Crochet Pattern Contagion – Duplet – Space-Group Morphologies

from: Dataisnature

Nearly every source of attribution for old crochet patterns found on the web remains a mystery. There exists a dark web of pattern swapping enthusiasts fostering a contagion spread that conceals its origin. But one source identified is the old Russian language Duplet Magazine – worth singling out for its graphic ordering of patterns in optical monochrome cells configured to its own space-filling logic. Close-knit windowpanes create a comic strip story of evolving symmetry – a biological taxonomy of tiny skeletal organisms – Haeckel’s Radiolaria or Baricelli’s number-shaped organisms? Duplet really leads a double life as a handbook of space-group morphologies.

 

When Form Ignored Darwin

In its 150 years of existence, Darwinistic evolution has failed to resolve the enormous theoretical difficulties which have confronted it since its very conception.

TRANSLATED BY JOHN BRUCE LEONARD

This article was originally published under the name ‘Quando la forma ignorò Darwin: introduzione alla scienza della morfologia’ (‘When Form Ignored Darwin: Introduction to the Science of Morphology’) in the excellent Italian journal Centro Studi La Runa, which publishes as well a number of articles in various languages beyond Italian. This original translation of ‘When Form Ignored Darwin’ will be published in three parts, with the next installment scheduled for next Friday, 26 October.

It is the belief of the editor that this current essay represents a first-rate philosophico-scientific critique of evolution, and, what is much more important, the vindication of a viable alternative, rooted in the best of the Western philosophical tradition; it is for that reason of exceptional importance, both toward vitalizing our stagnant intellectual debate on this subject, and toward rightly locating the biological question within the larger cultural struggle in which we are involved.

Part 1

The theory of Evolution was without a doubt one of most influential scientific theories in the culture of the 19th century, and it remains to this day the dominant theory, at least within the biological sciences. At the same time, however, and perhaps by reason of its longevity, no other theory has seen the devotees and the pillars which upheld it crumble to the same degree over the course of the years. As of today, evolutionism, by virtue of the advancement of studies in all correlated disciplines – from genetics to molecular biology, to paleontology, etc. – could be defined, without fear of exaggerating, as a theory now defunct, which survives exclusively in scholastic texts and in the books of those academics who still dare to defend it, albeit with a thousand caveats, a thousand ifs and buts.

Already from the beginning, from the publication of Charles Darwin’s The Origin of Species, the theory could claim illustrious critics of great scientific and philosophical depth. By the time of Darwin, works had already been published by the great men of morphological biology, which is to say, by the champions of that philosophical tradition which only later became scientific – a tradition dating back to Aristotle, which reads the transformations of life in the light of form rather than in adaptation by natural selection. After Aristotle, these great thinkers of life respond to the names of Linnaeus, Cuvier, Saint-Hilaire, Goethe, Von Baer and, at the beginning of the 20th century, D’Arcy Thompson, Kleinschmidt, Dacqué, Westenhöfer, Portmann, Sacchetti in Italy, and, in more recent times, also in Italy, Giuseppe Sermonti (among the advocates of the Structuralists of Osaka group), and Roberto Fondi, a paleontologist from Siena – only to name the foremost of them. Before passing over to analysis of the question, it is necessary, however, to clear the field of a number of prejudices which are to be found even amongst academics, and which hinder calm and constructive scientific debate. In the first place, as of today, all the polemics and debates on this issue seem to be reducible to a true ideological disagreement between the hard-line creationists, or, as we might define them, the fundamentalists of creationism, and the pure evolutionists, meaning those who sustain the modern version of Darwinism, so-called Neo-Darwinism – which is to say, Darwin enriched by the discovery of DNA.

Continue reading “When Form Ignored Darwin”

The Universal Harmonic Pattern of Life

Richard Merrick

The discussion now brings us to a definition of life based on the physical process behind the formation of harmonics in a circular or spherical container. Properly defining this process is essential in understanding the physics guiding evolution and the patterning process of organic growth. As we will see, the geometry of life can be traced back to one universal pattern of harmonic interference.

