TT_Sleeve.Clear(); // Create_TETRA_TERREAN_Sleeve(); // TT_Sleeve_GO.GetComponent<MeshFilter>().mesh = aMD_TT_Sleeve.ToMeshInternal(); // TT_Sleeve_GO.GetComponent<MeshFilter>().mesh.RecalculateNormals(60); // sphere_Radius_Last = sphere_Radius; // tetra_Radius_Last = tetra_Radius; // if (bSpheresON) // { // ShowSpheres(true); // } // else // { // ShowSpheres(false); // } //}
public void OnShow_Differential_Rings() { if (amd == null) { amd = new ArgosMeshDraft(); } else { amd.Clear(); } GetComponent<MeshRenderer>().enabled = true; setColor(orbitColor); List<Vector3> vInnerLower = new List<Vector3>(); List<Vector3> vOuterLower = new List<Vector3>(); List<Vector3> vInnerUpper = new List<Vector3>(); List<Vector3> vOuterUpper = new List<Vector3>(); List<Vector3> vDisk = new List<Vector3>(); float op = Mathf.PI * 2f; float delta_theta = op / 180; float theta = 0; Vector3 vPos_Lower; Vector3 vPos_Upper; Vector3 vNorm; float w_by_2 = cylinder_Width * 0.66666f;//to differentiate from Helix float rad = cylinder_Radius; Vector3 vZero = (cylinder_Offset + cylinder_Height / 2) * Vector3.up; vDisk.Add(vZero); for (int i = 0; i < 180; i++) { vPos_Lower = rad * Mathf.Cos(theta) * Vector3.right + rad * Mathf.Sin(theta) * Vector3.forward; float theta_Mod = theta % (Mathf.PI*2f/3f); float lout = rad; if (theta_Mod < 60) { lout = (1f - 0.5f * theta_Mod / (Mathf.PI/ 3f)); } else { lout = (0.5f + 0.5f * (theta_Mod - (Mathf.PI / 3f)) / (Mathf.PI / 3f)); } vPos_Lower *= lout; vPos_Upper = vPos_Lower; vNorm = vPos_Lower.normalized; vPos_Lower += cylinder_Offset * Vector3.up; vInnerLower.Add(vPos_Lower - w_by_2 * vNorm); vOuterLower.Add(vPos_Lower + w_by_2 * vNorm); vPos_Lower += (cylinder_Height / 2) * Vector3.up; vDisk.Add(vPos_Lower - w_by_2 * vNorm); vPos_Upper += cylinder_Height * Vector3.up + cylinder_Offset * Vector3.up; vInnerUpper.Add(vPos_Upper - w_by_2 * vNorm); vOuterUpper.Add(vPos_Upper + w_by_2 * vNorm); theta += delta_theta; } amd.Add(MeshDraft.Band(vOuterLower, vInnerLower)); amd.Add(MeshDraft.Band(vInnerUpper, vOuterUpper)); amd.Add(MeshDraft.Band(vInnerLower, vInnerUpper)); amd.Add(MeshDraft.Band(vOuterUpper, vOuterLower)); if (bAdd_Disk) { amd.Add(MeshDraft.TriangleFan(vDisk)); } GetComponent<MeshFilter>().mesh = amd.ToMeshInternal(); }
plasma discharge in laboratory
The are three types of mode of electrified plasma.
1, Dark Mode when the voltage is low so we don’t see anything but can still measure it (I though prefer to call it ‘invisible mode’ to differentiate from mystical substances like dark matter which can’t be in any way be detected or measured), just like radio waves which are not seen.
2, Glow Mode when there is an increase in power and we start to see it, like in a fluorescent tube.
3, When there is even more power and it arcs, like a lighting bolt or the surface of the sun as a arcing plasmoid. This is clearly seen in bipolar nebular with the Z-Pinch clearly in effect by constricting the ionized gas and then making it glow.
It was reported and confirmed this week that the mainstream scientific community are as much in the dark as they have ever been. So once again we must ask, is this more evidence of ignorance in the main stream because they have been blinded by quasi religious doctrine and tenet?
To me this is probably the reason for most, which means that they should be just sacked without delay so they can give up on science, go back to school and learn some physics.
&
As we see from the video the crater at the top looks like it has dendritic ridges in the crater walls and is similar to one on mars but without the whole underneath.
I have shown this before but that was a while ago now, so is worth a look if you haven’t seen it yet. Even though it goes with the traditional estimation as to when it was built, the importance of this is the construction.
I haven’t touched on this for a while so in light of our electrically active earth environment and the amount of metal particulates in chemtrails that are being pumped into the atmosphere, I think we should once again remind ourselves of the phenomena. I like the report @ 07:55 because it happened at a live sports event and was commented on.
Because of the size of their own self importance this wouldn’t even occur to them because apart from being able to do some complicated sums and spout unproven doctrine, there really isn’t too much else there. Personally I couldn’t watch much of the following video (about 15 mins) because I have heard it all before and it’s the same poor guess fiction and so is pointless and a waist of time in my life.
