The Heart is not a Pump

AnthroMed

To any doctor trained in today’s medical schools, the idea that the heart may not be a pump would, at first sight, appear to be about as logi­cal as suggesting that the sun rises in the West or that water flows uphill. So strongly is the pump concept in­grained in the col­lective psyche that even trying to think otherwise is more than most people can man­age. Yet Rudolf Steiner, a man not given to unscien­tific or slipshod thinking, was quite clear on the matter and reiterated time and again that the heart is not a pump. “The blood drives the heart, not the heart the blood.”




Ralph Marinelli* and his co-workers published a paper refuting the generally-accepted pressure-propulsion premise. For a start, they draw atten­tion to the sheer volume of work which the heart would have to do if it were solely responsible for pumping inert blood through the vessels of the circula­tory system. Blood is five times as vis­cous as water. According to the propul­sion premise the heart would have to pump 8000 liters of blood a day in a body at rest and considerably more during ac­tivity, through millions of capillaries the diameters of which are sometimes smaller than the red blood cells them­selves – a huge task for a relatively small, muscular organ weighing only 300 grams.

Once the questions start being asked, the anomalies in currently accepted dogma become apparent. For instance, if blood were pumped under pressure out of the left ventricle into the aorta dur­ing systole, the pressure pulse would cause the aortic arch to try and straighten out, as happens in any Bourdon tube pressure gauge. In practice the exact oppo­site happens; the curve increases, indi­cating that the aorta is undergoing a nega­tive, rather than a positive, pressure.




Another paradoxical finding con­cerns the mechanics of fluid flow under pulsatile pressure. When a pressure pulse is applied to a viscous fluid in a closed vessel, the liquid initially resists move­ment through its own inertia. The pres­sure, therefore, peaks before the fluid velocity peaks. In the aorta, exactly the opposite happens where a peak flow markedly precedes peak pressure, a fact which was observed in 1860 by Chaveau and Lortet. So just what is going on in­side the circulation?

Misleading sketch of the heart by Leonardo do Vinci (1). The left ventricle wall is shown uniform in thickness as it would he in a pressure chamber. Actually the left ventricle wall thickness varies by about 1800% as Marinelli and his group measured in bovine hearts (2). The apex wall is so soft and weak that it can be pierced with the index finger. The peculiar variability in the ventricular wall thickness is not in keeping with the heart as pressure generator. However, Leonardo’s Notebooks has been used in most biology, physiology, and medical texts during the last few hundred  years as well as in most modern anatomy texts in the last decades (3). Thus, false sketches have served to bear witness to a false premise.

As Marinelli et al point out, the pres­sure-propulsion model of blood circula­tion rests on four major premises: (1) blood is naturally inert and must, there­fore, be forced to circulate; (2) there is a random mix of formed particles in the blood; (3) blood cells are under pressure at all times; (4) blood is amorphous and is forced to fill its vessels and take on their form.

Continue reading “The Heart is not a Pump”

The Very Curious Little Soliton

 

In 1834, a man sits beside a canal. It is summer. He watches boats moving up and down the waterway. Suddenly, one boat stops abruptly and shoves a curious wave of water forward. The man stands and observes this singular wave, which passes leaving only flat water behind it. John Scott Russel stands. The wave is still moving. Disappearing from sight. He leaps on his horse. He pursues it, overtakes it, and observes it over perhaps two miles of waterway. It holds its shape, and only gradually diminishes in height. Very strange. Very curious.

Russel, an engineer, mathematician, and accomplished ship builder, was the first person to spot such a wave, follow it, and then write about it. He described called the wave a ‘wave of translation.’ Modern physics calls such singular traveling waves solitons.

What’s the big deal?

Throw a stone in a pond, and ripples spread. They spread out in concentric rings, and the rings split into more rings, and these split further. The rings begin to overlap as the taller rings overtake the shorter, and they gradually all become imperceptible as the energy of the stone spreads and is redistributed across the entire surface of the pond. Not so for the soliton. A soliton, as Russel famously chased, can travel over long distances without losing its form or its energy.

Oh, and solitons occur in not only water but light (electromagnetism) as well as in phonons (thermodynamics) and potentially in gravity waves.

You might be a soliton if:

  1. You are a traveling wave in some medium
  2. You hold your shape as you travel – you don’t spread out or fall apart into other waves.
  3. You are a neat well defined little envelope of energy – you are not here, you arrive and pass, and then you are gone!
  4. If you ever cross paths with another soliton, you can pass through each other unchanged.

Continue reading “The Very Curious Little Soliton”

Thunderbolts – Turning Sound Into Light

by Jimmy Mikecz

What if sound didn’t only flow through matter but could produce unexpected phenomena like light? Research in sound has revealed the capacity of sound to influence matter in a way that produces light. The phenomenon of sonoluminescence (SL) is one example of this relationship.

The Equipment.

“If you want to find the secrets of the universe, think in terms of energy, frequency, and vibration.”
― Nikola Tesla

Sonoluminescence occurs when high-frequency sound vibrates tiny gas bubbles to reach star-like temperatures and emit flashes of light. The mechanism of sonoluminescence is not fully understood but its occurrence is well documented. As SL researchers probe deeper into the phenomenon, they have found that current fluid dynamic equations cannot explain why it happens. SL is a natural phenomenon as well, and marine biologists observe some species of shrimp using it as an attack against other creatures. It is the bridge between sound and light and can offer a deeper understanding of nature’s laws.