Fig. 10

Not too surprising, this universal pattern can be easily found using a ‘Blackman spectral analysis’ of two musical tones diverging at a constant rate from unison upward to an octave (Fig. 10). Reproduced here with a built-in function in Adobe Audition®, the analysis reveals the spacing and size of resonant gaps that form naturally according to small whole number harmonic ratios, just as Pythagoras had discovered over 2,500 years ago. Each gap corresponds to a simple musical proportion, such as the 3:2 ratio of a perfect fifth, 4:3 perfect fourth and the highly resonant 5:3 major sixth – the widest gap of all.

Continue reading “The Universal Harmonic Pattern of Life”

Types of Supernovae – Discussion

Mainstream View:

“Before” and “After” pictures of Supernova 1987A
The above two photographs are of the same part of the sky. The photo on the right was taken in 1987 during the supernova explosion of SN 1987A, while the left hand photo was taken beforehand. Supernovae are one of the most energetic explosions in nature, equivalent to the power in a 1028megaton bomb (i.e., a few octillion nuclear warheads).

Supernovae are divided into two basic physical types:

Type Ia. These result from some binary star systems in which a carbon-oxygen white dwarf is accreting matter from a companion. (What kind of companion star is best suited to produce Type Ia supernovae is hotly debated.) In a popular scenario, so much mass piles up on the white dwarf that its core reaches a critical density of 2 x 109 g/cm3. This is enough to result in an uncontrolled fusion of carbon and oxygen, thus detonating the star.

Type II. These supernovae occur at the end of a massive star’s lifetime, when its nuclear fuel is exhausted and it is no longer supported by the release of nuclear energy. If the star’s iron core is massive enough, it will collapse and become a supernova.

However, these types of supernovae were originally classified based on the existence of hydrogen spectral lines: Type Ia spectra do not show hydrogen lines, while Type II spectra do.

Continue reading “Types of Supernovae – Discussion”

Plasmoids

 

Plasmoids on the 100th Anniversary of Winston H. Bostick’s Birth

(L) Bostick speaking at a conference of the Schiller Institute (November 1984). © Stuart Lewis. (R) Adaptively smoothed, co-added image in the 0.4-2.5 keV bandpass of the Centaurus A jet. North is up and east is to the left. The unusual doughnut shape of the nucleus to the southwest is caused by pileup in the ACIS detector. Each of the knots previously detected by Einstein and ROSAT has been clearly resolved into several distinct subknots and enhancements embedded within diffuse extended emissions. Courtesy Kraft et al. (2002). [16: 59 Fig. 4]

(L) Bostick speaking at a conference of the Schiller Institute (November 1984). © Stuart Lewis. (R) Adaptively smoothed, co-added image in the 0.4-2.5 keV bandpass of the Centaurus A jet. North is up and east is to the left. The unusual doughnut shape of the nucleus to the southwest is caused by pileup in the ACIS detector. Each of the knots previously detected by Einstein and ROSAT has been clearly resolved into several distinct subknots and enhancements embedded within diffuse extended emissions. Courtesy Kraft et al. (2002). [16: 59 Fig. 4]

Oct 25, 2016

Sixty years ago, Winston Harper Bostick found that an amorphous mass of high-velocity plasma has a natural ability to convert a large proportion of its kinetic energy into magnetic energy, contained in an organised toroidal structure.

He termed this structure a ‘plasmoid’. Bostick also showed that such magnetic plasma entities are capable of propagation across magnetic fields. Various strands of modern research support these findings. The characteristics of plasmoids become important for the study of plasma penetration of the earth’s magnetopause. And if the natural energy conversion mechanism exhibited by high-velocity plasmas can also be extended from laboratory scales to those of galactic jets, it may help to explain some puzzling aspects of the latter.