using UnityEngine; using System.Collections; using System.Collections.Generic; /// <summary> /// Helper class that represents a parameterized vertex /// </summary> public class Vector3Param { ///bernstein polynomial packing public List<List<float>> bernPolyPack; ///Point after applying s,t,u to p0, should result in original point public Vector3 p = Vector3.zero; ///Origin public Vector3 p0 = Vector3.zero; ///Distances along S/T/U axes public float s,t,u; public Vector3Param() { s = 0.0f; t = 0.0f; u = 0.0f; } public Vector3Param(Vector3Param v) { s = v.s; t = v.t; u = v.u; p = v.p; p0 = v.p0; } }; /// <summary> /// Free form deformation class /// /// Based off of the paper 'Free-Form Deformation of Solid Geometric Models'[1] this class /// creates a system of control points that can deform a mesh as if that mesh was embedded /// in a flexible parallelpiped. /// /// Confused? Yeah, who uses the term parallelpiped. The idea is to create a uniformly spaced /// grid of control points around some mesh. Each control point has some effect on the mesh, like /// bone weighting in animation. The effect each control point has is directly proportional to the /// total number of control points in the entire grid, each exerts some control. /// /// [1] - http://pages.cpsc.ucalgary.ca/~blob/papers/others/ffd.pdf /// </summary> public class FreeFormDeformer : MonoBehaviour { /// <summary> /// Allow FixedUpdate to modify the mesh. /// </summary> public bool AllowMeshUpdate = false; /// <summary> /// Target to be morphed /// </summary> Mesh MorphTarget = null; /// <summary> /// Target to be filtered (assumed to contain a meshfilter and valid mesh) /// </summary> public MeshFilter MorphTargetFilter = null; /// <summary> /// Update frequency in seconds /// </summary> public float UpdateFrequency = 1.0f; /// <summary> /// Game object to represent a control point. Can be anything really, I suggest spheres. /// </summary> public GameObject ControlPointPrefab; /// <summary> /// Local coordinate system /// </summary> Vector3 S, T, U; /// <summary> /// Number of controls for S, T, & U respectively. (L,M, and N MUST be >= 1) /// </summary> public int L=1, M=1, N=1; /// <summary> /// Time elapsed since last update /// </summary> float elapsedTime = 0.0f; /// <summary> /// Grid of controls points. Stored as 3D grid for easier because width,height, and depth can randomly vary. /// </summary> GameObject[, ,] controlPoints; /// <summary> /// Original vertices from MorphTarget /// </summary> Vector3[] originalVertices; /// <summary> /// Current updated vertices for MorphTarget /// </summary> Vector3[] transformedVertices; /// <summary> /// Vertex parameters /// /// Each vertex is given a set of parameters that will define /// its final position based on a local coordinate system. /// </summary> List<Vector3Param> vertexParams = new List<Vector3Param>(); void Start () { MorphTarget = MorphTargetFilter.mesh ; originalVertices = MorphTarget.vertices; transformedVertices = new Vector3[originalVertices.Length]; Parameterize(); } /// <summary> /// Calculate a binomial coefficient using the multiplicative formula /// </summary> float binomialCoeff(int n, int k){ float total = 1.0f; for(int i = 1; i <= k; i++){ total *= (n - (k - i)) / (float)i; } return total; } /// <summary> /// Calculate a bernstein polynomial /// </summary> float bernsteinPoly(int n, int v, float x) { return binomialCoeff(n,v) * Mathf.Pow(x, (float)v) * Mathf.Pow((float)(1.0f - x), (float)(n - v)); } /// <summary> /// Calculate local coordinates /// </summary> void calculateSTU(Vector3 max, Vector3 min){ S = new Vector3(max.x - min.x, 0.0f, 0.0f); T = new Vector3(0.0f, max.y - min.y, 0.0f); U = new Vector3(0.0f, 0.0f, max.z - min.z); } /// <summary> /// Calculate the trivariate bernstein polynomial as described by [1] /// /// My method adapts [1] slightly by precalculating the BP coefficients and storing /// them in Vector3Param. When it comes time to extract a world coordinate, /// it's just a matter of summing up multiplications through each polynomial from eq (2). /// </summary> /// <links> /// [1] - Method based on: http://pages.cpsc.ucalgary.ca/~blob/papers/others/ffd.pdf /// </links> /// <param name="p0">Origin of our coordinate system (where STU meet)</param> void calculateTrivariateBernsteinPolynomial(Vector3 p0){ Vector3 TcU = Vector3.Cross(T, U); Vector3 ScU = Vector3.Cross(S, U); Vector3 ScT = Vector3.Cross(S, T); float TcUdS = Vector3.Dot(TcU, S); float ScUdT = Vector3.Dot(ScU, T); float ScTdU = Vector3.Dot(ScT, U); for (int v = 0; v < originalVertices.Length; v++) { Vector3 diff = originalVertices[v] - p0; Vector3Param tmp = new Vector3Param(); tmp.s = Vector3.Dot(TcU, diff / TcUdS); tmp.t = Vector3.Dot(ScU, diff / ScUdT); tmp.u = Vector3.Dot(ScT, diff / ScTdU); tmp.p = p0 + (tmp.s * S) + (tmp.t * T) + (tmp.u * U); tmp.p0 = p0; tmp.bernPolyPack = new List<List<float>>(); { // Reserve room for each bernstein polynomial pack. tmp.bernPolyPack.Add(new List<float>(L)); //outer bernstein poly tmp.bernPolyPack.Add(new List<float>(M)); //middle bernstein poly tmp.bernPolyPack.Add(new List<float>(N)); //inner bernstein poly } { // Pre-calculate bernstein polynomial expansion. It only needs to be done once per parameterization for (int i = 0; i <= L; i++) { for (int j = 0; j <= M; j++) { for (int k = 0; k <= N; k++) { tmp.bernPolyPack[2].Add(bernsteinPoly(N, k, tmp.u)); } tmp.bernPolyPack[1].Add(bernsteinPoly(M, j, tmp.t)); } tmp.bernPolyPack[0].Add(bernsteinPoly(L, i, tmp.s)); } } vertexParams.Add(tmp); if (Vector3.Distance(tmp.p, originalVertices[v]) > 0.001f) { //Debug.Log("Warning, mismatched parameterization"); } } } /// <summary> /// Parameterize MorphTarget's vertices /// </summary> void Parameterize(){ Vector3 min = new Vector3(Mathf.Infinity,Mathf.Infinity,Mathf.Infinity); Vector3 max = new Vector3(-Mathf.Infinity,-Mathf.Infinity,-Mathf.Infinity); foreach(Vector3 v in originalVertices){ max = Vector3.Max(v,max); min = Vector3.Min(v,min); } calculateSTU(max, min); calculateTrivariateBernsteinPolynomial(min); createControlPoints(min); } /// <summary> /// Create grid of control points. /// </summary> void createControlPoints(Vector3 origin){ controlPoints = new GameObject[L + 1, M + 1, N + 1]; for(int i = 0; i <= L; i++){ for(int j = 0; j <= M; j++){ for(int k = 0; k <= N; k++){ controlPoints[i, j, k] = createControlPoint(origin, i, j, k); } } } } /// <summary> /// Create a single control point. /// </summary> GameObject createControlPoint(Vector3 p0, int i, int j, int k) { Vector3 position = p0 + (i / (float)L * S) + (j / (float)M * T) + (k / (float)N * U); return (GameObject)Instantiate(ControlPointPrefab, position, Quaternion.identity); } /// <summary> /// Convert parameterized vertex in to a world coordinate /// </summary> Vector3 getWorldVector3(Vector3Param r){ int l = L; int m = M; int n = N; Vector3 tS = Vector3.zero; for(int i = 0; i <= l; i++){ Vector3 tM = Vector3.zero; for(int j = 0; j <= m; j++){ Vector3 tK = Vector3.zero; for(int k = 0; k <= n; k++){ tK += r.bernPolyPack[2][k] * controlPoints[i,j,k].transform.position; } tM += r.bernPolyPack[1][j] * tK; } tS += r.bernPolyPack[0][i] * tM; } return tS; } void UpdateMesh(){ elapsedTime = 0.0f; int idx = 0; foreach(Vector3Param vp in vertexParams){ Vector3 p = getWorldVector3(vp); transformedVertices[idx++] = p; } MorphTarget.vertices = transformedVertices; MorphTarget.RecalculateBounds(); MorphTarget.RecalculateNormals(); MorphTarget.Optimize(); } void FixedUpdate() { elapsedTime += Time.fixedDeltaTime; if (AllowMeshUpdate) { if (elapsedTime >= UpdateFrequency) UpdateMesh(); } } // Update is called once per frame void Update () { } }
using System.Collections; using System.Collections.Generic; using UnityEngine; using VRTK; using VRTK.GrabAttachMechanics; using ArgosTweenSpacePuppy; public class Tetra_MAJOR : MonoBehaviour { public enum State { FREE, ATTACHED, } public bool bTurn_Off_Collider = false; public State state; public enum SpokeState { OPEN, OCCUPIED, } public class Spoke_Tracker { public SpokeState spokeState = SpokeState.OPEN; public GameObject go_occupying = null; public float touchTimer = 0; public GameObject genSpoke; } private int id = 0; public GameObject[] vertsHT = new GameObject[4]; public Spoke_Tracker[] spoke_Tracker = new Spoke_Tracker[4]; [Range(0, 10f)] public float Radius_of_Action = 7f; [Range(0, 1.61803f)] public float tDurr = 0.7f; private bool bForce_update = false; private float tAccum = 0f; private float tween_Val = 0f; private float touchTimer = 0; private Spoke_Tracker attachedSpoke; private GameObject attachedTetra_go; private Vector3 start_Pos; private Vector3 end_Pos; private Quaternion qStart; private Quaternion qEnd; private HMD_Ctrl_Tracking hmd_Ctrl_Tracking; private VU_UI_MANAGER VU_UI; private ALL_Shape_Instancer all_shape_instancer; private bool bTouchGrabEnabled = true; private bool bGrabbed = false; private VRTK_InteractableObject vrtk_interact; public bool bInteractive = true; void Start() { hmd_Ctrl_Tracking = HMD_Ctrl_Tracking.Instance; VU_UI = VU_UI_MANAGER.Instance; all_shape_instancer = VU_UI.GetComponent<ALL_Shape_Instancer>(); vrtk_interact = GetComponent<VRTK_InteractableObject>(); vrtk_interact.InteractableObjectGrabbed += new InteractableObjectEventHandler(DoObjectGrabbed); vrtk_interact.InteractableObjectUngrabbed += new InteractableObjectEventHandler(DoObjectUnGrabbed); Vector3[] face_Center = new Vector3[4]; face_Center[0] = (vertsHT[0].transform.localPosition + vertsHT[1].transform.localPosition + vertsHT[2].transform.localPosition) / 3f; face_Center[1] = (vertsHT[1].transform.localPosition + vertsHT[2].transform.localPosition + vertsHT[3].transform.localPosition) / 3f; face_Center[2] = (vertsHT[0].transform.localPosition + vertsHT[2].transform.localPosition + vertsHT[3].transform.localPosition) / 3f; face_Center[3] = (vertsHT[0].transform.localPosition + vertsHT[1].transform.localPosition + vertsHT[3].transform.localPosition) / 3f; float avg_FC = (face_Center[0].magnitude + face_Center[1].magnitude + face_Center[2].magnitude + face_Center[3].magnitude) / 4f; Vector3 axis = new Vector3(); Quaternion q; for (int i = 0; i < 4; i++) { spoke_Tracker[i] = new Spoke_Tracker(); spoke_Tracker[i].spokeState = SpokeState.OPEN; spoke_Tracker[i].genSpoke = new GameObject(); spoke_Tracker[i].genSpoke.name = "genSpoke_" + i.ToString(); spoke_Tracker[i].genSpoke.transform.parent = transform; spoke_Tracker[i].genSpoke.transform.localPosition = face_Center[i].normalized * 2f*avg_FC; axis = vertsHT[i].transform.localPosition - face_Center[i]; q = Quaternion.AngleAxis(180f, axis); spoke_Tracker[i].genSpoke.transform.localRotation = q; } //if (bInteractive) //{ // for (int i = 0; i < tet.Length; i++) // { // tet[i].id = i; // tetras.Add(tet[i]); // } //} } private void DoObjectGrabbed(object sender, InteractableObjectEventArgs e) { bGrabbed = true; touchTimer = 1f; //if (state == State.ATTACHED) //{ // //octa_Major.Detach(id); // state = State.FREE; //} } private void DoObjectUnGrabbed(object sender, InteractableObjectEventArgs e) { bGrabbed = false; } public void Detach(int id) { //for (int i = 0; i < spoke_Tracker.Length; i++) //{ // if (spoke_Tracker[i].go_occupying != null) // { // if (spoke_Tracker[i].go_occupying.GetComponent<Tetra_MAJOR>().id == id) // { // spoke_Tracker[i].touchTimer = 2f; // spoke_Tracker[i].go_occupying = null; // print("OPEN HAPPENED"); // } // } //} } void Update() { touchTimer -= Time.deltaTime; if (bGrabbed) { float dist; foreach (GameObject g in all_shape_instancer.getList()) { Spoke_Tracker[] sp = g.GetComponent<Tetra_MAJOR>().spoke_Tracker; if (g != gameObject) { for (int i = 0; i < 4; i++) { dist = (sp[i].genSpoke.transform.position - transform.position).magnitude; if (dist < Radius_of_Action && sp[i].spokeState == SpokeState.OPEN && touchTimer < 0) { print("Within Range of idx: " + i.ToString()); //disconnect