Sonoluminescence

In a study at UCLA called Sonoluminescence: How Bubbles Turn Sound into Lightscientists S.J. Putterman and K.R. Weninger explore the mathematics and phenomenology of sonoluminescence. It is known that this phenomenon is caused by the rapid expansion and contraction of a bubble. This is known because the broad-band UV light emitted appears at a frequency, though not continuously. Think of a strobe light as an analogy where flashes of light last only pico-seconds (trillionths of a second.) According to Prof. Putterman, the phenomenon of sonoluminescence can heat bubbles up to tens of thousands of degrees. The surface of these bubbles burns at about 20,000 K (~35,000 °F) and look like “little stars.”

Continue reading “Thunderbolts – Turning Sound Into Light”

Dynamic Symmetry – Phylotaxis – Oleh Bodnar

The term dynamic symmetry was for the first time applied by the American architecture researcher J. Hambidge to a certain principle of proportioning in architecture . Later this term independently appeared in physics where it was introduced to describe physical processes that are characterized by invariants. Finally, in the given research the term dynamic symmetry is applied to regularity of natural form-shaping that in terms of origin also appears not to be connected with Hambidge’s idea, and, moreover, appearance of this term in physics. However, all the three variants are deeply interconnected in terms of their meaning which we are going to show.

At first, we point out strategic similarity of Hambidge’s and our researches. This is a well-known historical direction which in the field of architecture and art is motivated by the search for harmony regularities and, thus, is aimed at studying the objects of nature. Usually architects take interest in the structural regularities of natural form-shaping and, particularly, in the golden section and Fibonacci numbers which are regularities standing out by their intriguing role in architectural form-shaping. It is not accidentally that architects who do researches so frequently pay attention to botanical phenomenon phyllotaxis which is characterized by these regularities.

DYNAMIC SYMMETRY IN NATURE AND ARCHITECTURE

Continue reading “Dynamic Symmetry – Phylotaxis – Oleh Bodnar”

Thunderbolts – Who Still Denies Electric Currents in Space?




 

9Rese’ – EMF: 12 ANTI-CANCER AND 12 CANCER PROMOTING FREQUENCIES

 

 

Favourable and Unfavourable EMF Frequency Patterns in Cancer: Perspectives for Improved Therapy and Prevention

Carcinogenesis fits in a frequency pattern of electromagnetic field (EMF) waves, in which a gradual loss of cellular organization occurs. Such generation of cancer features can be inhibited by adequate exposure to coherent electromagnetic frequencies. However, cancer can also be initiated and promoted at other distinct frequencies of electromagnetic waves. Both observations were revealed by analyzing 100 different EMF frequency data reported in a meta-analyses of 123 different, earlier published, biomedical studies.

The studied EM frequencies showed a fractal pattern of 12 beneficial (anti-cancer) frequencies, and 12 detrimental (cancer promoting) frequencies, that form the central pattern of a much wider self-similar EMF spectrum of cancer inhibiting or promoting activities. Inhibiting of the cancer process, and even curing of the disease, can thus be considered through exposure to the coherent type of EM fields.

Stabilization of the disease can be understood by constructive resonance of macromolecules in the cancer cell with the externally appied coherent EMF field frequencies, called solitons/polarons.

The latter, for instance, have been shown earlier to induce repair in DNA/RNA conformation and/or epigenetic changes. The field of EMF treatment of cancer disorders is rapidly expanding and our studies may invite further experimental and clinical studies in which systematically various potential EMF treatment protocols could be applied, with combined and modulated frequencies, to obtain even more efficient EMF anti-cancer therapies.

Please visit 9Rese’ for more information

Black Hole – Down! – A Brief History of Time Lords

Stephen Hawkings greatest single achievement was simply living as long as he did. He died at the age of 76 having battled motor neurons disease for more than 50 years when the life expectancy for this condition was less then 5 years.

From WRC

He was a theoretical physicists and while had every right to develop his ideas, people seem to overlook the ‘theoretical’ aspects of his career.  His book “A brief history of time” was a best seller allegedly describing in layman’s term the actual working of the cosmos. He was adopted into the main stream science’s (MSS) hall of fame as having made major contributions to our current knowledge of cosmology.

This would be all be great if it were true.

Hawkings was firmly entrenched in a gravitational model of the universe. While he did develop a theory of ‘black holes’ one can definitely argue whether this was a positive contribution of our overall understanding of the cosmos. Black holes have no part to play in the electric universe (EU) model and certainly no part to play in WRC.

Some of Hawkings work suggest that his mathematics gets in the way of real empirical science. Theoretical physicists are fantastic at developing models of how Nature should behave and these models have parted ways from  actual empirical observations. Almost every new observation offers new surprises for the physicists but rather than thrown out old models they are amended and further complexed to yield even more fanciful (unfulfilled) predictions.

Black holes were supposed to be locations of intense gravitation, light could not escape. But then it was found that black holes should in ‘theory’ radiate and thus cool down. No worries, let’s think up a scheme whereby, some radiation does indeed escape, sure why not call it ‘Hawking radiation’ and let MSS accept this new theory as fact!!!




Perhaps if Hawking had considered the ‘singularity’ in term of the Cosmic Anode as described by WR then he might have been a more productive researcher.

12 Diagrams that Altered Our Consciousness

Ptolemy’s Geocentric Universe

What’s remarkable about Claudius Ptolemy’s vision of the universe is that it persisted so long among both Islamic and Christian astronomers. Ptolemy’s treatise Almagest first came on the scene in the second century CE and remained the go-t0 astronomical text for the next twelve hundred years, firmly planting the geocentric model of the universe in the brains of Medieval thinkers. Ptolemy wasn’t the first to present this view of the universe (in fact, the geocentric universe is called the Aristotelian Universe, since Aristotle described it in his treatise De Caelo et Mundo), and some thinkers differed on the proposed order of the myriad celestial bodies, but his view was certainly the most enduring.

Continue reading “Black Hole – Down! – A Brief History of Time Lords”