Bostick, dubbed “a man of great ‘physical intuition’”, was “a pioneer in particle physics, radar technology, fusion energy research, plasma and astrophysics” and “an innovative thinker and teacher who inspired many with his ability to give physical-geometrical descriptions to the abstract particles and forces that fill the theoretical world of physics and quantum mechanics” [1]. He was born on 5 March 1916 in Freeport, Illinois, and received his bachelor’s (1938) and doctoral degrees (1941) in physics from the University of Chicago around the time of the inception of the Manhattan Project to build an atomic bomb. Bostick’s thesis on the use of cosmic rays to generate subnuclear events for particle physics experiments was written under the direction of A. H. Compton and M. Schein. Following his graduate work, Bostick joined MIT’s Radiation Laboratory to develop new pulse transformers to generate the high voltages required by the new wartime radar systems.

After the war, Bostick continued to work at MIT on a new type of bubble chamber he had invented for particle physics measurements. He then worked with J. C. Slater on the MIT microwave linear accelerator until 1948. From 1948 to 1954, he was on the faculty of the Physics Department of Tufts University. He then took a leave of absence to work at Lawrence Livermore Laboratory on the early Controlled Thermonuclear Fusion Research (CTR) programme until 1956. In the mid-1950s, he developed a ‘plasma gun’ that accelerated bursts of atomic particles at high speeds through a magnetic field. From 1956 until 1986, Bostick was the George Meade Bond Professor at the Stevens Institute of Technology in Hoboken, New Jersey, serving as head of the Stevens Department of Physics for 12 of those years.

In the 1980s, Bostick’s work on superconductivity inspired the first of a series of seminars on physical and biological science sponsored by the Fusion Energy Foundation (FEF) and chaired by Lyndon H. La Rouche. The last such seminar was focused on developing the broader implications for the physical geometry of space-time conceived by Eugenio Beltrami, a collaborator of Riemann, whose work Bostick had first brought to the FEF’s attention in 1974. Bostick [2, 5] investigated Beltrami geometry as seen in force-free magnetic plasmas and suggested that this provided the context for realising force­free models for the atom and its nucleus. Bostick also championed the application of the same principles of Beltrami plasma processes to astrophysics. He died on 19 January 1991 after a long battle with cancer.

Going back to 1956, a milestone in plasma physics was reached when Bostick [3] reported experimental results which showed that plasma, when created and accelerated to high velocities by a button-type pulsed source, is shaped by its own magnetic field into a compact toroidal structure [3: 292]. Terming this structure a ‘plasmoid’, Bostick was careful to distinguish his own definition of a plasmoid as “a generic term for all plasma-magnetic entities”, highly structured, from its definition as an “amorphous blob”. He subsequently clarified his definition as “a self-generating, shaped body” [4: 90] and a “force-free minimum-free-energy structure” [5: 703] taking the form of a plasma vortex.

According to Bostick, “A rather surprising result occurs when the source … is placed in vacuum (~10-5 mm Hg) in an externally applied dc magnetic field and fired across the field. The plasma apparently has no difficulty in crossing the magnetic field” [3: 292]. It “forms an ever-elongating hollow cylinder as it proceeds across the magnetic field …” [4: 90] “Subsequent investigations were to prove that the plasma crosses the magnetic field in a train of paired oppositely rotating diamagnetic vortices” [5: 703], exhibiting Beltrami geometry.

These experiments led Bostick to conclude that “nature can take the electrical energy in the plasma gun, turn it into directed kinetic energy and momentum of the plasma, and then turn a large share of that energy into rotating energy of vortices …” [5: 703] The kinetic energy of a mass of plasma is converted into magnetic energy in a self-contained structure – a plasmoid – which then acquires the ability to cross magnetic fields.

Kubes et al. [6] recently demonstrated a similar conversion effect in a laboratory zpinch. The points of maximum pinch serve to accelerate plasma axially away from the zone of maximum compression. The high-velocity plasma then forms “toroidal, helical and plasmoidal structures … within the dense plasma column” [6: 1] in the lower-pressure regions further along the axis. A z-pinch is apparently an efficient way of generating the initial high velocities which result in the formation of self-contained plasmoids by the mechanism which Bostick identified.