GetComponent<VRTK_FixedJointGrabAttach>().StopGrab(false); //sp[i].spokeState = SpokeState.OCCUPIED; sp[i].go_occupying = this.gameObject; //t.state = Tetra_MAJOR.State.ATTACHED; attachedSpoke = sp[i]; attachedTetra_go = gameObject; start_Pos = transform.position; end_Pos = sp[i].genSpoke.transform.position; qStart = transform.rotation; qEnd = sp[i].genSpoke.transform.rotation; tAccum = 0; StartCoroutine(Tween_Move_to_Spoke()); } } } } //Switch off Touch Grab if in the VU //if (!bTouchGrabEnabled && hmd_Ctrl_Tracking.Get_Current_USER_Location() != HMD_Ctrl_Tracking.USER_LOCATION.IN_THE_VU) //{ // Enable_Touch_Grab(); // bTouchGrabEnabled = true; //} //else if (bTouchGrabEnabled && hmd_Ctrl_Tracking.Get_Current_USER_Location() == HMD_Ctrl_Tracking.USER_LOCATION.IN_THE_VU) //{ // Disable_Touch_Grab(); // bTouchGrabEnabled = false; //} } } private void Enable_Touch_Grab() { //GetComponent<SphereCollider>().enabled = true; //foreach (Tetra_MAJOR t in tetras) //{ // t.GetComponent<SphereCollider>().enabled = true; //} } private void Disable_Touch_Grab() { //GetComponent<SphereCollider>().enabled = false; //foreach (GameObject g in all_shape_instancer.getList()) //{ // g.GetComponent<SphereCollider>().enabled = false; //} } private IEnumerator Tween_Move_to_Spoke() { int i = 0; //Sanity check for infinite loops float linProg = tAccum / tDurr; while (i < 180 && (linProg < 1)) { bForce_update = true; tAccum += Time.deltaTime; linProg = tAccum / tDurr; Mathf.Clamp(tAccum, 0, tDurr); tween_Val = EaseMethods.QuintEaseOut(tAccum, 0, 1, tDurr); Move_To_Spoke(tween_Val); yield return true; i++; } tAccum = tDurr; tween_Val = 1; Move_To_Spoke(tween_Val); bForce_update = false; StopCoroutine("Tween_State"); } private void Move_To_Spoke(float val) { transform.position = Vector3.Lerp(start_Pos, end_Pos, val); transform.rotation = Quaternion.Slerp(qStart, qEnd, val); } }
using System.Collections; using System.Collections.Generic; using UnityEngine; using VRTK; //Set to Template option public class Voronoi_Joint : MonoBehaviour { public enum GEOMETRY { TETRA, OCTA, }; public GEOMETRY geo = GEOMETRY.TETRA; public GameObject[] centerRbs = new GameObject[6];//4 public GameObject[] connected_Joints = new GameObject[6];//4 private Vector3[] cj_12_EndPoints = new Vector3[12]; private Vector3[] cj_24_EndPoints = new Vector3[24]; private Vector3 startPosition; //private int[,] vN_Points_to; private Six_Splines six_splines; private Twelve_Splines twelve_Splines; public bool bPrint_Debug = false; public Button_VU bvToggle_Hi_Res; /// <image url="$(SolutionDir)\EMB\EMB_Edge_Vert.png" scale="0.36" /> /// <image url="$(SolutionDir)\EMB\EMB_Edge_Vert_2.png" scale="0.1" /> public float radius = 1; public float outerforceMag = 10; public float centering_Mult = 1; public float torque_Coefficient = 1f; private VRTK_InteractableObject vrtk_Interact_1; public enum Handle_States { NORMAL, TOUCHED, GRABBED, } private Handle_States handle_State = Handle_States.NORMAL; public Color handle_Base_Col; public Color handle_Touched_Col; public Color handle_Grabbed_Col; private Color handle_Base_Emissive_Col; private VU_UI_MANAGER VU_UI; public bool bUsePhysics = true; public bool bSetTetraPositions = false; public GameObject TetraVoronoi; void Start() { startPosition = transform.position; bvToggle_Hi_Res.isON = false; vrtk_Interact_1 = GetComponent<VRTK_InteractableObject>(); VU_UI = VU_UI_MANAGER.Instance; if (geo == GEOMETRY.TETRA) { six_splines = GetComponentInChildren<Six_Splines>(); six_splines.Set_CJ_0_GO(connected_Joints[0]);//For OutII } else if(geo == GEOMETRY.OCTA) { twelve_Splines = GetComponentInChildren<Twelve_Splines>(); } vrtk_Interact_1.InteractableObjectTouched += new InteractableObjectEventHandler(DoObject_1_Touched); vrtk_Interact_1.InteractableObjectUntouched += new InteractableObjectEventHandler(DoObject_1_Untouched); vrtk_Interact_1.InteractableObjectGrabbed += new InteractableObjectEventHandler(DoObject_1_Grabbed); vrtk_Interact_1.InteractableObjectUngrabbed += new InteractableObjectEventHandler(DoObject_1_Ungrabbed); if (!bUsePhysics) { Rigidbody[] rbs = GetComponentsInChildren<Rigidbody>(); foreach(Rigidbody rb in rbs) { rb.isKinematic = true; } for (int i = 0; i < centerRbs.Length; i++) { centerRbs[i].GetComponent<Rigidbody>().isKinematic = true; centerRbs[i].GetComponent<ConfigurableJoint>().enablePreprocessing = false; connected_Joints[i].GetComponent<Rigidbody>().isKinematic = true; } } if(bSetTetraPositions) { Voronoi_Joint vj = TetraVoronoi.GetComponent<Voronoi_Joint>(); Vector3 thisBasePosition = transform.position; float edgeLength = (connected_Joints[0].transform.position - connected_Joints[1].transform.position).magnitude; Vector3 vfaceCenter = ( connected_Joints[0].transform.localPosition + connected_Joints[1].transform.localPosition + connected_Joints[2].transform.localPosition) / 3f; Vector3 vDir = vfaceCenter.normalized; float tetraHeight = edgeLength * Mathf.Sqrt(0.666666667f); TetraVoronoi.transform.position = transform.position + vfaceCenter + vDir * edgeLength * Mathf.Sqrt(6) / 12f; Vector3[] vTetraPos = new Vector3[4]; vTetraPos[0] = connected_Joints[0].transform.position; vTetraPos[1] = connected_Joints[1].transform.position; vTetraPos[2] = connected_Joints[2].transform.position; vTetraPos[3] = thisBasePosition + vfaceCenter + vDir*edgeLength*Mathf.Sqrt(6)/3; vj.SetPositions(ref vTetraPos); } } public void SetPositions(ref Vector3[] positions) { for(int i = 0; i < connected_Joints.Length; i++) { connected_Joints[i].transform.position = positions[i]; } } private void DoObject_1_Touched(object sender, InteractableObjectEventArgs e) { handle_State = Handle_States.TOUCHED; VU_UI.Report_Touched(vrtk_Interact_1.gameObject, e.interactingObject); } private void DoObject_1_Untouched(object sender, InteractableObjectEventArgs e) { handle_State = Handle_States.NORMAL; VU_UI.Report_UnTouched(vrtk_Interact_1.gameObject, e.interactingObject); } private