Plasmoid formation is now thought to underlie various phenomena in interplanetary space. For example, Draper et al. [7] described how self-contained plasmoids arise during magnetic reconnection in the earth’s magnetotail. Similarly, Gunell and colleagues [8, 9] demonstrated that plasma with an initial high velocity relative to its surroundings may penetrate the sub-solar region of the magnetopause “by expulsion of the magnetic field from the structure …” [8: 1] We relate this finding to Bostick’s notion of an initial cylinder of high-velocity plasma transforming into a self-contained diamagnetic structure.

On a larger scale, coronal mass ejections (CMEs) may take the form of ‘magnetic clouds’ [10] exhibiting the characteristics of flux ropes [11]; Eselevich & Eselevich [12] hypothesised that small CMEs represent plasmoids.

In the light of these discoveries, it is not inconceivable that humans may have witnessed the arrival and disintegration of large plasmoids from the sun into the upper atmosphere at times of solar-terrestrial crisis, when the strength of the earth’s magnetosphere may have been compromised and coronal mass ejections may have been more ‘geoeffective’. One such episode may have been the terminal stage of the last glacial period, when the earth is known to have experienced considerable geomagnetic instability and the essential themes of a global body of ‘creation myths’ seem to have emerged.

Meanwhile, extending the laboratory results to intergalactic scales may help to resolve some outstanding problems in the formation and spectral emissions from jets emitted by radio galaxies of Fanaroff-Riley type I (FR-I). Table I in the discussion of the properties of the X-ray jets in FR-I radio galaxies by Harwood & Hardcastle [13] indicates that the jets from many galaxies, including Centaurus A and Messier 87, contain small-scale features known as ‘knots’. There are a number of puzzling aspects of these knots and the spectral emissions from the jets.

Firstly, the origin of the knots in the jets is uncertain; see, e. g., [14, 15]. Kraft et al. [16] presented data from the Chandra mission which showed that the major knots in Centaurus A known from Einstein and ROSATobservations are in fact groups of smaller knots located at places of “shocks in the flow where the magnetic fields are compressed and the particles accelerated”. Apparently, these are aligned along a helical path within the main jet delineated by the diffuse X-ray and radio intensity contours.

We suggest that the knots may arise spontaneously from conversion of part of the kinetic energy of the main jet according to Bostick’s principles of plasmoid formation, reinforced by the work of Kubes et al. Alternatively, the trigger for the formation of a knot may be the development of a kink instability in the inner jet which leads to the pinching off of a self-contained entity – or plasmoid; see, e. g., [17: 204 Fig. 1] and [18: 1409 Fig. 5]. Within the small knots, the particles would necessarily still have high rotational velocities in order to conserve both the angular momentum present in the original helical jet [19] and the magnetic helicity [20], assuming that the field is frozen into the plasma in accordance with the usual magnetohydrodynamic assumptions. Therefore, the plasmoidal knots may mirror the well-known behaviour of spherical tokomak plasma confinement devices, in which high plasma temperatures are generated and particles occasionally escape from the confinement, thus allowing energy extraction from the devices.

Secondly, the amplification of the magnetic field necessary to explain the observed synchrotron radiation emanating from the knots requires an explanation. De Young [21] suggested a model of turbulent amplification driven by the kinetic energy of the jet. However, this mechanism requires c. 1,000,000 to 100,000,000 years to produce sufficient amplification of the field by equipartition with the kinetic energy in order to explain the radio lobe sources; presumably, an even longer period would be required in order to amplify the field to strengths necessary to explain the X-ray emissions. In contrast, formation of a plasmoid by the Bostick mechanism would also convert jet kinetic energy into magnetic energy in a knot, but can be expected to be almost instantaneous by comparison. The process of knot formation may also occur on scales below the observable resolution. Kraftet al. [16] suggested that this may explain the diffuse X-ray emission of the jet. We suggest that it may also help to account for the regular field structure on a scale of 1 kpc in the radio lobes [21].