void DoObject_1_Grabbed(object sender, InteractableObjectEventArgs e) { handle_State = Handle_States.GRABBED; } private void DoObject_1_Ungrabbed(object sender, InteractableObjectEventArgs e) { handle_State = Handle_States.NORMAL; } private bool isValid_Vector(Vector3 v) { if (!float.IsNaN(v.x) && !float.IsNaN(v.y) && !float.IsNaN(v.z)) { return true; } else { return false; } } public void Return_To_Start_Position() { transform.position = startPosition; } void FixedUpdate() { if (bUsePhysics) { //Angular Adjustment for (int j = 0; j < connected_Joints.Length; j++) { Vector3 vA = connected_Joints[j].transform.right; GameObject gAlign = connected_Joints[0]; //subtract y component to get projection on current XZ plane float yDot = Vector3.Dot(connected_Joints[j].transform.up, gAlign.transform.up); Vector3 yProjected = gAlign.transform.up + yDot * gAlign.transform.up; float torque = torque_Coefficient * Vector3.Dot(yProjected, connected_Joints[j].transform.forward); Rigidbody rbc = connected_Joints[j].GetComponent<Rigidbody>(); rbc.AddTorque(rbc.transform.up * torque); } //Distribute around sphere - Voronoi Action foreach (GameObject go in connected_Joints) { Rigidbody rb = go.GetComponent<Rigidbody>(); Rigidbody rbInner; Vector3 vFrom; Vector3 vSum; Vector3 vRecip; foreach (GameObject gInner in connected_Joints) { vSum = Vector3.zero; float r;//Radius from Neighbor if (go != gInner) { rbInner = gInner.GetComponent<Rigidbody>(); vFrom = rb.position - rbInner.position; r = vFrom.magnitude; vRecip = (1f / r) * vFrom.normalized; vSum += vRecip; } if (isValid_Vector(vSum)) { rb.AddForce(outerforceMag * vSum); } } } //Pull centerRbs into Center of Sphere Vector3 vDiff; foreach (GameObject gCent in centerRbs) { Rigidbody rb = gCent.GetComponent<Rigidbody>(); vDiff = transform.position - rb.position; rb.velocity = vDiff / Time.fixedDeltaTime; } if (bPrint_Debug) { //for (int i = 0; i < 4; i++) //{ // for (int j = 0; j < 3; j++) // { // print("VN_[" + i.ToString() + "," + j.ToString() + "] points to " + vN_Points_to[i, j].ToString()); // } //} bPrint_Debug = false; } } } Color curr_Color; Color curr_dot_Color; Color targ_Color; Color targ_dot_Color; float theta = 390; float target_theta = 0; public void Animate_Handle_Material()//UI HANDLE { curr_Color = Color.Lerp(curr_Color, targ_Color, Time.deltaTime * 1.61803f); curr_dot_Color = Color.Lerp(curr_dot_Color, targ_dot_Color, Time.deltaTime * 1.61803f); if (handle_State == Handle_States.NORMAL) { //target_theta = 300; targ_Color = handle_Base_Col; } else if (handle_State == Handle_States.TOUCHED) { //target_theta = 390; targ_Color = handle_Touched_Col; } else if (handle_State == Handle_States.GRABBED) { //target_theta = 570; targ_Color = handle_Grabbed_Col; } Renderer rend = GetComponent<Renderer>(); rend.material.SetColor("_Color", curr_Color); rend.material.SetColor("_EmissionColor", curr_Color); } public void Toggle_Hi_Res_From_Voronoi() { bvToggle_Hi_Res.isON = !bvToggle_Hi_Res.isON; six_splines = TetraVoronoi.GetComponentInChildren<Six_Splines>(); six_splines.Set_Hi_Res(bvToggle_Hi_Res.isON); twelve_Splines.Set_Hi_Res(bvToggle_Hi_Res.isON); } private void Update() { //Animate_Handle_Material(); if (geo == GEOMETRY.TETRA) { cj_12_EndPoints[0] = connected_Joints[0].transform.localPosition; cj_12_EndPoints[1] = connected_Joints[1].transform.localPosition; cj_12_EndPoints[2] = connected_Joints[0].transform.localPosition; cj_12_EndPoints[3] = connected_Joints[2].transform.localPosition; cj_12_EndPoints[4] = connected_Joints[0].transform.localPosition; cj_12_EndPoints[5] = connected_Joints[3].transform.localPosition; cj_12_EndPoints[6] = connected_Joints[1].transform.localPosition; cj_12_EndPoints[7] = connected_Joints[2].transform.localPosition; cj_12_EndPoints[8] = connected_Joints[1].transform.localPosition; cj_12_EndPoints[9] = connected_Joints[3].transform.localPosition; cj_12_EndPoints[10] = connected_Joints[2].transform.localPosition; cj_12_EndPoints[11] = connected_Joints[3].transform.localPosition; six_splines.Generate_Splines(cj_12_EndPoints, transform.position); } else if(geo == GEOMETRY.OCTA) { cj_24_EndPoints[0] = connected_Joints[0].transform.localPosition; cj_24_EndPoints[1] = connected_Joints[1].transform.localPosition; cj_24_EndPoints[2] = connected_Joints[0].transform.localPosition; cj_24_EndPoints[3] = connected_Joints[2].transform.localPosition; cj_24_EndPoints[4] = connected_Joints[0].transform.localPosition; cj_24_EndPoints[5] = connected_Joints[3].transform.localPosition; cj_24_EndPoints[6] = connected_Joints[0].transform.localPosition; cj_24_EndPoints[7] = connected_Joints[4].transform.localPosition; cj_24_EndPoints[8] = connected_Joints[1].transform.localPosition; cj_24_EndPoints[9] = connected_Joints[2].transform.localPosition; cj_24_EndPoints[10] = connected_Joints[1].transform.localPosition; cj_24_EndPoints[11] = connected_Joints[5].transform.localPosition; cj_24_EndPoints[12] = connected_Joints[1].transform.localPosition; cj_24_EndPoints[13] = connected_Joints[4].transform.localPosition; cj_24_EndPoints[14] = connected_Joints[2].transform.localPosition; cj_24_EndPoints[15] = connected_Joints[5].transform.localPosition; cj_24_EndPoints[16] = connected_Joints[2].transform.localPosition; cj_24_EndPoints[17] = connected_Joints[3].transform.localPosition; cj_24_EndPoints[18] = connected_Joints[3].transform.localPosition; cj_24_EndPoints[19] = connected_Joints[5].transform.localPosition; cj_24_EndPoints[20] = connected_Joints[3].transform.localPosition; cj_24_EndPoints[21] = connected_Joints[4].transform.localPosition; cj_24_EndPoints[22] = connected_Joints[4].transform.localPosition; cj_24_EndPoints[23] = connected_Joints[5].transform.localPosition; twelve_Splines.Generate_Splines(cj_24_EndPoints, transform.position); } } }
using System.Collections; using System.Collections.Generic; using UnityEngine; using ProceduralToolkit; using VRTK; using UnityEngine.UI; using VRTK.GrabAttachMechanics; public class Six_Splines : MonoBehaviour { public Face_Tetra faces; public GameObject test_Octahedron; public GameObject Horn_Handle_Prefab; private GameObject[] tangent_Handles = new GameObject[14]; [Range(0, 100f)] public float scale_tangent_Handles = 27f; private bool bEdge_Rotation_On = false; private float edge_Angular_Rate = 0f; public Slider sld_Edge_Angular_Rate; private bool bHandles_On = true; public Button_VU bvAngular_On; private GameObject go_cj_0; public Button_VU[] bvEdge_Switches; private bool[] bEdge_Switch = new bool[6]; public Button_VU bvHorns_Handles_On; public Slider sld_Tangent; public Slider sld_Extend; public float tan_Slide_Val = 0; public float extend_Slide_Val = 0; public Slider_VU sv_Tangent_Adjust; public Slider_VU sv_Extend_Adjust; public bool bHi_Res_On = false; public bool bRun_Once = false; public Button_VU bv_Outii; //One Face Opposite Tangents public Vector3[] tetra_Edges = new Vector3[12]; //edge 0 -> 0,1 | edge 1 -> 2-3 etc. private VRTK_InteractableObject interact; private ArgosMeshDraft aMD_Spline_Green; private ArgosMeshDraft aMD_Spline_Red; private ArgosMeshDraft aMD_Spline_Blue; private ArgosMeshDraft aMD_Spline_Yellow; private ArgosMeshDraft aMD_Spline_Orange; private ArgosMeshDraft aMD_Spline_Violet; private ArgosMeshDraft aMD_Spline_Cross; public GameObject spline_Green; public GameObject spline_Red; public GameObject spline_Blue; public GameObject spline_Yellow; public GameObject spline_Orange; public GameObject spline_Violet; public GameObject spline_Cross; public float[] spline_lens_Green = new float[256]; public float[] spline_lens_Red = new float[256]; public float[] spline_lens_Blue = new float[256]; public float[] spline_lens_Yellow = new float[256]; public float[] spline_lens_Orange = new float[256]; public float[] spline_lens_Violet = new float[256]; public float[] spline_lens_Cross = new float[256]; private List<Vector3> lst_SplineGreen = new List<Vector3>(); private List<Vector3> lst_SplineRed = new List<Vector3>(); private List<Vector3> lst_SplineBlue = new List<Vector3>(); private List<Vector3> lst_SplineYellow = new List<Vector3>(); private List<Vector3> lst_SplineOrange = new List<Vector3>(); private List<Vector3> lst_SplineViolet = new List<Vector3>(); //private List<Vector3> lst_SplineCross = new List<Vector3>(); private Vector3 p0_1, p0_2; private Vector3 p1_1, p1_2; private Vector3 p2_1, p2_2; private Vector3 p3_1, p3_2; private Vector3 p4_1, p4_2; private Vector3 p5_1, p5_2; [Range(0, 0.5f)] public float radial_Mag = 0.5f; [Range(-20, 20f)] public float tangent_Mag = 1f; [Range(-20, 20f)] public float tRad = 0.0f; public bool bUpdate = false; public bool bTangents_From_Octahedron = false; public Twelve_Splines twelve_Splines; private VU_UI_MANAGER VU_UI; void Start () { bv_Outii.isON = false; //tan_Slide_Val = sld_Tangent.value; //extend_Slide_Val = sld_Extend.value; //edge_Angular_Rate = sld_Edge_Angular_Rate.value; for (int i = 0; i<6; i++) { bEdge_Switch[i] = false; } VU_UI = VU_UI_MANAGER.Instance; aMD_Spline_Green = new ArgosMeshDraft(); aMD_Spline_Red = new ArgosMeshDraft(); aMD_Spline_Blue = new ArgosMeshDraft(); aMD_Spline_Yellow = new ArgosMeshDraft(); aMD_Spline_Orange = new ArgosMeshDraft(); aMD_Spline_Violet = new ArgosMeshDraft(); aMD_Spline_Cross = new ArgosMeshDraft(); //Generate_Splines(); spline_Green.GetComponent<MeshFilter>().mesh.MarkDynamic(); spline_Red.GetComponent<MeshFilter>().mesh.MarkDynamic(); spline_Blue.GetComponent<MeshFilter>().mesh.MarkDynamic(); spline_Yellow.GetComponent<MeshFilter>().mesh.MarkDynamic(); spline_Orange.GetComponent<MeshFilter>().mesh.MarkDynamic(); spline_Violet.GetComponent<MeshFilter>().mesh.MarkDynamic(); spline_Cross.GetComponent<MeshFilter>().mesh.MarkDynamic(); for (int i = 0; i < 12; i++) { tangent_Handles[i] = Instantiate(Horn_Handle_Prefab); tangent_Handles[i].transform.localPosition = Vector3.zero; tangent_Handles[i].transform.localRotation = Quaternion.identity; if (!GetComponentInParent<Voronoi_Joint>().bUsePhysics) { tangent_Handles[i].GetComponent<Rigidbody>().isKinematic = true; } } for (int i = 0; i < 12; i++) { if (i % 2 == 0) { tangent_Handles[i].GetComponent<Handle_Tangent_Interact>().Set_Dual(tangent_Handles[i + 1].GetComponent<Handle_Tangent_Interact>()); } else { tangent_Handles[i].GetComponent<Handle_Tangent_Interact>().Set_Dual(tangent_Handles[i - 1].GetComponent<Handle_Tangent_Interact>()); } } } public void Set_CJ_0_GO(GameObject cj_0_go) { go_cj_0 = cj_0_go; } public void Show_Handles(bool bON) { for (int i = 0; i < 14; i++) { tangent_Handles[i].SetActive(bON); } } //public Slider sld_Tangent; //public Slider sld_Extend; public void onSld_Tangent() { tan_Slide_Val = sld_Tangent.value; VU_UI.Set_Active_Slider(sv_Tangent_Adjust.gameObject); UI_Ladder.Instance.fine_Tuner.Active_FTS(sld_Tangent); } public void onSld_Extend() { extend_Slide_Val = sld_Extend.value; VU_UI.Set_Active_Slider(sv_Extend_Adjust.gameObject); UI_Ladder.Instance.fine_Tuner.Active_FTS(sld_Extend); } public void Set_Hi_Res(bool bON) { bHi_Res_On = bON; faces.Set_Hi_Res(bON); bRun_Once = bON; } public void onBV_Outii() { bv_Outii.isON = !bv_Outii.isON; } public void On_Edge_Switch_BV(int i) { bEdge_Switch[i] = !bEdge_Switch[i]; if(bvEdge_Switches[0] != null) { bvEdge_Switches[i].isON = bEdge_Switch[i]; } } public void onSld_Cross_Tangent() { tan_Slide_Val = sld_Tangent.value; VU_UI.Set_Active_Slider(sv_Tangent_Adjust.gameObject); UI_Ladder.Instance.fine_Tuner.Active_FTS(sld_Tangent); } public void onSld_Cross_Extend() { extend_Slide_Val = sld_Extend.value; VU_UI.Set_Active_Slider(sv_Extend_Adjust.gameObject); UI_Ladder.Instance.fine_Tuner.Active_FTS(sld_Extend); } public void On_Edge_Angular_Rotation_sld() { edge_Angular_Rate = sld_Edge_Angular_Rate.value; } public void On_Edge_Rotation_Button() { bEdge_Rotation_On = !bEdge_Rotation_On; bvAngular_On.isON = bEdge_Rotation_On; } public void OnHandles_OnOff() { bHandles_On = !bHandles_On; bvHorns_Handles_On.isON = bHandles_On; for(int i = 0; i<12; i++) { tangent_Handles[i].GetComponent<Handle_Tangent_Interact>().Show(bHandles_On); } } float ang = 0; void Update() { if (bUpdate) { if (bEdge_Rotation_On) { ang += edge_Angular_Rate * Time.deltaTime; } else { ang = 0; } for (int i = 0; i < 12; i++) { tangent_Handles[i].transform.localScale = scale_tangent_Handles * Vector3.one; tangent_Handles[i].transform.position = transform.position + transform.parent.TransformVector(tetra_Edges[i]); } Vector3 v_i1_i0; Quaternion q0, q1; Quaternion qZ_0, qZ_1; for (int i = 0; i < 6; i++) { v_i1_i0 = tangent_Handles[i*2].transform.position - tangent_Handles[i*2+1].transform.position; q0 = Quaternion.LookRotation(-v_i1_i0, tangent_Handles[i * 2].transform.position - transform.position); q1 = Quaternion.LookRotation(v_i1_i0, tangent_Handles[i * 2 + 1].transform.position - transform.position); float direction = 1f; if(bEdge_Switch[i]) { direction = -1f; } float tanDir = 1f; Quaternion q0_bub = Quaternion.identity; Quaternion q1_bub = Quaternion.identity; qZ_0 = Quaternion.Euler(0, 0, direction*ang); qZ_1 = Quaternion.Euler(0, 0, -direction*ang); tangent_Handles[i * 2].transform.rotation = q0 * qZ_0 * Quaternion.Euler(new Vector3(tanDir*tan_Slide_Val, 0, 0))*q0_bub; tangent_Handles[i * 2 + 1].transform.rotation = q1 * qZ_1 * Quaternion.Euler(new Vector3(tanDir*tan_Slide_Val, 0, 0)) * q1_bub; //if (bv_Outii.isON && i > 2) //{ // if (i == 4) // { // //tanDir = -1f; // Vector3 nYellow0 = Vector3.Cross(go_cj_0.transform.up, tangent_Handles[i * 2].transform.forward).normalized; // Vector3 nYellow1 = Vector3.Cross(tangent_Handles[i * 2 + 1].transform.forward, go_cj_0.transform.up).normalized; // Vector3 nPlanar0 = Vector3.Cross(go_cj_0.transform.up, nYellow0).normalized; // Vector3 nPlanar1 = Vector3.Cross(go_cj_0.transform.up, nYellow1).normalized; // float cosTheta0 = Vector3.Dot(nPlanar0, nYellow0); // float cosTheta1 = Vector3.Dot(nPlanar1, nYellow1); // float ang0_R = Mathf.Acos(cosTheta0); // float ang1_R = Mathf.Acos(cosTheta1); // float convR_to_D = 180f / Mathf.PI; // float ang0_D = ang0_R * convR_to_D; // float ang1_D = ang1_R * convR_to_D; // q0_bub = Quaternion.AngleAxis(ang0_D, nYellow0); // q1_bub = Quaternion.AngleAxis(2 * ang1_D, nYellow1); // tangent_Handles[i * 2].transform.localRotation = q0_bub * tangent_Handles[i * 2].transform.localRotation; // //tangent_Handles[i * 2 + 1].transform.rotation = q1_bub; // } //} tangent_Handles[i * 2].GetComponent<Handle_Tangent_Interact>().Set_Tangent_Position(extend_Slide_Val); tangent_Handles[i * 2 + 1].GetComponent<Handle_Tangent_Interact>().Set_Tangent_Position(extend_Slide_Val); } } } public void Generate_Splines(Vector3[] points, Vector3 vCenter) { if (!bHi_Res_On || bRun_Once) { bRun_Once = false; aMD_Spline_Green.Clear(); aMD_Spline_Red.Clear(); aMD_Spline_Blue.Clear(); aMD_Spline_Yellow.Clear(); aMD_Spline_Orange.Clear(); aMD_Spline_Violet.Clear(); //aMD_Spline_Cross.Clear(); lst_SplineGreen.Clear(); lst_SplineRed.Clear(); lst_SplineBlue.Clear(); lst_SplineYellow.Clear(); lst_SplineOrange.Clear(); lst_SplineViolet.Clear(); //lst_SplineCross.Clear(); for (int i = 0; i < 12; i++) { tetra_Edges[i] = points[i]; } p0_1 = points[0];//0 p0_2 = points[1];//1 p1_1 = points[2];//0 p1_2 = points[3];//2 p2_1 = points[4];//0 p2_2 = points[5];//3 p3_1 = points[6];//1 p3_2 = points[7];//2 p4_1 = points[8];//1 p4_2 = points[9];//3 p5_1 = points[10];//2 p5_2 = points[11];//3 Vector3 vTn_01, vTn_02, vTn_11, vTn_12, vTn_31, vTn_32; if (bTangents_From_Octahedron) { //0-1 vTn_01 = twelve_Splines.getTan_Han(0).GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_01 = transform.parent.InverseTransformVector(vTn_01); //1-0 vTn_02 = twelve_Splines.getTan_Han(1).GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_02 = transform.parent.InverseTransformVector(vTn_02); //-------------------------- //0-2 vTn_11 = twelve_Splines.getTan_Han(2).GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_11 = transform.parent.InverseTransformVector(vTn_11); //2-0 vTn_12 = twelve_Splines.getTan_Han(3).GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_12 = transform.parent.InverseTransformVector(vTn_12); //--------------------------- //1-2 vTn_31 = twelve_Splines.getTan_Han(8).GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_31 = transform.parent.InverseTransformVector(vTn_31); //2-1 vTn_32 = twelve_Splines.getTan_Han(9).GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_32 = transform.parent.InverseTransformVector(vTn_32); } else { //0-1 vTn_01 = tangent_Handles[0].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_01 = transform.parent.InverseTransformVector(vTn_01); //1-0 vTn_02 = tangent_Handles[1].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_02 = transform.parent.InverseTransformVector(vTn_02); //-------------------------- //0-2 vTn_11 = tangent_Handles[2].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_11 = transform.parent.InverseTransformVector(vTn_11); //2-0 vTn_12 = tangent_Handles[3].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_12 = transform.parent.InverseTransformVector(vTn_12); //--------------------------- //1-2 vTn_31 = tangent_Handles[6].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_31 = transform.parent.InverseTransformVector(vTn_31); //2-1 vTn_32 = tangent_Handles[7].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_32 = transform.parent.InverseTransformVector(vTn_32); } //--------------------------- //0-3 Vector3 vTn_21 = tangent_Handles[4].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_21 = transform.parent.InverseTransformVector(vTn_21); //3-0 Vector3 vTn_22 = tangent_Handles[5].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_22 = transform.parent.InverseTransformVector(vTn_22); //--------------------------- //1-3 Vector3 vTn_41 = tangent_Handles[8].