Finally, second-order Fermi acceleration of particles to synchrotron-producing energies of ±10 to 100 TeV is assumed to occur at the turbulent boundary of the main jet [22 citing 21], or in multiple diffusions across shocks within the knots. Similar turbulent effects can be expected to occur at the boundary of a plasmoid forming a knot. Analogies with spheromak fusion devices suggest that highly energetic particles on field lines may also periodically escape from a plasmoid knot, thereby providing a direct source of high-energy particles without the need for Fermi acceleration in boundary turbulence or by repeated diffusion across shocks.

To summarise, in 1956 Bostick [3] discovered the natural ability of high-velocity plasma to convert kinetic energy into magnetic energy in a self-contained structure called a ‘plasmoid’, which allows the plasma to cross magnetic field lines. These and subsequent discoveries by Bostick have been shown to be relevant to present researches ranging from laboratory z-pinches to the solar system. Scaling up this behaviour to galactic dimensions may help to explain puzzling features in knotty jets emanating from FR-I galaxies, including the formation of knots, the localised amplification of the magnetic field and the acceleration of particles to TeV energies observed in galactic jets. The 100th anniversary of Bostick’s birth would provide an opportune moment to investigate these suggestions in greater detail.

Robert J. Johnson & Marinus Anthony van der Sluijs

 

 

051 EU Meetup September 30th, 2018

We’re happy to welcome a special guest today: Ema Kurent

(DFAstrolS, QHP, CMA, ISAR CAP) from Ljubljana, Slovenia, has been professional astrologer since 1989, consulting, teaching, writing and researching. She specializes in traditional astrology. She is the head of the ISAR ­affiliated Astrological Academy Stella. Her articles have appeared in journals worldwide. She has spoken at conferences in Slovenia, Serbia, England, India, Poland, South Africa and USA, and held workshops, mainly on the use of eclipses and declinations in personal forecasting and on horary astrology.

Her book Horarna Astrologija was published in 2015.

THE DEVASTATING POWER OF COMETS

Ema Kurent

“I came in with Halley’s Comet in 1835. It is coming again next year, and I expect to go out with it. It will be the greatest disappointment of my life if I don’t go out with Halley’s Comet. The Almighty has said, no doubt: Now here are these two unaccountable freaks; they came in together, they must go out together.” (Mark Twain)

A romantic view of life and death, or a spark of a genius mind? Incidentally, Mark Twain died on April 21, 1910, the day following the comet’s subsequent return. And as “freakish” as it may seem, my research suggests that his birth and death were indeed powerfully related to Halley’s Comet. Not because the years of both incidents coincided with the appearance of the comet, but because the places of his birth and death were aligned with some strong ACG lines at the crucial points in the comet’s orbit. But for the reader to understand the rest, I must first introduce my technique.

Before proceeding, let me say that I have always sensed that comets, like planets and fixed stars and asteroids and so on, surely must influence life on our planet. But how, when and where would those influences become apparent? Those questions remained unanswered, until I let my mind find the proper way of research, the right technique or “modus operandi”, so to speak.

Since then, I have spent hours and hours calculating the various comets’ positions at the crucial points in their orbit and relating them to events on our planet. My research on the comets’ influence upon Earth has been mind-boggling, to say the least. My findings suggest that comets “cause” (or are synchronized to) an incredible high number of natural disasters and man-caused accidents. They are probably related to happy events as well, but much more research need be done before any definitive conclusions are reached. At then present point of my “travel” on the comets’ highway, I only stare at the incredible possibilities of research and discovery that the study of the comets has to offer. This research is not of a philosophic nature, but is based on astronomical facts. These facts, combined with the astrological theory of how certain planets affect life on Earth, offer a meeting ground of both sciences for which the present age may be just ripe. Indeed, if the academic world would humbly take time and allow consideration for the planetary influences which have been so thoroughly researched by the astrological community, a huge leap in both sciences would immediately take place.

But for this to happen, the scientific community would first have to allow for the fact that if comets’ (as well as planetary) influence is to be researched and evaluated, they would have to stop observing the planets (and other bodies, including comets) just as some distant objects in the sky. They would have to acknowledge that the Earth can receive and respond to their passages through the sky only when the Earth-related celestial planes and planetary (comets’) orbits meet.

Continue reading “051 EU Meetup September 30th, 2018”