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_41 = transform.parent.InverseTransformVector(vTn_41); //3-1 Vector3 vTn_42 = tangent_Handles[9].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_42 = transform.parent.InverseTransformVector(vTn_42); //--------------------------- //2-3 Vector3 vTn_51 = tangent_Handles[10].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_51 = transform.parent.InverseTransformVector(vTn_51); //3-2 Vector3 vTn_52 = tangent_Handles[11].GetComponent<Handle_Tangent_Interact>().Get_Tangent_Position() - vCenter; vTn_52 = transform.parent.InverseTransformVector(vTn_52); //Local Coordinates if (bv_Outii.isON) { //Mirror Vector3 vLocal_Up_0 = transform.parent.InverseTransformVector(go_cj_0.transform.up).normalized; Vector3 vHandle_Pos = tangent_Handles[6].gameObject.transform.position - vCenter; vHandle_Pos = transform.parent.InverseTransformVector(vHandle_Pos); Vector3 vTo_Tangent = vTn_31 - vHandle_Pos; float dot; dot = Vector3.Dot(vTo_Tangent, vLocal_Up_0); float mir = -2f * dot; vTn_31 += mir * vLocal_Up_0; vTn_32 += mir * vLocal_Up_0; vTn_41 += mir * vLocal_Up_0; vTn_42 += mir * vLocal_Up_0; vTn_51 += mir * vLocal_Up_0; vTn_52 += mir * vLocal_Up_0; } //--------------------------- Compute_Dist_Spline(ref lst_SplineGreen, ref spline_lens_Green, p0_1, vTn_01, vTn_02, p0_2); Compute_Dist_Spline(ref lst_SplineRed, ref spline_lens_Red, p1_1, vTn_11, vTn_12, p1_2); Compute_Dist_Spline(ref lst_SplineBlue, ref spline_lens_Blue, p2_1, vTn_21, vTn_22, p2_2); //--------------------------- Compute_Dist_Spline(ref lst_SplineYellow, ref spline_lens_Yellow, p3_1, vTn_31, vTn_32, p3_2); Compute_Dist_Spline(ref lst_SplineOrange, ref spline_lens_Orange, p4_1, vTn_41, vTn_42, p4_2); Compute_Dist_Spline(ref lst_SplineViolet, ref spline_lens_Violet, p5_1, vTn_51, vTn_52, p5_2); aMD_Spline_Green.Add(MeshDraft.Along_Spline(radial_Mag, 6, lst_SplineGreen)); aMD_Spline_Red.Add(MeshDraft.Along_Spline(radial_Mag, 6, lst_SplineRed)); aMD_Spline_Blue.Add(MeshDraft.Along_Spline(radial_Mag, 6, lst_SplineBlue)); aMD_Spline_Yellow.Add(MeshDraft.Along_Spline(radial_Mag, 6, lst_SplineYellow)); aMD_Spline_Orange.Add(MeshDraft.Along_Spline(radial_Mag, 6, lst_SplineOrange)); aMD_Spline_Violet.Add(MeshDraft.Along_Spline(radial_Mag, 6, lst_SplineViolet)); spline_Green.GetComponent<MeshFilter>().mesh = aMD_Spline_Green.ToMeshInternal(); spline_Red.GetComponent<MeshFilter>().mesh = aMD_Spline_Red.ToMeshInternal(); spline_Blue.GetComponent<MeshFilter>().mesh = aMD_Spline_Blue.ToMeshInternal(); spline_Yellow.GetComponent<MeshFilter>().mesh = aMD_Spline_Yellow.ToMeshInternal(); spline_Orange.GetComponent<MeshFilter>().mesh = aMD_Spline_Orange.ToMeshInternal(); spline_Violet.GetComponent<MeshFilter>().mesh = aMD_Spline_Violet.ToMeshInternal(); //p0 = p0_1 //p1 = p1_1 //p2 = p2_1 //Tangents // 6 & 7 -> tan 1,2 tu1 & tu2 // // tv1 = //cj_12_EndPoints[0] = connected_Joints[0].transform.localPosition; //cj_12_EndPoints[1] = connected_Joints[1].transform.localPosition; //cj_12_EndPoints[2] = connected_Joints[0].transform.localPosition; //cj_12_EndPoints[3] = connected_Joints[2].transform.localPosition; //cj_12_EndPoints[4] = connected_Joints[0].transform.localPosition; //cj_12_EndPoints[5] = connected_Joints[3].transform.localPosition; //cj_12_EndPoints[6] = connected_Joints[1].transform.localPosition; //cj_12_EndPoints[7] = connected_Joints[2].transform.localPosition; //cj_12_EndPoints[8] = connected_Joints[1].transform.localPosition; //cj_12_EndPoints[9] = connected_Joints[3].transform.localPosition; //cj_12_EndPoints[10] = connected_Joints[2].transform.localPosition; //cj_12_EndPoints[11] = connected_Joints[3].transform.localPosition; /*test_Octahedron.transform.localPosition = */ faces.Clear_Faces(); faces.Generate_Face(tetra_Edges[0], tetra_Edges[3], tetra_Edges[1], vTn_32, vTn_31, vTn_12, vTn_02, vTn_11, vTn_01 ); faces.Generate_Face(tetra_Edges[0], tetra_Edges[5], tetra_Edges[3], vTn_52, vTn_51, vTn_22, vTn_12, vTn_21, vTn_11 ); faces.Generate_Face(tetra_Edges[0], tetra_Edges[1], tetra_Edges[5], vTn_41, vTn_42, vTn_02, vTn_22, vTn_01, vTn_21 ); faces.Generate_Face(tetra_Edges[6], tetra_Edges[7], tetra_Edges[9], vTn_51, vTn_52, vTn_32, vTn_42, vTn_31, vTn_41 ); faces.toMesh_Internal(); //Generate_Face(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 tu1, Vector3 tu2, Vector3 tv1, Vector3 tv2, Vector3 tv01, Vector3 tv02) } /// <image url="$(SolutionDir)\EMB\EMB_tetra_Faces.png" scale="0.15" /> //aMD_Spline_Red.Add(MeshDraft.Along_Spline(0.007f, 6, lst_SplineRed)); //aMD_Spline_Blue.Add(MeshDraft.Along_Spline(0.007f, 6, lst_SplineBlue)); } private void Compute_Spline(ref List<Vector3> spline_lst, ref float[] lengths, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3) { float t = 0.0f; float dt = 1f / 72f; Vector3 vB = GetPointOnBezierCurve(p0, p1, p2, p3, get_Adjusted(t, ref lengths)); for (int i = 0; i < 72; i++) { vB = GetPointOnBezierCurve(p0, p1, p2, p3, get_Adjusted(t, ref lengths)); spline_lst.Add(vB); t += dt; } } private float get_Adjusted(float t, ref float[] lengths) { int i = 0; while (i < 256 && lengths[i] < t) { i++; } return (float)i / 256; } private void Compute_Dist_Spline(ref List<Vector3> spline_lst, ref float[] lengths, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3) { float t = 0.0f; float dt = 1f / 256; Vector3 vB = GetPointOnBezierCurve(p0, p1, p2, p3, t); Vector3 vB_Last = vB; float running_Len = 0; for (int i = 0; i < 256; i++) { vB = GetPointOnBezierCurve(p0, p1, p2, p3, t); running_Len += (vB - vB_Last).magnitude; lengths[i] = running_Len; vB_Last = vB; t += dt; } for (int i = 0; i < 256; i++) { lengths[i] /= running_Len; } Compute_Spline(ref spline_lst, ref lengths, p0, p1, p2, p3); } public Vector3 GetPointOnBezierCurve(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) { float u = 1f - t; float t2 = t * t; float u2 = u * u; float u3 = u2 * u; float t3 = t2 * t; Vector3 result = (u3) * p0 + (3f * u2 * t) * p1 + (3f * u * t2) * p2 + (t3) * p3; return result; } }